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Abstract. We discuss a well-known binary sequence called the Thue-
Morse sequence, or the Prouhet-Thue-Morse sequence. This sequence was
introduced by Thue in 1906 and rediscovered by Morse in 1921. However,
it was already implicit in an 1851 paper of Prouhet. The Prouhet-Thue-
Morse sequence appears to be somewhat ubiquitous, and we describe
many of its apparently unrelated occurrences.

1 Introduction

In his seminal 1906 and 1912 papers [65, 66], the Norwegian mathematician Axel
Thue (1863–1922) noted that any binary sequence of length ≥ 4 must contain a
square, i.e., two consecutive identical blocks (the easy proof is left to the reader).
He then asked whether it is possible to find an infinite sequence on three letters
without squares, i.e., without two consecutive identical blocks. He also asked
whether it is possible to find an infinite binary sequence that contains no cube,
i.e., no three consecutive identical blocks, or even no overlap, i.e., no sub-block
of the form awawa, where a ∈ {0, 1} and w is a binary block. The answer to all
three questions is positive. Thue used a sequence t whose construction is given
in the next section,

t = 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 · · ·

It happens that this sequence t is really ubiquitous in the literature. In this
paper we survey a few of its occurrences in combinatorics on words, differential
geometry, number theory, iteration of continuous functions, and mathematical
physics. Note that we do not give all properties of the sequence t, but rather
show how it occurred as a “natural” answer to various apparently unrelated
questions.

2 Definition

We first give a formal definition of the Prouhet-Thue-Morse sequence.



Definition 1. We denote by t = (tn)n≥0 the Prouhet-Thue-Morse sequence
over {0, 1}, defined recursively by t0 = 0 and t2n = tn, t2n+1 = tn for all n ≥ 0,
where, for x ∈ {0, 1}, we define x = 1− x.

Denote by sk(n) the sum of the digits in the base-k representation of the
integer n. Since we clearly have s2(2n) = s2(n) and s2(2n + 1) = s2(n) + 1 for
every n ≥ 0, we easily obtain the following equivalent definition:

Proposition 1. The Prouhet-Thue-Morse sequence t is equal to the sequence
(s2(n) mod 2)n≥0.

Yet another definition, easily seen to be equivalent to the previous two, is
the following:

Proposition 2. Let X be an indeterminate. Then we have

∏

i≥0

(1−X2i) = (1−X)(1−X2)(1−X4) · · ·

= 1−X −X2 +X3 + · · ·
=
∑

j≥0

(−1)tjXj .

3 Combinatorics on words

3.1 The pioneering work of Thue

Our first theorem is the one we mentioned in the introduction. It is due to Thue
[65, 66].

Theorem 1 (Thue). The Prouhet-Thue-Morse sequence t is overlap-free.

For n ≥ 1 let vn be the number of 1’s between the n’th and (n+1)’st occurrence
of 0 in the sequence t. Let v = (vn)n≥1. Hence

v = 2 1 0 2 0 1 2 1 0 1 2 · · ·

Thue proved, as a corollary of Theorem 1 above, the following:

Corollary 1. The sequence v = (vn)n≥1 is square-free.

This work of Thue (see also Berstel [20] and references therein) was the
starting point of an important branch of combinatorics, now called combinatorics
on words. It is worth noting that Thue explained he had no particular application
in mind, but he thought the problem was interesting enough in itself to deserve
attention.

Thue’s papers appeared in an obscure Norwegian journal, and for a long time
were not widely known or appreciated. His original results were rediscovered by
several different authors, including Marston Morse; see [38, 19].



Although there are uncountably many overlap-free sequences on two sym-
bols, the Prouhet-Thue-Morse sequence is, roughly speaking, the “canonical”
example. For example, if in addition to being overlap-free we add some extra
requirement, then we often find that the only such sequence is the Prouhet-
Thue-Morse sequence or a simple variant. For example, consider the following
theorem of Berstel [20].

Theorem 2. The lexicographically largest overlap-free binary sequence begin-
ning with 0 is t, the Prouhet-Thue-Morse sequence.

Recently, together with J. Currie [10], we generalized this theorem, proving in
particular the following result:

Theorem 3. The lexicographically largest overlap-free binary sequence is the
sequence 110110t.

3.2 The problem of infinite play in chess

In a little-known 1929 paper, the Dutch chess grandmaster Machgielis (Max)
Euwe (1901–1981, world champion 1935–1937) independently discovered the
Prouhet-Thue-Morse sequence t and applied it to an interesting problem in chess
[35].

The so-called German rule states that a draw occurs if the same sequence
of moves occurs three times in succession. Euwe proved, using the cube-free
property of t, that under such a rule infinite games of chess are possible.

For example, one can take the Prouhet-Thue-Morse sequence t = t0t1t2 · · ·
and map each 0 to the sequence of four moves (Ng1-f3, Ng8-f6, Nf3-g1, Nf6-g8)
and each 1 to the sequence of four moves (Nb1-c3, Nb8-c6, Nc3-b1, Nc6-b8).
The resulting sequence of moves represents a legal infinite game of chess, and no
draw occurs under the German rule.

Later, Morse rediscovered the same technique [49, 51].

3.3 Morphisms of the free monoid

Let A be an alphabet, i.e., a finite set of symbols. The set of words over A
(i.e., blocks — or strings — of symbols of A) equipped with the operation of
concatenation is denoted by A∗: this is the free monoid generated by A.

Definition 2. Let A be an alphabet. Let A∗ be the free monoid generated by A.
A map σ : A∗ → A∗ is called a morphism if for all words x and y in A∗ we have
σ(xy) = σ(x)σ(y). Such a map is called a uniform morphism if all the images
by σ of elements of the set A have the same number of letters.

Note that a morphism is defined by its values on the elements of A. Note also
that the morphism σ can be extended to infinite sequences by continuity (the
set of finite and infinite sequences being equipped with the topology of simple
convergence). This means that, for an infinite sequence z = (zn)n≥0, the sequence
σ(z) is defined by σ(z) = σ(z0)σ(z1)σ(z2) · · ·



Proposition 3. Define the morphism µ on the alphabet {0, 1} by µ(0) = 01,
µ(1) = 10. Then the Prouhet-Thue-Morse sequence t is the unique fixed point of
µ that begins with 0.

Proof. We first note that if an infinite sequence is a fixed point of µ, and begins
with 0, it must begin with µ(0). Since µ(0) = 01, the sequence must begin with
µ(01) = µ(0)µ(1), hence with µ2(0). Iterating, this means that the sequence must
begin with µk(0) for every k ≥ 0. This proves uniqueness. Since µ(0) begins with
0, we have that µk+1(0) begins with µk(0) for every k. Hence the sequence of
words (µk(0))k≥0 converges towards an infinite sequence, say z = (zn)n≥0, that
clearly is a fixed point of µ.

Now, for x ∈ {0, 1}, we have µ(x) = xx, where, as previously, x = 1 − x.
Since z is a fixed point of µ, we thus have for every n ≥ 0, that z2n = zn and
z2n+1 = zn. Hence the sequence z is equal to the Prouhet-Thue-Morse sequence.

⊓⊔

Is it possible to build another binary sequence that is both overlap-free and
generated by a morphism? The next theorem, due to Séébold [62], answers this
question negatively. Another proof of this result was given by Berstel and Séébold
in [21].

Theorem 4 (Séébold). If an overlap-free binary sequence is a fixed point of
a non-trivial morphism, then it is either equal to t, the Prouhet-Thue-Morse
sequence, or its complement t = (tn)n≥0 = 1001011001101001 · · ·.

The Thue-Morse sequence is the prototype of a class of sequences called 2-
automatic sequences. Roughly speaking, a sequence is k-automatic if its n’th
term is generated by a finite-state machine which takes as input the base-k
expansion of n. For more about this class of sequences, see, for example, [29, 33,
4]. For the general subject of combinatorics on words, see [43].

4 Differential geometry

The Prouhet-Thue-Morse sequence has the nice property that it exhibits regu-
larity without being ultimately periodic. Morse rediscovered the sequence t in
1921 in connection with differential geometry [48]. He proved the following:

Theorem 5 (Morse). On a surface of negative curvature, having at least two
different normal segments, there exists a set of geodesics that are recurrent with-
out being periodic, and this set has the power of the continuum.

To prove this result, one of the steps was the following proposition, given as a
lemma in [48, p. 95]. We say a sequence a = a0a1a2 · · · is uniformly recurrent if
for each finite block of symbols w occurring in a there exists an integer n such
that for all i, the sub-block ai+1 · · · ai+n contains an occurrence of w. We say a
sequence a = a0a1a2 · · · is ultimately periodic if there exist integers p ≥ 1, N ≥ 0
such that ai = ai+p for all i ≥ N .



Proposition 4. There exists an infinite sequence over {1, 2} which is uniformly
recurrent but not ultimately periodic.

The sequence that Morse gives is exactly t, where 0’s have been replaced by 1’s
and 1’s by 2’s.

5 Number theory

5.1 The Prouhet-Tarry-Escott problem

As already noted by Adler and Li [2], the sequence t appears implicitly in an
1851 paper of Prouhet [55]. Prouhet was interested in a problem that was also
studied more than fifty years later by Tarry and Escott, and which is now known
as the “Prouhet-Tarry-Escott” or “multigrades” problem.

Prouhet addressed the following question: is it possible to find a partition of
the set {0, 1, 2, . . . , 2N − 1} into two disjoint sets I and J , such that

∑
i∈I i

k =∑
j∈J jk for k = 0, 1, 2, . . . , t? Of course we take 00 = 1, so that in particular the

case k = 0 shows that I and J must have the same number of elements. Prouhet
proved that such a partition is possible if N = t+ 1.

Theorem 6 (Prouhet). The Prouhet-Thue-Morse sequence t = (tn)n≥0 has
the following property. Define

I = {i ∈ {0, 1, 2, 3, . . . , 2N − 1} : ti = 0},
J = {j ∈ {0, 1, 2, 3, . . . , 2N − 1} : tj = 1}.

Then for 0 ≤ k ≤ N − 1 we have

∑

i∈I

ik =
∑

j∈J

jk.

For example, we have

0k+3k+5k+6k+9k+10k+12k+15k = 1k+2k+4k+7k+8k+11k+13k+14k

for k = 0, 1, 2, 3.

Prouhet actually studied the more general problem of finding a partition of
[0, qN − 1] into q sets I1, I2, . . . , Iq such that the q sums

∑
i∈Ij

ik (with j =

1, 2, . . . , q and k = 0, 1, . . . , N − 1) do not depend on j. He gave the following
solution (for a proof see e.g., [42]): for each q ≥ 2 define the sequence Tq =
(Tq(n))n≥0 by Tq(n) = sq(n) mod q. Then let Ij = {0 ≤ i ≤ qN−1 : Tq(i) = j}.

For an occurrence of related sequences, see [59]. A very nice relationship
between magic cubes, Prouhet sequences, and the Prouhet-Tarry-Escott problem
was given by Adler and Li [2]. For the state of art about the Prouhet-Tarry-Escott
problem the reader can look at one of the surveys [24, 60].



5.2 Curious infinite products

Woods asked [68], what is the limit of the sequence

1/2,
1

2
/
3

4
,

1
2
3
4

/
5
6
7
8

, . . . ?

Robbins [58] proved that this limit is
√
2
2 . More precisely, we have the following:

Proposition 5. Let εn = (−1)tn , where (tn)n≥0 is the Prouhet-Thue-Morse
sequence. Then

(
1

2

)ε0 (3

4

)ε1 (5

6

)ε2

· · · =
∞∏

n=0

(
2n+ 1

2n+ 2

)εn

=

√
2

2
. (1)

Proof. We give a simple proof, discovered by the first author in 1987. Let P and
Q be the infinite products defined by

P =

∞∏

n=0

(
2n+ 1

2n+ 2

)εn

, Q =

∞∏

n=1

(
2n

2n+ 1

)εn

.

Then

PQ =
1

2

∞∏

n=1

(
n

n+ 1

)εn

=
1

2

∞∏

n=1

(
2n

2n+ 1

)ε2n ∞∏

n=0

(
2n+ 1

2n+ 2

)ε2n+1

.

Of course all products are convergent by Abel’s theorem. Now, since ε2n = εn,
and ε2n+1 = −εn, we get

PQ =
1

2

∞∏

n=1

(
2n

2n+ 1

)εn
( ∞∏

n=0

(
2n+ 1

2n+ 2

)εn
)−1

=
1

2

Q

P
.

Since Q 6= 0, this gives P 2 = 1/2, and the result follows since P is positive. ⊓⊔

Note that the mysterious number Q does not appear in the final result! No
expression for Q in terms of known constants is currently known, nor is it known
if Q is transcendental or even irrational. This number first occurred in a paper of
Flajolet and Martin [36], who studied a class of probabilistic counting algorithms
for estimating the number of distinct elements in a large collection of data. Their
asymptotic analysis involves the constant ϕ = .77351 · · · given by

ϕ = 2−1/2eγ
2

3

∞∏

n=1

(
(4n+ 1)(4n+ 2)

4n(4n+ 3)

)(−1)tn

where γ is Euler’s constant [36, Theorem 3.A]. It is clear that

Q = 2−1/2eγϕ−1.



It is precisely while he was trying to compute Q (and hence ϕ) that the first
author came across the proof above.

The infinite product (1) suggests trying to obtain the expansion

(
1

2

)±1(
3

4

)±1(
5

6

)±1

· · ·

of a number β (for instance,
√
2
2 ) by a greedy algorithm, where the signs in the

exponent are iteratively chosen so that the product thus far approximates β as
closely as possible at each step. The following conjecture of the second author
[63] was proved by the first author and H. Cohen [6].

Theorem 7 (Allouche, Cohen). Define a sequence of signs (αn)n≥0 by α0 =
1, and, if α0, α1, . . . , αn are known, define αn+1 by:

αn+1 =





+1 if
(
1
2

)α0
(
3
4

)α1 · · ·
(

2n+1
2n+2

)αn

>
√
2
2 ,

−1 if
(
1
2

)α0
(
3
4

)α1 · · ·
(

2n+1
2n+2

)αn

<
√
2
2 .

Then the sequence (αn)n≥0 is equal to the Prouhet-Thue-Morse sequence on the
alphabet {−1,+1}, i.e., αn = (−1)tn for all n ≥ 0.

For generalizations of these results, see [63, 6, 13, 7].

5.3 Partitions of the set of integers

Let A be the (lexicographically) smallest set of integers such that 0 and 1 belong
to A, and for each n ≥ 1 that belongs to A, the number 2n does not belong to
A. Hence the first few elements of A are

0 1 3 4 5 7 9 11 12 13 15 16 17 19 20 21 23 · · ·

It is not hard to see that A and 2A = {2x : x ∈ A} form a partition of the
set of non-negative integers; see [26, 5, 64]. An unexpected connection with the
Thue-Morse sequence, proved in [5], is given below.

Theorem 8 (Allouche, Arnold, Berstel, Brlek, Jockusch, Plouffe,
Sagan). Let (an)n≥0 = 0 1 3 4 5 7 9 11 12 13 15 16 17 19 20 21 23 · · ·
be the increasing sequence of the elements of A. Define the sequence z = (zn)n≥0

by
z = 0a1−a0 1a2−a1 0a3−a2 · · · 0a2n+1−a2n 1a2n+2−a2n+1 · · ·

where by cj for c ∈ {0, 1}, we mean the string

j︷ ︸︸ ︷
cc · · · c. In other words, the se-

quence of runs of z is the first difference of the sequence (an)n≥0. Then z is equal
to the Prouhet-Thue-Morse sequence.



5.4 Algebraicity of formal power series in positive characteristic

The Prouhet-Thue-Morse real number
∑

n≥0 tn2
−n was proved transcendental

by Mahler [44, p. 363]; also see Dekking [32]. What can be said about the formal
power series

∑∞
n≥0 tnX

−n? This series is transcendental over Q(X), as noted,
for example, in [32]. But, considering this series modulo 2, we have the following
proposition:

Proposition 6. Let F (X) =
∑

n≥0 tnX
−n. Then F , considered as an element

of F2[[X
−1]], is quadratic over F2(X). More precisely, we have

(1 +X)3F 2 +X(1 +X)2F +X2 = 0. (2)

Proof. This is an easy consequence of the recurrence relations satisfied by the
sequence t. Namely, all computations being done modulo 2, we have

F =
∑

n≥0

tnX
−n =

∑

n≥0

t2nX
−2n +

∑

n≥0

t2n+1X
−2n−1

=
∑

n≥0

tnX
−2n +X−1

∑

n≥0

(1 + tn)X
−2n

= F 2 +X−1

(
X2

1 +X2
+ F 2

)

=

(
1 +X

X

)
F 2 +

X

1 +X2
=

(
1 +X

X

)
F 2 +

X

(1 +X)2
.

Hence, multiplying through by X(1 +X)2, we obtain Eq. (2). The fact that F
is not a rational function is an easy consequence of the overlap-free property of
the sequence t.

More generally, a formal power series with coefficients in Fp, where p is a
prime number, is algebraic over the field Fp(X) if and only if the sequence of its
coefficients is p-automatic. This theorem was proved by Christol [27], and more
details are given in the paper of Christol, Kamae, Mendès France and Rauzy
[28].

There is a theory of continued fractions for Laurent series with coefficients in
a finite field [16]. In particular the continued fraction expansion of a quadratic
series is ultimately periodic (see [47]; see [61] for a careful study when the ground
field is not finite). The continued fraction expansion of

∑
n≥0 tnX

−n is ultimately
periodic with a pleasantly short period. It is given by

∑

n≥0

tnX
−n = [0, X + 1, X, X, X3 +X, X ]

where, as usual, the vinculum denotes the repeating portion of the ultimately
periodic continued fraction.



5.5 β-Expansions

Representing real numbers in non-integer bases goes back to Rényi [56] and
Parry [54]. These expansions — sometimes called β-expansions — differ in some
respects from the usual base-k expansions where k is an integer. For exam-
ple, some numbers may have multiple representations. However, Komornik and
Loreti recently proved the following theorem [41]:

Theorem 9 (Komornik, Loreti). There exists a smallest real number β in the
interval (1, 2), for which there exists a unique β-expansion of 1 in the form 1 =∑∞

n=1 δnβ
−n, with δn ∈ {0, 1}. Furthermore, for this smallest β, the sequence of

“digits” (δn)n≥1 satisfies δn = tn for n ≥ 1, where t = t0t1t2 · · · is the Prouhet-
Thue-Morse sequence. The number β is the unique positive root of the equation
1 =

∑∞
n=1 tnβ

−n, and we have β
.
= 1.787231650.

Komornik and Loreti proved [41] that the above result is a consequence of
the following proposition:

Proposition 7. The lexicographically least binary sequence (wn)n≥1 such that

wn+1 wn+2 · · · < w1 w2 · · · if wn = 0,
wn+1 wn+2 · · · < w1 w2 · · · if wn = 1,

(where the order is lexicographical order, and 0 = 1, 1 = 0) satisfies wn = tn for
n ≥ 1.

The second author observed that this last result was previously stated in a
slightly different form by the first author and M. Cosnard in [8]. See [9] and
Section 7.1 below.

6 Semigroup and group theory

The Prouhet-Thue-Morse sequence t (or one of its variants) occurs in the so-
lution of the Burnside problem for groups: Is every group with a finite number
of generators and satisfying the identity xn = 1 finite? The answer is yes (and
well-known) if n = 2, since the group must be abelian in this case. But the
answer is no for large odd n, since, as Novikov and Adian showed [52], an infi-
nite group Γ (m,n) on m generators and satisfying xn = 1 for all x ∈ Γ (m,n)
exists for all m > 1, and for all odd n with n ≥ 4381. Adian’s book [1] gives
more details about the result and its history, and improves the constant 4381
to 665. One of the steps in the proof consists of finding a cube-free binary se-
quence (see [1, p. 5]). Actually the cube-free binary sequence given there is not
the Prouhet-Thue-Morse sequence, since it is not overlap-free. The author uses
a result of Arshon [15] in order to construct a cube-free binary sequence, but in
that paper Arshon actually gave a cube-free binary sequence that is equal to the
Prouhet-Thue-Morse sequence on the alphabet {1, 2} (see [15, p. 779]).



One may also consider the Burnside problem for semigroups. As remarked
by Morse and Hedlund [50, 57], with the aid of v, the square-free sequence over
{0, 1, 2} given above, one can construct an infinite semigroup S on three gener-
ators such that x3 = x2 for all x ∈ S. Indeed, this is accomplished by letting
S = {0, 1, 2}∗ ∪ {z}, where z is the zero element (i.e., wz = zw = z for all
w ∈ S) and subject to the relation w2 = z for all w ∈ S. Related questions were
discussed by Brzozowski, Culik, and Gabrielian [25].

There is another occurrence of the Thue-Morse sequence in group theory,
[22], as follows:

Theorem 10 (Boffa, Point). Define the Thue-Morse group identities In by:
I0(x, y) if x = y; In+1(x, y) is In(xy, yx). Then a finite group satisfies a Thue-
Morse identity if and only if it is an extension of a nilpotent group by a 2-group.

The reader will have noticed that

I0(x, y) if and only if x = y
I1(x, y) if and only if xy = yx
I2(x, y) if and only if xyyx = yxxy
I3(x, y) if and only if xyyxyxxy = yxxyxyyx

...

and understood the terminology “Thue-Morse identities”. See [23] for a gener-
alization.

7 Real analysis

7.1 Iteration of continuous functions

Iterating a unimodal continuous function from [0, 1] into [0, 1] yields various
behaviors going from convergent orbits to chaos; see the general reference [30].
M. Cosnard and the first author proved the following theorem [8] (also see [3,
31, 39]). Let f be a continuous map from [0, 1] into [0, 1], that is unimodal, i.e.,
increasing for x between 0 and some c, then decreasing for x between c and 1.
Suppose that f(1) = 0. With the orbit (f (n)(1))n≥0 we associate the itinerary
(an)n≥0, defined by an = 0 if 0 ≤ f (n)(1) < c and an = 1 if c < f (n)(1) ≤ 1.
With the sequence a = (an)n≥0 we associate the sequence ã = (ãn)n≥1 defined
by

ãn =




n−1∑

j=0

aj


 mod 2.

Note that the sequence a is the first difference, taken modulo 2, of the sequence
ã.



Theorem 11 (Allouche, Cosnard). The set of binary sequences ã = (ãn)n≥1

corresponding to unimodal continuous functions is exactly the set of binary se-
quences Γ defined by

Γ = {b = (bn)n≥1 : b1 = b2 = 1; ∀k, b ≤ T k(b) ≤ b},

where the order is lexicographical order, where b = (bn)n≥0 = (1 − bn)n≥0, and
where the map T is the shift defined by T ((wn)n≥1) = ((wn+1)n≥1). The least
non-periodic element of Γ (which is also the least accumulation point of Γ ) is
(tn)n≥1 where t = t0t1t2 · · · is the Prouhet-Thue-Morse sequence.

Note that the classical approach does not use the transformation a → ã; only
the itineraries a are considered. The order between sequences is somewhat more
complicated, although it boils down to the lexicographical order after applying
the transformation a → ã. The sequence a such that ã = (tn)n≥1, i.e., the first
difference of the Prouhet-Thue-Morse sequence, is

a = 1 0 1 1 1 0 1 0 · · ·

This sequence is called the period-doubling sequence. It is not hard to show that
a is a fixed point of the morphism θ defined by θ(1) = 10, θ(0) = 11. For
connections with Gray code, see [37].

The link between Theorem 11 and Proposition 7 above is easy [9]. Note also that
Theorem 11 can be reformulated in number-theoretical terms:

Corollary 2. Let Γ ′ the set of real numbers defined by

Γ ′ = {x ∈ [0, 1] : ∀k ≥ 0, 1− x ≤ {2kx} ≤ x},

where {y} denotes the fractional part of the real number y. Then the least ir-
rational element of Γ ′ (which is also the least accumulation point of Γ ′) is the
number τ =

∑
n≥1 tn2

−n .
= 0.824908, where t = (tn)n≥0 is the Prouhet-Thue-

Morse sequence.

The number τ appears in other contexts. For example, let p be the probability
that a randomly-chosen language L over {0, 1} has the property that there is at
least one word of each possible length. (We flip a fair coin for each word w to
decide if it is in L.) Then, as the second author has observed,

p =
∏

i≥0

(1− 1

22i
) =

∑

j≥0

(−1)tj

2j
= 2− 2τ.

7.2 The Knopp function

The Knopp function (see the introduction of [34]) is defined, for a ∈ (0, 1) and
b ∈ N \ {0}, by

Ka,b(x) =

∞∑

n=0

an‖bnx‖



where ‖y‖ is the distance from y to the nearest integer. In 1990, S. Dubuc and A.
Elqortobi [34] came across the Prouhet-Thue-Morse sequence t = (tn)n≥0 while
studying the maximum of the Knopp function. They proved the following.

Theorem 12 (Dubuc, Elqortobi). Let a ∈ (0, 1) and let b be an even integer
≥ 2. Let X∗(a, b) be the set of points where the function Ka,b takes its maximum.
Then the limit of the set X∗(a, b), as a → (1/b)−, is the set {x, 1 − x}, where
x = ((b2 − b)/2)

∑∞
n=0 tn/b

n+1.

8 Physics

Since the Prouhet-Thue-Morse sequence is both “easy to generate” and “non-
trivial”, it permits to generate a kind of controlled disorder. In particular this
sequence has analogies (but also differences) with one-dimensional quasi-crystals:
actually a typical one-dimensional quasicrystal is the Fibonacci sequence, i.e.,
the fixed point of the Fibonacci morphism 0 → 01, 1 → 0. Hence a large number
of papers in physics study the Prouhet-Thue-Morse sequence. We only mention
[17, 18], and the papers given in the bibliography of [12].

9 Generalizations

The alternative definitions of the Prouhet-Thue-Morse sequence given in Sec-
tion 2 each suggest possible approaches to generalize the sequence.

For example, Proposition 1 suggests studying the generalized Prouhet-Thue-
Morse sequence tk,m = (sk(n) mod m)n≥0 for integers k ≥ 2 and m ≥ 1. For
example, we have

t3,4 = 0 1 2 1 2 3 2 3 0 1 2 3 · · · .
Note that the sequence t2,m has been studied by J. Tromp and the second
author in [67], and that the sequence tq,q is the sequence Tq of Section 5.1. Very
recently the authors proved the following theorem [14], which generalizes the
work of Thue:

Theorem 13. Let k ≥ 2, m ≥ 1 be integers. The generalized Prouhet-Thue-
Morse sequence tk,m is overlap-free if and only if m ≥ k.

Several other generalizations of the Prouhet-Thue-Morse sequence have been
studied, see for example [40, 45, 46, 53, 69].

10 Conclusion

The Prouhet-Thue-Morse sequence occurs in various fields, so that many appar-
ently unrelated definitions of this sequence are equivalent. For example, Propo-
sition 1, Theorem 2, Proposition 3, Theorem 4, Theorem 7, Theorem 8, Theo-
rem 9, Proposition 7, Theorem 11, and even Theorem 10 or Corollary 2 can be
turned into definitions. Automatic sequences, of which the Prouhet-Thue-Morse



sequence is a simple example, are also useful because they are both “simple to
generate” and “non-trivial”: in physics as mentioned above, but also in other
fields, such as music (see for example [11]). Searching for the many occurrences
of the Prouhet-Thue-Morse sequence in the literature can be used as a pretext
to take a delightful stroll through many fascinating areas of mathematics.
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