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Abstract—Serverless architectures organized around loosely-
coupled function invocations represent an emerging design for
many applications. Recent work mostly focuses on user-facing
products and event-driven processing pipelines. In this paper, we
explore a completely different part of the application space and
examine the feasibility of analytical processing on big data using
a serverless architecture. We present Flint, a prototype Spark
execution engine that takes advantage of AWS Lambda to provide
a pure pay-as-you-go cost model. With Flint, a developer uses
PySpark exactly as before, but without needing an actual Spark
cluster. We describe the design, implementation, and performance
of Flint, along with the challenges associated with serverless
analytics.

Index Terms—serverless computing, cloud computing, data
analytics, data science

I. INTRODUCTION

Serverless computing [1], [2] represents a natural next step

of the “as a service” and resource sharing trends in cloud

computing. Specifically, “function as a service” offerings such

as AWS Lambda allow developers to write blocks of code

with well-defined entry and exit points, delegating all aspects

of execution to the cloud provider. Typically, these blocks of

code are stateless, reading from and writing to various “state

as a service” offerings (databases, message queues, persistent

stores, etc.).

Standard serverless deployments are characterized by asyn-

chronous, loosely-coupled, and event-driven processes that

touch relatively small amounts of data [3]. Consider a canon-

ical example that Amazon describes: an image processing

pipeline such that when the user uploads an image to a website,

it is placed in an S3 bucket, which then triggers a Lambda to

perform thumbnail generation. The Lambda may then enqueue

a message that triggers further downstream processing. Most

serverless applications are user facing, even if users are not

directly involved in the processing pipeline.

This paper explores serverless architectures for a completely

different use case: large-scale analytical data processing by

data scientists. We describe Flint, a prototype Spark execution

engine that is completely implemented using AWS Lambda

and other services. One key feature is that we realize a pure

pay-as-you-go cost model, in that there are zero costs for

idle capacity. With Flint, the data scientist can transparently

use PySpark without needing an actual Spark cluster, instead

paying only for the cost of running individual programs.

The primary contribution of our work is a demonstration

that it is indeed possible to build an analytical data process-

ing framework using a serverless architecture. Critically, we

accomplish this using cloud infrastructure that has no idle

costs. It is straightforward to see how workers performing

simple “map” operations can execute inside Lambda functions.

Physical plans that require data shuffling, however, are more

complicated: Flint takes advantage of distributed message

queues to handle shuffling of intermediate data, in effect

offloading data movement to yet another cloud service.

II. BACKGROUND AND DESIGN GOALS

Our vision is to provide the data scientist with an experience

that is indistinguishable from “standard” Spark. The only

difference is that the user supplies configuration data to use

the Flint serverless backend for execution. In this context,

we explore system performance tradeoffs in terms of query

latency, cost, etc.

Currently, Flint is built on AWS, primarily using Lambda

and other services. All input data to an analytical query are

assumed to reside in an S3 bucket, and we assume that results

are written to another S3 bucket or materialized on the client

machine. The AWS platform was selected because it remains

the most mature of the alternatives, but in principle Flint can

be re-targeted as other cloud providers have similar offerings.

One major design goal of Flint is to provide a truly pay-as-

you-go cost model with no costs for idle capacity. This needs a

bit of explanation: as a concrete example, Amazon Relational

Database Service (RDS) requires the user to pay for database

instances (per hour). This is not pay as you go because there

are ongoing costs even when the system is idle. Therefore,

this means that one obvious implementation of using RDS

to manage intermediate data would violate our design goal.

In general, we cannot rely on any persistent or long-running

daemons.

Note that this is a challenging, but also worthwhile, design

goal. In a cloud-based environment, there are a limited number

of options for Spark analytics. One option is to offload cluster

management completely to a cloud provider via something

like AWS EMR, which starts up a Spark cluster for each user

job. The downside is that a lot of time is wasted in cluster

initialization.

The alternative is to manage one’s own Spark clusters in

the cloud (on EC2 instances). There are, of course, tools to

help with this, ranging from the UI of Databrick’s Unified

Analytics Platform to full-fledged orchestration engines such

as Netflix’s Genie. Even if cluster startup and teardown were
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Fig. 1. Overview of the Flint architecture.

completely automated (and instantaneous, let’s even say), the

fact remains that the organization pays for cluster instances

for the entire time the cluster is up; charges accumulate even

when the cluster is idle. For large organizations, this is less

of an issue as there is more predictable aggregate load from

teams of data scientists, but for smaller organizations, usage

is far more sporadic and difficult to estimate a priori.

In contrast, we believe that serverless analytics with pay-as-

you-go pricing is compelling, particularly for ad hoc analytics

and exploratory data analysis. This is exactly what our Flint

prototype provides.

III. FLINT ARCHITECTURE

The overall architecture of Flint is shown in Figure 1.

At a high-level, Spark tasks are executed in AWS Lambda,

and intermediate data are held in Amazon’s Simple Queue

Service (SQS), which handles the data shuffling necessary to

implement many transformations.

To maximize compatibility with the broader Spark ecosys-

tem, Flint reuses as many existing Spark components as

possible. When a Spark job is submitted, the sequence of

RDD transformations (i.e., the RDD lineage) is converted

into a physical execution plan using the DAG Scheduler. The

physical plan consists of a number of stages, and within

each stage, there is a collection of tasks. The Task Scheduler

is then responsible for coordinating the execution of these

tasks. Spark provides pluggable execution engines via the

SchedulerBackend interface: Spark by default comes

with implementations for local mode, Spark on YARN and

Mesos, etc. Flint provides a serverless implementation of

SchedulerBackend; everything else remains unchanged

from standard Spark. The primary advantage of this design is

that we can reuse existing Spark machinery for query planning

and optimization, and Flint only needs to “know about” Spark

execution stages and tasks in the physical plan.

The Flint SchedulerBackend (hereafter “scheduler”),

which lives inside the Spark context on the client machine,

is responsible for coordinating Flint executors to execute a

particular physical plan. The scheduler receives tasks from

Spark’s Task Scheduler, and for each task, our implementation

extracts and serializes the information that is needed by the

Flint executors. This information includes the serialized code

to execute, metadata about the relationship of this task to the

entire physical plan, and metadata about where the executor

reads its input and writes its output. When this serialization

is complete, the scheduler asynchronously launches the Flint

executors on AWS Lambda, with the serialized task as part

of the request. After a Flint executor has completed its task,

the scheduler processes the response. Once all tasks of the

current stage complete, executors for tasks of the next stage

are launched, repeating until the entire physical plan has been

executed.

A. Flint Executor

A Flint executor is a process running inside an Amazon

Lambda function that executes a task in a Spark physical plan.

Since the startup latency of a Lambda invocation is small

once the function has been “warmed up” (more discussion

later), each Lambda instance only processes a single task. This

is different from standard Spark, where executors are long-

running processes.

Once a Flint executor is initialized, it first deserializes the

task information from the request arguments. From the input

partition metadata, the executor creates an input iterator to

read from the appropriate input partition. For the first stage

in a plan, this iterator will fetch a range of bytes from an S3

object. For most other stages, the input iterator will fetch from

a designated SQS queue (discussed in detail below).

Once the input iterator is ready, it is passed to the dese-

rialized function (i.e., code to execute) from the task as an

argument; this yields the output iterator. If the task is in the

final (result) stage of the execution plan, there are two possi-

bilities: If the final action on the RDD is saveAsTextFile,

outputs are materialized to another S3 bucket; otherwise, the

results are materialized within the executor and passed back

to the scheduler (for example, if the data scientist calls the

collect action).

When a task is part of an intermediate stage, the execution

plan requires the output to be shuffled so that all values for a

key are placed in the same partition. The shuffling is part

of the physical plan created by Spark; the Flint executors

simply execute the task, and thus are not explicitly aware of
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the actual RDD transformation (e.g., if the shuffling is part of

reduceByKey or join, etc.). Since the execution time of a

Lambda invocation has a limit of 300 seconds, it is not possible

to guarantee that the Flint executors from the previous stage

are still alive to pass data to executors running tasks from the

next stage. Thus, we need some external data store to deliver

the intermediate output. Flint uses Amazon’s Simple Queue

Service (SQS) for this purpose.

Once an executor of a task belonging to an intermediate

stage has computed the output iterator, the hash partition

function (or custom partition function if specified) is used to

decide which partition each output object will be assigned to.

The executor groups objects by the destination partition in

memory. However, if memory usage becomes too high during

this process, the executor flushes its in-memory buffers by

creating a batch of SQS messages and sending them to the

appropriate queue for each partition. After all output data are

sent to SQS queues, the executor terminates and returns a

response containing a variety of diagnostic information (e.g.,

number of messages, SQS calls, etc.).

Once all tasks of the current stage are completed, executors

for tasks in the next stage will be launched. These executors

read from their corresponding SQS queues and aggregate data

in memory. Results are passed to the iterator of the function

associated with the task, as described earlier. Since we are

using in-memory data structure for aggregation, memory forms

a bottleneck. Due to the complexities of implementing on-disk

multi-pass aggregation algorithms in the Lambda environment,

we currently address this problem by increasing the number

of partitions such that we do not overflow memory. This

solution appears to be adequate, since it takes advantage of

the elasticity provided by AWS Lambda.

Queue management is performed by the scheduler. Be-

fore the execution of each stage, the scheduler initializes

the necessary partitions. Partition metadata (i.e., source and

destination queues) are passed as part of the Lambda request.

The scheduler also handles cleanup.

B. Overcoming Lambda Limitations

The current Flint implementation supports PySpark, which

counter-intuitively is easier to support than Scala Spark. The

Flint SchedulerBackend on the client is implemented in

Java, but the Flint executors in AWS Lambda are implemented

in Python. This design addresses one of the biggest issues

with AWS Lambda: the long cold startup time of function

invocations. The first time that a Lambda is invoked (or

after some idle period), AWS needs to provision the appro-

priate runtime container. Java Lambdas tend to have large

deployment packages due to numerous dependencies, whereas

Python Lambdas are significantly more lightweight; thus, they

start up faster. Furthermore, in the default Spark executor

implementation, to run PySpark code, data (from S3) is first

read in the JVM and then passed to a Python subprocess using

pipes. In Flint, we bypass this extra wrapper layer, and Python

code is able to read from S3 directly. As we later show, this

has significant performance advantages.

Another limitation of AWS Lambda is that execution dura-

tion per request is capped at 300 seconds. This leads to the

failure of long-running tasks. In order to avoid this problem,

we chain executors: if the running time has almost reached

the limit, the Flint executor stops ingesting new input records.

Then, the current state, including how much of the input split

has been read, is serialized and returned to the scheduler,

which launches a new Flint executor to continue processing

the uncompleted input split from where the previous invocation

left off. Since the function is already warm, the cost of using

chained executors is relatively low.

A third limitation of Lambda comes from a number of

resource constraints. Each invocation is limited to a maximum

memory allocation of 3008 MB. Thus, it is important for the

Flint executor to carefully manage in-memory data. There is

a limitation of 6 MB on the size of the request payload for an

invocation. This payload is used to hold the serialized task

data, which is typically much smaller. However, for larger

tasks we are currently implementing a workaround for this

size restriction by splitting the payload into smaller pieces.

These can be uploaded to S3, and the scheduler can direct

the Lambda functions to fetch the relevant data to complete

initialization.

IV. EXPERIMENTAL EVALUATION

We evaluated Flint by comparing its performance with

a Spark cluster running the Databricks Unified Analytics

Platform. The entire cluster comprises 11 m4.2xlarge instances

(one driver and ten workers), with a total of 80 vCores

(Amazon’s computation unit) of processing capacity. For AWS

Lambda, we allocated the maximum amount of memory

possible, which is 3008 MB. The developer can also configure

the maximum number of concurrent invocations; we set this

to 80 to match the Spark cluster, under the assumption that

one Lambda invocation roughly uses one vCore. AWS is

not completely transparent about the instances running AWS

Lambda; documentation refers to a “general purpose Amazon

EC2 instance type, such as an M3 type” without additional

details. Thus, this is the best that we can do to ensure that all

conditions consume the same hardware resources. In all cases,

we used the latest version of the Databricks runtime, which is

based on Spark 2.3.

Our evaluations examined three different conditions: Py-

Spark code running on Flint, PySpark code running on the

Spark cluster, and equivalent Scala Spark code running on

the Spark cluster. For the Spark cluster, we only measure

query execution time (derived from the cluster logs) and do

not include startup costs of the cluster (around five minutes).

This puts Spark performance in the best possible light. We had

separately examined Amazon EMR, which initializes clusters

automatically per job—but for reasons unknown from avail-

able documentation, its performance (even excluding startup

costs) was significantly worse than a Spark cluster we provi-

sioned ourselves.

For evaluation, we considered a typical exploratory data

analysis task described in a popular blog post by Todd Schnei-
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Query Latency (s) Estimated Cost (USD)
Flint PySpark Spark Flint PySpark Spark

0 101 [93 - 109] 211 188 0.20 0.41 0.37
1 190 [186 - 197] 316 189 0.59 0.61 0.37
2 203 [201 - 205] 314 187 0.68 0.61 0.36
3 165 [161 - 169] 312 188 0.48 0.61 0.36
4 132 [122 - 142] 225 189 0.33 0.44 0.37
5 159 [142 - 177] 312 189 0.45 0.60 0.37
6 277 [272 - 281] 337 191 0.56 0.66 0.37

TABLE I
QUERY LATENCY AND COST COMPARISONS.

der [4]. The New York City Taxi & Limousine Commission

has released a detailed historical dataset covering approxi-

mately 1.3 billion taxi trips in the city from January 2009

through June 2016. The entire dataset is stored on S3 and

is around 215 GB. Each record contains information about

pick-up and drop-off date/time, trip distance, payment type, tip

amount, etc. Inspired by Schneider’s blog post, we evaluated

the following queries, some of which replicate his analyses:

Q0. Line count. In this query, we simply counts the number

of lines in the dataset. This evaluates the raw I/O performance

of S3 under our experimental conditions.

Q1. Taxi drop-offs at Goldman Sachs headquarters, 200 West

St. This query filters by geo coordinates and aggregates by

hour, as follows:

arr = src.map(lambda x: x.split(’,’)) \
.filter(lambda x: inside(x, goldman)) \
.map(lambda x: (get_hour(x[2]), 1)) \
.reduceByKey(add, 30) \
.collect()

This is exactly the query issued in PySpark to both Flint and

the Spark cluster. The Scala Spark condition evaluates exactly

the same query, except in Scala. Note that Flint is able to

support UDFs transparently.

For brevity, we omit code for the following queries and

instead provide a concise verbal description.

Q2. Same query as above, but for Citigroup headquarters, at

388 Greenwich St.

Q3. Goldman Sachs taxi drop-offs with tips greater than $10.

Who are the generous tippers?

Q4. Cash vs. credit card payments. This query computes the

proportion of rides paid for using credit cards, aggregated

monthly across the dataset.

Q5. Yellow taxi vs. green taxi. This query computes the

number of different taxi rides, aggregated by month.

Q6. Effect of precipitation on taxi trips, i.e., do people take

the taxi more when it rains? This query aggregates rides for

different amounts of precipitation.

Table I reports latency (in seconds) and estimated cost of

each query (in USD) under the three different experimental

conditions discussed above. For Flint, we report averages over

five trials (after warm-up) and show 95% confidence intervals

in brackets. The latency of PySpark and Spark exhibit little

variance, and thus we omit confidence intervals (over three

trials) for brevity. Estimated costs for Spark and PySpark are

computed as the query latency multiplied by the per-second

cost of the cluster. For Flint, we used logging information to

compute the execution duration of the AWS Lambdas and the

associated SQS costs.

We find that latency is roughly the same for all queries on

Spark and appears to be dominated by the cost of reading from

S3. This is perhaps not surprising since none of our test queries

are shuffle intensive, as the number of intermediate groups

is modest. Interestingly, for some queries, Flint is actually

faster than Spark. The explanation for this can be found in

Q0, which simply counts lines in the dataset and represents a

test of read throughput from S3. Evidently, the Python library

that we use (boto) achieves much better throughput than the

library that Spark uses to read from S3. This is confirmed via

microbenchmarks that isolate read throughput from a single

EC2 instance. In our queries, the performance of Flint appears

to be dependent on the number of intermediate groups, and this

variability makes sense as we are offloading data movement

to SQS. PySpark is much slower than Flint because every

input record passes from the JVM to the Python interpreter,

which adds a significant amount of overhead. In terms of query

costs, Flint is in general more expensive than Spark, even for

queries with similar running times (Flint has additional SQS

costs). Although a direct cost conversion between Lambda and

dedicated EC2 instances is difficult (the actual instance type

and the multiplexing mechanism are both unknown), it makes

sense that Lambda has a higher per-unit resource cost, which

corresponds to the price we pay for on-demand invocation,

elasticity, etc.

For the above reasons, it is difficult to obtain a truly

fair comparison between Flint and Spark. Nevertheless, our

experiments show that serverless analytics is feasible, though

a broader range of queries is needed to tease apart performance

and cost differences—for example, large complex joins, iter-

ative algorithms, etc. However, results do suggest that data

shuffling is a potential area for future improvement.

V. RELATED WORK

The origins of Flint can be traced back to a course project

at the University of Waterloo in the Fall of 2016. Since

then, there have been other attempts at exploring serverless

architectures for data analytics. In June 2017, Databricks

announced a serverless product [5], best described as a more

flexible resource manager: administrators define a “serverless

pool” that elastically scales up and down. This can be viewed
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as more convenient tooling around traditional Spark clusters,

and is not serverless in the sense that we mean here.

In November 2017, Qubole announced an implementation

of Spark on AWS Lambda [6]. This effort shares the same

goals as Flint, but with several important differences. Qubole

attempted to “port” the existing Spark executor infrastructure

onto AWS Lambda, whereas Flint is a from-scratch implemen-

tation. As a result, we are better able to optimize for the unique

execution environment of Lambda. For example, Qubole re-

ports executor startup time to be around two minutes in the

cold start case. In addition, Qubole’s implementation uses S3

directly for shuffling intermediate data, which differs from

our SQS-based shuffle. Using S3 allows Qubole’s executors

to remain more faithful to Spark, but we believe that the I/O

patterns are not a good fit for S3.

Amazon provides two data analytics services that are worth

discussing: Amazon Athena (announced November 2016) and

Amazon Redshift Spectrum (announced July 2017). Both are

targeted at more traditional data warehousing applications and

only support SQL queries, as opposed to a general-purpose

computing platform like Spark. Athena offers a pay-as-you-

go, per-query pricing with zero idle costs, similar to Flint, but

under the covers it uses the Presto distributed SQL engine for

query execution, so architecturally it is not serverless. Red-

shift Spectrum is best described as a connector that supports

querying over S3 data; the customer still pays for the cost of

running the instances that comprise the Redshift cluster itself

(i.e., per hour charge, even when idle).

PyWren [7] is another project advocating a serverless exe-

cution model for analytics tasks, although unlike our effort

PyWren does not attempt to target Spark or any specific

analytics framework. Since Flint is a Spark execution engine, it

supports arbitrary RDD transformations; in contrast, PyWren

examines only three classes of dataflow patterns: map-only,

map + monolithic reduce, and MapReduce using either S3 or

Redis for shuffling (the latter is not pay as you go).

Serverless computing in general is an emerging computing

paradigm and previous work has mostly focused on examining

system-level issues in building serverless infrastructure [8]

as opposed to designing applications. Indeed, as Baldini et

al. [1] write, the advantages of serverless architectures are

most apparent for bursty, compute-intensive workloads and

event-based processing pipelines. Data analytics represents a

completely different workload and Flint opens up exploration

in a completely different part of the application space.

VI. FUTURE WORK AND CONCLUSIONS

There are a number of future directions that we are actively

exploring. We have not been able to conduct an experimental

evaluation between Qubole’s implementation and Flint, but

the design choice of using S3 vs. SQS for data shuffling

should be examined in detail. Each service has its strengths

and weaknesses, and we can imagine hybrid techniques that

exploit the strengths of both.

Robustness is an issue that we have not explored at all in this

work, although to some extent the point of serverless designs

is to offload these problems to the cloud provider. Executor

failures can be overcome by retries, but another issue is the at-

least-once message semantics of SQS. Under typical operating

circumstances, SQS messages are only delivered once, but

AWS documentation explicitly acknowledges the possibility of

duplicate messages. We believe that this issue can be overcome

with sequence ids to deduplicate message batches, as the exact

physical plan is known ahead of time.

Another ongoing effort is to ensure that higher-level Spark

libraries (e.g., MLlib, SparkSQL, etc.) work with Flint. To the

extent that SchedulerBackend provides a clean abstrac-

tion, in theory everything should work transparently. However,

as every developer knows, abstractions are always leaky, with

hidden dependencies. We are pushing the limits of our current

implementation by iteratively expanding the scope of Spark

libraries and features that we use.

To conclude, we note that Flint is interesting in two different

ways: First, we show that big data analytics is feasible using

a serverless architecture, and that we can coordinate the data

shuffling associated with analytical queries in a restrictive

execution environment. Second, there are compelling reasons

to prefer using our execution engine over Spark’s default,

particularly for ad hoc analytics and exploratory data analysis:

the tradeoff is a bit of performance for elasticity in a pure

pay-as-you-go cost model. Thus, Flint appears to be both

architecturally interesting as well as potentially useful.
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