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Abstract

The shifted number system is presented: a method for detecting and avoiding er-
ror producing carries during approximate computations with truncated expansions
of rational numbers. Using the shifted number system the high-order lifting and
integrality certification techniques of Storjohann 2003 for polynomial matrices are
extended to the integer case. Las Vegas reductions to integer matrix multiplica-
tion are given for some problems involving integer matrices: the determinant and
a solution of a linear system can be computed with about the same number of bit
operations as required to multiply together two matrices having the same dimension
and size of entries as the input matrix. The algorithms are space efficient.

1 Introduction

From the point of view of computational complexity there is an important
analogy between the ring of integers Z and the ring of univariate polynomi-
als k[x] with coefficients from a field k. The cost of computations over k[x]
is usually estimated in terms of the number of field operations from k and
thus depends on the degrees of polynomials, while over Z the measure is the
number of bit operations and thus the cost depends on the bitlength of the
integers. Many of the core algorithms and techniques in computer algebra
have polynomial and integer analogues (for example, multiplication and gcd
computation, homomorphic imaging and Chinese remaindering). These and
many other examples are addressed in detail in the textbooks [2,15,16].
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But the analogy between Z and k[x] is not complete. Over k[x] we have the
possibility of reversion: instead of working with a = a0 + a1x + · · · + akx

k

we can choose to work with rev(a) = ak + ak−1x + · · · + a0x
k. If b is another

polynomial then the leading three terms of ab can be recovered by computing
rev(a)×rev(b) modulo x3. This technique has no analogue over Z. In particular,
consider the situation when x is a positive integer radix and a and b are integers
written as x-adic expansions. Another difference is that the degree norm over
k[x] is non-Archimedean (deg(a + b) ≤ max(deg a, deg b)) while the absolute
value norm over Z is Archimedean — the triangle inequality |a+b| ≤ |a|+|b| is
tight. This property of |·| is well known for causing complications and errors in
algorithms due to carry propagation. Even a small additive perturbation can
affect the high order coefficients, for example 6659999999999999989 + 911 =
6660000000000000900.

A method for detecting error producing carries has been proposed in [29].
There, the authors consider the problem of computing the most significant
M digits of the product of two multi-precision floating point numbers using a
“short product”, outlined in [28, Exercise 15 in Section 4.3.1], which can speed
the product operation by avoiding the computation of low order terms if these
are not required. Unfortunately, the phenomenon of integer carries means the
lower order terms might cause an under- or over-flow, leading to an incorrect
rounding of the floating point number. The solution proposed in [29] is to
compute the leading M + 2 digits of the product, then check certain condi-
tions on the trailing coefficients, which we will call guard coefficients. If these
conditions are satisfied, the short product is guaranteed to be correct. Under a
hypothesis that the guard coefficients are distributed uniformly (which seems
reasonable in the context of multi-precision floating point computation) they
show that this check on the guard coefficients will rarely fail. In any case, if the
check does fail, the full operands may be used to compute the correct result.

In this paper we generalize the technique of using guard coefficients to com-
putations with approximate rational numbers, a number a + γ where γ is an
integer perturbation. Similar to [29], we establish a sufficient and easily as-
sayable condition on the approximation a + γ so that, if this condition holds,
we know the leading terms in the X-adic expansion of a+ γ equal the leading
terms in the expansion of a. Unlike the scenario in [29], we don’t have recourse
to using the full operands if the check on the guard coefficients should fail.
We show how to ensure, based on a single random shift choice at the start of
the computation, that the required condition on all the guard coefficients will
hold throughout a given computation with high probability. For this reason
we call our scheme the shifted number system.

In [43] we introduced the high-order lifting and integrality certification tech-
niques for polynomial matrices. In this paper we extend these techniques to
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the ring Z and give new complexity bounds for some linear algebra problems
on integer matrices, including linear system solving and determinant compu-
tation. These algorithms are randomized of the Las Vegas type; the output is
certified to be correct but the running time is expected.

The most fundamental problem we consider is linear system solving. Let
A ∈ Zn×n be nonsingular and b ∈ Zn×1. The rational system solving problem
is to compute A−1b ∈ Qn×1. The bitlength of the numerators and denomina-
tors of entries in A−1b will be about n times the bitlength of entries in A. The
most effective algorithms for rational system solving are based on p-adic lift-
ing [11,30] and cost (n3 log ‖A‖)×O∼(log n+(log log ‖A‖)2) bit operations [31,
Section 5], assuming ‖b‖ = ‖A‖O(n), where ‖A‖ denotes the maximum entry
in absolute value. The radix p should usually be relatively prime to det A and
is typically chosen at random, but if a suitable p is known the algorithm sup-
porting the O∼(n3 log ‖A‖) bound is deterministic. In this paper we show how
to computes A−1b with (nω log ‖A‖)×O∼((log n+log log ‖A‖)2) bit operations
(Las Vegas), where O(nω) scalar operations are sufficient to multiply two n×n
matrices.

The complexity of computing the determinant of an integer matrix has been
well studied [1,3,7,13,14,23,24,26,27,34]. We refer to [26] for a recent survey.
Our focus here is the asymptotic worst-case complexity. The previous best
complexity bound in [27] is O∼(n3.2 log ‖A‖) bit operations (Las Vegas) without
using sub-cubic matrix multiplication algorithms, and O∼(n2.697263 log ‖A‖) bit
operations (Las Vegas) using the fast matrix multiplication algorithms in [8,9].
Our approach here is more similar to [13], who achieve O∼(n3.5(log ‖A|‖)1.5)
bit operations (Monte Carlo) without the use of fast matrix multiplication
techniques. In Theorem 59 we establish that the determinant can be computed
with (nω log ‖A‖)×O∼((log n)3+(log log ‖A‖)2) bit operations, or O∼(n2.376 log ‖A‖)
bit operations (Las Vegas) assuming the currently best known value for ω.

We now give an outline of the paper. Section 2 defines our cost model. The
results in the rest of the paper can be partitioned along the following lines.

The shifted number system Sections 3 and 4 present the shifted number
system for certified computation as discussed above. This part of the paper is
self-contained and should be of independent interest.

Low level algorithms for high-order lifting and integrality certifica-
tion Sections 5, 6, 8, 10 and 11 extend the high-order lifting and integrality
certification techniques of [43] to the case of integer matrices. The algorithms
in these sections compute parts of the p-adic expansion of A−1 or A−1B. The
algorithms are specified with pre/post conditions and detailed pseudo-code in
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terms of low level basic operations such as integer matrix multiplication and
integer division with remainder. The algorithms are deterministic, taking as
input a shifted number system, and either return the correct result or fail.

Las Vegas reductions to integer matrix multiplication Sections 7, 9
and 13 take a more high level approach, applying the algorithms of the pre-
vious sections, up to that point in the paper, to get Las Vegas reductions
to matrix multiplication for various linear algebra problems on integer ma-
trices. Section 7 gives an algorithm for unimodularity certification. Section 9
focuses on problems related to linear system solving, and discusses the details
of choosing random primes and initializing a suitable shifted number system
so that the called-upon low level algorithm has a positive probability of suc-
cess. Section 13 develops the algorithm for the determinant. Cost estimates
are presented in a slightly less precise but more standard and usable form than
the low level algorithms.

Augmentative preconditioning of integer matrices Section 12 has a
different flavor than the rest of the paper. Here we develop some precondi-
tioners that will be used in the integer determinant algorithm in Section 13.
For the polynomial case of the problem [43] we could directly appeal to mul-
tiplicative preconditioners from [25] of the form UAV for randomly chosen U
and V . Due to the density of integer primes, in particular also small primes,
the technique used to prove the multiplicative preconditioners breaks down
in the integer case. Instead, here we use augmentative preconditioners: the
original matrix A is embedded into a larger matrix, parts of which are chosen
randomly. One of the main results in this section is an extension of a result
in [13], where the authors prove that an integer matrix chosen uniformly and
randomly from {0, 1, . . . , n− 1}n×n will have an expected constant number of
nontrivial invariant factors.

2 Basic operations and cost functions

Cost estimates will be given in terms of the following functions. The parameter
t is a bitlength, while n is a matrix dimension and X is a bound on the
magnitude of integer matrix coefficients.
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Cost Function Operations

M(t) integer multiplication

B(t) integer multiplication and gcd-like operations

MM(n) matrix multiplication over a ring

MM(n, X) integer matrix multiplication

MM(n, X) reduction to integer matrix multiplication

This section defines these functions and states our assumptions on them.

Let M : Z>0 −→ R>0 be such that integers bounded in magnitude by 2t

can be multiplied using at most M(t) bit operations. The Schönhage–Strassen
algorithm [39] allows M(t) = O(t(log t)(log log t)). We assume that M(a) +
M(b) ≤ M(a + b) and M(ab) ≤ M(a)M(b) for a, b ∈ Z≥2. See [15, Section 8.3]
for further references and discussion about integer multiplication.

It will be useful to define an additional function B for bounding the cost of inte-
ger gcd–related computations. We assume that B(t) = M(t) log t or B(t) = t2.
Then the extended gcd problem with two integers bounded in magnitude by 2t,
and the rational number reconstruction problem [15, Section 5.10] with mod-
ulus bounded by 2t, can be solved with O(B(t)) field operations [38] (compare
with [35]).

Let MM : Z>0 −→ R>0 be such that two n × n matrices over a ring (com-
mutative, with 1) can be multiplied using at most MM(n) ring operations.
The classical method has MM(n) = 2n3 − n2. Strassen’s algorithm [44] al-
lows MM(n) = 42nlog 7. The asymptotically fastest known method allows
MM(n) = O(n2.376). We refer to [15, Section 12.1] and [4] for further refer-
ences and detailed discussion about matrix multiplication.

We now define MM with two arguments. Let MM :Z>0×Z>0 −→ R>0 be such
that

• two matrices from Zn×n with entries bounded in magnitude by X can be
multiplied using at most MM(n,X) bit operations, and

• n2 M(log X + log n) ≤ MM(n, X).

The second part of the definition will be motivated below. First we consider
bounding MM(n,X) in terms of MM(n) and M. We need to account for the
possible growth in the magnitude of entries in the product matrix. Recall that
‖ · ‖ denotes the largest entry in absolute value.

Fact 1 If A ∈ Z∗×n and B ∈ Zn×∗ then ‖AB‖ ≤ n‖A‖‖B‖.
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The use of ∗ for the row dimension of A and column dimension of B in Fact 1
indicates that the result is valid for these dimensions chosen arbitrary. Now, let
t be the smallest positive integer such that 2t > 2n‖A‖‖B‖. Then we can mul-
tiply A and B over the residue class ring Z/(2t), elements of Z/(2t) represented
in the symmetric range. This gives MM(n, X) = O(MM(n)M(log X + log n))
but better bounds are possible (for example, by employing a homomorphic
imaging and Chinese remaindering scheme).

In our algorithms, every time we multiply two integer matrices we will need
to perform O(n2 M(log X + log n)) bit operations additional work (for exam-
ple, reduce all entries in the product matrix modulo X). For this reason, the
definition of MM(n, X) includes the stipulation that n2 M(log X + log n) =
O(MM(n, X)). This is a reasonable assumption. On the one hand there exist
algorithms supporting the bound M(log X + log n) = O∼(log X + log n). On
the other hand the total size of the product matrix is Θ(n2(log X + log n))
bits so n2(log X + log n) = O(MM(n, X)).

We use MM for some problems (see below) that can be reduced recursively to
matrix multiplication. For n a power of two, define

MM(n, X) :=

log n∑
i=0

4iMM(2−in, X)

+ n2(log n)B(log X + log n). (1)

If n is not a power of two, then define MM(n, X) := MM(n̄, X), where n̄ is the
smallest power of two greater than n. We now motivate the definition of MM.

Suppose X ∈ Z is nonzero. Then R := Z/(X) is a principal ideal ring. R can be
taken to be the set of all nonnegative integers with magnitude strictly less than
X. Multiplication in R costs O(M(log X)) bit operations and is accomplished
by first multiplying over Z and then reducing modulo X. Similarly, matrices
in Rn×n can be multiplied with MM(n, X) bit operations. Given an A ∈ Rn×n,
the following can be performed with O(MM(n,X)) bit operations:

• Compute a unimodular matrix U such that UA is upper triangular.
• Compute the inverse of A or determine that A is not invertible.
• Compute the Smith canonical form of A.

An algorithm supporting the running time O(MM(n, X)) bit operations for the
first problem is given in [21]. Now consider the second problem. The matrix A
will be invertible precisely if all diagonal entries of UA are invertible. If so, the
inverse of UA can be found using an additional O(MM(n, X) + n B(log X +
log n)) bit operations: first multiply UA by the diagonal matrix D such that
diagonal entries in DUA are equal to one, then apply a standard recipe for
triangular matrix inversion, see for example [10]. The result for computing the
Smith form is given in [41, Chapter 7], see also [40].
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We always have MM(n, X) = O((log n)MM(n)B(log X +log n)). If there exists
an absolute constant γ > 0 such that n2+γ = O(MM(n)), then MM(n, X) =
O(MM(n)B(log X+log n)). In this paper we don’t assume that n2+γ = O(MM(n)).

Simplification of cost estimates using assumptions

Some cost estimates will be greatly simplified by explicitly making one of the
following assumptions:

• B(t) = O(MM(t)/t)
• MM(a)B(b) = O(MM(ab)/b)

These assumptions are nearly identical; the first is implied by the second with
a = 1, and the second follows from the first if MM(a)MM(b) = O(MM(ab)).
These assumptions stipulate that if fast matrix multiplication techniques are
used then fast integer multiplication should be used also. For example, the al-
gorithms we present for nonsingular rational system solving requires us to do
n gcd-like operations on integers bounded in bitlength by nd. Making the as-
sumption B(t) = O(MM(t)/t) allows us to bound n B(nd) by O(MM(n)B(d)).

3 (X, t)-adic expansions of rational numbers

Let a ⊥ b denote that two integer a and b are relatively prime. Fix an integer
radix X > 1, and consider the set of rational numbers

S := {n/d | n, d ∈ Z, d ⊥ X}.

The set S is closed under the operations {+,−,×}. We are going to define two
additional operations Left and Trunc and give some of their properties. First
we need to consider the X-adic expansion of elements of S. Fix an integer
shift t, 0 ≤ t < X − 1. Then every a ∈ S has a unique and possibly infinite
expansion

a = a0 + a1X + a2X
2 + a3X

3 + · · · , (2)

where each integer coefficient ai is chosen in the range [−t,X−1−t] so that the
partial sum a0 + a1X + · · ·+ aiX

i is congruent to a modulo X i+1. We call (2)
the (X, t)-adic expansion of a. The (X, t)-adic expansion gives an embedding
of elements of S into the ring of (X, t)-adic expansions. The functions Left
and Trunc will be parameterized in terms of a proscribed X and t. By default,
Trunc := Trunc[(X, t)] and Left := Left[(X, t)].

Let a ∈ S have (X, t)-adic expansion as in (2), and let k be a nonnegative
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integer. Then Trunc is defined as follows:

Trunc(a, k) := a0 + a1X + a2X
2 + · · ·+ ak−1X

k−1.

The Trunc operation truncates an X-adic expansion:

a = a0 + a1X + a2X
2 + a3X

3 + a4X
4 + a5X

5 + a6X
6 + · · ·

Trunc(a, 4) = a0 + a1X + a2X
2 + a3X

3.

Every finite, and thus every truncated (X, t)-adic expansion is an integer.

The Left operation is defined as follows.

Left(a, k) := ak + ak+1X + ak+2X
2 + · · · .

The Left operation corresponds to division by a power of X. The name for this
operation comes from the fact that all coefficients of the (X, t)-adic expansion
are shifted left:

a = a0 + a1X + a2X
2 + a3X

3 + a4X
4 + a5X

5 + a6X
6 + · · ·

Left(a, 3) = a3 + a4X + a5X
2 + a6X

3 + a7X
4 + a8X

5 + a9X
6 + · · · .

The following lemmas follow from the definition of Left and Trunc.

Lemma 2 a = Trunc(a, k) + Left(a, k)Xk.

Lemma 3 If l ≤ k then Left(Trunc(a, k), l) = Trunc(Left(a, l), k − l).

All the above definitions extend naturally to the case of matrices by element-
wise application. Just replace the scalar a with a matrix A.

The (X, t)-adic shifted number system

Negative integers have infinite (X, 0)-adic expansions. For this reason we want
to disallow the shift choice t = 0. Moreover, for reasons that will become clear
in the next section where we discuss the problem of carry propagation, we
want the endpoints of the coefficient range [−t,X − 1− t] to be a distance of
at least two away from zero. This is achieved by stipulating that 1 < t < X−2,
which implies that X > 4.

Recall that S := {n/d | n, d ∈ Z, d ⊥ X}.
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Definition 4 For 1 < t < X− 2 the (X, t)-adic shifted number system is the
set of rational numbers S together with the operations {+,−,×, Left, Trunc}
as defined above.

In a shifted number system there is a natural isomorphism between Z and the
subset of S comprised of all elements having a finite (X, t)-adic expansion. We
have

k−1∑
i=0

(−t)X i ≤ Trunc(a, k) ≤
k−1∑
i=0

(X − 1− t)X i.

Converting the sums to closed form gives the following.

Lemma 5 In an (X, t)-adic shifted number system, Trunc(a, k) = a and
Left(a, k) = 0 if and only if a ∈ Z and

−t
(
Xk − 1

)
X − 1

≤ a ≤
(X − 1− t)

(
Xk − 1

)
X − 1

.

As expected, the size of the range is Xk. It will be useful to have a version of
Lemma 5 that does not depend on t. The stipulation that 1 < t < X−2 gives
the following.

Corollary 6 If a ∈ Z and |a| ≤ 2(Xk − 1)/(X − 1) then Trunc(a, k) = a.

Lemma 5 and Corollary 6 extend naturally to the case of matrices. Just replace
the scalar a with a matrix A. The condition on A is that each entry is an
integer in the specified range. The next result gives an additional extension to
matrices.

Corollary 7 If A ∈ Z∗×n and B ∈ Zn×∗ then Left(A Trunc(B, k), k) ≤ n‖A‖.

PROOF. Corollary 6 was obtained by minimizing the range for a in Lemma 5.
Maximizing the range gives the upper bound |Trunc(a, k)| ≤ (X − 3)(Xk −
1)/(X − 1), which is strictly less than Xk. Thus ‖Trunc(B, k)‖ < Xk. Let c
be any entry of A Trunc(B, k). Then Fact 1 gives |c| < n‖A‖Xk. Recall that
c = Trunc(c, k) + Left(c, k)Xk. Using |Left(c, k)|Xk − |Trunc(c, k)| ≤ |c| and
|Trunc(c, k)| < Xk gives Left(c, k) < n‖A‖+|Trunc(c, k)|/Xk < n‖A‖+1. 2

The (X, t, s)-adic shifted number system

In the next section we demonstrate the problem of error producing carries and
develop a technique, based on using “guard” coefficients, to detect and avoid
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such carries. Using an entire coefficient in the (X, t)-adic expansion for this
purpose will be wasteful. This motivates the following definition.

Let (X, t) and (X̄, t̄) be shifted number systems such that (X, t) = (X̄s, t̄(1 +
X̄ + · · ·+ X̄s−1)), for some integer s ≥ 2. We call this an (X, t, s)-adic shifted
number system. Note that the (X, t)-adic and (X̄, t̄)-adic expansions of a are
related as follows:

a =

a0︷ ︸︸ ︷
ā0 + ā1X̄ + · · ·+ ās−1X̄

s−1 +

a1X︷ ︸︸ ︷
āsX̄

s + ās+1X̄
s+1 + · · ·+ ā2s−1X̄

2s−1 + · · · .

Then Trunc(a, k) = Trunc[(X̄, t̄)](a, sk) and Left(a, k) = Left[(X̄, t̄)](a, sk).
(Recall that Trunc := Trunc[(X, t)] and Left := Left[(X, t)] by default.)
Corollary 6 then states that Trunc[(X̄, t̄)](a, sk) = a if a ∈ Z and |a| ≤
2(Xk − 1)/(X̄ − 1). Noting that Xk/X̄ ≤ (Xk − 1)/(X̄ − 1) if k ≥ 1 gives the
following simplified version.

Corollary 8 If a ∈ Z and |a| ≤ 2Xk/X̄ then Trunc(a, k) = a.

Most of the computations in our algorithms will be performed in the (X, t)-
adic system, but at those points where we need to check guard coefficients we
work in the (X̄, t̄)-adic system. Then, instead of using a1 as a guard coefficient,
for example, it will suffice to use ā2s−1.

Computing in a shifted number system

Considering (X, t)-adic expansions of elements of S allowed for natural def-
initions of Left and Trunc, but to compute in an (X, t)-adic number system
we don’t necessarily need to work with (X, t)-adic expansions. Let mod(a, b)
denote the unique integer r ∈ [0, b− 1] that is congruent to a modulo b. Then
the Trunc and Left operations can be implemented as follows.

Trunc[(X, t)](a, k) :=



r := mod(a, Xk);

if r > (X − 1− t)(Xk − 1)/(X − 1) then

r := r −Xk

fi;

return r

Left[(X, t)](a, k) :=

# Let Trunc := Trunc[(X, t)].

return (a− Trunc(a, k))/Xk
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4 Certified computation in shifted number systems

The algorithms in subsequent sections work in an (X, t)-adic shifted number
system and use approximate arithmetic to compute exact results. Let a ∈
{n/d | n, d ∈ Z, d ⊥ X}, γ be an integer, and k be a positive integer.
Suppose a represents an exact quantity, while γ is a small perturbation: |γ| ≤
Xk−1 in which case Left(γ, k) = 0. The scenario is that we have computed
an approximation a + γ of a, and hope to recover from this the high-order
coefficients Left(a, k) of a.

a = a0 + a1X + · · ·+ ak−1X
k−1 + Left(a, k)Xk

γ = γ0 + γ1X + · · ·+ γk−1X
k−1 (|γ| ≤ Xk−1)

a + γ = b0 + b1X + · · ·+ bk−1X
k−1 + Left(a + γ, k)Xk

The obvious approach is to compute Left(a + γ, k) and hope that this equals
Left(a, k). Unfortunately, the phenomenon of carry propagation means that
this may not be the case. For example, if (X, t) = (10, 5) then Trunc(4, 1) = 4
and Trunc(1, 1) = 1, but Left(4 + 1, 1) 6= Left(4, 1) + Left(1, 1). From an
algorithm design point of view there are two questions we must address.

(1) How can we assay if the high order coefficients of a+γ have been corrupted
by a carry propagation?

(2) How can we ensure that error producing carry propagations will be rare?

This section gives answers.

Let the (X, t)-adic expansion of a, γ and a + γ be as above. Consider adding
together Trunc(a, k) and γ:

Trunc(a, k) = a0 + a1X + · · ·+ ak−1X
k−1

γ = γ0 + γ1X + · · ·+ γk−1X
k−1 (|γ| ≤ Xk−1)

The following lemma gives a sufficient condition on ak−1 that ensures the
expansion of Trunc(a, k) + γ looks like:

Trunc(a, k) + γ = b0 + b1X + · · ·+ bk−1X
k−1.

In other words, there will be enough “room” in the first k coefficients of the
expansion of a to “absorb” the perturbation γ, without causing an under- or
over-flow to the coefficient of Xk in the expansion of Trunc(a, k) + γ.

Lemma 9 If ak−1 6∈ {−t,X − 1− t} then Left(a + γ, k) = Left(a, k).
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PROOF. The bounds |γ| ≤ Xk−1 and −t < ak−1 < X−1− t give upper and
lower bounds for a− Left(a, k)Xk + γ that allow application of Lemma 5:

= Trunc(a + γ, k)︷ ︸︸ ︷
Trunc(a− Left(a, k)Xk + γ, k) = a− Left(a, k)Xk + γ

By definition, Left(a + γ, k) = (a + γ − Trunc(a + γ, k))/Xk. Now substitute
Trunc(a + γ, k) = a− Left(a, k)Xk + γ to get the result. 2

By symmetry, we get the following corollary.

Lemma 10 If bk−1 6∈ {−t,X − 1− t} then Left(a + γ, k) = Left(a, k).

Let us remark on the crucial difference between Lemmas 9 and 10 in the
context of the scenario we have sketched above. On the one hand, we can’t
check that ak−1 6∈ {−t,X − 1 − t} because we don’t know a. On the other
hand, we can check that bk−1 6∈ {−t,X − 1− t} because bk−1 is a coefficient of
the computed approximation a + γ. Thus, Lemma 10 gives an answer to our
first question.

Now we turn our attention to the second question. The next theorem gives a
sufficient condition on ak−1 for the test suggested by Lemma 10 not to fail.

Theorem 11 If ak−1 6∈ {−t,−t+1, X−2−t,X−1−t} then bk−1 6∈ {−t,X−
1− t}.

PROOF. The bounds |γ| ≤ Xk−1 and −t + 1 < ak−1 < X − 2− t give upper
and lower bounds for Trunc(a, k) + γ that imply −t < bk−1 < X − 1− t. 2

The key idea of this section is that the condition of Theorem 11 can be made
to hold with high probability (if X is large enough) by making a single random
choice for the shift t at the start of the computation. Although X, a and k are
fixed, the perturbation γ as well as coefficients ak−1 and bk−1 in the (X, t)-adic
expansions of a and a + γ will depend on the choice of t. We want to identify
possible bad choices of t: choices for which the condition of Theorem 11 on ak−1

does not hold. Let c = mod((a − mod(a, Xk−1))/Xk−1, X), where mod(a, b)
denotes the unique r ∈ [0, b − 1] that is is congruent to a modulo b. Then
c is invariant of the choice of the shift t. The next lemma follows from the
definition of Left and Trunc.

Lemma 12 ak−1 ∈ {c, c−X, c + 1, c + 1−X}.
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Lemma 12 observes that over all possible values of t, a particular coefficient of
the (X, t)-adic expansion can take on at most four different values. Considering
Lemma 12, the condition of Theorem 11 on ak−1 will be satisfied if the following
set is empty:

{c, c−X, c + 1, c + 1−X} ∩ {X − 2− t,X − 1− t,−t,−t + 1}

A sufficient condition for the intersection to be empty is that no element
of {c, c − X, c + 1, c + 1 − X} be congruent modulo X with an element of
{X − 2− t,X − 1− t,−t,−t + 1}. This gives the following result.

Theorem 13 If t 6∈ {mod(−c − 3, X), mod(−c − 2, X), mod(−c − 1, X),
mod(−c, X), mod(−c + 1, X)} then bk−1 6∈ {−t,X − 1− 1}.

Our algorithm for the certified Left operation works in an (X, t, s)-adic shifted
number system: (X, t) = (X̄s, t̄(1 + X̄ + · · · + X̄s−1). Let the (X̄, t̄)-adic ex-
pansions of a, γ and a + γ be

a = ā0 + ā1X̄ + · · ·+ āsk−1X̄
sk−1 + Left[(X̄, t̄)](a, sk)X̄sk

γ = γ̄0 + γ̄1X̄ + · · ·+ γ̄sk−1X̄
sk−1

a + γ = b̄0 + b̄1X̄ + · · ·+ b̄sk−1X̄
sk−1 + Left[(X̄, t̄)](a + γ, sk)X̄sk

Note that Left(a + γ, k) = Left(a, k) if and only if Left[(X̄, t̄])(a + γ, sk) =
Left[(X̄, t̄)](a, sk). Working in the (X, t, s)-adic system has the advantage that
we can relax the condition on the magnitude of γ. While before we had |γ| ≤
Xk−1, here it suffices that γ ≤ X̄sk−1 = Xk/X̄. While before we checked
coefficient bk−1 of the (X, t)-adic expansion of a + γ, here we check coefficient
b̄sk−1 of the (X̄, t̄)-adic expansion:

bk−1X
k−1 = b̄s(k−1)X̄

s(k−1) + b̄s(k−1)+1X̄
s(k−1)+1 + · · ·+ b̄sk−1X̄

sk−1.

We obtain the following subroutine.

Subroutine 14 CertLeft[(X, t, s)](a + γ, k)
Remark: (X, t) = (X̄s, t̄(1 + X̄ + · · ·+ X̄s−1))
Input: a + γ ∈ Z such that γ ∈ Z with |γ| ≤ Xk/X̄, k > 0.
Output: Failure, or Left(a, k)

b̄sk−1 := Left[(X̄, t̄)](Left(Trunc(a + γ, k), k − 1), s− 1);
if b̄sk−1 ∈ {−t̄, X̄ − 1− t̄} then

return fail
else

return Left(a + γ, k)
fi;

The next result follows as a corollary of Lemma 10 and Theorem 13.
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Theorem 15 Subroutine 14 (CertLeft) is correct. Fix X, s and k and sup-
pose that [(X, ∗, s)](a + γ, k) is a valid input to the algorithm. If mod((a −
mod(a, Xk−1))/Xk−1, X) is also fixed (independent of the choice of t) then
there are at most five choices for t̄ ∈ [2, X̄−3] for which CertLeft[(X, t, s)](a+
γ, k) will return fail, |γ| ≤ Xk/X̄.

Subroutine 14 extends naturally to handle matrix arguments. Just replace a
and γ with matrices A ∈ Zn×m and γ ∈ Zn×m. The condition on b̄sk−1 must
hold for all nm entries of B̄sk−1.

5 (X, t)-adic lifting using short products

Let A ∈ Zn×n be nonsingular, X ⊥ det A. Let B ∈ Zn×m. Lifting can be used
to compute a truncated (X, t)-adic expansion of A−1B. The next definition
and lemma give the key idea. Note that the division by Xk is exact, k ≥ 0.

Definition 16 Res(A, B, k) := (B − A Trunc(A−1B, k))/Xk.

Lemma 17 A−1B = Trunc(A−1B, k) + A−1 Res(A, B, k)Xk.

Lemma 17 may be understood as follows. The problem of computing A−1B
up to a certain order can be divided into two parts. The first is to compute
Trunc(A−1B, k). The second is to continue by computing the expansion of
A−1Res(A, B, k). A fact we will use later is that ‖Res(A, B, k)‖ may be small
even if ‖B‖ is large. The next lemma is used to prove this claim.

Lemma 18 Res(A, B, k) = Left(−A Trunc(A−1B, k), k) if and only B =
Trunc(B, k).

PROOF. Let B = L1 +H1X
k where L1 = Trunc(B, k) and H1 = Left(B, k).

Similarly, let A Trunc(A−1B, k) = L2 + H2X
k. Then Res(A, B, k) = (L1 −

L2)/X
k + H1 − H2 where L1 ≡ L2 mod Xk. We must have L1 = L2 since

L1 = Trunc(L1, k), L2 = Trunc(L2, k). The result follows. 2

Corollary 7 gives the bound ‖Left(−A Trunc(A−1B, k), k)‖ ≤ n‖A‖. At this
point we assume we are working over an (X, t, s)-adic number system. Recall
that (X, t) = (X̄s, t̄(1 + X̄ + · · · + X̄s−1)). Then a sufficient condition that
B = Trunc(B, k) is furnished by Corollary 8: ‖B‖ ≤ 2Xk/X̄. The next result
now follows from Lemma 18.

Corollary 19 If k satisfies ‖B‖ ≤ 2Xk/X̄ then ‖Res(A, B, k)‖ ≤ n‖A‖.
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We now develop the two key subroutines in this paper.

The short product lift: SPL

Let k ≥ 2, and consider the (X, t)-adic expansion

Trunc(A−1, k) =

C︷ ︸︸ ︷
∗+ ∗X + · · ·+ ∗Xk−3 +

EXk−2︷ ︸︸ ︷
∗Xk−2 + ∗Xk−1 . (3)

Suppose we want to compute only the single high-order coefficient

D := Left(Trunc(A−1B, k), k − 1)

together with M := Left(Trunc(A−1, k)B, k), as shown in (4).

Trunc(A−1, k)B =

Trunc(A−1B, k)︷ ︸︸ ︷
Trunc(A−1B, k − 1) + DXk−1 +MXk. (4)

In general, we need all coefficients of Trunc(A−1, k) to compute D and M .
The next result shows that it may suffice to have only E in case ‖B‖ is small
enough.

Theorem 20 If n‖B‖ ≤ X/X̄, and CertLeft(EB, 1) does not return fail,
then Left(EB, 1) = D + MX.

PROOF. Trunc(A−1, k) = C + EXk−2. This gives D + MX = Left(CB +
EBXk−2, k − 1). Assume that n‖B‖ ≤ X/X̄. Then ‖CB‖ ≤ n‖C‖‖B‖ <
nXk−2‖B‖ ≤ Xk−1/X̄, so the conditions of Subroutine 14 (CertLeft) are
satisfied, that is, if CertLeft does not return fail, then

Left(

a︷ ︸︸ ︷
EBXk−2 + CB +

γ︷ ︸︸ ︷
(−CB), k − 1) = Left(

a︷ ︸︸ ︷
EBXk−2 + CB, k − 1). (5)

The result follows. 2

Based on Theorem 20 we get the following subroutine for computing the tu-
ple (D, M). The subroutine MUL(∗, ∗) computes the product of two integer
matrices.

Subroutine 21 SPL[(X, t, s)](E, B)
Remark: (X, t) = (X̄s, t̄(1 + X̄ + · · ·+ X̄s−1))
Input: E = Left(Trunc(A−1, k), k − 2) for some A ∈ Zn×n and k ≥ 2, B ∈
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Zn×m

Output: Failure, or (Left(Trunc(A−1B, k), k − 1), Left(Trunc(A−1, k)B, k)).
Condition: n‖B‖ ≤ X/X̄.
S := CertLeft(MUL(E, B), 1);
if S = fail then

return fail
else

return (Trunc(S, 1), Left(S, 1))
fi

The call to CertLeft in Subroutine 21 (SPL) is the only point where any of
the algorithms developed in the subsequent sections check guard coefficients.
In order to be able to apply Theorem 15 to bound the number of bad choices
for t̄ ∈ [2, X̄ − 3] (that is, choices for which SPL[(X, t, s)](E, B) will return
fail) we need to be able to relate EB, the argument to CertLeft, to a fixed
quantity (independent of t) plus an additive perturbation (which may depend
on t). We now explain how this will be done.

The algorithms in subsequent sections also work in an (X, t, s)-adic number
system, and a particular input tuple (E, B) to SPL, the result of an interme-
diate computation, will depend on the choice of t. Thus, the a shown in (5) is
not fixed with respect to the choice of t and is unsuitable for our current pur-
pose. However, in all invocations of SPL made by the algorithms in subsequent
sections, we have E = Left(Trunc(A−1, k), k − 2) and B = Res(A, R, j) for
a fixed (A, R, k, j) ∈ (Zn×n, Zn×m, Z≥2, Z≥0). The key observation now, using
Lemma 17, is that

A−1R ≡ Trunc(A−1R, j) + (CB + EBXk−2)Xj (mod Xj+k−1)

Let a = A−1R and γ = −(Trunc(A−1R, j)+CBXj). Then EBXj+k−2 ≡ a+γ
(mod Xj+k−1) and CertLeft(EB, 1) will fail if and only if CertLeft(a+γ, j+
k − 1) fails. Finally, note that

‖γ‖≤‖Trunc(A−1R, j)‖+ ‖CB‖Xj

≤ (Xj − 1) + n(Xk−2 − 1)‖B‖Xj

< Xj + (Xk−2 − 1)Xj+1/X̄

= Xj −Xj+1/X̄ + Xj+k−1/X̄

< Xj+k−1/X̄.

so that the conditions of Theorem 15 are all satisfied. We obtain the following
result.

Lemma 22 Let [(X, ∗, s)](E, B) be a valid input tuple to Subroutine 21 (SPL).
If E = Left(Trunc(A−1, k), k−2) and B = Res(A, R, j) for a fixed (A, R, k, j) ∈
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(Zn×n, Zn×m, Z≥2, Z≥0), independent of t, then there are most 5n2 choices for
t̄ ∈ [2, X̄ − 3] for which SPL[(X, t, s)](E, B) will return fail.

The short product residue: SPR

Now we consider the computation of Res(A, B, k), shown in (6).

A−1B =

Trunc(A−1B, k)︷ ︸︸ ︷
∗+ ∗X + · · ·+ ∗Xk−2 + DXk−1 +A−1Res(A, B, k)Xk. (6)

In general, we need all coefficients of Trunc(A−1B, k) to compute Res(A, B, k).
In fact, it suffices to have only D in case ‖A‖ and ‖B‖ are small enough.

Lemma 23 Res(A, B, k) = Left(−AD, 1) if and only if Left(B−A Trunc(A−1B, k−
1), k) = 0.

PROOF. By definition, Res(A, B, k) = (B − A Trunc(A−1B, k))/Xk. Using

Trunc(A−1B, k) = Trunc(A−1B, k − 1) + DXk−1

gives

−ADXk−1 = Res(A, B, k)Xk − (B − A Trunc(A−1B, k − 1).

The result follows. 2

An a priori bound is ‖B − A Trunc(A−1B, k − 1)‖ ≤ ‖B‖ + n‖A‖Xk−1. The
next theorem follows as a corollary of Corollary 8 and Lemma 23.

Theorem 24 If ‖B‖+n‖A‖Xk−1 ≤ 2Xk/X̄, then Res(A, B, k) = Left(−AD, 1).

Instead of the condition of Theorem 24, we use in the following subroutine the
slightly more restrictive, but simpler condition: ‖B‖ ≤ Xk/X̄ and n‖A‖ ≤
X/X̄.

Subroutine 25 SPR[(X, t, s)](A, D)
Remark: (X, t) = (X̄s, t̄(1 + X̄ + · · ·+ X̄s−1))
Input: A ∈ Zn×n, D = Left(Trunc(A−1B, k), k−1) for some k ≥ 1, B ∈ Zn×m.
Output: Res(A, B, k).
Condition: ‖B‖ ≤ Xk/X̄ and n‖A‖ ≤ X/X̄.
return Left(−MUL(A, D), 1)
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6 High-order segment of inverse

We are working over an (X, t)-adic shifted number system. Let A ∈ Zn×n be
nonsingular, and suppose X ⊥ det A. We present an algorithm to compute a
high-order segment E = Left(Trunc(A−1, k), k − 2), k = 2l for a given l ≥ 1.

Algorithm 26 Segment[(X, t, s)](A, l)
Remark: (X, t) = (X̄s, t̄(1 + X̄ + · · ·+ X̄s−1))
Input: A ∈ Zn×n, l ≥ 1.
Output: Failure, or Left(Trunc(A−1, k), k − 2) for k = 2l.
Condition: X ⊥ det A and n2‖A‖ ≤ X/X̄.

(1) L := Trunc(A−1, 1)
H := Trunc(MUL(L, Left(I − MUL(A, L), 1)), 1);
E := L + HX;

(2) # If any call to SPL fails then exit early with fail.
for i from 1 to l − 1 do

(L, ∗) := SPL(E, SPR(A, L));
(H, ∗) := SPL(E, SPR(A, H));
E := L + HX

od;
return E

We now prove correctness. Phase 1 computes E = Trunc(A−1, 2). Now con-
sider phase 2. Assume that none of the calls to SPL fail. Provided we show
that all the preconditions hold for each call to Subroutines 21 (SPL) and 25
(SPR), then induction on i together with the specification of the subroutines
shows that at the start of each iteration of the loop, E is equal to the following
segment of coefficients in the truncated (X, t)-adic expansion of A−1:

Trunc(A−1, 2i) = ∗+ ∗X + · · ·+ ∗X2i−3 +

EX2i−2︷ ︸︸ ︷
LX2i−2 + HX2i−1 . (7)

The result will follow.

The first line of the loop body computes SPR(A, L) = Res(A, I, 2i − 1) and
then the new L. Similarly, the next line computes SPR(A, H) = Res(A, I, 2i)
and the new H. We now show the preconditions for the subroutines hold.
The preconditions for SPR in the first line of the loop is: ‖I‖ ≤ X2i−1

/X̄ and
n‖A‖ ≤ X/X̄. The latter is satisfied by the precondition of the algorithm.
The former is satisfied because i ≥ 1. The precondition for SPL in the first
line is: n‖SPR(A, L)‖ ≤ X/X̄. Corollary 19 gives n‖SPR(A, L)‖ ≤ n2‖A‖,
which is ≤ X/X̄, again using the precondition of the algorithm. Similarly, the
preconditions for the second calls to SPR and SPL also hold. This ends the
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inductive proof of correctness.

The algorithm will fail only if one of the 2(l− 1) calls to CertLeft inside SPL

fails. Lemma 22 bounds the number of bad choices for t̄ by 10n2(l − 1).

Theorem 27 Algorithm 26 (Segment) is correct. The cost of the algorithm
is O(l MM(n, X) + MM(n, X)) bit operations. Corresponding to a valid input
[(X, ∗, s)](A, l), there are fewer than 10n2(l − 1) choices for t̄ ∈ [2, X̄ − 3] for
which Segment[(X, t, s)](A, B, l) will fail.

7 Unimodularity certification

A matrix A ∈ Zn×n is said to be unimodular if A is invertible over Z. The
unimodular matrices are precisely those with determinant equal to ±1. We
present an algorithm to assay if a given A ∈ Zn×n is unimodular. Our approach
is to assay if the (X, t)-adic expansion of A−1 is finite, where X is a power of
two.

Algorithm 28 UniCert(A)
Input: A ∈ Zn×n.
Output: Failure, or true if A is unimodular and false otherwise

(1) if det(A) mod 2 = 0 then return false fi;
(2) # Let X̄ := 2d and X := X̄s.

# Choose (d, s, k) ∈ (Z≥3, Z≥2, Z≥2) to satisfy
(a) 10n2(k − 1)/(X̄ − 4) < 1/2,
(b) n2‖A‖ ≤ X/X̄, and
(c) (n− 1)(n−1)/2‖A‖n−1 ≤ 2X2k−2/X̄.
# For example, choose (d, s, k) to be lexicographically minimal.
# Choose t̄ uniformly and randomly from [2, X̄ − 3];
t := t̄(1 + X̄ + · · ·+ X̄s−1);

(3) # If the call to Segment fails then exit early with fail.
E := Segment[(X, t, s)](A, k);
if E is the zero matrix then

return true
else

return false
fi

We now prove correctness. Phase 1 checks that 2 ⊥ det A, a condition that
must hold if A is unimodular. Now consider phase 3. Condition (b) in phase 1
matches the precondition of Algorithm 26 (Segment). Assume that the call to
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Segment does not fail. Then

Trunc(A−1, 2k) = Trunc(A−1, 2k − 2) + EX2k−1.

On the one hand, suppose A is unimodular. Then entries in A−1 are, up to
sign, minors of A of dimension n − 1. Hadamard’s inequality gives ‖A−1‖ ≤
(n−1)(n−1)/2‖A‖n−1. Thus, condition (c) in phase 2 ensures that k is chosen so
that E is the zero matrix (Corollary 8). This shows that true will be returned
when the input matrix is unimodular. On the other hand, suppose E is the
zero matrix. Then Theorem 24 gives Res(A, I, 2k) = Left(−A Left(E, 1), 1)
(that is, also the zero matrix). Considering Lemma 17, the expansion of A−1

must be finite in this case. This shows that the return value of true is always
correct.

Now we make some remarks about the choice of (s, d, k) in phase (2). Roughly
speaking, the exponent d, the bitlength of the guard coefficient X̄, corresponds
to the number of bits of precision that are sacrificed for the purpose of avoiding
and detecting carry propagations. Condition (a) ensures that d is chosen large
enough to afford sufficiently many choices for the random shift t̄ ∈ [2, X̄ − 3],
see Theorem 27. The exponent s should be chosen as small as possible to
minimize the cost of the integer arithmetic. To obtain a good cost estimate the
algorithm chooses (d, s, k) lexicographically minimal so that the probability
of success is at least 1/2. Then log X = Θ(log ‖A‖+ log n) and k = O(log n).
The next result now follows from Theorem 27.

Theorem 29 Algorithm 28 (UniCert) is correct and fails with probability less
than 1/2. The running time of algorithm is O((log n)MM(n, X) + MM(n,X))
bit operations, where log X = Θ(log ‖A‖+ log n).

Using the upper bounds MM(n,X) = O(MM(n)B(log X+log n)) and MM(n,X) =
O((log n)MM(n)B(log X + log n)) gives the following.

Corollary 30 Let A ∈ Zn×n be given. There exists a Las Vegas algorithm that
assays if A is unimodular with an expected number of O((log n)MM(n)B(log ||A||+
log n)) bit operations.

8 The sparse inverse expansion

We are working over an (X, t)-adic shifted number system. Let A ∈ Zn×n be
nonsingular, and suppose X ⊥ det A. For i ≥ 1, define

• R(i) = Res(A, I, 2i), and
• M (i) = Left(Trunc(A−1, 2i) R(i), 2i).
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Then

Trunc(A−1, 2i+1) = Trunc(A−1, 2i) + Trunc(A−1R(i), 2i)X2i

= Trunc(A−1, 2i) + Trunc(A−1, 2i)R(i)X2i −M (i)X2i+1

This gives the following.

Theorem 31 Trunc(A−1, 2i+1) = Trunc(A−1, 2i)(I + R(i)X2i
)−M (i)X2i+1

.

As an illustration of Theorem 31, let x = 10 and consider the computation
of mod(7−1, x16) = 3 + 4x + 1x2 + 7x3 + 5x4 + 8x5 + 2x6 + · · ·+ 1x14 + 7x15.
Repeated application of the theorem gives:

mod(7−1, x16) = mod(7−1, x8)(1− 3x8) + 2x16

= ((mod(7−1, x4)(1− 5x4) + 4x8)(1− 3x8) + 2x16

= ((43(1− 3x2) + 2x4)(1− 5x4) + 4x8)(1− 3x8) + 2x16

= 7142857142857143

The second to last expression, an example of the sparse inverse expansion,
expresses the sixteen digit number mod(7−1, x24

) as an arithmetic expression
involving the two digit number mod(7−1, x2) = 43 and the six single digit
numbers −3,−2,−5,−4,−3,−2. In general, Trunc(A−1, 2k) can be expressed
as an arithmetic expression involving Trunc(A−1, 2) and the 2(k− 1) matrices
R(i) and M (i), 1 ≤ i ≤ k − 1.

Let B ∈ Zm×n. Theorem 31 gives the following scheme, k ≥ 1:

B Trunc(A−1, 2k) :=



C := B Trunc(A−1, 2);

for i from 1 to k − 1 do

C := C(I + R(i)X2i
)−BM (i)X2i+1

od;

return C

For computing Trunc(BA−1, 2k), k ≥ 2, we can set the loop to go up to k− 2
and return Trunc(C(I + R(k−1)X2k−1

), 2k) instead. Also, we can optimize the
computation slightly by computing all intermediate quantities modulo X2k

.
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This gives the following scheme, k ≥ 1:

Trunc(BA−1, 2k) :=



C := B Trunc(A−1, 2);

for i from 1 to k − 2 do

C̄ := Trunc(C, 2k − 2i);

B̄ := Trunc(B, 2k − 2i+1);

C := Trunc(C + C̄R(i)X2i − B̄M (i)X2i+1
, 2k)

od;

C̄ := Trunc(C, 2k − 2k−1);

return Trunc(C + C̄R(k−1)X2k−1
, 2k)

Algorithm 32 (RSeries) follows the above scheme exactly, but the matrices
R(i) and M (i) are computed as required on the fly.

Algorithm 32 RSeries[(X, t, s)](A, B, k)
Remark: (X, t) = (X̄s, t̄(1 + X̄ + · · ·+ X̄s−1))
Input: A ∈ Zn×n, B ∈ Zm×n with Trunc(B, 2k) = B, k ≥ 2.
Output: Failure, or Trunc(BA−1, 2k).
Condition: X ⊥ det A and n2‖A‖ ≤ X/X̄.

(1) L := Trunc(A−1, 1)
H := Trunc(MUL(L, Left(I − MUL(A, L), 1)), 1);
E := L + HX;
C := Trunc(MUL(B, L) + MUL(B, H)X, 2k);

(2) # If any call to SPL fails then exit early with fail.
for i from 1 to k − 2 do

(L, ∗) := SPL(E, SPR(A, L));
R := SPR(A, H);
(H, M) := SPL(E, R);
E := L + HX;
C̄ := Trunc(C, 2k − 2i);
B̄ := Trunc(B, 2k − 2i+1);
C := Trunc(C + MUL(C̄, R)X2i − MUL(B̄, M)X2i+1

, 2k)
od;

(3) R := SPR(A, H);
C̄ := Trunc(C, 2k − 2k−1);
return Trunc(C + MUL(C̄, R)X2k−1

, 2k)

The algorithm is almost identical to Algorithm 26 (Segment). The proof of
correctness is analogous. The only difference here is that we keep track of the
intermediate quantities R and M and use them to update C.
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As for complexity, the algorithm performs the same computations as Algo-
rithm 26 (Segment), except for the lines involving B or C (the last line in
each phase). We can derive a slightly better bound for the cost of these lines
if we assume that the input B is provided as an (X, t)-adic expansion and
give the output in (X, t)-adic form. Note that the computation of C̄ and
B̄ is free in this case. We need to bound the cost of all the calls to MUL.
By Corollaries 7 and 19, all the quantities R and M computed by the al-
gorithm satisfy ‖R‖, ‖M‖ ≤ n‖A‖, which by the precondition of the algo-
rithm is < X. Consider the computation of MUL(B, L) in phase 1. Suppose
B = B0 + B1X + · · ·+ B2k−1X

2k−1. Then compute

D0

D1

...

D2k−1


=



B0

B1

...

B2k−1


L

at a cost bounded by d2km/neMM(n, X) bit operations. Since we are working
modulo X2k

it will suffice to compute the first 2k coefficients of the (X, t)-adic
expansion MUL(B, L) = F0 + F1X + F2X

2 + · · · . These are computed from
D0, D1, . . . , D2k−1 as follows.

R := the m× n zero matrix;
for i from 0 to 2k − 1 do

R := R + Di;
Fi := Trunc(R, 1);
R := Left(R, 1)

od

At the start of each loop iteration R = Left(Trunc(B, i)L, i), which shows that
‖R‖ ≤ n‖L‖ throughout (Corollary 7). Thus, the code fragment above has cost
bounded by O(nm2kM(log X + log n)), which by the definition of MM(n,X)
is bounded by O(dm2k/neMM(n,X)). The remaining matrix multiplications
involving C̄ and B̄ are accomplished similarly. Note that multiplication by a
power of X is for free if we assume we are working in (X, t)-adic representa-
tions.

Theorem 33 Algorithm 32 (RSeries) is correct. The cost of the algorithm is
O(kdm2k/neMM(n,X)+MM(n,X)) bit operations, assuming the input param-
eter B and output are given in (X, t)-adic form. Corresponding to a valid input
[(X, ∗, s)](A, B, k), there are fewer than 10n2(k − 2) choices for t̄ ∈ [2, X̄ − 3]
for which RSeries[(X, t, s)](A, B, k) will fail.

Considering the transpose situation gives the existence of an algorithm with
the following specification.
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Algorithm 34 LSeries[(X, t, s)](A, B, k)
Remark: (X, t) = (X̄s, t̄(1 + X̄ + · · ·+ X̄s−1))
Input: A ∈ Zn×n, B ∈ Zn×m with Trunc(B, 2k) = B, k ≥ 2.
Output: Failure, or Trunc(A−1B, 2k).
Condition: X ⊥ det A and n2‖A‖ ≤ X/X̄.

9 Reduction of linear system solving to matrix multiplication

In this section we show how to apply the algorithm of the previous section to
get Las Vegas reductions to matrix multiplication for a number of linear alge-
bra problems on integer matrices. Before we can apply Algorithm 34 (LSeries)
we need to initialize a suitable (X, ∗, s)-adic number system. We will choose
X̄ to be a power of a prime p. The next lemma and corollary recall how to
find a suitable p quickly using randomization.

Lemma 35 Let B ∈ Zn×m be given, n ≥ m. A prime p with log p = O(log m+
log log ‖B‖) and such that the rank of B mod p over Z/(p) is equal to the rank
of B over Z with probability at least 1/2 can be found with O(m(log m +
log ‖B‖)(log m + log log ‖B‖)) bit operations.

PROOF. Let M be a nonzero minor of B of maximal dimension. Then |M | ≤
D where D = mm/2‖B‖m (Hadamard’s bound). Let l = 6 + dln ln De and set
Λ to be a set of 2ddlog De/(l − 1)e primes between 2l−1 and 2l. Then fewer
than half the primes in Λ divide M . In [17, Theorem 1.8], based on bounds
by [36], it is shown that there are at least this many primes in this range, and
that the construction of Λ can be accomplished with O((log D)(log log D)) bit
operations using the sieve of Eratosthenes (see [28, Section 4.5.4]). Choose
p uniformly and randomly from Λ. For the cost estimate note that log D =
O(m(log m + log ‖B‖)) and log log D = O(log m + log log ‖B‖). 2

Now suppose that B is known to have full column rank over Z. Then for all but
a finite number of primes p, B mod p will have full column rank over Z/(p).
Testing if B mod p over Z/(p) has full column rank costs O((n/m)MM(m, p))
bit operations and is accomplished by computing, over Z/(p), an LSP de-
composition [22] or an echelon transform [41, Chapter 2]. These algorithms
also identify a minor of maximal rank. Repeatedly choosing primes p until
B mod p has full column rank over Z/(p) gives the following.

Corollary 36 Let a full column rank B ∈ Zn×m be given. A prime p with
log p = O(log m+log log ‖B‖) together with a permutation matrix P such that
the principal m×m submatrix of PB mod p is nonsingular over Z/(p) can be
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found with an expected number of O(n(log m)(MM(m)/m)B(log ‖B‖+log m))
bit operations.

Nonsingular rational system solving

Consider the problem of computing A−1b ∈ Qn×1 for a given nonsingular A ∈
Zn×n and b ∈ Zn×1. Denominators of entries in A−1b will be divisors of det A.
Hadamard’s bound gives | det A| ≤ nn/2‖A‖n. Similarly, Cramer’s rule gives
‖(det A)A−1b‖ ≤ nn/2‖A‖n−1‖b‖. The most effective methods for computing
A−1b are based on X-adic lifting, see [31, Section 5] for a brief survey. The idea
is to compute A−1b mod Xn ∈ Zn×1 for Xn > 2| det A|‖(det A)A−1b‖, and
then recover A−1b ∈ Qn×1 using rational reconstruction. The best previous
methods have a cost in terms of bit operations that is cubic in n. Here we
show how to use Algorithm 34 (LSeries) presented in the previous section to
reduce the exponent of n to that of matrix multiplication.

Use Corollary 36 to find a prime p = O(log n+log log ‖A‖) such that p ⊥ det A.
Let k = max(2, dlog ne) and choose d ∈ Z≥1 minimal so that X̄ := pd satisfies

10n2(k − 2)/(X̄ − 4) < 1/2. (8)

Now choose s ∈ Z≥2 minimal so that X := X̄s satisfies

n2‖A‖ ≤ X/X̄ and Xn > 2bnn/2‖A‖n−1‖b‖cbnn/2‖A‖nc. (9)

The first part of condition (9) is a precondition of Algorithm 34 (LSeries). Re-
peatedly choose t̄ ∈ [2, X̄−3] uniformly and randomly until LSeries[(X, t, s)](A, b, k)
does not return fail, t = t̄(1 + X̄ + · · · + X̄s−1). By Theorem 33 and condi-
tion (8), any particular call to LSeries will fail with probability < 1/2. Thus,
the expected number of calls to LSeries is < 2. Finally, reconstruct A−1b
from Trunc(A−1b, 2k), the output of the successful call to LSeries(A, b, k),
using rational reconstruction.

Algorithm 34 (LSeries) assumes that input and output is given in X-adic rep-
resentation. If a = O(Xn) then the X-adic expansion of a can be computed
from the binary expansion (or vice versa) with O(M(n log X) log n) bit opera-
tions [15, Theorem 9.17], which is bounded more simply by O(B(n log X))
bit operations. Thus, the binary expansion and rational reconstruction of
Trunc(A−1B, 2k), which is given in X-adic form, can be computed with O(n B(n log X))
bit operations, which simplifies to O(MM(n)B(log X)) if we make the assump-
tion that B(t) = O(MM(t)/t). We get the following as a corollary of Theo-
rem 33. Note that condition (9), together with the minimality of s, gives that
log X = Θ(log ‖A‖+ (log ‖b‖)/n + log n).

25



Theorem 37 There exists a Las Vegas algorithm that takes as input a nonsin-
gular A ∈ Zn×n and b ∈ Zn×1, and returns as output the vector A−1b ∈ Qn×1.
The expected cost of the algorithm is O((log n)MM(n)B(d + log n)) bit opera-
tions, where d is a bound for both log ‖A‖ and (log ‖b‖)/n. This result assumes
that B(t) = O(MM(t)/t).

Computing the largest invariant factor

The largest invariant factor of a nonsingular matrix A ∈ Zn×n is equal to the
greatest common divisor of all minors of A of dimension n − 1. The largest
invariant factor can be computed with high probability as the least common
multiple of the denominators of A−1b(1) and A−1b(2) for randomly chosen b(i),
first observed in [33] for polynomial matrices. In [13, Theorem 2.1] it is shown
that choosing entries in b(i) uniformly and randomly from {0, . . . ,M−1} with
M = 6 + d2n(log n + log ‖A‖)e gives a probability of success at least 1/3. We
get the following as a corollary of Theorem 37

Theorem 38 (LargestInvariantFactor(A)) There exists a Monte Carlo al-
gorithm that takes as input a nonsingular A ∈ Zn×n, and returns as output
a factor of the largest invariant factor of A, equal to the largest invariant factor
with probability at least 1/3. The cost of the algorithm is O((log n)MM(n)B(log n+
log ‖A‖)) bit operations. This result assumes that B(t) = O(MM(t)/t).

Certified dense linear system solving

Let A ∈ Zn×m and b ∈ Zn×1 be given. Suppose that Ax = b admits a rational
solution vector x. If d is the smallest positive integer such that dx is integral,
and d is minimal among all solutions to the system, then x is a solution with
minimal denominator.

The certified linear system solving problem [31] is to either prove that Ax = b
has no rational solution vector (that is, prove that the system is inconsis-
tent over the field of rational numbers) or to compute a solution vector with
minimal denominator. Algorithm CertifiedSolver [31, Page 506] reduces the
problem to solving an expected constant number of nonsingular rational sys-
tems plus some additional work. We get the following as a corollary of [31,
Proposition 44] and Theorem 37.

Theorem 39 Let A ∈ Zn×m and b ∈ Zn×1 be given. There exists a Las Vegas
algorithm that computes a solution to the certified linear system solving prob-
lem with input (A, b) with an expected number of O(nm(log r)(MM(r)/r2)B(d+
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log m)) bit operations, where r is the rank of A and d is a bound for both
log ‖A‖ and (log ‖b‖)/r. This result assumes that B(t) = O(MM(t)/t).

We remark that if MM(r) = O(r3) then the cost estimate of Theorem 39 be-
comes O(nmr B(d+log m)) bit operations, see [31, Corollary 45]. Thus, our in-
corporation of matrix multiplication (the reduction of nmr to nm(MM(r)/r2))
comes at the cost of introducing a factor of log r.

Certified testing of matrix rank maximality

Testing if a given matrix A ∈ Zn×m has full column rank is equivalent to
determining if r := rank(A) < m. Our approach is to either find a prime p
such that A mod p over Z/(p) has rank m (in which case A is certified to
have rank m over Z) or to find a b ∈ Z1×m such that the system xA = b is
inconsistent over the field of rational numbers (in which case A is certified to
have rank strictly less than m). Compute a prime p as in Lemma 35, then
compute the rank r̄ of A mod p over Z/(p). We must have r̄ ≤ r, and with
probability at least 1/2 we have r̄ = r. If r̄ = m then we’re done. Otherwise,
choose a random b ∈ {0, 1}1×m and try to solve the system xA = b using the
algorithm supporting Theorem 39. If r < n then, by [31, Corollary 12], with
probability at least 1/2 the vector b does not lie in the row space of A over
Q, in which case the system will be determined to be inconsistent. If xA = b
is consistent then choose another prime and repeat. Since the probability of
failure in either case (r < m or r = m) is less than 1/2, the expected number
of repetitions is fewer than 2.

Theorem 40 Let A ∈ Zn×m be given, n ≥ m. There exists a Las Vegas
algorithm that assays if A has rank m with an expected number of

O(n(log m)(MM(m)/m)B(log ‖A‖+ log m))

bit operations. This result assumes that B(t) = O(MM(t)/t).

10 High-order lifting

Let A ∈ Zn×n be nonsingular, det A ⊥ X. Let B ∈ Zn×m. We present an algo-
rithm to compute a segment H = Left(Trunc(A−1B, h + k), h) of coefficients
from the (X, t)-adic expansion of A−1B. Note that

A−1B = ∗+ ∗X + · · ·+
HXh︷ ︸︸ ︷

∗Xh + · · ·+ ∗Xh+k−1 + ∗Xh+k + · · · (10)
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If h = 0 we can use Algorithm 34 (LSeries) to compute H. In high-order
lifting, what is important is that h be larger than some specified bound l.
The particular value of h is not important, only that h > l. The cost of the
algorithm is linear in log l. This is important because in typical applications
l � k.

Algorithm 41 HighOrderLift[(X, t, s)](A, B, l, k)
Remark: (X, t) = (X̄s, t̄(1 + X̄ + · · ·+ X̄s−1))
Input: A ∈ Zn×n, B ∈ Zn×m, l ≥ 2, k a power of two.
Output: Failure, or Left(Trunc(A−1B, h + k), h) for some h > l.
Condition: X ⊥ det A and n2‖A‖ ≤ X/X̄.

(1) # If the call to LSeries fails then exit early with fail.

k̄ := the smallest integer ≥ 2 such that ‖B‖ ≤ X2k̄
/X̄;

D̄ := Left(LSeries(A, B, k̄), 2k̄ − 1);
R̄ := SPR(A, D̄);

(2) # If the call to Segment or SPL fails then exit early with fail.
l̄ := the smallest integer ≥ 2 such that 2l̄ + 2k̄ > l;
E := Segment(A, l̄);
(D, ∗) := SPL(E, R̄);
R := SPR(A, D);

(3) # If the call to LSeries fails then exit early with fail.
H := LSeries(A, R, log k);
return H

Given l, the algorithm here chooses h := 2l̄ + 2k̄. The purpose of phase 1 is
to reduce a possible large magnitude right hand side B to a small magnitude
residue R̄. In phase 1 we choose k̄ to ensure the preconditions for Subroutine 25
(SPR) are satisfied. Note that 2k̄ < 2 logX(‖B‖X̄) = O((log ‖B‖)/(log X)).
After phase 1 finishes, R̄ = Res(A, B, 2k̄) and ‖R̄‖ ≤ n‖A‖ (Corollary 19).
In phase 2 we choose l̄ to satisfy 2l̄ + 2k̄ > l. After phase 2 finishes, R =
Res(A, R̄, 2l̄), which is equal to Res(A, B, 2l̄ + 2k̄). Finally, the high-order lift
is computed in phase 3.

The costs of phases 1, 2 and 3 are dominated by the calls to LSeries(A, B, k̄),
Segment(A, l̄) and LSeries(A, R, log k), respectively. By Theorems 27 and 33
these calls will have cost bounded by O((log n)MM(n, X) + MM(n, X)) bit
operations if all of

k̄dm2k̄/ne, l̄, and (log k)dmk/ne

are O(log n); we can ensure this bound by making some assumptions on the
input paramaters. First, assume that m × k = O(n). Then log k = O(log n)
and m = O(n). Second, assume that m × (log ‖B‖)/(log X) = O(n). Then
m× 2k̄ = O(n) and k̄ = O(log n). Third, assume that log l = O(log n). We get
the following result.
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Theorem 42 Algorithm 41 (HighOrderLift) is correct. If log l = O(log n)
and both m × k and m × (log ‖B‖)/(log X) are O(n), then the cost of the
algorithm is O((log n)MM(n,X) + MM(n,X)) bit operations, assuming the
input parameter B and the output are given in (X, t)-adic form.

The number of calls to SPL depends on the input parameters l, k and ‖B‖. If
these parameters satisfy log l, log k = O(log n) and logX ‖B‖ = O(n), then we
may easily derive the estimate O(log n) for the number of calls, but for actual
applications of the algorithm (for example, in the next section) we will need
an explicit bound. Using

k̄ = max(2, dlog(logX ‖X̄B‖)e) and l̄ = max(2, dlog(l − 2k̄ + 1)e) (11)

gives the following.

Theorem 43 Corresponding to a valid input [(X, ∗, s)](A, B, l, k) to Algo-
rithm 41 (HighOrderLift), there are fewer than 10n2(k̄ + l̄ + log k) choices
for t̄ ∈ [2, X̄−3] for which HighOrderLift[(X, t, s)](A, B, l, k) will fail, k̄ and
l̄ as in (11).

11 Integrality certification

Let A ∈ Zn×n be nonsingular, det A ⊥ X. Let B ∈ Zn×m and T ∈ Zm×m. This
section presents an algorithm to assay if A−1BT is integral.

For any h ≥ 0, post multiplying both sides of

A−1B = Trunc(A−1B, h) + A−1Res(A, B, h)Xh

by T gives the following observation.

Lemma 44 A−1BT is integral if and only if A−1Res(A, B, h)T is integral.

The next result is an extension of Corollary 19, which gave a condition on h
for ‖Res(A, B, h)‖ to be small (that is, independent of the size of ‖B‖).

Lemma 45 Assume A−1BT is integral and h satisfies ‖A−1BT‖ ≤ 2Xh/X̄.
Then A−1Res(A, B, h)T is integral and ‖A−1Res(A, B, h)T‖ ≤ m‖T‖.

PROOF. Notice that

A−1BT =

‖ · ‖ < m‖T‖Xh︷ ︸︸ ︷
Trunc(A−1B, h)T +A−1Res(A, B, h)TXh. (12)
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By the assumption on h we have

A−1BT = Trunc(Trunc(A−1B, h)T, h). (13)

Subtract (13) from (12) and divide both sides by Xh (an exact division) to
get

0 =

‖ · ‖ ≤ m‖T‖︷ ︸︸ ︷
Left(Trunc(A−1B, h)T, h) +A−1Res(A, B, h)T.

The magnitude bound in the last formula follows from Corollary 7. 2

The next equation defines the quantities S and C, and is obtained by applying
Trunc(·, h + k) to both sides of (12).

S︷ ︸︸ ︷
Trunc(A−1BT, h + k) = Trunc(

‖ · ‖ < m‖T‖Xh︷ ︸︸ ︷
Trunc(A−1B, h)T (14)

+

C︷ ︸︸ ︷
Trunc(A−1Res(A, B, h)T, k) Xh, h + k)

Theorem 46 Assume h satisfies ‖A−1BT‖, ‖BT‖ ≤ 2Xh/X̄ and k satisfies
2nm‖T‖‖A‖ ≤ 2Xk/X̄. Then A−1BT is integral if and only if ‖C‖ ≤ m‖T‖.

PROOF. (If:) It follows from the definition of S (left hand side of (14))
that Trunc(AS, h + k) = Trunc(BT, h + k). If both ‖AS‖ and ‖BT‖ are
≤ 2Xh+k/X̄ then AS = BT (Corollary 8) and it follows that S = A−1BT ,
in which case A−1BT is integral. The assumption on h gives the bound for
‖BT‖. Now assume ‖C‖ ≤ m‖T‖. Then ‖S‖ < 2m‖T‖Xh (cf. (14)), giving the
bound ‖AS‖ < 2nm‖T‖‖A‖Xh, which by the assumption on k is ≤ 2Xh+k/X̄.
(Only If:) Follows from Lemma 45. 2

If A−1BT is integral the algorithm returns C, a left integrality certificate for
A−1B with respect to T .

Algorithm 47 LIntCert[(X, t, s)](A, B, T )
Remark: (X, t) = (X̄s, t̄(1 + X̄ + · · ·+ X̄s−1))
Input: A ∈ Zn×n, B ∈ Zn×m, T ∈ Zm×m.
Output: Failure, a left integrality certificate for A−1B with respect to T if
A−1BT is over Z, false otherwise.
Condition: X ⊥ det A and n2‖A‖ ≤ X/X̄.

(1) # If the call to HighOrderLift fails then exit early with fail.
h := smallest integer such that mn(n−1)(n−1)/2‖A‖n−1‖B‖‖T‖ ≤ 2Xh/X̄;
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k := smallest power of two such that 2nm‖T‖‖A‖ ≤ 2Xk/X̄;
H := HighOrderLift(A, B, h, k);

(2) C := Trunc(MUL(H, T ), k);
if ‖C‖ ≤ m‖T‖ then

return C
else

return false
fi

The operation MUL(H, T ) can be computed as the product of an n× km by a
km× km block Toeplitz matrix

[
H0 H1 · · · Hk−1

]


T0 T1 · · · Tk−1

T0 · · · Tk−2

. . .
...

T0


and then adjusting to get back the (X, t)-adic representation of C, see the
discussion after Algorithm 32. In this way, no integer arithmetic with large
operands is required.

Now consider the choice of h and k in phase 1. Considering the restrictions
on m, ‖B‖ and ‖T‖ in the statement of the following theorem, and using the
condition that n2‖A‖ ≤ X/X̄, gives that h is O(n) and k is O(logX ‖T‖). Thus,
all the conditions of Theorem 42 are met and we may apply that theorem to
bound the cost of the call to HighOrderLift.

Theorem 48 Algorithm 47 (LIntCert) is correct. If all of m, m×(log ‖B‖)/(log X)
and m×(log ‖T‖)/(log X) are O(n), then the cost of the algorithm is O((log n)MM(n,X)+
MM(n,X)) bit operations, assuming the input parameters B and T and the
output are given in (X, t)-adic form.

The following helper method computes an upper bound on the number of bad
choices for the shift t̄ ∈ [2, X̄ − 3] — choices for which the call to call to
HighOrderLift will fail.

Bad(A, B, T ) :=



k := dlog(nm‖T‖‖A‖X̄)e;

l := dlogX(mn(n− 1)(n−1)/2‖A‖n−1‖B‖‖T‖X̄/2)e;

k̄ := max(2, dlog(logX ‖X̄B‖)e);

l̄ := max(2, dlog(l − 2k̄ + 1)e);

return 10n2(k̄ + l̄ + log k)
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If the assumptions of Theorem 48 are satisfied then Bad(A, B, T ) is O(n2 log n).
To compute an integrality certificate using Algorithm 47 requires knowing
a suitable (X, ∗, s)-adic number system. Use Corollary 36 to find a prime
p = O(log n + log log ‖A‖) such that p ⊥ det A. Set X̄ := pd and X := X̄s,
where (d, s) ∈ (Z≥1, Z≥2) is chosen lexicographically minimal to satisfy the
following conditions: n2‖A‖ ≤ X/X̄ and Bad(A, B, T )/( ¯X − 4) < 1/2. Then,
for a random choice of t̄ ∈ [2, X̄ − 3], the call LIntCert[(X, t, s)](A, B, T ) will
fail with probability less than 1/2, t := t̄(1 + X̄ + · · ·+ X̄s−1).

The conversation between X-adic and binary representation can be accom-
plished in the allotted time if we assume that B(t) = O(MM(t)/t).

Theorem 49 (LeftIntegralityCertificate(A, B, T )) There exists a Las
Vegas algorithm that takes as input

• nonsingular A ∈ Zn×n,
• B ∈ Zn×m, and
• T ∈ Zm×m,

and returns as output

• false, if A−1BT is not integral, or
• a left integrality certificate C for A−1B with respect to T .

If m is O(n) and both m × (log ‖B‖)/n and m × (log ‖T‖)/n are O(log n +
log ‖A‖), then the expected cost of the algorithm is O((log n)MM(n)B(log n +
log ‖A||) bit operations. This result assumes that B(t) = O(MM(t)/t).

Note that a right integrality certificate for BA−1 with respect to T is equal to
the transpose of a left integrality certificate of Transpose(BA−1) with respect
to Transpose(T ).

12 Preconditioners for the determinant

Our algorithm to compute the determinant requires some preconditioning of
the input matrix. This section is reasonably self-contained, but further back-
ground material can be found in [32,41,43]. We first recall some definitions
about the Hermite and Smith canonical forms of matrices.

The notation StackMatrix(A1, A2) is defined by

StackMatrix(A1, A2) =

A1

A2

 .
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A matrix A is a left multiple of B if A = ∗B for a matrix ∗ over Z. Right
multiple is defined analogously. A matrix G ∈ Zm×m is a row basis for a
full column rank A ∈ Zn×m if A and G are left multiples of each other.
Corresponding to every full column rank A ∈ Zn×m is a unimodular (invertible
over Z) matrix U ∈ Zn×n such that

UA = StackMatrix(H, 0) =



h1 h12 · · · h1m

h2 · · · h2m

. . .
...

hm



∈ Zn×m

with all entries in H nonnegative, and off-diagonal entries h∗j strictly smaller
than the diagonal entry hj in the same column. The principal nonsingular
submatrix H is the unique Hermite row basis of A. The product h1h2 · · ·hk

of the first k diagonal entries is equal to the gcd of all k × k minors of the
first k columns of A, 1 ≤ k ≤ n. If n = m and A is nonsingular, then
h1h2 · · ·hn = det H = | det A|.

Our first result, Theorem 50, is inspired by and based on [13, Section 6]. To
clarify our starting point from [13], and indicate what our extension is, we
begin by giving an example of a special case of the theorem. Suppose B ∈
Zn×(n−10) has entries chosen uniformly and randomly from {0, 1, 2, . . . , n− 1}.
Then [13, Section 6] shows that with probability greater than 7/8 the matrix
B has full column rank n − 10 over Z and, moreover, that for every prime p
the matrix B mod p over the field Z/(p) has rank at least n− 11 (that is, at
most one less than full column rank. 2 )

We extend this result in two ways. First, suppose C ∈ Z5×(n−10) also has
entries chosen uniformly and randomly from {0, 1, 2, . . . , n − 1}. Then we
show that with probability at least 4/5 the matrix F := StackMatrix(B, C) ∈
Z(n+5)×(n−10) has Hermite basis In−10, which is equivalent to saying that for
every p the matrix F mod p over Z/(p) has full column rank. Second, consider
a rectangular matrix A ∈ Zn×m, n ≥ m + 15, with full column rank and Her-
mite row basis H. Theorem 50 states that we can extend A to a nearly square

2 The technique used was to give a lower bound on the probability that the analo-
gous result held for the submatrix of B comprised of the first i columns, considering
i = 1, 2, . . . , n− 10 in succession, and basing the estimate for i ≥ 2 conditionally on
the estimate for i− 1.
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matrix (only fifteen fewer columns than rows) that has the same Hermite basis
of A but augmented with the identity. In other words, if the entries in B and
C are well chosen, then A B

C

 ∈ Z(n+5)×(n−10)

has Hermite row basis H

In−m−10

 ∈ Z(n−10)×(n−10).

In the proof we use the fact that AH−1 is an integral matrix with Hermite
row basis Im.

Theorem 50 For n ≥ m + 15, let A ∈ Zn×m have full column rank and
Hermite row basis H. If entries in B ∈ Zn×(n−m−10) and C ∈ Z5×(n−m−10) are
chosen uniformly and randomly from {0, 1, . . . , λ− 1} with λ = max(‖A‖, n),
then the Hermite row basis of

F :=

AH−1 B

C

 ∈ Z(n+5)×(n−10)

is equal to In−10 with probability at least 4/5.

PROOF. If the Hermite basis of F differs from I then there is a prime p so
that the rank of F mod p over the field Z/(p) of integers modulo p drops below
n − 10. Following [13] we define two events. Let Dep denote the event that
[AH−1 |B] ∈ Zn×(n−10) does not have full column rank n−10. Let MDep denote
the event that there exists at least one prime p such that [AH−1 |B] mod p
has rank at most n − 12 over Z/(p). It follows from [13] 3 that Dep ∨ MDep
holds with probability less than 1/8.

Under the assumption that ¬(Dep ∨ MDep) holds, our goal is to bound the
probability that there exits a prime p such that F mod p does not have full
column rank n− 10 over the field Z/(p) of integers modulo p.

If ¬MDep is satisfied, then corresponding to each prime p there exists a sub-
matrix R of [AH−1 |B] of dimension (n− 11)× (n− 11) such that p does not

3 We obtain this by first substituting i = n − 10 and λ ≥ n into the bound for
P [MDepi] given directly before Theorem 6.2, and then simplifying using the estimate
n ≥ 15.
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divide det R. Moreover, since AH−1 has Hermite row basis Im, there exists
such an R involving all m columns of AH−1 and all but one column of B.
Without loss of generality (up to a permutation of the rows and columns of
F involving B) suppose that R is the principal (n− 11)× (n− 11) submatrix
of [AH−1 |B]. Consider any choice of the entries in all but the last column c
of C, and recall that entries in C are selected independently. Then a neces-
sary condition for F mod p to have rank less than n− 10 is that the following
submatrix of F has rank less than n− 10 over Z/(p). R ∗2

∗1 c


The Schur complement of this matrix with respect to R is c−∗1R

−1∗2. Thus,
we need to bound the probability that c−∗1R

−1 ∗2 mod p is zero over Z/(p).
Following the technique of [13, Section 6] we consider primes p < λ and primes
p ≥ λ separately.

If p < λ, the probability that entries in c ∈ Z5×1 are chosen so that c −
∗1R

−1 ∗2 modp is the zero vector over Z/(p) is at most ((1 + p/λ)/p)5, since
the likelihood that a given entry of c assumes any fixed value, mod p, is
bounded by dλ/pe(1/λ) ≤ (1 + p/λ)/p. Summing over all primes p < λ, and
using the fact that λ ≥ n ≥ 15, gives

∑
p((1+ p/λ)/p)5 <

∑
p∈{2,3,5,7,11,13}((1+

p/15)/p)5+
∑

i≥17(2/i)
5, which is less than 0.0712. Thus, if ¬MDep holds, then

the probability that there exists a prime p < λ such that F mod p has rank
less than n− 10 over Z/(p) is less than 0.0707.

Now, if p is a prime that is greater than or equal to λ, then the probability that
the rank of F mod p over Z/(p) is less than n−10 is bounded by (1/λ)5, since
the likelihood that a given entry of c assumes any fixed value, mod p, is either 0
or 1/λ. Since ¬Dep holds there exists a nonsingular (n−10)×(n−10) submatrix
[ĀH−1 | B̄] of [AH−1 |B]. The determinant d of this submatrix is equal to the
determinant of [Ā | B̄] divided by det H. Since ‖[Ā | B̄]‖ ≤ λ, the magnitude
of d is bounded by (n − 10)!λn−10 < λ2n, and the number of primes p ≥ λ
that can divide d is bounded by logλ λ2n = 2n. Thus, when neither the events
Dep or MDep arise, the probability that there exists a prime p ≥ λ such that
F mod p has rank less than n−10 over Z/(p) is at most 2n(1/λ)5 ≤ 2n(1/n)5,
which is less than 2/50625 for all n ≥ 15.

Since 1/8 + 0.0707 + 2/50625 < 1/5, the result follows. 2

Recall the definition of the Smith form: corresponding to any matrix A ∈ Zn×m

are unimodular matrices U ∈ Zn×n and V ∈ Zm×m such that

UAV = Smith(A) = Diag(PrincipalSmith(A), 0),
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where PrincipalSmith(A) = Diag(s1, s2, . . . , sr) is unique, each si positive and
si dividing si+1 for 1 ≤ i ≤ r − 1, r the rank of A. The si are called the
invariant factors of A. The product s1s2 . . . , sk of the first k invariant factors
is equal to the gcd of all k × k minors of A. Noting that every minor of A is
bounded in magnitude by m!‖A‖m gives the following fact which will be used
in the proof of the subsequent lemma.

Fact 51 There are fewer than 2m primes p ≥ max(‖A‖, m, 2) that divide sr.

Our next result is similar to [13, Section 3], where the authors give a re-
lationship between the invariant factors of A and the invariant factors of
A + B, where B is a well chosen rank k perturbation. In the next lemma, let
Diag(s1, s2, . . . , sm) denote the Smith form of full column rank A ∈ Zn×m, and
let Diag(σ1, σ2, . . . , σm) denote the principal Smith form of StackMatrix(A, B),
for some given B over Z. For a given k, 1 ≤ k ≤ m, the lemma states that for
a well chosen B ∈ ZO(k)×m, Diag(1, . . . , 1, s1, s2, . . . , sm−k) will be a multiple
of Diag(σ1, σ2, . . . , σm).

Lemma 52 Fix k, 1 ≤ k ≤ m, and let e ≥ 10 + 2 log k. If B ∈ Z(k+e)×m

has entries chosen uniformly and randomly from {0, 1, . . . , λ − 1} with λ =
max(‖A‖, m, 2), then σi = 1 for 1 ≤ i ≤ k and σi divides si−k for k + 1 ≤ i ≤
m, with probability at least 1/(4k).

Before proving Lemma 52 we give an example of a special case to illustrate
the main ideas of the proof. Suppose A ∈ Zm×m is in Smith form, say A =
Diag(S1, S2) where S2 has dimension k × k. Let e and B be chosen as in the

lemma. Decompose B =
[
B1 B2

]
where B2 has dimension (k + e) × k. The

lemma states that Diag(Ik, S1) will be a multiple of the principal Smith form
of 

S1

S2

B1 B2


with probability at least 1/(4k). Indeed, a sufficient condition for success is
that the principal Smith form of StackMatrix(S2, B2) be equal to Ik, for if so,
then there exists a sequence of unimodular row and column transformations
such that 

S1

S2

B1 B2

→


S1

∗ I

∗

→


I

S1

∗


A sufficient condition for StackMatrix(S2, B2) to have principal Smith form Ik

is that that B2 mod p have full column rank k over Z/(p) for every prime p
which divides sm. Fact 51 will be used to bound the number of primes dividing
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sm. Then, using a counting argument similar to [13, Section 3] and as used
in the proof of Theorem 50, we consider primes p < λ and p ≥ λ separately,
summing a bound on the probability of failure for a given prime over all the
primes to arrive at an overall bound on the probability of failure. The following
proof generalizes the above argument to the case where A may be rectangular
and not in Smith form.

PROOF. (Of Lemma 52). Let U and V be unimodular matrices such that
UAV is in Smith form. Decompose V = [V1 |V2] where V2 has dimension m×k.
Similarly, decompose the Smith form S of A as StackMatrix(Diag(S1, S2), 0)
where S2 has dimension k × k. Then

U

I


A

B

 [V1 V2

]
=



S1

S2

0 0

BV1 BV2


.

Now, if the principal Smith form of StackMatrix(S2, BV2) is Ik, then there
exists a sequence of unimodular row and column transformations such that

S1

S2

BV1 BV2

→


S1

∗ I

∗

→


I

S1

∗

 .

The result will follow, since diagonal entries in the principal Smith form of
StackMatrix(S1, ∗) necessarily divide the corresponding entries of S1. A suf-
ficient condition for StackMatrix(S2, BV2) to have principal Smith form I is
that, for every prime p that divides sm, BV2 mod p has full column rank over
the field Z/(p).

Let N ∈ Z(m−k)×m be a left kernel of V2 over Z. Recall the definition of a
left kernel: N has full row rank, NV2 is the zero matrix, and the Hermite
column basis of N is I. Since V2 is a subset of columns of a unimodular
matrix, V2 has Hermite row basis I and it follows that for any prime p the
rows of N mod p comprise a left nullspace for V2 mod p over the field Z/(p).
It is easy to show (see for example [31, Lemma 15]) that BV2 ∈ Z(k+e)×k has
full column rank over Z/(p) if and only if StackMatrix(N, B) ∈ Z(m+e)×m has
rank m over Z/(p). Because N is a left kernel, there exists an (m−k)×(m−k)
submatrix of N that has determinant relatively prime to p. Without loss of
generality (up to a column permutation of StackMatrix(N, B)) assume that
the principal (m − k) × (m − k) submatrix of N has determinant relatively
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prime to p. Decompose N = [N1 |N2] and B = [B1, |B2] where N1 and B1

have m− k columns. Then the Schur complement of

N1 N2

B1 B2


with respect to N1 is B2 −B1N

−1
1 N2. Now, let elements of B1 be chosen, and

recall that elements in B2 are chosen independently. Our goal is to bound the
probability that B2 − B1N

−1
1 N2 mod p has rank less than k over Z/(p). We

consider primes p < λ and p ≥ λ separately.

Let p ≥ λ. Using a similar argument 4 as in the proof of Theorem 50 we
can show that the probability that B2 − B1N

−1
1 N2 mod p has rank less than

k over Z/(p) is bounded by
∑k

i=1(1/λ)k+e−(i−1) ≤ (1/λ)e+1∑k−1
i=0 (1/λ)i <

(1/λ)e+1∑∞
i=0(1/2)i = 2(1/λ)e+1. Since there are fewer than 2m primes p ≥ λ

that divide sm (Fact 51), the sum of this bound over all such primes is
≤ 4m(1/λ)e+1, which is ≤ 4(1/λ)e using the condition λ ≥ m. Thus, the
probability that there exists a prime p ≥ λ such that StackMatrix(N, B) has
rank less than n over Z/(p) is bounded by 4(1/2)e.

Now consider primes p < λ. Similar to the above, we get that the probability
that there exists a prime p < λ such that StackMatrix(N, B) has rank less
than k over Z/(p) is bounded by

∑
p<λ

k∑
i=1

(
1 + p/λ

p

)k+e−(i−1)

<
∑
p<λ

(1 + p/λ

p

)e+1 ∞∑
i=0

(
1 + p/λ

p

)i


≤
∑
p<λ

(1 + p/λ

p

)e+1 ∞∑
i=0

(2/3)i


< 3

∑
p<λ

(
1 + p/λ

p

)e+1

< 3(2/3)e−1
∞∑
i=2

(2/i)2

< 9(2/3)e−1

Summing the error bound for primes ≥ λ with the bound for primes < λ gives
4(1/2)e + 9(2/3)e−1. Finally, if e ≥ 10 + 2 log k then

4 By summing, for i = 1 . . . k, a bound on the probability that column i of B2 is
chosen such that column i of B2 −B1N

−1
1 N2 is a linear combination over Z/(p) of

the previous i− 1 columns.
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4(1/2)e + 9(2/3)e−1 = 4(1/2)10(1/k2) + 9(2/3)9(1/k2 log 3/2)

≤ (4(1/2)10 + 9(2/3)9)(1/k)

< 0.239(1/k)

< 1/(4k)

The result follows. 2

For the remainder of this section let A ∈ Zn×n be nonsingular with Smith
form diag(s1, s2, . . . , sn). As in [13], we are going to exploit the structure of the
Smith form. The next lemma follows from the fact that s1s2 · · · sn = | det A|
and si | si+1 for 1 ≤ i ≤ n− 1.

Lemma 53 If λ is such that | det A| ≤ λ2n, then then sn ≤ λ2n and sn−2i+1 ≤
(λ2n)1/2i

for i = 1, 2, . . . , blog nc.

We will need one additional fact.

Fact 54 Let s be the largest invariant factor of a nonsingular matrix A. Then
sI is a multiple of the Hermite row basis of A.

Assume that n = 2t+1− 1 for some integer t, and let A ∈ Zn×n be nonsingular
with Smith form Diag(s1, s2, . . . , sn). For i = 0, 1, . . . , t, choose entries in Bi ∈
Z(2i+10+2i)×n uniformly and randomly from {0, 1, 2, . . . , λ − 1}, where λ =
max(‖A‖, n, 2). Then | det A| ≤ λ2n and Lemma 53 applies. Let the Hermite
row basis of

C :=



A

Bt I
...

. . .

B1 I

B0 I


be



Ht+1 ∗ · · · ∗ ∗

Ht · · · ∗ ∗
. . .

...

H1 ∗

H0


. (15)

Let us identify A0 with A. Following the approach of [41, Lemma 6.2], we
can transform C to a triangular row basis via a sequence of t + 1 unimodular
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transformations, of which the first two look like:



A0

Bt I
...

. . .

B2 I

B1 I

B0 I


→



A1 ∗

Bt I
...

. . .

B2 I

B1 I

H0


→



A2 ∗ ∗

Bt I
...

. . .

B2 I

H1 ∗

H0



Note that the Hermite row basis of

Ai

Bi I

 is

Ai+1 ∗

Hi

 .

Fact 54 states that the largest invariant factor of Ai will be a multiple of Hi.

An application of Lemma 52 with k = 20 gives that Diag(1, s1, s2, . . . , sn−1)
is a multiple of the principal Smith form of StackMatrix(A0, B0), and thus
sn−1 is a multiple of the largest invariant factor of StackMatrix(A0, B0) with
probability at least 3/4. The next theorem follows by applying Lemma 52
for k = 20, 21, . . . , 2t with StackMatrix(Alog k, Blog k). The key observation is
that StackMatrix(Ai+1, 0) has the same Smith form as StackMatrix(Ai, Bi)
since these matrices are left equivalent. Summing the probabilities of failure
of the preconditioning gives

∑t
i=0(1/4)2−i < (1/4)

∑∞
i=0 2−i ≤ 1/2. Note that∑i

l=0 2l = 2i+1 − 1. For convenience define s0 := 1.

Theorem 55 If each Bi has entries chosen uniformly and randomly from
{0, 1, . . . , λ− 1} where λ = max(‖A‖, n, 2), then sn−2i+1+1 is a multiple of the
largest invariant of StackMatrix(Ai, Bi) for all i = 0, 1, . . . , t simultaneously,
with probability at least 1/2.

13 Certified computation of the determinant

Our algorithm for the determinant will call upon almost all of the algorithms
presented in the previous sections. In addition, we need to extend the results
of [43, Sections 12–15] for matrices over k[x] to the case of integer matrices.
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Smith of trailing Hermite basis

Let A ∈ Zn×n be nonsingular. For some m, 1 ≤ m ≤ n, decompose the Hermite
row basis of A as

H =

H1 ∗

H2

 , (16)

where H2 has dimension m × m. If we are given an s ∈ Z≥1 such that
sH−1

2 is integral, then following [43, Algorithm 9] we can compute the Smith
form S2 of H2 as follows. Let B be the last m rows of In and compute a
right integrality certificate C for BA−1 with respect to sIm. Compute D :=
PrincipalSmith([C | sIm]) and set S2 := Smith((sIm)D−1).

The cost of computing C and D depends on m and the bitlength of s. We are
going to assume that these parameters are balanced: m×(log s)/n = O(log n+
log ‖A‖) or, equivalently, that log s = O((n/m)×(log n+log ‖A‖)). Then The-
orem 49 bounds the expected cost of computing C by O((log n)MM(n)B(log n+
log ‖A‖)) bit operations. The Smith form D can be computed by working
over the ring Z/(s) with O((n/m)MM(m)) ring operations ([41, Chapter 7]).
The cost of a single operation in Z/(s) is bounded by B(log s) bit opera-
tions. Using B(ab) = O(B(a)B(b)) and our assumption on log s gives that
B(log s) = O(B(n/m)B(log n + log ‖A‖)).

Theorem 56 (SmithOfTrailingHermite(A, m, s)) There exists a Las Vegas
algorithm that takes as input

• A ∈ Zn×n, nonsingular,
• m ∈ Z, 1 ≤ m ≤ n, and
• s ∈ Z, nonzero,

and returns as output

• false, if sIm is not a multiple of the trailing m × m submatrix H2 of the
Hermite row basis of A, see (16), otherwise,

• the Smith form S2 of H2.

If m×(log s)/n is O(log n+log ‖A‖) then the algorithm uses an expected num-
ber of O((log n)MM(n)B(log ‖A‖+ log n)) bit operations. This result assumes
that MM(a)B(b) = O(MM(ab)/b).
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Determinant reduction

Let A ∈ Zn×n be nonsingular with Hermite row basis

h1 h1,2 · · · h1,n−1 h1,n

h2 · · · h2,n−1 h2,n

. . .
...

...

hn−1 hn−1,n

hn


. (17)

In [43, Section 15] we described algorithm DetReduction(A) that computes a
new matrix B ∈ Zn×n that has Hermite row basis

h1 h1,2 · · · h1,n−1

h2 · · · h2,n−1

. . .
...

hn−1

1


. (18)

As a side effect the algorithm also computes the trailing diagonal entry hn. The
algorithm described in [43] was for the case k[x] but extends directly to the case
Z, see the worked example given in [43, Section 15]. The algorithm computes
solutions to two nonsingular rational systems involving A, plus does some
additional work like an extended gcd computation that can be accomplished
with O(n B(n(log ‖A‖ + log n))) bit operations. The matrix B produced will
be identical to A except for possibly the last column. An inspection of the
algorithm reveals that entries in the last column will be bounded in magnitude
by n2‖A‖.

Let P ∈ Zn×n be the permutation matrix that rotates the columns to the right
by one (that is, such that column (j mod n) + 1 of BP is equal to column j
of B). Now, if B has Hermite row basis as in (18), then BP will have Hermite
row basis 

1

h1 h1,2 · · · h1,n−1

h2 · · · h2,n−1

. . .
...

hn−1


. (19)
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For a given k, 1 ≤ k ≤ n, decompose A and the Hermite row basis of A as

A =

A11 A12

A21 A22

 and H =

H11 H12

H22

 (20)

where A22 and H22 are k × k, and consider executing the following code frag-
ment, where P is the permutation matrix described above.

B := A;
for i from 1 to k do

B := DetReduction(B);
B := BP

od

On output

B =

 ∗ A11

∗ A21

 with Hermite basis

 I

H11

 . (21)

This gives the following result.

Theorem 57 (IteratedDetRedution(A, k)) There exists a Las Vegas algo-
rithm that takes as input

• A ∈ Zn×n, nonsingular, and
• k ∈ Z, 1 ≤ k ≤ n,

and returns as output

• the determinant of H22, where H22 is the trailing k × k submatrix of the
Hermite row basis of A, and

• a B ∈ Zn×n with ‖B‖ ≤ n2k‖A‖, and such that the Hermite row basis of B
has the shape shown in (21), where the Hermite row basis of A is as in (20).

The algorithm uses an expected number of O(k(log n)MM(n)B(log ‖A‖+k log n))
bit operations. This result assumes B(t) = O(MM(t)/t).

The bound for ‖B‖ in Theorem 57 is very pessimistic. In our application of
algorithm IteratedDetReduction the parameter k will be O(1), so the bound
suffices for our purposes.

Extension to nonsingular matrix

Let A ∈ Zn×m have full column rank. Our goal is to construct a nonsingular
matrix B ∈ Z(n+5)×(n+5) that has Hermite row basis equal to Diag(I, H),

43



where H is the Hermite row basis of A. If n = m we may simply choose
B := Diag(I5, A), so assume that n > m. We consider two cases: n ≤ m + 15
and n > m + 15.

Suppose n ≤ m + 15. Use the method supporting Corollary 36 to find a
set {i1, i2, . . . , im} of row indices such that these rows of A are linearly in-
dependent. Let Ā be equal to A augmented with columns {1, 2, . . . , n} −
{i1, i2, . . . , im} of In. Then Ā is nonsingular, and

B := Diag(I5, IteratedDetReduction(Ā, n−m))

will be as desired.

Now suppose n > m + 15. Then extend A to a nearly square matrix (fifteen
fewer columns than rows)

E :=

A ∗

∗

 ∈ Z(n+5)×(n−10)

where entries in the blocks labelled ∗ are chosen uniformly and randomly from
{0, 1, . . . , λ − 1}, where λ := max(n, ‖A‖). Then the Hermite row basis of E
is equal to Diag(H, I) with probability at least 4/5 (Theorem 50). Check that
E has full column rank using the method of Theorem 40 and if not choose a
different E. Assume henceforth that E has full column rank. Extend E to a
nonsingular matrix Ē ∈ Z(n+5)×(n+5) by augmenting with a subset of fifteen
columns of In+5, as described above. Let B := IteratedDetReduction(Ē, 15).
Finally, try computing a right integrality certificate for the last n − m − 10
rows of B−1 with respect to In−m−10 to check that the trailing (n−m− 10)×
(n − m − 10) submatrix of the Hermite row basis of B is equal to In−m−10.
If this check returns false then repeat the construction of E and try again.
Otherwise, rotate the columns of B to the right by n−m− 10.

Theorem 58 (ExtensionToNonsingular(A)) There exists a Las Vegas algo-
rithm that takes as input

• A ∈ Zn×m with rank m,

and returns as output

• a nonsingular B ∈ Z(n+5)×(n+5) with ‖B‖ ≤ n30 max(n, ‖A‖), and such that
the Hermite row basis of B has the shape I

H

 ,

where H is the Hermite row basis of A.
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The algorithm uses an expected number of O(MM(n)(log n)B(log ‖A‖+log n))
bit operations. This result assumes B(t) = O(MM(t)/t).

The determinant algorithm

Let A ∈ Zn×n. Assume, at the cost of assaying if A is singular using the
method of Theorem 40, that det A 6= 0. Assume, up to embedding A into a
larger matrix Diag(I, A), that n = 2t+1 − 1 for some integer t.

For i = 0, 1, . . . , t, choose entries in Bi ∈ Z(2i+10+2i)×n uniformly and randomly
from {0, 1, 2, . . . , λ− 1}, where λ := max(‖A‖, n, 2). Let m :=

∑t
i=0(2

i + 10 +
2i) = n + O((log n)2), and let C be the (n + m) × (n + m) matrix shown
in (15) on page 39. Then | det C| = | det A| ≤ λ2n. We will compute det Hi

(see (15)) for i = 0, 1, 2, . . . , t in succession, terminating early and reporting
fail if an i ∈ {0, 1, . . . , t} is found such that the trailing entry in Smith(Hi)
has magnitude larger than (λ2n)1/2i

. By Theorem 55, failure will be reported
with probability less than 1/2.

Let C[1 . . . n + m, 1 . . . k] denote the submatrix of C comprised of the first m
columns. Initialize k := n + m and d := 1 and execute the following:

for i from 0 to t do
repeat

R := ExtensionToNonsingular(C[1 . . . n + m, 1 . . . k]);
s := LargestInvariantFactor(R);

if s > (λ2n)1/2i
then return fail fi;

S := SmithOfTrailingHermite(R, 2i + 10 + 2i, s)
until S 6= fail;
d := d× det(S);
k := k − (2i + 10 + 2i)

od;

If fail is returned, then construct a new C and try again. If the loop completes,
then R has Hermite row basis Diag(I, Ht+1), see (15). Check that UniCert(R)
returns true to ensure that Ht+1 = I. If not, construct a new C and try again.
If UniCert(R) does return true then d = | det A|. Compute the determinant
of A modulo a small prime in order to determine if d needs to be negated.

Each of the O(log n) calls to algorithm SmithOfTrailingHermite has (2i +
10 + 2i)× (log s)/n = O(log ‖A‖+ log n).

Theorem 59 Let A ∈ Zn×n. There exists a Las Vegas algorithm that com-
putes the determinant of A using an expected number of O((log n)2 MM(n)B(log ‖A‖+
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log n)) bit operations. This result assumes MM(a)B(b) = O(MM(ab)/b).

14 Conclusions

Consider the following problems on an input matrix A ∈ Zn×n and, in the
case of problem LinSys, a b ∈ Zn×1 with ‖b‖ = ‖A‖O(n).

Problem Compute the

LinSys vector A−1b for A nonsingular

Det determinant

MinPoly minimal polynomial

CharPoly characteristic polynomial

Frobenius Frobenius canonical form

Smith Smith canonical form

Given an algorithm that can multiply two n × n matrices in O(nω) scalar
operations, we have given a Las Vegas algorithms for problem LinSys (Theo-
rem 37) and for problem Det (Theorem 59) that use an expected number of
O∼(nω log ‖A‖) bit operations.

To the best of our knowledge, algorithms with cost O∼(nω log ‖A‖) bit oper-
ations are not yet known for the problems MinPoly, CharPoly, Frobe-
nius and Smith. The currently best know cost estimate for MinPoly is
O∼(n2.697263 log ‖A‖) bit operations (Monte Carlo), given in [27]. This result
assumes the best known value for ω (= 2.375477 [9]) and uses also the fast
rectangular matrix multiplication techniques in [8]. Without using fast matrix
techniques the cost estimate derived in [27] for MinPoly is O∼(n3.2 log ‖A‖)
bit operations. This result for MinPoly extends to the other problems using
some known reductions. We recall these now.

For two problems P1 and P2, let us write P1 ≤ P2 if a Monte Carlo algorithm for
P2 with running time O∼(nη log ‖A‖) bit operations (η ≥ ω) gives us a Monte
Carlo algorithm for P1 with running time O∼(nη log ‖A‖) bit operations. Then
MinPoly = Frobenius = CharPoly. The reduction of Frobenius to ei-
ther CharPoly or MinPoly uses the observation that the entire Frobenius
form F over Z can be reconstructed from either the minimal or characteris-
tic polynomial together a single image (a signature) of F mod p over Z/(p)
for well chosen prime p, the image being computed in O∼(nω log log ‖A‖) bit
operations using any of the algorithms in [12,18,41]. A reduction Smith ≤
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MinPoly is given in [19]. The reductions Smith ≤ MinPoly and Frobe-
nius ≤ MinPoly are used in [27], see [27, Section 7] for more details.

Our algorithms for LinSys and Det are based on the high-order lifting and
integrality certifications techniques of [43], developed for polynomial matri-
ces. The shifted number system allowed us to extend these techniques to the
integer case. Actually, the low level algorithms in the current paper are based
also on a new idea: the sparse inverse expansion. On the one hand, the algo-
rithm for computing A−1b in the polynomial case [43, Section 9] precomputed
O(log n) high-order segments of the expansion of the inverse. Precomputa-
tion was required because the segments were used in the reverse order of
their computation. On the other hand, the sparse inverse expansion intro-
duced in Section 8 applies the segments in the order of their computation,
thus allowing them to be computed on the fly. We may derive that the inter-
mediate space requirement of our algorithms for LinSys and Det is bounded
by O(n2(log ‖A‖ + log n)) bits, which is a factor of at most O(log n) more
than the space required to write down the input matrix. We remark that the
sparse inverse expansion is applicable in the polynomial case also and will re-
duce the intermediate space requirement of the linear solving algorithm in [43,
Section 9] by a factor of O(log n), or down to O(n2 deg A) field elements.

For a nonsingular A ∈ Zn×n our algorithm for Det in Section 13 can probably
be adapted to get a Las Vegas algorithm for SmithForm. If A is singular,
however, a difficult arises in that a Las Vegas Smith form algorithm must
necessarily certify the rank of A (since this is one of the invariants revealed by
the form). We currently don’t know how to extend our techniques to certify the
rank (for example, when the rank is about n/2). To the best of our knowledge,
the current best cost estimate for rank certification is O∼(n2.697263 log ‖A‖)
bit operations, also obtained using the MinPoly algorithm of [27] and the
reduction of rank certification to MinPoly given in [37].

In the future we will report on implementations the high-order lifting technique
described in this paper. In [5,6] the Integer Matrix Library (IML) is described.
On a modern processor 5 , IML computes the exact solution of a nonsingular
system of dimension 500, 2000 and 10,000 (with single decimal digit entries)
in about one second, one minute and one hour, respectively. The performance
of IML is achieved in part by using the highly optimized and portable AT-
LAS/BLAS software library for numerical linear algebra [45]. Large integer
arithmetic is performed using GMP [20]. Currently, IML’s nonsingular solver
is based on the classic linear lifting algorithm as described in [11,30]. IML
also includes an implementation of a new algorithm for finding minimal de-
nominator solutions to integer input systems of arbitrary shape, rank profile
and entry size. In the future we plan to add functionality for unimodularity

5 Intel Itanium 2 @ 1.3GHz
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certification and determinant computation based on the techniques described
in this paper.

Acknowledgements

Corrections and comments from the two anonymous referees have substantially
improved the presentation.

References

[1] J. Abbott, M. Bronstein, and T. Mulders. Fast deterministic computation of
determinants of dense matrices. In S. Dooley, editor, Proc. Int’l. Symp. on
Symbolic and Algebraic Computation: ISSAC ’99, pages 197–204. ACM Press,
New York, 1999.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.
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