
Noname manuscript No.

(will be inserted by the editor)

gStore: A Graph-based SPARQL Query Engine

Lei Zou · M. Tamer Özsu · Lei Chen · Xuchuan Shen ·
Ruizhe Huang · Dongyan Zhao

the date of receipt and acceptance should be inserted later

Abstract We address efficient processing of SPARQL

queries over RDF datasets. The proposed techniques,

incorporated into the gStore system, handle, in a uni-

form and scalable manner, SPARQL queries with wild-

cards and aggregate operators over dynamic RDF datasets.

Our approach is graph-based. We store RDF data as a

large graph, and also represent a SPARQL query as a

query graph. Thus the query answering problem is con-

verted into a subgraph matching problem. To achieve

efficient and scalable query processing, we develop an

index, together with effective pruning rules and efficient

search algorithms. We propose techniques that use this

infrastructure to answer aggregation queries. We also

propose an effective maintenance algorithm to handle

online updates over RDF repositories. Extensive exper-

iments confirm the efficiency and effectiveness of our

solutions.

Extended version of paper “gStore: Answering SPARQL
Queries via Subgraph Matching” that was presented at 2011
VLDB Conference.

Lei Zou, Xuchuan Shen, Ruizhe Huang, Dongyan Zhao
Institute of Computer Science and Technology,
Peking University, Beijing, China
Tel.: +86-10-82529643
E-mail: {zoulei,shenxuchuan,huangruizhe,zhaody}@pku.edu.cn

M. Tamer Özsu
David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, Canada
Tel.: +1-519-888-4043
E-mail: Tamer.Ozsu@uwaterloo.ca

Lei Chen
Department of Computer Science and Engineering,
Hong Kong University of Science and Technology,
Hong Kong, China
Tel.: +852-23586980
E-mail: leichen@cse.ust.hk

1 Introduction

The RDF (Resource Description Framework) data model

was proposed for modeling Web objects as part of devel-

oping the semantic web. Its use in various applications

is increasing.

A RDF data set is a collection of (subject, property,

object) triples denoted as 〈s, p, o〉. A running example

is given in Figure 1a. In order to query RDF reposito-

ries, SPARQL query language [23] has been proposed

by W3C. An example query that retrieves the names

of individuals who were born on February 12, 1809 and

who died on April 15, 1865 can be specified by the fol-

lowing SPARQL query (Q1):

SELECT ?name WHERE
{?m <hasName> ?name .
?m <bornOnDate> ‘ ‘1809−02−12 ’ ’ .
?m <diedOnDate> ‘ ‘1865−04−15 ’ ’ .}

Although RDF data management has been studied

over the past decade, most early solutions do not scale

to large RDF repositories and cannot answer complex

queries efficiently. For example, early systems such as

Jena [31], Yars2 [14] and Sesame 2.0 [6], do not work

well over large RDF datasets. More recent works (e.g.,

[2,20,33]) as well as systems, such as RDF-3x [19], x-

RDF-3x [22], Hexastore [30] and SW-store [1], are de-

signed to address scalability over large data sets. How-

ever, none of these address scalability along with the

following real requirements of RDF applications:

– SPARQL queries with wildcards. Similar to SQL and

XPath counterparts, the wildcard SPARQL queries

enable users to specify more flexible query criteria in

real-life applications where users may not have full

knowledge about a query object. For example, we

may know that a person was born in 1976 in a city

2

Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Abraham Lincoln bornIn y:Hodgenville KY
y:Abraham Lincoln diedIn y:Washington DC
y:Abraham Lincoln title “President”
y:Abraham Lincoln gender “Male”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
y:Hodgenville KY hasName “Hodgenville”
y:United States hasName “United States”
y:United States hasCapital y:Washington DC
y:United States foundingYear “1776”
y:Reese Witherspoon bornOnDate “1976-03-22”
y:Reese Witherspoon bornIn y:New Orleans LA
y:Reese Witherspoon hasName “Reese Witherspoon”
y:Reese Witherspoon gender “Female”
y:Reese Witherspoon title “Actress”
y:New Orleans LA foundingYear “1718”
y:New Orleans LA locatedIn y:United States
y:Franklin Roosevelt hasName “Franklin D. Roo-

sevelt”
y:Franklin Roosevelt bornIn y:Hyde Park NY
y:Franklin Roosevelt title “President”
y:Franklin Roosevelt gender “Male”
y:Hyde Park NY foundingYear “1810”
y:Hyde Park NY locatedIn y:United States
y:Marilyn Monroe gender “Female”
y:Marilyn Monroe hasName “Marilyn Monroe”
y:Marilyn Monroe bornOnDate “1926-07-01”
y:Marilyn Monroe diedOnDate “1962-08-05”

(a) RDF Triples (Prefix: y=http://en.wikipedia.org/wiki/)

y:Abraham Lincoln

“Abraham Lincoln”

hasName

“1809-02-12”
bornOnDate

“1865-04-15”

diedOnDate

“President”

title

“Male”

gender

y:Washington D.C.

“1790”

foundYear

“Washington D.C.”

hasName

y:Hodgenville KY “Hodgenville”
hasName

y:United States

“United States”

hasName

“1776”

foundingYear

y:Reese Witherspoon

“1976-03-22”

bornOnDate

“Female”

gender

“Actress”

title

“Reese Witherspoon”

hasName

y:New Orleans LA

“1718”

foundingYear

y:Franklin Roosevelt

“Franklin D. Roosevelt”

hasName

“Male”

gender

“President”

title

y:Hyde Park NY

“1810”

foundingYear

y:Marilyn Monroe“1962-08-05”
diedOnDate

“1926-07-01”

bornOnDate

“Female”

gender

“Marilyn Monroe”
hasName

001

010

011

012

013 014

002

015
016

003
017

004

018

019

005

020

021

022 023 006

024

007

025 026

027

008

028

009
029

030 031

032

diedIn

bornIn

hasCapital

bornIn
locatedIn locatedIn

bornIn

(b) RDF Graph G

Fig. 1: RDF Graph

that was founded in 1718, but we may not know the

exact birth date. In this case, we have to perform a

query with wildcards, as shown below (Q2):

SELECT ?name WHERE
{?m <bornIn> ? c i t y . ?m <hasName> ?name .

?m <bornOnDate> ?bd .
? c i t y <foundingYear> ‘ ‘ 1 7 1 8 ’ ’ .
FILTER(regex (s t r (? bd) , ‘ ‘ 1 9 7 6 ’ ’))}

– Dynamic RDF repositories. RDF repositories are

not static, and are updated regularly. For example,

Yago and DBpedia datasets are continually expand-

ing to include the newly extracted knowledge from

Wikipedia. The RDF data in social networks, such

as the FOAF project (foaf-project.org), are also fre-

quently updated to represent the individuals’ chang-

ing relationships. In order to support queries over

such dynamic RDF datasets, query engines should

be able to handle frequent updates without much

maintenance overhead.

– Aggregate SPARQL queries. Few existing works and

SPARQL engines consider aggregate queries despite

their real-life importance. A typical aggregate SPARQL

query that groups all individuals by their titles, gen-

ders, and the founding year of their birth places, and

reports the number of individuals in each group is

shown below (Q3):

SELECT ? t ?g ?y COUNT(?m) WHERE
{?m <bornIn> ? c . ?m <t i t l e > ? t .

?m <gender> ?g . ? c <foundingYear> ?y .}
GROUP BY ? t ?g ?y

In this paper we describe gStore, which is a graph-

based triple store that can answer the above discussed

SPARQL queries over dynamic RDF data repositories.

In this context, answering a query is transformed into

a subgraph matching problem. Specifically, we model

an RDF dataset (a collection of triples) as a labeled,

directed multi-edge graph (RDF graph), where each

vertex corresponds to a subject or an object. We also

represent a given SPARQL query by a query graph, Q.

Subgraph matching of the query graph Q over the RDF
graph G provides the answer to the query.

For example, Figure 1b shows an RDF graph G cor-

responding to RDF triples in Figure 1a. We formally

define an RDF graph in Definition 1. Note that, the

numbers above the boxes in Figure 1b are not vertex

labels, but vertex IDs that we introduce to simplify the

description. The RDF graph does not have to be con-

nected. A SPARQL query can also be represented as a

directed labeled query graph Q (Definition 2). Figure 2

shows the query graph corresponding to the SPARQL

query Q2. Usually, query graph Q is a connected graph.

Otherwise, we can regard each connected component of

Q as a separate query and perform them one by one.

We develop novel indexing and graph matching tech-

niques rather than using existing ones. This is because

the characteristics of an RDF graph are considerably

different from graphs typically considered in much of

the graph database research. First, the size of an RDF

graph (i.e., the number of vertices and edges) is larger

3

?m ?city
bornIn

?name

hasName

?bd

bornOnDate

“1718”

foundingYear

regex(str(?bd),“1976”)

Fig. 2: Query Graph of Q2

than what is considered in typical graph databases by

orders of magnitude. Second, the cardinality of ver-

tex and edge labels in an RDF graph is much larger

than that in traditional graph databases. For example,

a typical dataset (i.e., the AIDS dataset) used in the

existing graph database work [25,32] has 10,000 data

graphs, each with an average number of 20 vertices

and 25 edges. The total number of distinct vertex la-

bels is 62. The total size of the dataset is about 5M

bytes. However, the Yago RDF graph has about 500M

vertices and the total size is about 3.1GB. Therefore,

I/O cost becomes a key issue in RDF query processing.

However, most existing subgraph query algorithms are

memory-based. Third, SPARQL queries combine sev-

eral attribute-like properties of the same entity; thus,

they tend to contain stars as subqueries [19]. A star

query refers to the query graph in the shape of a star,

formed by one central vertex and its neighbors.

Contributions of this paper are the following:

1. We adopt the graph model as the physical storage

scheme for RDF data. Specifically, we store RDF

data in disk-based adjacency lists.

2. We transform an RDF graph into a data signature

graph by encoding each entity and class vertex. An

index (VS∗-tree) is developed over the data signa-
ture graph with light maintenance overhead.

3. We develop a filtering rule for subgraph query over

the data signature graph, which can be seamlessly

embedded into our query algorithm that answers

SPARQL queries efficiently.

4. We introduce an auxiliary structure (called T-index),

which is a structured organization of materialized

views, to speed up aggregate SPARQL queries.

5. We demonstrate experimentally that the performance

of our approach is superior to existing systems.

The rest of this paper is organized as follows. We

discuss the related work and preliminaries in Sections

2 and 3, respectively. We give an overview of our solu-

tion in Section 4. We discuss the storage and encoding

method in Section 5. We then present the VS∗-tree in-

dex in Section 6 and an algorithm for SPARQL query

processing in Section 7. In order to support aggregate

queries efficiently, we develop T-index in Section 8 and

aggregate query processing algorithm in Section 9. We

discuss the maintenance of indexes (VS∗-tree and T-

index) as RDF data get updated in Section 10. We

study our methods by experiments in Section 11. Sec-

tion 12 concludes this paper. Some of the additional

material supporting the main findings reported in the

paper are included in an Online Supplement.

2 Related Work

Three approaches have been proposed to store and query

RDF data: one giant triples table, clustered property

tables, and vertically partitioned tables.

One giant triples table. The systems in this category

store RDF triples in a single three-column table where

columns correspond to subject, property, and object

(as in Figure 1a) enabling them to manipulate all RDF

triples in a uniform manner. However, this requires per-

forming a large number of self-joins over this table to

answer a SPARQL query. Some efforts have been made

to address this issue, such as, RDF-3x [19,20] and Hex-

astore [30], which build several clustered B+-trees for

all permutations of s, p and o columns.

Property tables. There are two kinds of property tables.

The first one, called a clustered property table, groups

together the properties that tend to occur in the same

subjects. Each property cluster is mapped to a property

table. The second type is a property-class table, which

clusters the subjects with the same type of property

into one property table.

Vertically partitioned tables. For each property, this ap-

proach builds a single two-column (subject, object) ta-

ble ordered by subject [1]. The advantage of the order-

ing is to perform fast merge-join during query process-

ing. However, this approach does not scale well as the

number of properties increases.

Existing RDF storage systems, such as Jena [31],

Yars2 [14] and Sesame 2.0 [6], do not work well in large

RDF datasets. SW-store [1], RDF-3x [19], x-RDF-3x

[22] and Hexastore [30] are designed to address scalabil-

ity, however, they only support exact SPARQL queries,

since they replace all literals (in RDF triples) by ids

using a mapping dictionary.

Furthermore, most of existing methods do not ef-

ficiently handle online updates of the underlying RDF

repositories. For example, in clustered property table-

based methods (such as Jena [31]), if there are up-

dates to the properties in RDF triples, it is necessary

to re-cluster and re-build the property tables. In SW-

store [1], it is potentially expensive to insert data, since

4

each update requires writing to many columns. In order

to address this issue, it uses “overflow table + batch

write”, meaning that online updates are recorded to

overflow tables that SW-store periodically scans to ma-

terialize the updates. Obviously, this kind of mainte-

nance method cannot work well for applications such

as online social networks that require real time access.

More recent x-RDF-3x [22] proposes an efficient on-

line maintenance algorithm, but does not support wild-

card or aggregate SPARQL queries. There exist some

works that discuss the possibility of storing RDF data

as a graph (e.g., [5,30]), but these approaches do not

address scalability. Some are based on main memory

implementations [26], while others utilize graph parti-

tioning to reduce self-joins of triple tables [33]. While

graph partitioning is a reasonable technique to par-

allelize execution, updates to the graph may require

re-partitioning unless incremental partitioning methods

are developed (which are not in these works).

Few SPARQL query engines consider aggregate queries,

and to the best of our knowledge only two proposals

exist in literature [16,24]. Given an aggregate SPARQL

query Q, a straightforward method [16] is to transform

Q into a SPARQL query Q′ without aggregation predi-

cates, find the solution to Q′ by existing query engines,

then partition the solution set into one or more groups

based on rows that share the specified values, and fi-

nally, compute the aggregate values for each group. Al-

though it is easy for existing RDF engines to implement

aggregate functions this way, the approach is problem-

atic, since it misses opportunities for query optimiza-

tion. Furthermore, it has been pointed out [24] that this

method may produce incorrect answers.

Seid and Mehrotra [24] study the semantics of group-

by and aggregation in RDF graph and how to extend

SPARQL to express grouping and aggregation queries.

They do not address the physical implementation or

query optimization techniques.

Finally, the RDF data tend not to be very struc-

tured. For example, each subject of the same type do

not need to have the same properties. This facilitates

“pay-as-you-go” data integration, but prohibits the ap-

plication of classical relational approaches to speed up

aggregate query processing. For example, materialized

views [13], which are commonly used to optimize query

execution, may not be used easily. In relational sys-

tems, if there is a materialized view V1 over dimensions

(A, B, C), an aggregate query over dimensions (A, B)

can be answered by only scanning view V1 rather than

scanning the original table. However, this is not always

possible in RDF. For example, consider Q3 that groups

all individuals by their titles, gender, and founding year

of their birth places and reports the number of individ-

uals in each group. The answer to this query, R(Q3),

is given in Figure 3a (we show how to compute this

answer in Section 9).

Now consider another query (say Q4) that groups

all individuals by their titles and gender and reports

the number of individuals in each group. The answer to

this query is given in Figure 3b. Although the group-

by dimensions in Q4 is a subset of those in Q3, it is

not possible to get the aggregate result set R(Q4) by

scanning R(Q3). The main reason is the nature of RDF

data and the fact that RDF data tend not be struc-

tured, and there may be subjects of the same type that

do not have the same properties. Therefore, some sub-

jects that exist in a “smaller” materialized view may

not occur in a “larger” view.

title gender foundingYear COUNT
President Male 1718 1
Actress Female 1976 1

(a) Answer to Query Q3

title gender COUNT
President Male 2
Actress Female 1

(b) Answer to Query Q4

Fig. 3: Difficulty of Using Materialized Views

3 Preliminaries

An RDF data set is a collection of (subject, property,

object) triples 〈s, p, o〉, where subject is an entity or

a class, and property denotes one attribute associated

with one entity or a class, and object is an entity, a class,

or a literal value. According to the RDF standard, an

entity or a class is denoted by a URI (Uniform Resource

Identifier). In Figure 1, “http://en.wikipedia.org/wiki/

United States” is an entity, “http://en.wikipedia.org/

wiki/Country” is a class, and “United States” is a lit-

eral value. In this work, we do not distinguish between

an “entity” and a “class” since we have the same opera-

tions over them. RDF data can be modeled as an RDF

graph, which is formally defined as follows (frequently

used symbols are shown in Table 1):

Definition 1 A RDF graph is a four-tupleG = 〈V,LV ,

E, LE〉, where

1. V = Vc ∪ Ve ∪ Vl is a collection of vertices that

correspond to all subjects and objects in RDF data,

where Vc, Ve, and Vl are collections of class vertices,

entity vertices, and literal vertices, respectively.

5

Table 1: Frequently-used Notations

Notation Description Notation Description
G A RDF graph (Definition 1) Q A SPARQL query graph (Definition 2)
v A vertex v in a SPARQL query graph (Definition 3) u a vertex in RDF graph G (Definition 3)
eSig(e) an edge Signature (Definition 5) vSig(u) a vertex signature (Definition 6)
RS The answer set of the SPARQL query matches CL The candidate set of the SPARQL query matches
G∗ A data signature graph (Definition 7) Q∗ A query signature graph
A(u) A transaction of vertex u (Definition 16) O A node in T-index (Definition 16)
O.L The corresponding vertex list of node O MS(O) The corresponding aggregate set of node O

2. LV is a collection of vertex labels. The label of a

vertex u ∈ Vl is its literal value, and the label of a

vertex u ∈ Vc ∪ Ve is its corresponding URI.

3. E = {−−−→u1, u2} is a collection of directed edges that

connect the corresponding subjects and objects.

4. LE is a collection of edge labels. Given an edge e ∈
E, its edge label is its corresponding property.

An edge −−−→u1, u2 is an attribute property edge if u2 ∈ Vl;
otherwise, it is a link edge. ut

Figure 1b shows an example of an RDF graph. The

vertices that are denoted by boxes are entity or class

vertices, and the others are literal vertices. A SPARQL

query Q is also a collection of triples. Some triples in Q

have parameters. In Q2 (in Section 1), “?m” and “?bd”

are parameters, and “?bd” has a wildcard filter: FIL-

TER(regx(str(?bd),“1976”)). Figure 2 shows the query

graph that corresponds to Q2.

Definition 2 A query graph is a five-tuple Q = 〈V Q,

LQ
V , E

Q, LQ
E , FL〉, where

1. V Q = V Q
c ∪ V Q

e ∪ V
Q
l ∪ V Q

p is a collection of ver-

tices that correspond to all subjects and objects in a

SPARQL query, where V Q
p is a collection of parame-

ter vertices, and V Q
c and V Q

e and V Q
l are collections

of class vertices, entity vertices, and literal vertices

in the query graph Q, respectively.

2. LQ
V is a collection of vertex labels in Q. The label of

a vertex v ∈ V Q
p is φ; that of a vertex v ∈ V Q

l is its

literal value; and that of a vertex v ∈ V Q
c ∪ V Q

e is

its corresponding URI.

3. EQ is a collection of edges that correspond to prop-

erties in a SPARQL query. LQ
E is the edge labels in

EQ. An edge label can be a property or an edge

parameter.

4. FL are constraint filters, such as a wildcard con-

straint. ut

Note that, in this paper, we do not consider SPARQL

queries that involve type reasoning/inferencing. Thus,

the match of a query is defined as follows.

Definition 3 Consider an RDF graph G and a query

graph Q that has n vertices {v1, ..., vn}. A set of n dis-

tinct vertices {u1, ..., un} in G is said to be a match of

Q, if and only if the following conditions hold:

1. If vi is a literal vertex, vi and ui have the same

literal value;

2. If vi is an entity or class vertex, vi and ui have the

same URI;

3. If vi is a parameter vertex, ui should satisfy the fil-

ter constraint over parameter vertex vi if any; oth-

erwise, there is no constraint over ui;

4. If there is an edge from vi to vj in Q, there is also

an edge from ui to uj in G. If the edge label in Q

is p (i.e., property), the edge from ui to uj in G has

the same label. If the edge label in Q is a parameter,

the edge label should satisfy the corresponding filter

constraint; otherwise, there is no constraint over the

edge label from ui to uj in G. ut

GivenQ2’s query graph in Figure 2, vertices (005,006,

020,023,024) in RDF graphG of Figure 1b form a match

ofQ2. Answering a SPARQL query is equivalent to find-

ing all matches of its corresponding query graph in RDF

graph.

Definition 4 An aggregate SPARQL query Q consists

of three components:

1. Query pattern PQ is a set of triple statements that

form one query graph.

2. Group-by dimensions and measure dimensions are

pre-defined object variables in query pattern PQ.

3. (Optional) HAVING condition specifies the condi-

tion(s) that each result group must satisfy. ut

Figure 4 demonstrates these three components. This

example shows the case where all group-by dimensions

correspond to attribute property edges (e.g., “?g”,“?t”

and “?y” in Figure 4). This is not necessary, and in

Section 9.3 we discuss more general cases.

SELECT ?g ? t ?y COUNT(?m) WHERE
{?m <bornIn> ? c . ?m <t i t l e > ? t .
?m <gender> ?g .
? c <foundingYear>?y .}
GROUP BY ?g , ? t , ? y
HAVING COUNT(?m)>1

Measure
dimension

Query
pattern

Group-by dimension

HAVING condition (optional)

Fig. 4: Three Components in Aggregate Queries

6

4 Overview of gStore

gStore is a graph-based triple store system that can an-

swer different kinds of SPARQL queries – exact queries,

queries with wildcards and aggregate queries – over dy-

namic RDF data repositories. An RDF dataset is rep-

resented as an RDF graph G and stored as an adja-

cency list table (Figure 7). Then, each entity and class

vertex is encoded into a bitstring (called vertex signa-

ture). The encoding technique is discussed in Section 5.

According to RDF graph’s structure, these vertex sig-

natures are linked to form a data signature graph G∗,

in which each vertex corresponds to a class or an entity

vertex in the RDF graph (Figure 5). Specifically, G∗ is

induced by all entity and class vertices in G together

with the edges whose endpoints are either entity or class

vertices. Figure 5b shows the data signature graph G∗

that corresponds to RDF graph G in Figure 1b. An in-

coming SPARQL query is also represented as a query

graph Q that is similarly encoded into a query signature

graph Q∗. The encoding of query Q2 (which we will use

as a running example) into a query signature graph Q∗2
is shown in Figure 5a.

0010 1000 1000 0000
10000

v1 v2

(a) Query Signature Graph Q∗2

0000 0001 0001 1000
10000

0011 1000

00001

0010 1000

1000 0100

10000

1000 0001

00100

01000

0100 0000
01000

0010 1000

10000

0010 0000

001 003

002

005

006

004 008

009

007

(b) Data Signature Graph G∗

Fig. 5: Signature Graphs

Finding matches of Q∗ over G∗ is known to be NP-

hard since it is analogous to subgraph isomorphism.

Therefore, we use a filter-and-evaluate strategy to re-

duce the search space over which we do matching. We

first use a false-positive pruning strategy to find a set

of candidate subgraphs (denoted as CL), and then we

validate these using the adjacency list to find answers

(denoted as RS). Reducing the search space has been

considered in other works as well (e.g.,[25,32]).

According to this framework, two issues need to be

addressed. First, the encoding technique should guar-

antee that RS ⊆ CL. Second, an efficient subgraph

matching algorithm is required to find matches of Q∗

over G∗. To address the first issue, we develop an encod-

ing technique (Section 5) that maps each vertex in G∗

to a signature. For the second issue, we design a novel

index structure called VS∗-tree (Section 6). VS∗-tree

is a summary graph of G∗ used to efficiently process

queries using a pruning strategy to reduce the search

space for finding matches of Q∗ over G∗ (Section 7).

VS∗-tree is also used in answering aggregate SPARQL

queries (Section 9). We first decompose an aggregate

query Q into star aggregate queries Si (i = 1, ..., n),

where each star aggregate query is formed by one ver-

tex (called center) and its adjacent properties (i.e., ad-

jacent edges). For example, query Q3 is decomposed

into two star aggregate queries S1 and S2 whose graph

patterns are shown in Figure 6. We make use of materi-

alized views to efficiently process star aggregate queries

without performing joins. For this purpose, we intro-

duce T-index (Section 8), which is a trie where each

node O has a materialized set of tuples MS(O). A star

aggregate query can be answered by grouping materi-

alized sets associated with nodes in T-index. Once the

results R(Si) of star aggregate queries Si (i = 1, ..., n)

are obtained, we employ VS∗-tree to join R(Si) and

find all relevant nodes for each star center. Then, based

on these relevant nodes, we can find the final result of

aggregate queries.

v1

gender title

?m
v2

foundingYearbornIn

Q3

v1

gender title

?m
v2

foundingYear

S1 S2

gender title L

Male President {001,007}
Female Actress {005}

foundingYear L

1790 {012}
1718 {006}
1810 {008}
1776 {004}

R(S1) R(S2)

on
gender title foundingYear Matches
Male President 1718 {005,006}

Female Actress 1810 {007,008}
R(Q3)

Fig. 6: Aggregate Queries

gStore considers RDF data management in a dy-

namic environment, i.e., as the underlying RDF data

get updated, VS∗-tree and T-index are adjusted accord-

7

ingly. Therefore, we also address the index maintenance

issues of VS∗-tree and T-index (Section 10).

5 Storage Scheme and Encoding Technique

We develop a graph-based storage scheme for RDF data.

Specifically, we store an RDF graph G using a disk-

based adjacency list. Each (class or entity) vertex u is

represented by an adjacency list [uID, uLabel, adjList],

where uID is the vertex ID, uLabel is the corresponding

URI, and adjList is the list of its outgoing edges and the

corresponding neighbor vertices. Formally, adjList(u) =

{(ei.eLabel, ei.nLabel)}, where ei is an edge adjacent

to u, eLabel is ei’s edge label that corresponds to some

property, and nLabel is the vertex label of u’s neighbor

connected via ei. When clear, we omit “ei.” prefix from

the specification of adjList. Figure 7 shows part of the

adjacency list table for the RDF graph in Figure 1b.

uID uLabel adjList

001 y:Abraham Lincoln (hasName, “Abraham Lincoln”),
(bornOnDate, “1809-02-12”),
(diedOnDate, “1865-04-15”), (diedIn,
y:Washington DC), (gender, “Male”),
(title, “President”), (bornIn,
y:Hodgenville KY)

002 y:Washington DC (hasName, “Washington D.C.”),
(foundingYear, “1790”)

...

Prefix: http://en.wikipedia.org/wiki/

Fig. 7: Disk-based Adjacency List Table

According to Definition 3, if vertex v (in query Q)

can match vertex u (in RDF graph G), each neigh-

bor vertex and each adjacent edge of v should match

to some neighbor vertex and some adjacent edge of u.

Thus, given a vertex u in G, we encode each of its adja-

cent edge labels and the corresponding neighbor vertex

labels into bitstrings. We encode query Q with the same

encoding method. Consequently, the match between Q

and G can be verified by simply checking the match

between corresponding encoded bitstrings.

Each row in the table corresponds to an entity ver-

tex or a class vertex. Given a vertex, we encode each

of its adjacent edges e(eLabel, nLabel) into a bitstring.

This bitstring is called edge signature (i.e., eSig(e)).

Definition 5 The edge signature of an edge adjacent

to vertex u, e(eLabel, nLabel), is a bitstring, denoted as

eSig(e), which has two parts: eSig(e).e, eSig(e).n. The

first part eSig(e).e (M bits) denotes the edge label (i.e.,

eLabel) and the second part eSig(e).n (N bits) denotes

the neighbor vertex label (i.e., nLabel). ut

eSig(e).e and eSig(e).n are generated as follows.

Let |eSig(e).e| = M . Using an appropriate hash func-

tion, we set m out of M bits in eSig(e).e to be ‘1’.

Specifically, in our implementation, we employ m dif-

ferent string hash functions Hi (i = 1, ...,m), such as

BKDR and AP hash functions [7]. For each hash func-

tion Hi, we set the (Hi(eLabel) MOD M)-th bit in

eSig(e).e to be ‘1’, where Hi(eLabel) denotes the hash

function value.

0010 0010 0000 1000 0010 0110 1001

(hasName, “Abraham Lincoln”)

0010 0000 0010 0100 0010 0010 0100

(bornOnDate, “1809-02-12”)

0000 0010 1000 1000 1000 0010 1000

(diedOnDate, “1865-04-15”)

0010 1000 0000 0001 0100 0100 0010

(diedIn, y:Washington DC)

0010 0010 0000 0000 0100 0100 0011

(bornIn, y:Hodgenville KY)

0010 0010 0000 0000 0100 0100 0011

(gender, “Male”)

1010 0010 0000 0000 0100 0100 0011

(title, “President”)

eSig(u).e eSig(u).n

OR 1010 1010 1010 1101 1110 0110 1111

Vertex 001

vsig(e).e vsig(e).n

Fig. 8: The Encoding Technique

In order to encode neighbor vertex label nLabel into

eSig(e).n, we adopt the following technique. We first

represent nLabel by a set of n-grams [10], where an

n-gram is a subsequence of n characters from a given

string. For example, “1809-02-12” can be represented

by a set of 3-grams: {(180),(809),(09-),...,(-12)}. Then,

we use a string hash function H for each n-gram g to

obtain H(g). Finally, we set the (H(g) MOD N)-th bit

in eSig(e).n to be ‘1’. We discuss the settings of param-

eters M , m, N and n in Section 11.2. Figure 8 shows a

running example of edge signatures. For example, given

edge (hasName,“Abraham Lincoln”), we first map the

edge label “hasName” into a bitstring of length 12, and

then map the vertex label “Abraham Lincoln” into a

bitstring of length 16.

Definition 6 Given a class or entity vertex u in the

RDF graph, the vertex signature vSig(u) is formed by

performing bitwise OR operations over all its adjacent

edge signatures. Formally, vSig(u) is defined as follows:

vSig(u) = eSig(e1)| . . . |eSig(en)

where eSig(ei) is the edge signature for edge ei adjacent

to u and “|” is the bitwise OR operation. ut

Considering vertex 001 in Figures 1b and 7, there

are seven adjacent edges. We can encode each adjacent

edge by its edge signature, as shown in Figure 8, which

also shows the signature of vertex 001.

In computing the vertex signature we use textual

value of the neighbor node, not its vertex signature. For

8

example, in computing the signature of y:Abraham Lincoln

that has in its adjacency list (diedIn, y:Washington DC),

we simply encode string “y:Washington DC” and use

this encoding rather than the vertex signature of node

y:Washington DC. This avoids recursion in the compu-

tation of vertex signatures.

Definition 7 Given an RDF graph G, its correspond-

ing data signature graph G∗ is induced by all entity

and class vertices in G together with link edges (the

edges whose endpoints are either entity or class ver-

tices). Each vertex u in G∗ has its corresponding ver-

tex signature vSig(u) (Definition 6) as its label. Given

an edge −−−→u1, u2 in G∗, its edge label is also a signature,

denoted as Sig(−−→u1u2), to denote the property between

u1 and u2. ut

We adopt the same hash function in Definition 5 to

define Sig(−−−→u1, u2). Specifically, we set m out of M bits

in Sig(−−−→u1, u2) to be ‘1’ by some string hash function.

Figure 5 shows an example of data signature graph G∗.

We also encode the query graph Q using the same

method. Specifically, given an entity or class vertex v in

Q, we encode each adjacent edge pair e(eLabel, nLabel)

into a bitstring eSig(e) according to Definition 5. Note

that, if the adjacent neighbor vertex of v is a param-

eter vertex, we set eSig(e).n to be a signature with

all zeros; if the adjacent neighbor vertex of v is a pa-

rameter vertex and there is a wildcard constraint (e.g.,

regex(str(?bd),“1976”)), we only consider the substring

without “wildcard” in the label. For example, in Figure

2, we can only encode substring “1976” for vertex ?bd.

The vertex signature vSig(v) can be obtained by per-

forming bitwise OR operations over all adjacent edge
signatures.

Given a query graph Q, we can obtain a query sig-

nature graph Q∗ induced by all entity and class vertices

in Q together with all edges whose endpoints are also

entity or class vertices. Each vertex v in Q∗ is a vertex

signature vSig(v), and each edge −−−→v1, v2 in Q∗ is associ-

ated with an edge signature Sig(−−−→v1, v2). Figure 5 shows

Q∗ that corresponds to query Q5.

Definition 8 Consider a data signature graph G∗ and

a query signature graphQ∗ that has n vertices {v1, . . . , vn}.
A set of n distinct vertices {u1, . . . , un} in G∗ is said to

be a match of Q∗ if and only if the following conditions

hold:

1. vSig(vi)&vSig(ui) = vSig(vi), i = 1, ..., n, where

‘&’ is the bitwise AND operator.

2. If there is an edge from vi to vj inQ∗, there is also an

edge from ui to uj inG∗; and Sig(−−−→vi, vj)&Sig(−−−→ui, uj)

= Sig(−−−→vi, vj). ut

Note that, each vertex u (and v) in data (and query)

signature graph G∗ (and Q∗) has one vertex signature

vSig(u) (and vSig(v)). For simplicity, we use u (and v)

to denote vSig(u) in G∗ (and vSig(v) in Q∗) when the

context is clear.

Given an RDF graph G and a query graph Q, their

corresponding signature graphs are G∗ and Q∗, respec-

tively. The matches of Q over G are denoted as RS,

and the matches of Q∗ over G∗ are denoted as CL.

Theorem 1 RS ⊆ CL holds.

Proof See Part B of Online Supplements.

6 VS∗-tree

In this section, we describe VS∗-tree, which is an index

structure over G∗ that can be used to answer SPARQL

queries as described in the next section. As discussed

earlier, the key problem to be addressed is how to find

matches of Q∗ (query signature graph) over G∗ (data

signature graph) efficiently using Definition 8. A straight-

forward method can work as follows: first, for each ver-

tex vi ∈ Q∗, we find a list Ri = {ui1 , ui2 , ..., uin}, where

vi&uij = vi (& is a bitwise AND operation). Then,

we perform a multiway join over these lists Ri to find

matches of Q∗ over G∗ (finding CL). The first step

(finding Ri) is a classical inclusion query.

An inclusion query is a subset query that, given a

set of objects with set-valued attributes, finds all ob-

jects containing certain attribute values. In our case,

presence of elements in sets is captured in signatures.

Thus, we have a set of signatures {si} (representing a

set of objects with set-valued attributes) and a query

signature q [27]. Then, an inclusion query finds all sig-

natures {sj} ⊆ {si}, where q&sj = q.

In order to reduce the search space for the inclusion

query, S-tree [8], a height-balanced tree similar to B+-

tree, has been proposed to organize all signatures {sj}.
Each intermediate node is formed by ORing all child

signatures in S-tree. Therefore, S-tree can be employed

to support the first step efficiently, i.e., finding Ri. An

example of S-tree is given in Figure 9.

However, S-tree cannot support the second step (i.e.,

a multiway join), which is NP-hard. Although many

subgraph matching methods have been proposed (e.g.,

[25,32]), they are not scalable to very large graphs.

Therefore, we develop VS∗-tree (vertex signature tree)

to index a large data signature graph G∗ that also sup-

ports the second step. VS∗-tree is a multi-resolution

summary graph based on S-tree that can be used to

reduce the search space of subgraph query processing.

9

1111 1101

0011 1001 1101 1101

0010 1001 0011 1000 0101 1000 1000 0101

0000 0001

0010 1000 0010 0000

0011 1000

0010 1000

0001 1000

0001 0000

1000 0001

1000 0100

001

005 009

002

007

003

008

004

006

d1
1

d2
1 d2

2

d3
1 d3

2 d3
3 d3

4

G3

G2

G1

Fig. 9: S-tree

Definition 9 VS∗-tree is a height balanced tree with

the following properties:

1. Each path from the root to any leaf node has the

same length h, which is the height of the VS∗-tree.

2. Each leaf node corresponds to a vertex in G∗ and

has a pointer to it.

3. Each non-leaf node has pointers to its children.

4. The level numbers of VS∗-tree increase downward

with the root at level 1.

5. Each node dIi at level I is assigned a signature dIi .Sig.

If node dIi is a leaf node, dIi .Sig is the correspond-

ing vertex signature in G∗. Otherwise, dIi .Sig is ob-

tained by “OR”ing signatures of dIi ’s children (i.e.,

dIi .Sig = OR(dI+1
1 .Sig, . . . , dI+1

n .Sig)) where dI+1
j

are dIi ’s children and j = 1, . . . , n.

6. Each node other than the root has at least b chil-

dren.

7. Each node has at most B children, B+1
2 ≥ b.

8. Given two nodes dIi and dIj , there is a super-edge
−−−→
dIi , d

I
j if and only if there is an edge (can be a super-

edge) from at least one of dIi ’s children to one of

dIj ’s children. The edge label Sig(
−−−→
dIi , d

I
j) is created

by “OR”ing signatures of all edge labels from dIi ’s

children to dIj ’s children.

9. The I-th level of the VS∗-tree is a summary graph,

denoted as GI , which is formed by all nodes at the

I-th level together with all edges between them in

the VS∗-tree. ut

According to Definition 9, the leaf nodes of VS∗-tree

correspond to vertices in G∗. An S-tree is built over

these leaf nodes. Furthermore, each pair of leaf nodes

(u1, u2) is connected by a directed “super-edge” −−−→ui, uj
if there is a directed edge from u1 to u2 in G∗, and an

edge signature Sig(−−−→u1, u2) is assigned to it according to

Definition 7. Figure 10 illustrates the process; for ex-

ample, a super-edge is introduced from (008) to (004)

(shown as a dashed line) since such an edge exists in

G∗. In this figure we assume that the hash function for

edge labels are the following: bornIn → 10000, diedIn

→ 00001, hasCapital→ 00100, and locatedIn→ 01000.

Finally, given two non-leaf nodes at the same level dki
and dkj (where dki denotes a node at the k-th level), a

super-edge
−−−→
dki , d

k
j is introduced if and only if there is an

edge from any of di’s children to any of dj ’s children.

The edge label of
−−−→
dki , d

k
j is obtained by performing bit-

wise OR over all the edge labels from di’s children to

dj ’s children. In Figure 10, since there is a super-edge

from 008 to 004, we introduce a super-edge from d3
3 to

d3
4 (i.e.,

−−−→
dki , d

k
j) with signature 01000. We also introduce

a self-edge for a non-leaf node dki , if and only if there

is an edge from one of its children to another one of its

children. Thus, a self-loop super-edge over d3
4 is also in-

troduced since there is a (super-)edge from 006 to 004,

both of which are children of d3
4.

d3
3 d3

4

01000

0001 1000 1000 0001

1000 0000 1000 0100
01000

01000

003 004

008 006

Fig. 10: Building Super-edges

1111 1101

0011 1001 1101 1101

0010 1001 0011 1000 0101 1000 1000 0101

0000 0001

0010 1000 0010 0000

0011 1000

0010 1000

0001 1000

0001 0000

1000 0001

1000 0100

001

005 009

002

007

003

008

004

006

d1
1

d2
1 d2

2

d3
1 d3

2 d3
3 d3

4
G3

G2

G1

11101

00100

10000

00001 01000

10000

00001

10000

10000 01000 00100

01000

00001

10000

10000

10000

01000

01000

00100

Fig. 11: VS∗-tree

Figure 11 shows the VS∗-tree over G∗ of Figure 5.

As defined in Definition 9, we use dIi .Sig to denote the

signature associated with node dIi . For simplicity, we

also use dIi to denote dIi .Sig when the context is clear.

10

Definition 10 Consider a query signature graph Q∗

with n vertices vi (i = 1, ..., n) and a summary graph

GIat the I-th level of VS∗-tree. A set of nodes {dIi }
(i = 1, ..., n) at GI is called a summary match of Q∗

over GI , if and only if the following conditions hold:

1. vSig(vi)&d
I
i .Sig = vSig(vi), i = 1, ..., n;

2. Given edge −−−→v1, v2 ∈ Q∗, there exists a super-edge−−→
dI1d

I
2 inGI and Sig(−−−→v1, v2)&Sig(

−−−→
dI1, d

I
2) = Sig(−−−→v1, v2).

ut

Note that, a summary match is not an injective func-

tion from {vi} to {dIi }, namely, dIi can be identical to dIj .

For example, given a query signature graph Q∗ (in Fig-

ure 5) and a summary graph G3 of VS∗-tree (in Figure

11), we can find one summary match {(d3
1, d

3
4)}. Sum-

mary matches can be used to reduce the search space

for subgraph search over G∗ as we discuss next.

As we discuss in Section 7, the query algorithm uses

level-by-level matching of vertex signatures of the query

graph Q∗ to the nodes in VS∗-tree. A problem that may

affect the performance of the query algorithm is that

the vertex encoding strategy may lead to some vertex

signatures having too many “1”s. Given a vertex u, we

perform bitwise OR operations over all its adjacent edge

signatures to obtain vertex signature vSig(u) (see Def-

inition 6). Therefore, for a vertex with a high degree,

vSig() may be all (or mostly) 1’s, meaning that these

vertices can match any query vertex signature. This will

affect the pruning power of VS∗-tree.

In order to address this issue, we perform the fol-

lowing optimization. Given a vertex u, if the number of

1’s in vSig(u) is larger than some threshold δ, we par-

tition all of u’s neighbors into n groups g1, ..., gn and
each group gi corresponds to one instance of vertex u,

denoted as u[i]. According to Definition 6, we can com-

pute vertex signature for these instances, i.e., vSig(u[i]).

We guarantee that the number of 1’s in vSig(u[i]) (i =

1, ..., n) is no larger than δ. Given a vertex u, if the

number of 1’s in vSig(u) is no larger than δ, u has only

one instance u[1]. Then, we use these vertex instance

signatures of u (vSig(u[i]), i = 1, ..., n) instead of ver-

tex signature (vSig(u)) in building VS∗-tree. Note that,

these vertex instances have the same vertex ID of u that

corresponds to the same vertex in RDF graph G. Given

two instances vSig(u[i]) and vSig(u′[j]) at the leaf level

of the revised VS∗-tree, we introduce an edge between

u[i] and u′[j] if and only if there is an edge between their

corresponding vertices u and u′.

For example, vertex 001 has seven neighbors in RDF

graph G. We can decompose them into two groups g1

and g2 and encode the two groups as in Figure 12a. Each

group corresponds to one instance, denoted as 001[1]

and 001[2]. Assume that other vertices have only one

instance. Since there is an edge from 001 to 003, we

introduce edges from 001[1] to 003[1] and from 001[2] to

003[1], as shown in Figure 12b.

Given a vertex v in query graph, if v can match

vertex u in RDF graph G, v’s neighbor vertices may

match neighbors of different instances of u. Therefore,

we need to revise encoding strategy for query graph Q.

Assume that v in the query graph has m neighbors.

We introduce m instances of v, i.e., v[j], j = 1, ...,m,

and each instance has only one neighbor. According to

Definition 6, we can compute the vertex signature for

these instances, i.e., vSig(v[j]). For example, v1 in Q∗2
(Figure 5) has three neighbors, thus, we introduce three

instances v1[1], v1[2], and v1[3] that corresponds to three

neighbors, respectively, Figure 12b.

7 SPARQL Query Processing

Given a SPARQL query Q, we first encode it into a

query signature graph Q∗, according to the method in

Section 5. Then, we find matches of Q∗ over G∗. Finally,

we verify if each match of Q∗ over G∗ is also a match

of Q over G following Definition 3. Therefore, the key

issue is how to efficiently find matches of Q∗ over G∗

using the VS∗-tree.

We employ a top-down search strategy over the VS∗-

tree to find matches. According to Theorem 2, the search

space at level I + 1 of the VS∗-tree is bounded by the

summary matches at level I (level numbers increase

downward with the root at level 1). This allows us to

reduce the total search space.

Theorem 2 Given a query signature graph Q∗ with n

vertices {v1, . . . , vn}, a data signature graph G∗ and the

VS∗-tree built over G∗:

1. Assume that n vertices {u1, . . . , un} forms a match

(Definition 8) of Q∗ over G∗. Given a summary

graph GI in VS∗-tree, let ui’s ancestor in GI be

node dIi . (dI1, ..., d
I
n) must form a summary match

(Definition 10) of Q∗ over GI .

2. If there exists no summary match of Q∗ over GI ,

there exists no match of Q∗ over G∗.

Proof See Part B of Online Supplements.

The basic query processing algorithm (BVS∗-Query)

is given in Algorithm 1. We illustrate it using a running

example Q∗2 (of Figure 5). Figure 13 shows the pro-

cess (pruned search space is shown as shaded). First,

we find summary matches of Q∗2 over G1 in VS∗-tree

and insert them into a queue H. In this case, the sum-

mary match is {(d1
1, d

1
1)}, which goes into queue H.

We pop one summary match from H and expand it

11

0010 0010 0000 1000 0010 0110 1001

(hasName, “Abraham Lincoln”)

0010 0000 0010 0100 0010 0010 0100

(bornOnDate, “1809-02-12”)

0000 0010 1000 1000 1000 0010 1000

(diedOnDate, “1865-04-15”)

0010 1000 0000 0001 0100 0100 0010

(diedIn, y:Washington DC)

0010 0010 0000 0000 0100 0100 0011

(bornIn, y:Hodgenville KY)

0010 0010 0000 0000 0100 0100 0011

(gender, “Male”)

1010 0010 0000 0000 0100 0100 0011

(title, “President”)

eSig(u).e eSig(u).n

OR 0010 1010 1010 1101 1110 0110 1111

001[1]

vsig(u).e vsig(u).n

OR 1010 0010 0000 0000 0100 0100 0011

001[2]

vsig(u).e vsig(u).n

(a) Optimized Encoding Strategy

0010 1000 1000 0000
10000

0010 0000 0000 1000
0010 1000

0000 1000

Q∗2

v1 v2

v1[1] v1[3]

v1[2]

v2[1]

0000 0001

0000 0001 0001 1000
10000

10000

0011 1000

00001

0010 1000 1000 0001

00100

1000 0100

10000 01000

0100 0000

01000

0010 1000

10000

001[1]

001[2] 003[1]

002[1]

005[1] 004[1]

006[1] 008[1]

007[1]

(b) Optimized Signature Graph

Fig. 12: Optimizing VS∗-tree

to its child states (as given in Definition 11). Given

the summary match (d1
1, d

1
1), its child states are formed

by d1
1.children × d1

1.children = {d2
1, d

2
2} × {d2

1, d
2
2} =

{(d2
1, d

2
1), (d2

1, d
2
2), (d2

2, d
2
1), (d2

2, d
2
2)}. The set of child states

that are summary matches of Q∗ are called valid child

states, and they are inserted into queue H. In this ex-

ample, only (d2
1, d

2
2) is a summary match of Q∗, thus,

we insert it into H. We continue to iteratively pop one

summary match from H and repeat this process until

the leaf nodes (i.e., vertices in G∗) are reached. Finally,

we find matches of Q∗ over leaf entries of VS∗-tree,

namely, the matches of Q∗ over G∗.

Algorithm 1 Basic Query Algorithm Over VS∗-tree

(BVS∗-Query)

Input: a query signature graph Q∗ and a data signature
graph G∗ and a VS∗-tree

Output: CL: All matches of Q∗ over G∗

1: Set CL = φ
2: Find summary matches of Q∗ over G1, and insert into

queue H
3: while (|H| > 0) do
4: Pop one summary match from H, denoted as SM
5: for each child state S of SM do
6: if S reaches leaf entries and S is a match of Q∗

then
7: Insert S into CL
8: if S does not reach the leaf nodes and S is a sum-

mary match of Q∗ then
9: Insert it into queue H

10: return CL.

Definition 11 Given a query signature graph Q∗ with

n vertices {v1, . . . , vn}, and n nodes {dI1, ..., dIn} in VS∗-

tree that form a summary match ofQ∗, n nodes {dI′1 , ..., dI
′

n }
form a child state of {dI1, ..., dIn}, if and only if dI

′

i is a

child node of dIi , i = 1, .., n. Furthermore, if {dI′1 , ..., dI
′

n }
is also a summary match of Q∗, {dI′1 , ..., dI

′

n } is called a

valid child state of {dI1, ..., dIn}. ut

(005, 006)

CL

Step 4:

(d3
1, d

3
2) Step 3:

(d2
1, d

2
2) Step 2:

(d1
1, d

1
2)

Queue H

Step 1:

(001,004) (001,006) (005,004) (005,006)

(d3
1, d

3
3) (d3

1, d
3
4) (d3

2, d
3
3) (d3

2, d
3
4)

(d2
1, d

2
1) (d2

1, d
2
2) (d2

2, d
2
1) (d2

2, d
2
2)

(d1
1, d

1
1)

Fig. 13: BVS∗-Query Algorithm Process

Algorithm 1 always begins by finding summary matches

from the root of the VS∗-tree, which can lead to a large

number of intermediate summary matches. In order to

speed up query processing, we do not materialize all

summary matches in non-leaf levels. Instead, we apply

a semijoin [4] like pruning strategy, i.e., pruning some

nodes (in the VS∗-tree) that are not possible in any

summary match, and incorporate it into VS∗-query al-

gorithm.

Given a vertex vi in query graph Q∗ and a summary

graph GI in VS∗-tree, we try to prune nodes dI (∈ GI)

12

that cannot match vi in any summary match of Q∗ over

GI . At the leaf-level of the index, this shrinks the can-

didate list C(vi). Let us recall query Q∗2 in Figure 5.

Vertices v1 and v2 have three {002, 005, 007} and two

candidates {004, 006}, respectively, according to their

vertex signatures. Therefore, the whole join space is

3 × 2 = 6. Let us consider summary graph G3. If we

use S-tree for pruning, we get two candidates (d3
1 and

d3
2) for v1 and one candidate (d3

4) for v2. There is one

edge from v1 to v2 whose label signature is 10000. d3
2

has one edge to candidates of v2 with an edge signa-

ture of 10000. Obviously 00010&100000 6= 10000, and,

therefore, d3
2 cannot be in the candidate list of v1. If a

node cannot match v1, all descendent nodes of d can be

pruned safely. It means that node d3
2 and its descendent

nodes are pruned from candidates of v1 resulting in a

single candidate {005} for v1. Therefore, the join space

is reduced to 1× 2 = 2.

Algorithm 2 An Optimized Query Algorithm Over

VS∗-tree (VS∗-Query Algorithm)

Input: a query signature graph Q∗

Input: a data signature graph G∗

Input: a VS∗-tree.
Output: CL: All matches of Q∗ over G∗.
1: for each vertex vi ∈ Q∗ do
2: C(vi) = d11, where d11 is the root of VS∗-tree {C(vi)

are candidate vertices in G∗ to match vi in Q∗}
3: for each level summary graph GI of VS∗-tree I = 2, ..., h

do {h is the height of VS∗-tree}
4: for each C(vi), i = 1, ..., n do
5: set C′(vi) = φ
6: for each child node dI of each element in C(vi) do
7: for each instance vi[j] of vertex vi, j = 1, ...,m

do
8: if Sig(dI)&sig(vi[j]) = sig(vi[j]) then

9: push dI into C(vi[j])
10: Set C(vi) =

⋂
j=1,...,m C(vi[j])

11: for each C(vi), i = 1, ..., n do
12: for each each node d in C(vi) do

13: if ∃vj |−−−→vi, vj ∈ Q∗, ∀d′|
−−→
d, d′ ∈

GI , vSig(vj)&vSig(d′) 6= vSig(vj) then
14: Remove vi from C(vi)

15: if ∃vj |−−−→vi, vj ∈ Q∗, ∀d′|
−−→
d, d′ ∈

GI , Sig(−−−→vi, vj)&Sig(
−−→
d, d′) 6= Sig(−−−→vi, vj) then

16: Remove vi from C(vi)
17: Call Algorithm 3 to find matches of Q∗ over C(v1)× ...×

C(vn), denoted as CL.
18: for each candidate match in CL do
19: Check whether it is match of SPARQL query Q over

RDF graph G. If so, insert it into RS.
20: return RS.

The basic BVS-Query algorithm can be improved

by reducing the candidates for each query vertex in

Q∗ instead of finding summary matches in non-leaf lev-

els. The improved algorithm, called VS∗-Query, is given

Algorithm 3 Find Matches of Q∗ over G∗

Input: a query signature graph Q∗ with n vertices vi, i =
1, ..., n

Input: G∗

Input: C(vi) that are candidate vertices that may match vi.
Output: M(Q∗): all matches of Q∗ over G∗

1: Set Q′ = φ
2: Select some vertex vi, where C(vi) is minimal among all

vertices in Q∗.
3: Q′ = Q′ ∪ vi and M(Q′) = C(vi).
4: while Q′! = Q∗ do
5: for each backward edge ei = −−−−→vi1 , vi2 that is adjacent

to Q′ do
6: M(Q′ ∪ ei)=Backward(ei,M(Q′))
7: Q′ = Q′ ∪ ei
8: for each forward edge ei = −−−−→vi1 , vi2 that is adjacent to

Q′ do
9: M(Q′ ∪ ei)=Forward(ei,M(Q′))

10: Q′ = Q′ ∪ ei
11: Set M(Q∗)=M(Q′)
12: return M(Q∗)

Backward(ei = −−−−→vi1 , vi2 ,M(Q′))

1: for each tuple t in M(Q′) do
2: If t cannot form a match of Q′ ∪ ei
3: Delete t from M(Q′)
4: M(Q′ ∪ ei) = M(Q′)
5: return M(Q′ ∪ ei).
Forward(ei = −−−−→vi1 , vi2 ,M(Q′))

1: if vi1 ∈ Q′ ∧ vi2 /∈ Q′ then
2: for each tuple t in M(Q′) do
3: for each node d in C(vi2) do
4: if t on d is a match of Q′ ∪ ei then
5: Insert t on d into M(Q′ ∪ ei)
6: if vi2 ∈ Q′ ∧ vi1 /∈ Q′ then
7: for each tuple t in M(Q′) do
8: for each node d in C(vi1) do
9: if d on t is a match of Q′ ∪ ei then

10: Insert d on t into M(Q′ ∪ ei)
11: return M(Q′ ∪ ei)

in Algorithm 2. For each vertex vi in query signature

graph Q∗, we find the candidate list of vertices that can

match vi, denoted as C(vi). Specifically, based on Def-

inition 8, given a vertex vi in Q∗, a node d in (∈ GI)

VS∗-tree cannot match vi, if and only if one of the fol-

lowing conditions hold:

1. vSig(vi)&vSig(d) 6= vSig(vi); or

2. ∃vj |−−−→vi, vj ∈ Q∗,∀d′|
−−→
d, d′ ∈ GI , vSig(vj)&vSig(d′) 6=

vSig(vj).

3. ∃vj |−−−→vi, vj ∈ Q∗,∀d′|
−−→
d, d′ ∈ GI , Sig(−−−→vi, vj)&Sig(

−−→
d, d′) 6=

Sig(−−−→vi, vj).

Furthermore, if a node d (∈ GI) in VS∗-tree cannot

match vi (i = 1, . . . , n), its descendant nodes cannot

match vi. Consequently, the descendant nodes can be

pruned safely.

Definition 12 Given a subgraph Q′ of Q∗, an edge

e = −−−→v1, v2 in Q∗ is called adjacent to Q′ if and only if

(e /∈ Q′) ∧ (v1 ∈ Q′ ∨ v2 ∈ Q′). ut

13

Definition 13 Given an adjacent edge e = −−−→v1, v2 to

Q′, e is called a backward edge if and only if (v1 ∈
Q′∧v2 ∈ Q′). Otherwise, e is called a forward edge. ut

Lines 6–10 of Algorithm 2 exploit the optimization

we introduced (see end of Section 6) in VS∗-tree where

we divide vertices whose signatures contain too many

“1”s, which reduces their discriminatory power. Specifi-

cally, first, for each query vertex vi inQ∗, we set C(vi) =

{d1
1}. Consider the level I summary graph GI . For each

query vertex vi in Q∗, we consider each instance vi[j] of

vi. For each child node dI of each element in C(vi), we

determine whether Sig(dI) & Sig(vi[j]) = Sig(vi[j]). If

so, we push dI into C(vi[j]). When we finish considering

all instances of vi, we update C(vi) =
⋂

j=1,...,m C(vi[j]).

After finding candidates C(vi) for each query vertex

ui, we perform multiway join C(v1) on ... on C(vn) to

find matches of Q∗ (Algorithm 3). Specifically, we ap-

ply a depth-first search strategy to find matches of Q∗

over G∗, denoted as M(Q∗). Initially, we set Q′ = φ,

which denotes the structure of Q∗ that has been visited

so far. We start a DFS over G∗ beginning with a vertex

vi where C(vi) is minimal among all vertices in Q∗. We

insert vi into query Q′. Now, the matches of Q′, i.e.,

M(Q′), are updated as M(Q′) = C(vi). For each edge

ei adjacent to Q′, if ei is a backward edge, we employ

Backward function in Algorithm 3 to find matches of

Q′∪ ei, i.e., M(Q′∪ ei). Otherwise, we employ Forward

function to find M(Q′ ∪ ei). Essentially, Forward func-

tion is a nested loop join process, but Backward func-

tion is a selection process. Therefore, we always process

backward edges ahead of forward edges. The whole pro-

cess is iterated until Q′ = Q∗, and then M(Q∗) is re-

turned.

Finally, for each match of Q∗ over G∗, we check

whether it is a subgraph match of Q. If so, we insert

it into answer set RS. According to these subgraph

matches, it is straightforward to find the matching vari-

able bindings for the SELECT variables in SPARQL.

Experiments (see Part D of Online Supplements) demon-

strate that VS∗ performs much better than BVS∗.

8 T-index

In this section, we introduce T-index, which is a struc-

tured organization of materialized views. T-index is used

to process aggregate SPARQL queries (Section 9).

For each entity vertex u in a RDF graph G, all dis-

tinct attribute properties (Definition 1) adjacent to u

are collected to form a transaction. For example, the

adjacent attribute properties of entity vertex 001 are

“hasName, gender, bornOnDate, title, diedOnDate”.

Thus, we have a transaction A(001) =“hasName, gen-

der, bornOnDate, title, diedOnDate”. All transactions

are collected to form a transaction database DB, as

shown in Figure 14a. Each entity vertex u in RDF graph

G generates one transaction A(u) in DB. In each trans-

action, properties (dimensions1) are ordered in their

frequency descending order in DB, where property fre-

quency is defined as follows.

Definition 14 The frequency of a property p in a trans-

action database DB is Freq(p) = |{A(u)|p ∈ A(u) ∧
A(u) ∈ DB}|. ut

For example, the frequencies of “hasName”, “Found

Year”, “gender”, “bornOnDate”, “title” and “diedOn-

Date” are 7, 4, 4, 3, 3 and 3, respectively. Therefore,

“hasName” precedes “FoundYear”, which precedes “gen-

der” in the relevant transactions. This order is impor-

tant since the construction of paths follows this order.

Frequency ordering leads to fewer nodes being inserted

since there is a higher probability that more prefixes will

be shared among different transactions, and, therefore,

minimizes the number of materialized views that need

to be maintained. It also facilitates query processing,

as discussed in Section 9. Note that, if multiple dimen-

sions have the same frequency, their order is arbitrarily

defined (the effect of this is experimentally studied).

Definition 15 Given a transactionA, the length-n pre-

fix of A is the first n dimensions in A. ut

Definition 16 A T-index is a trie constructed as fol-

lows:

1. There is one root labeled as “root”.
2. Each node O in T-index denotes a dimension.

3. Node Oj is a child of node Oi if and only if there

exists at least one transaction A, where the path

reaching node Oi is length-n prefix of A and the

path reaching node Oj is length-(n+ 1) prefix of A.

4. Each node O in T-index has a vertex list O.L regis-

tering the IDs of all transactions Ai, where the path

reaching O is a prefix of Ai. ut

Figure 14b shows an example of T-index. When in-

serting A(001) =“hasName, gender, bornOnDate, title,

diedOnDate” into the T-index, the path “O0-O1-O2-

O3-O4-O5” is followed. 001 is registered to Oi.L where

i = 1, 2, 3, 4, 5. Furthermore, since “hasName” is a pre-

fix of seven transactions (“001,002,003,004,005,007,009”),

the corresponding vertex list to node O1 is O1.L =

{001, 002, 003, 004, 005, 007, 009}. Note that the storage

1 The literature on aggregation and aggregate queries fre-
quently refer to these attributes as dimensions. We follow the
same convention.

14

Vertex

ID

Entity vertex Adjacent Attribute Properties

001 y:Abraham Lincoln hasName, gender, bornOn-
Date, title, diedOnDate

002 y:Washington DC hasName, foundingYear

003 y:Hodgenville KY hasName

004 y:United States hasName, foundingYear

005 y:Reese Witherspoon hasName, gender, bornOn-
Date, title

006 y:New Orleans LA foundingYear

007 y:Franklin Roosevelt hasName, gender, title

008 y:Hyde Park NY foundingYear

009 y:Marilyn Monroe hasName, gender, bornOn-

Date, diedOnDate

(a) Transaction Database DB

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

root

hasName

gender

bonOnDate

title

diedOnDate

diedOnDate

title

foundingYear

foundingYear
{001,002,003,004,005,007,009}

{001,005,007,009}

{001,005,009}

{001,005}

{001}

{009}

{007}

{002,004}

{006,008}

hasName gender bornOnDate title L

Abraham
Lincoln

Male 1865-04-15 President {001}

Reese With-
erspoon

Female 1976-03-22 Actress {005}

MS(O4)

hasName gender title L

Franklin D.
Roosevelt

Male President {007}

MS(O7)

hasName:7

foundingYear:4

gender:4

bornOnDate:3

title:3

diedOnDate:2

Dimension
List DL

(b) T-Index

Fig. 14: T-index

of the vertex lists can be optimized by a variety of en-

coding techniques. We don’t discuss this tangential is-

sue any further.

In addition to T-index, there are two associated

data structures: dimension list DL and materialized

sets MS(O). Dimension list DL records all dimensions

in the transaction database. When introducing a node

into T-index, according to the dimension of the node,

we register the node to the corresponding dimension

in DL, similar to building an inverted index. Conse-

quently, the dimensions in DL are ordered in their fre-

quency descending order.

Each node O has an aggregate set MS(O). Let the

dimensions along the path from the root to node O be

(l1, l2, ..., lN). According to O.L, one can find all trans-

actions represented by the portion of the path reach-

ing this node. MS(O) is a set of tuples that group

these transactions based on shared values on dimen-

sions (l1, l2, ..., lN). Each tuple t in MS(O) has two

parts: the dimensions t.D and the vertex list t.L that

stores the vertex IDs in this aggregate tuple, as shown

in Figure 14b. Consider node O4 in Figure 14b. We

partition all transactions represented by the path “O0-

O1-O2-O3-O4” into two groups based on group-by di-

mensions that share specified values along (hasName,

gender, bornOnDate, title). These pre-computed sets

speed up aggregate SPARQL query processing, as dis-

cussed in the next section.

Since T-index is a trie augmented with materialized

views MS(O) for each node O, we do not give its con-

struction algorithm (for completeness, this is provided

in Part C of Online Supplements). Two observations are

important regarding T-index: (1) given a non-leaf node

O in T-index that has n child nodes Oi, (i = 1, ..., n),

if the path reaching at least one Oi is a prefix of A, the

path reaching node O is also a prefix of A; and (b) the

structure of T-index does not depend on the order of

inserting transactions into the structure.

We now discuss the materialization of MS(O) of

each node O in T-index. Obviously, for each node O in

T-index, we can acceess all entity vertices in O.L and

their attribute properties to build MS(O). However,

some computation and I/O can be shared for computing

MS(O) of different nodes.

Given a node O with n child nodes Oi, (i = 1, ..., n),

if the path reaching at least one Oi is a prefix of one

transaction A, the path reaching node O must also be

a prefix of A. Thus, O.L ⊇
⋃

iNi.L. Consequently, its

aggregate set MS(O) can be computed from the aggre-

gate sets associated with its child nodes. Therefore, we

propose a post-order traversal-based algorithm to ma-

terialize MS(O) of the T-index in Algorithm 7. Assume

that the properties along the path reaching node O are

(p1, ..., pm). Initially, MS(O) = φ. For each child node

Oi of O, we compute MS′(Oi) =
∏

(p1,p2,...,pn)MS(Oi)

(Lines 3-4 in Algorithm 7). Then, we computeMS(O) =

15⋃
iMS′(Oi) (Line 7). Furthermore, for each vertex v

that is in MS(O).L but not in
⋃

iMS(Oi).L, we need

to access the property values of vertex u on dimensions

p1, ..., pn in the RDF graph (Lines 6-12). Specifically,

we define function F (u) =
∏

(p1,...,pn) u, which means

projecting u’s adjacent properties over (p1, ..., pn) (Line

10). We insert F (u) into MS(O). If there exists some

aggregate tuple t′, where t′.D = F (u), we register ver-

tex ID of u in vertex list t.L (Lines 8-9). Otherwise, we

generate a new aggregate tuple t′, where t′.D = F ′(u)

and insert vertex ID of u into t′.L (Lines 10-12).

Theorem 3 Any entity vertex u in RDF graph G is

accessed once in computing aggregate sets of trie-index

by Algorithm 6.

Proof See Part B of Online Supplementals.

We illustrate the construction of T-index using an

example. First, a scan of DB (Figure 14a) derives a list

of all dimensions in DB and their frequencies, and the

dimension list DL is constructed. The root of T-index

(O0) is created and labeled as “root”. Then, we insert

all transactions of DB into T-index one-by-one.

1. The scan of the first transaction A(001) leads to the

construction of the first branch of the tree: (root,

hasName,gender,bornOnDate,title, diedOnDate), in-

serting nodes O1, O2, O3, O4 and O5. Initially, we

set Oi.L = {001}, i = 1, ..., 5.

2. A(002) shares a common prefix (hasName) with the

existing path, and adds one new node O8 (found-

ingYear) as a child of node O1 (hasName). It also

causes updating the corresponding vertex list of each

node along the path.

3. The above process is iterated until all transactions

are inserted into T-index.

4. Finally, for each node Oi in T-index, we build ag-

gregate sets MS(Oi) by post-order traversal over T-

index. Specifically, we first compute MS(O5) by as-

sessing entity vertices 001 and its dimension values.

Then, we compute MS(O4) by merging the projec-

tion of MS(O5) over dimensions (hasName,gender,

bornOnDate,title) and assessing entity vertex 005.

The process is iterated until all aggregate sets are

computed. MS(O4) and MS(O7) are given in Fig-

ure 14b as examples.

9 Aggregate Query Processing

As noted in Section 4, we decompose a GA query Q into

several SA queries {Si}, i = 1, ..., n, where each star

center vi is an entity vertex in Q. The result of each

Si (R(Si)) is computed using the approach discussed in

Section 9.1. We then join R(Si)’s to compute the result

of Q, i.e., R(Q) =oni R(Si) as discussed in Section 9.2.

9.1 Star Aggregate Query Processing

Definition 17 A Star Aggregate (SA) query (v, {p1, ...

pd}, {pd+1, ...pn}) consists of a central vertex v, a set of

group-by dimensions {p1, ...pd}, and a set of measure

dimensions {pd+1, ...pn}, where {p1, ...pd, ...pn} are all

the attribute properties adjacent to v. ut

Given a SA query S = (v, {p1, ...pd}, {pd+1, ...pn}),
we answer S using T-index by Algorithm 4. Let P =

{p1, ..., pd, ...pn}. Given the set of properties P , we find

their match (O1, ..., On), where Oi is a node in T-index

and all nodes Oi (i = 1, ..., n) are in the same path from

the root, and the property associated with Oi equals pi
(Line 1 in Algorithm 4). We do not require that all

nodes Oi (i=1,...,n) are adjacent to each other in the

path. Thus, it is possible to have multiple matches for

a given P . For each match (O1, ..., On), we use O to

denote the farthest node from the root (Line 3 in Algo-

rithm 4)2. The aggregate set associated with node O is

denoted as MS(O). We compute MS′(O) by project-

ing MS(O) over group-by dimensions {p1, ..., pd} (i.e.,

MS′(O) =
∏

(p1,p2,...,pd)MS(O)). TheMS′(O) from all

the matches are merged to form the final result to SA

query S, i.e., R(S) (Lines 6-7 in Algorithm 4).

Algorithm 4 SA Query Algorithm

Input: T-Index
Input: SA queryS(v, {p1, ..., pd}, {pd+1, ..., pn})
Output: An aggregate result set MS for a SA query Q.
1: Locate all matches of properties (p1, ..., pd, ..., pn) in T-

index
2: for each match mi do
3: Let Oi denote the node in match mi that is farthest

from the root
4: Let MS(Oi) denote the aggregate set associated with

node Oi
5: MS′(Oi) =

∏
(p1,p2,...,pd)

MS(Oi).

6: MS =
⋃
iMS′(Oi)

7: return MS

For example, given a SA query S1 (v1, {gender,

title}, φ) in Figure 6, group-by dimensions are {gender,

title} and measure dimension is ?m and we use “count”

as an aggregate function (this is analogous to COUNT(*)

in SQL). There are two matches (O1, O2, O3, O4) and

(O1, O2, O7) in T-index corresponding to two group-

by dimensions. In the first match, O4 is the farthest

2 Note that, this is not necessarily On, since node identifiers
are arbitrarily assigned to help with presentation.

16

node from the root. Since MS(O4) is an aggregate set

over dimensions (hasName,gender, bornOnDate,title),

we compute a temporary aggregate set MS′(O4) on

dimensions (gender, title) by projecting MS(O4) over

these two dimensions. In the second match, O7 is the

farthest node from the root. Since MS(O7) is an ag-

gregate set over dimensions (hasName,gender,title), it

is also projected over (gender,title) to get MS(O′7). Fi-

nally, we obtainR(S1) by mergingMS′(O4) andMS′(O7).

Figure 15 illustrates the process.

hasName gender bornOnDate title L

Abraham
Lincoln

Male 1865-04-15 President {001}

Reese
Witherspoon

Female 1976-03-22 Actress {005}

gender title L

Male President {001}
Female Actress {005}

gender title L

Male President {007}

hasName gender title L

Franklin D.

Roosevelt

Male President {007}

gender title L COUNT

Male President {001,007} 2

Female Actress {005} 1

MS(O4)

MS ′(O4)

MS ′(O7)

MS(O7)

R(S1)

∪

Fig. 15: Answering SA Query

9.2 General Aggregate Query Processing

At this point, all R(Si) are computed. We now discuss

how to compute the final result R(Q) =oni R(Si).

Definition 18 Let GA queryQ consist of n SA queries.
The link structure J of Q is a subgraph induced by all

star centers vi, i = 1, ..., n. Specifically, J is denoted as

J(V = {vi}, E = {ej}, Σ = {eLabel(ej)}), where ver-

tex vi (1 ≤ i ≤ n) is a star center, ej (1 ≤ j ≤ m)

is an edge whose endpoints are both star centers, and

eLabel(ej) is the label (link property) of the edge ej .

ut

Note that, J is a connected subgraph, since all en-

tity vertices (in Q) are connected together by link prop-

erties. For each R(Si), we can find a vertex list Li

that includes all vertices in R(Si). Specifically, we get

Ti =
⋃

t∈R(Si)
t.L, where t is an aggregate tuple in

R(Si). This means that all vertices in Ti are candidate

matching vertices of vi. To compute R(Q), we need to

find all subgraph matches of J over the RDF graph,

where a subgraph match is defined as follows.

Definition 19 Given a link structure J(V = {vi}, E =

{ej}, Σ = {eLabel(ej)}) in Q and a subgraph G′(V ′ =

Algorithm 5 General Aggregate (GA) Query Algo-

rithm
Input: A GA query Q
Output: R(Q) {Query Result}
1: Each entity vertex vi (in Q), i = 1, ..., n, together with

its adjacent attribute properties form a SA query Si
2: for each SA query Si do
3: Call Algorithm 4 to find R(Si), i = 1, ..., n.
4: Ti =

⋃
t∈R(Si)

t.L

5: All entity vertices vi together with link properties be-
tween them form the link structure J

6: Find all subgraph matches of J over RDF graph
7: U = {g1}, where g1 includes all subgraph matches
8: for each entity vertex vi in J , i = 1, ..., n do
9: set U ′ = φ

10: for each group g in U do
11: for each aggregate tuple t ∈ R(Si) do
12: Select a group g′ of matches MS ∈ g {MS[i] ∈

t.L and MS[i] refers to the i-th vertex in MS}
13: Insert group g′ into U ′

14: Set U = U ′

15: Assume that the measure dimension is associated with vi
16: for each group g in U do
17: Find all matching vertices to vi for all matches in g
18: Access the measure values of these matching vertices
19: Compute the aggregate value in measure dimension in

this group, and insert it into R(Q)
20: return R(Q)

{ui}, E′ = {e′j}, Σ′ = {eLabel(e′j)}) in RDF graph G,

where ui is an entity vertex in G, e′j is an edge whose

endpoints are both in V ′, and eLabel(e′j) is the label

(link property) of the edge e′j , G
′ is called a subgraph

match of J in RDF graph G if and only if:

1. ui ∈ Ti
2. ej ∈ E ⇔ e′j ∈ E′ and eLabel(ej) = eLabel(e′j) ut

Consider query Q in Figure 6. The results of S1 and
S2 and the Ti lists are shown in Figure 16a, while the

link structure J is shown in Figure 16b.

gender title L

Male President {001,007}
Female Actress {005}

R(S1) foundingYear L

1790 {002}
1718 {006}
1810 {008}
1776 {004}

R(S2)

v1

gender title

v2
foundingYear

S1 S2

T1 = {001, 005, 007}

T2 = {002, 004, 006, 008}

(a) SA Query & Answers

v1 v2

{005} {006}
{007} {008}

v1 v2
bornIn

Link Structure J

(b) Link Structure &
Matches

Fig. 16: Query Decomposition

Obviously, we can perform multiway join T1 on ... on
Tn to find matches of J over RDF graph G. In order

to speed up online performance, Ti (i = 1, ..., n) should

be as small as possible. Note that, link structure J has

a structure analogous to the query signature graph Q∗,

17

since each star center vi in J corresponds to an entity

vertex in SPARQL query graph Q and an edge in J is an

edge between two entity vertices. Therefore, we can use

the approach described in Section 7 to compute results.

Specifically, given an aggregate query, we represent its

query pattern graph as Q. Then, we encode Q into a

signature query graph Q∗. For each vertex vi in Q∗,

we can find a candidate list C(vi) by employing Lines

1-15 in Algorithm 2. Then, we update Ti = Ti ∩ C(vi).

Finally, we utilize Algorithm 3 to find matches of J over

RDF graph G.

For example, we find two subgraph matches of J

over RDF graph G, where Figure 16b shows the flat-

tened representation of these matches. Then, we need

to partition these subgraph matches into one or more

groups based on subgraph matches that share specified

values in group-by dimensions, and create a new solu-

tion set R(Q) that contains one tuple per aggregated

group. Specifically, we try to get U = {gj}, j = 1, ...,m,

where all subgraph matches in group gj share the same

values over group-by dimensions.

A straightforward method is to find, for each match,

the corresponding entity vertices and their group-by di-

mension values in the RDF graph, and partition these

matches into different groups based on subgraph matches

that share specified values in group-by dimensions. This

method suffers from a large number of random I/Os.

Furthermore, partitioning subgraph matches is an ex-

pensive task if there are a large number of subgraph

matches of J over the RDF graph.

In order to improve performance, we use star aggre-

gate query results R(Si) to partition subgraph matches,

which helps reduce I/O accesses. Furthermore, scan-
ning aggregate sets in T-index (in SA query algorithm)

requires sequential access, which is much faster. More

importantly, R(Si) has partitioned subgraph matches

based on group-by dimensions associated with each ver-

tex vi in query Q. Therefore, we use R(Si) to find fi-

nal partitions. Initially, we assume that all subgraph

matches are in the same group g1, and set U = {g1}
(Line 7 in Algorithm 5). Then, we perform a multi-

level partitioning over these subgraph matches. At the

first level, we consider group-by dimensions in R(S1).

For each group g ∈ U , we partition matches in g into

some new groups g′i, i = 1, ...,m, where each new group

g′i has matches that share the same values over group-

by dimensions in R(S1). Obviously, g =
⋃

i g
′
i. Specifi-

cally, in order to partition matches in group g, we se-

quentially scan R(S1). For each aggregate tuple t ∈
R(S1), we find a new group g′i of subgraph matches

MS, such that MS[i] ∈ t.L and MS[i] refers to the

ith vertex in subgraph match MS (Lines 11-12). We

insert these new groups g′i into U ′ (Line 13). We re-

peat the above process (Lines 10-14) for all groups g

in U . Then, U ′ is the first-level partition. Obviously,⋃
g∈U{all matches in group g} =

⋃
g′∈U ′{all matches in

group g′}. Iteratively, we consider other R(Si) for other

level partitions (Lines 8-14). Finally, for each aggregate

group, we compute the aggregate value in aggregated

dimension, and insert it into final result R(Q). Assume

that the measure dimension is associated with vertex ui
in Q. For each group g, we find a list of distinct vertices

matching ui. We access the measure dimension values

of these matching vertices and compute the aggregate

value for this group.

Subgraph Matches

v1 v2

{005} {006}
{007} {008}

(a) Step 0

↓

gender title
Subgraph Matches

v1 v2

Male President 005 006

Female Actress 007 008

Level 1

partition

(b) Step 1

↓ ↓ ↓ ↓

gender title foundingYear
Subgraph Matches

COUNT(v1)
v1 v2

Male President 1718 005 006 1

Female Actress 1810 007 008 1

Level 1

partition

Level 2

partition L1 L2

(c) Step 1

Fig. 17: Partitioning Subgraph Matches

Let us recall the decomposition of Q3 given in Fig-

ure 6. We discuss how to partition all matches of J

into different groups based on group-by dimensions to

find the final result R(Q). Initially, all matches are in

the same group g, i.e., g = {(005, 006), (007, 008)} and

U0 = {g}, where (005, 006) is a flattened representa-

tion of a match. Based on R(S1), we can get the first-

level partition U1. Specifically, we partition matches of

g into fine-grained groups. According to the first aggre-

gate tuple t1 in R(S1) (Figure 16a), we create a new

group g1 = {(005, 006)}, since 005 ∈ t1.L. Similarly, we

create another group g2 = {(007, 008)}. Consequently,

the first level partition is U1 = {g1, g2}, shown in Figure

17b. Then, based on R(S2), we can perform the second-

level partition U2. Specifically, we partition each group

gi (i = 1, 2) into more fine-grained groups. Figure 17c

shows the second-level partition. Finally, we compute

the aggregate value for each group in U2.

9.3 Aggregation over Link Properties

So far, we assumed that group-by dimensions always

correspond to attribute property edges. In this subsec-

tion, we discuss how to relax this assumption to allow

18

group-by dimensions that correspond to link property

edges. Consider the following aggregate query Q5.

SELECT ?d ? c COUNT(?m) WHERE
{?m <bornIn> ? c . ?m <bornOnDate> ?d .

?m <hasName> ?n .}
GROUP BY ?d ? c

Note that, in Q5, one of the group-by dimensions is

?c, corresponding to “BornIn”, which is a link property

edge. Our solution to processing this type of aggregate

query is the following.

For each entity vertex u in the RDF graph, we in-

troduce a special dimension (i.e., attribute property)

“hasURI”, and set its dimension value to be URI of

this entity. The introduction of “hasURI” changes the

entries in the transaction database DB in Figure 14a by

adding a new dimension “hasURI” to each transaction.

Following the method in Section 8, we build the T-index

and compute aggregate sets. Note that, although “ha-

sURI” has the largest frequency, we set it to be the

last element in dimension list DL such that it always

corresponds to leaf nodes in T-index. We make this spe-

cial arrangement for the following reason. Assume that

“hasURI” corresponds to some non-leaf node O in the

T-index. Consider any descendant node O′ of O (includ-

ing O itself). We know that aggregate set MS(O′) must

have dimension “hasURI”. Since each entity has a dis-

tinct URI, for each aggregate tuple t ∈MS(O′), t.L has

only one entity. In that case, MS(O′) may have many

rows, which increases the space cost. Therefore, we set

“hasURI” to be the last one in DL to reduce the index

size. We omit the details about building the T-index

and computing the aggregate sets in the updated trans-

action database D after introducing “hasURI”, since it

is similar to the method described in Section 8.

Given an aggregate query Q, if Q has a triple 〈?mi,

pi, ?oi〉, where ?oi is a group-by dimension and pi is a

link property, we rewrite the aggregate query by insert-

ing a new triple (?oi hasURI ?o′i) and replacing ?oi by

?o′i as the group-by dimension. For example, Q4 has a

triple (?m <bornIn> ?c), where “bornIn” is a link prop-

erty and ?c is a group-by dimension. Thus, we rewrite

Q5 into Q′5 as follows.

SELECT ?d ? c COUNT(?m) WHERE
{?m <BornIn> ? c . ?m <BornOnDate> ?d .

?m <hasName> ?n . ? c <hasURI> ?c ’}
GROUP BY ?d ?c ’

Obviously,Q′5 is a GA query (see Section 9.2) and all

group-by dimensions are now attribute property edges,

which can be answered by Algorithm 5.

10 Handling Data Updates

As mentioned earlier, most existing RDF triple stores

cannot support updates effectively. In this section, we

address this problem for gStore by discussing how the

index structures are maintained. Obviously, the updates

over the adjacency list table are very straightforward.

The main challenge is the maintenance of G∗, VS∗-tree

and T-index. We discuss these issues in this section.

10.1 Updates to Signature Graph G∗

There are two cases to consider: inserting one triple and

deleting one triple.

Inserting one triple. Assume that a new triple 〈s, p, o〉
is inserted into RDF dataset. If s existed in G∗ be-

fore insertion, we delete vertex s and its all adjacent

edges from G∗. We employ the method discussed in

Section 10.2.3 to delete s from VS∗-tree. Then, we

re-encode vertex s, and re-insert s and its adjacent

edges into G∗. Furthermore, we employ the method

discussed in Section 10.2.1 to insert s into VS∗-tree.

If o is also an entity or a class vertex, we follow an

analogous method.

Deleting one triple. Assume that triple 〈s, p, o〉 is deleted

from the RDF dataset. s must correspond to an en-

tity vertex or a class vertex. If o is a literal, we

only need to re-code s. The structure of G∗ does

not change. We also delete s from VS*-tree and in-

sert the re-coded s into the tree. If o is an entity

or class vertex, we first need to re-code s. Then,

we delete the edge between s and o in G∗. We also

delete s from VS*-tree and insert the re-coded s into

the tree according to the updated G∗’s structure.

10.2 Updates to VS∗-Tree

10.2.1 Insertion

The insertion process of a vertex u (in G∗) begins at

the root of VS∗-tree and iteratively chooses a child node

until it reaches a suitable leaf node location where u is

inserted. The summary graph at the leaf level of VS∗-

tree is also updated. Specifically, if u has an edge (inG∗)

adjacent to its other endpoint in another leaf node, we

need to introduce a super edge to d, or update the edge

signature associated with the super edge. If the leaf sig-

nature and the leaf summary graph have changed, this

must be propagated upwards within the VS∗-tree. The

main challenge is the choice of a child node. The choice

in the S-tree depends on the Hamming distance between

the signatures of u and the nodes in the tree. In VS∗-

tree, we modify the insertion rule so that the location

19

depends on both node signatures and G∗’s structure.

We prefer to select a node so that the updates of both

vertex signatures and the number of newly introduced

super edges (in VS∗-tree) are minimized.

Specifically, given a vertex u and a non-leaf node

d that has n children d1,...,dn, the distance between u

and di (i = 1, ..., n) is defined as follows:

Dist(u, di) =
δ(u, di)

|u|
× β(u, di)

Maxnj=1(β(u, dj))
(1)

where δ(u, di) is the Hamming distance between u and

di and |u| is the length of the vertex signature (bit-

string), and β(u, di) is the number of newly introduced

super edges adjacent to di, if u chooses node di.

As mentioned earlier, after inserting vertex u, the

signature of that leaf node and super edges adjacent

to it may be updated, the change must be propagated

upwards within the VS∗-tree. Note that, we can update

the super edges adjacent to that leaf node according to

the edges adjacent to u in G∗. Experiments show that

VS∗-tree has significantly better pruning properties.

10.2.2 Split

Like other height balanced trees, insertion into a node

that is already full will invoke a node split. The B + 1

entities of the node will be partitioned into two new

nodes, where B is the maximal fanout for a node in

VS∗-tree. We adopt a node splitting method similar to

[27]. The fundamental issue is to determine the two new

nodes from among the B+ 1 entities. For this, we need

to consider each pair of B+1 entities. At each iteration,

we select as the seed nodes two entities from among the

B + 1. We allocate the remaining entities to these two

nodes according to Equation 1. We perform this for

each pair of B+1 entities and keep the entity pair that

leads to the minimal value of Max(α,β), where α and

β are the number of 1’s in the two nodes.

After a node splits, we have to update the signatures

and the super edges associated with the two new nodes.

The updates are straightforward. Node splitting invokes

insertions over the upper level of VS∗-tree, which also

leads to the splitting that may be propagated to the

root of the VS∗-tree.

10.2.3 Deletion

To delete a vertex u from VS∗-tree, we find the leaf

node d where u is stored, and delete u. This effects

the nodes along the path from the root to d. We adopt

the bottom-up strategy to update the signature of and

super edges associated with the nodes. After deletion,

if some node d has less than b entries, then d is deleted

and its entries are reinserted into VS∗-tree.

The VS∗-tree nodes have two parameters B and b

(see Definition 9). The root has at least two and at

most B children, where other nodes have at least b and

at most B children. Unlike B+-tree, b = B
2 , here, 1 ≤

b ≤ B
2 [28]. b = 1 is the “free-at-empty” strategy, i.e.,

containing as few as one child [17], while b = B
2 is the

“merge-at-half” strategy. We experimentally compare

the two strategies in Section 11.

10.3 Updates to T-index

As mentioned earlier, all dimensions are ordered in de-

scending frequency order in dimension list DL to im-

prove SA query evaluation performance. However, RDF

data updates may change the order of dimensions in

DL requiring special care during index maintenance.

Therefore, we consider updates of T-index in two cases

based on whether or not the order of dimensions in DL

changes. We give a high-level outline of our techniques,

and provide detailed explanations and examples in Part

C of Online Supplements.

10.3.1 Dimension List DL’s order does not change

Consider the insertion of a new triple 〈s, p, o〉. If p is a

link property, we do not need to update the T-index.

Thus, we only consider the case when p is an attribute

property, i.e., dimension.

If s does not occur in the existing RDF data, we

introduce a new transaction into D. We insert the new

transaction into one path of T-index following Defini-

tion 16, and update the affected materialized aggregate

sets.

If s is already in the existing RDF graph, assume

that s’s existing dimensions are {p1, ..., pn} and Freq(pi)

> Freq(p) > Freq(pi+1) in dimension list DL. Again,

in the case of equality, order is chosen arbitrarily. This

means that the new inserted dimension p should be in-

serted between pi and pi+1. We locate two nodes Oi and

On, where the path reaching node Oi (and On) has di-

mensions (p1, ..., pi) (and (p1, ..., pi, ...pn)3). We remove

subject s from all materialized sets along the path be-

tween nodes Oi+1 and On, where Oi+1 is a child node

of Oi. Then, we insert dimensions (p, pi+1, ..., pn) into

T-index from node Oi, and update the materialized sets

along the path.

Consider the deletion of a triple 〈s, p, o〉, where p

is an attribute property as discussed above. Assume

3 Although dimension list is a set, when the order is impor-
tant, we specify them as a list enclosed in ().

20

that s’s existing dimensions are {p1, ..., pn} and p =

pi. We proceed as above to delete s from all affected

materialized sets.

10.3.2 Dimension List DL’s order changes

Some triple deletions and insertions that affect dimen-

sion frequency will lead to changing the order of di-

mensions in DL. Assume that two dimensions pi and

pj need to be swapped in DL due to inserting or delet-

ing one triple 〈s, p, o〉. Obviously, j = i+ 1, i.e., pi and

pj are adjacent to each other in DL.

Updates are handled in two phases. First, we ignore

the order change in DL and handle the updates using

the method in Section 10.3.1. Second, we swap pi and

pj in DL, and change the structure of T-index and the

relevant materialized sets.

11 Experiments

We evaluate gStore over real RDF and synthetic datasets,

and compare it with SW-store [1], RDF-3x [19], x-RDF-

3x [22], a graph-based solution GRIN [29], and two com-

mercial systems: BigOWLIM (www.ontotext.com/owlim/

big/) and Virtuoso 6.3 (virtuoso.openlinksw.com/). The

results of the main experiments are reported here; more

results are given in Part D of Online Supplements.

11.1 Datasets

We use three real RDF and one benchmark datasets in

our experiments.

1. Yago (www.mpi-inf.mpg.de/yago-naga/yago/) extracts

facts from Wikipedia and integrates them with the

WordNet thesaurus. It contains about 20 million

RDF triples and consumes 3.1GB.

For exact query evaluation, we use all SPARQL queries

in [19] over Yago. For wildcard query evaluation,

we rewrite all of these queries to include wildcards.

Specifically, for each exact SPARQL query Q, we re-

place each literal vertex in Q as a wildcard vertex. In

this way, we can get a query Q′′ with wildcards. We

also define six aggregate queries. All sample queries

are given in Part A of Online Supplements.

2. In order to evaluate the scalability of gStore, we also

use Yago2 [15] in our experiments. It has has more

than 10 million entities and more than 180 million

triples. The total size of Yago2 is larger than 23 GB.

3. DBLP (sw.deri.org/∼aharth/2004/07/dblp/) contains

a large number of bibliographic descriptions. There

are about 8 million triples consuming 0.8GB. We

define six sample SPARQL queries, as shown in the

Online Supplements.

4. LUBM is a synthetic benchmark [12] that adopts an

ontology for the university domain, and can gener-

ate synthetic OWL data scalable to any arbitrary

size. We vary the university number from 100 to

1000. The number of triples is 13 to 133 million.

The total RDF file size is 1.5 to 15.1 GB.

11.2 Parameter Settings

Our coding methods and indexing structures use a num-

ber of parameters. In this subsection, we discuss how to

set up these parameters to optimize query processing.

11.2.1 M and m

Given a vertex u in the RDF graph, we encode each

edge label (eLabel) adjacent to u into a bitstring eSig(e).e

with length M , and set m out of M bits to be ‘1’.

We obtain vSig(u).e by performing bitwise OR over all

eSig(e).e. Analogous to signature files, there may exist

the “false drop” problem [9]. Let AdjEdges(u,G) de-

note all edge labels adjacent to u inG andAdjEdges(v,Q)

defined similarly. IfAdjEdges(v,Q) 6⊂ AdjEdges(u,G)∧
vSig(v)&vSig(u) = vSig(v), we say that a false drop

has occurred. vSig(v)&vSig(u) = v means that u is a

candidate match v. However,AdjEdges(v,Q) 6⊂AdjEdges
(u,G) means that u cannot match to v. Obviously, the

key issue is how to reduce the number of false drops.

According to a theoretical study [18], the probabil-

ity of false drops can be quantified by the following

equation.

Pfalse drop = (1− e−
|AdjEdges(u,G)|∗m

M)m∗|AdjEdges(v,Q)|

where |AdjEdges(u,G)| is u’s degree inG and |AdjEdges
(v,Q)| is v’s degree in Q and M is the length of bit-

string, and m out of M bits are set to be ‘1’ in hash

functions. According to the optimization method in Sec-

tion 6, a high degree vertex will be decomposed into

several instances and each instance’s degree is no larger

than δ. Thus, the false drop probability Pfalse drop in-

creases with |AdjEdges(u,G)|. Since |AdjEdges(u,G)| ≤
δ, Pfalse drop ≤ (1 − e−

δ∗m
M)m∗|AdjEdges(v,Q)|. To im-

prove query performance, false drop probability should

be as small as possible, as the false drop will lead to un-

necessary I/O. For example if we wish this probability

to be no larger than 1.0× 10−3, the parameter setting

can be tuned to ensure the following holds:

Pfalse drop ≤ (1− e− δ∗mM)m∗|AdjEdges(v,Q)| ≤ 1.0× 10−3

21

50 100 150 200 250

200

400

600

800

N

In
d
ex

S
iz

e
(M

B
)

(a) Yago

50 100 150 200 250
0

200

400

600

N
In

d
ex

S
iz

e
(M

B
)

(b) DBLP

Fig. 18: VS∗-tree Index Size vs. N

29 59 97 149 199 251

2

4

6

8

·104

N

C
a
n

d
id

a
te

S
et

S
iz

e

S-Q1
S-Q2
S-Q3

(a) Yago

29 59 97 149 199 251

0

2

4

6

·105

N

C
a
n

d
id

a
te

S
et

S
iz

e

S-Q1
S-Q2
S-Q3

(b) DBLP

Fig. 19: Candidate Size vs. |N |

From the query logs, we determine that the average

value of |AdjEdges(v,Q)| is 3. Therefore, in Yago and

DBLP datasets, we set m = 2,M = 97 and δ = 10. In

this case, Pfalse drop ≤ 1.0× 10−3.

11.2.2 N and n

The false drop problem also exists in comparing vSig(q).n

with vSig(v).n, but it is quite difficult to quantify the

probability of false drops in this case. Therefore, we

adopt the following method, using the “n-gram” tech-

nique where n = 3 that has been experimentally shown

to work well [11].

It is clear that the larger N is, the fewer conflicts

exist among the vertex signatures. On the other hand,

largeN will lead to large space cost of vertex signatures.

Thus, we need to find a good trade-off for N . We use

three star queries to evaluate the pruning power of the

encoding technique. Given a star query S, we encode its

central vertex v into a vertex signature vSig(v). We use
X to denote the number of vertex signatures vSig(u),

where vSig(v)&vSig(u) = vSig(v) in G∗. Obviously, X

decreases as N increases as shown in Figure 19. How-

ever, the decreasing trend slows down when N > 149

in Yago and N > 97 in DBLP. On the other hand,

larger N leads to larger space cost of VS∗-tree. In our

experiments, we set N = 149 in Yago and N = 97 in

DBLP, respectively, as larger N ’s values cannot lead to

significant increase in pruning power.

11.3 Database Load Performance

We compare gStore with five competitors over both

Yago and DBLP datasets in terms of database load

time and index size. For a fair comparison, we adopt

the settings in [19], i.e., each dataset is first converted

into a factorized form: one file with RDF triples repre-

sented as integer triples, and one dictionary file to map

from ids to literals. All methods utilize the same input

files and load them into their own systems. The load-

ing time is defined as the total offline processing time.

The total space cost is defined as the size of the whole

database including the corresponding indexes. We show

load time and the total space cost in Figures 20a and

20b, respectively. Since our method adopts the bitstring

as the basic index structures, compared with other ap-

proaches, gStore has the minimal total space size, as

shown in Figure 20b. Figure 20a shows that our in-

dex building time is the fastest. In other methods, they

need to build several exhaustive indexes, such as RDF-

3x and x-RDF-3x. The index structure in GRIN is a

memory-based data structure that is not optimized for

I/O cost. In order to handle large graphs, GRIN has to

employ virtual memory for index construction, which

leads to I/O cost.

Yago DBLP
0

20

40

60

80

100

Data Set

O
ffl

in
e

T
im

e
(i

n
m

in
.)

gStore
RDF-3X
SW-Store
x-RDF-3x

BigOWLIM
GRIN

(a) Offline Processing Time

Yago DBLP
0

500

1,000

1,500

2,000

2,500

3,000

3,500

Data Set

S
p

ac
e

C
os

t
(i

n
M

B
)

gStore
RDF-3X
SQ-Store
x-RDF-3x

BigOWLIM
GRIN

(b) Total Space Size

Fig. 20: Evaluating Offline Performance

11.4 Query Performance

11.4.1 Exact Queries

We compare the performance of gStore with five com-

petitors over both Yago and DBLP datasets. The sam-

ple queries are shown in Tables 6 and 7 in the Online

Supplements. Figure 21 shows that gStore system is

much faster than other methods. The key reason is that

22

A1 A2 B1 B2 B3 C1 C2
0

1,000

2,000

3,000

4,000

5,000

6,000

Queries

Q
u

er
y

R
es

p
o
n

se
T

im
e

(i
n

m
s)

gStore
RDF-3X
SW-Store
x-RDF-3x

BigOWLIM
GRIN

(a) Yago

Q1 Q2 Q3 Q4 Q5 Q6
0

500

1,000

1,500

2,000

2,500

3,000

Queries

Q
u

er
y

R
es

p
on

se
T

im
e

(i
n

m
s)

gStore
RDF-3X
SW-Store
x-RDF-3x

BigOWLIM
GRIN

(b) DBLP

Fig. 21: Exact Query Response Time

A1 A2 B1 B2 B3 C1 C2
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Queries

Q
u

er
y

R
es

p
on

se
T

im
e

(i
n

m
s)

gStore
RDF-3X+PF
SW-Store+PF
x-RDF-3x+PF

BigOWLIM
GRIN+PF

(a) Yago

Q1 Q2 Q3 Q4 Q5 Q6
0

2,000

4,000

6,000

8,000

Queries

Q
u

er
y

R
es

p
on

se
T

im
e

(i
n

m
s)

gStore
RDF-3X+FM
SW-Store+FM
x-RDF-3x+FM

BigOWLIM
GRIN+FM

(b) DBLP

Fig. 22: Wildcard Query Response Time (FM: postfiltering)

candidate lists for each query vertex are reduced greatly

by VS∗-tree. We show the pruning power of VS∗-tree in

Figures 26 and 28b (in Online Supplements). The other

ssytems do not consider the query graph structure for

pruning.

11.4.2 Wildcard Queries

In order to enable comparison over wildcard queries, we

adopt the post-filtering method in Section 11.1 in RDF-

3x, SW-store, x-RDF-3x and GRIN. Since BigOWLIM

has embedded full-text index, it can support wildcard

queries. The sample queries are shown in Tables 9 and

10 in the Online Supplements. Figure 22 shows query

response times of different methods. As would be ex-

pected, all of the tested systems suffer some amount of

performance drop in executing wildcard queries. How-

ever gStore experiences the least amount of drop, be-

cause gStore can answer both exact and wildcard queries

in a uniform manner, making its performance more ro-

bust. In all but one query, even with the performance

drop, it executes wildcard queries in under one second.

However, the query performance degrades dramatically

for other systems, since they cannot support wildcard

queries directly. The only way to process these queries

is to first ignore wildcard constraints, and, for each

returned result, check if it satisfies the wildcard con-

straints. The worst performance drop for each system

are 929% for RDF-3x, 560% for SW-Store, 920% for x-

RDF-3x, 330% for BigOWLIM, and 4486% for GRIN.

11.5 Aggregate Query Performance

We compared the performance of gStore with Virtuoso

6.3 (http://virtuoso.open linksw.com/) and the CAA

algorithm [16] on both SA and GA queries. To the best

of our knowledge, Virtuoso is the only commercial sys-

tem that can fully support group-by and aggregation

following SPARQL 1.1 specification, and CAA algo-

rithm is the only proposal in literature that can handle

aggregate queries that follows SPARQL 1.1 semantics.

We use Yago dataset in this experiment. Six aggregate

queries that are used in our experiments are given in

Table 12 in the Online Supplements. Figure 23 shows

that our method has the best online performance.

Generally speaking, the query performance depends

on several factors, such as aggregation ratio |R(Q′)|
|R(Q)| ,

the size of |R(Q′)|, the size of query graph Q and the

characteristics of group-by dimensions (whether or not

they include link properties). In Figure 23, both SA1

and SA2 have one group-by dimension. SA1 (52 mil-

liseconds) is much faster than SA2 (163 milliseconds).

Furthermore, the speedup ratios (between gStore and

23

SA1 SA2 SA3 GA1 GA2 GA3
0

2,000

4,000

6,000

8,000

10,000

Queries

Q
u

er
y

R
es

p
on

se
T

im
e

(i
n

m
s)

gStore
CAA

Virtuoso

Fig. 23: Aggregation Queries in Yago

Virtuoso) for SA1 (6.1) is larger than that for SA2

(3.5). This is because |R(Q′)| is smaller in SA1 than

that in SA2. The speedup ratio of SA3 (8.68) is the

largest among all three SA queries in Yago, since SA3

has two edges in the query graph, which requires Vir-

tuoso to perform expensive join operations. We find

that SA3 is even slower than some GA queries. That is

because “hasFamilyName” and “hasGivenName” have

the largest frequency in Yago, which results in large

|R(Q′)|. The results also show that gStore-Aggregation

method also performs better than other alternative ap-

proaches on processing GA queries. Our method uses

VS∗-tree to find matches of the link structure J , which

uses structural pruning to reduce the search space.

11.6 Evaluating Dimension Orders in DL

We evaluate the affect of the order of dimensions DL

using both Yago and LUBM datasets. Specifically, we

build T-index under three different orders: frequency-

descending order, frequency-ascending order and ran-

dom order. The results show that frequency-descending

order leads to the least number of nodes in T-index,

the minimal total size and the minimal building time,

since this order ensures that more prefixes can be shared

among different transactions. Furthermore, the frequency-

descending order also brings the fastest query response

time, since it accesses the minimal number of nodes in

T-index. Complete experimental results can be found

in Part D of Online Supplements.

11.7 Evaluating Maintenance Cost

To evaluate the overhead of VS∗-tree and T-index main-

tenance, we randomly selected 80% of the triples in each

dataset to build VS∗-tree and T-index. Then, for the re-

maining 20% of the triples, we performed a sequence of

triple insertions using the method in Section 10. For

Table 2: Evaluating Updates to VS∗-tree in Yago (num-

ber of updated triples/second)

gStore RDF-3x x-RDF-3x

Insertion 2.2×104 1.4×104 1.2×104

Deletion (free-at-empty) 2.0×104 1.1×104 0.9×104

Deletion (merge-at-half) 1.5×104 1.1×104 0.9×104

evaluating deletion performance, we randomly deleted

20% of the triples from VS∗-tree and T-index.

We report the number of triple insertions/deletions

per second in gStore, and compare it with RDF-3x

and x-RDF-3x in Table 2. RDF-3X had been extended

for updates using the deferred-indexing approach [21]

where the updates are first recorded into differential

indexes, which are periodically merged into main in-

dexes. x-RDF-3x employs the similar update strategy

except for introducing “timestamp” of each triple [22].

Table 2 shows that gStore’s update time is the fastest,

bacause VS∗-tree is a height-balance tree. The inser-

tion/deletion operation has log|V (G)|’s time complex-

ity. RDF-3x and x-RDF-3x need to update six clus-

tered B+-trees. We also compare two deletion strate-

gies (b = 1 and b = B
2) in Table 2. Experiments show

that the “free-at-empty” (b = 1) leads to faster deletion

time, since “merge-at-half” strategy (b = B
2) needs to

re-insert the children of the half-empty nodes, while it

is not necessary in the free-at-empty strategy.

The average running times to insert/delete one triple

(without changing T-index’s structure) into/from T-

index and update the corresponding aggregate sets are

0.02 and 0.01 msec, respectively. The average running

time to swap two adjacent dimensions is 3000 msec.

The total running time to insert/delete 10,000 triples,

which include both inserting and dimension swapping

times, are 15.20 and 12.20 msec, respectively. The num-

ber of dimension swaps for insertion/deletion are 5 and

4, respectively. As these show, T-index’s maintenance

overhead is light. When we insert/delete a triple with-

out changing T-index’s structure, we only need to insert

one tuple into some aggregate sets along one path. The

operation is very cheap. If we need to swap two dimen-

sions pi and pj , and there are n paths containing both

pi and pj , there are at most 2 × n aggregate sets that

need to be updated. Thus, the time for swapping two

dimensions is higher. However, the chances of swapping

two dimensions during the insertion/deletion is small.

11.8 Scalability Experiments

We evaluate the scalability of gStore against RDF-3x

and Virtuoso, using two large datasets: LUBM and Yago2.

24

We first report gStore’s index building performance over

various LUBM dataset sizes in Table 3.

For online query performance over LUBM, we use

the set of 7 queries that have been defined and used in

recent studies [3,34]. This workload was designed be-

cause of the recognition that the original workload of

14 queries are very simple involving few triple patterns

(many involve two triple patterns) and are similar to

each other. Furthermore, a large number of them in-

volve constants that artificially increase their selectiv-

ity – for example, triple patterns ?x undergraduateDe-

greeFrom http://www.University0.edu and ?x publica-

tionAuthor http://www.Department0.University0.edu/

AssistantProfessor0 identify a single object making their

selectivity very high (with very few results). It has been

argued that these queries are not representative of real

workloads that contain implicit joins, and that they fa-

vor systems that use extensive indexing (such as RDF-

3x). We ran experiments with both query sets4, but we

report the results obtained for the 7 queries that are

given in Table 14. The conclusions reported below hold

for the original 14 query set as well.

Table 4 shows comparative online query performance

of gStore, RDF-3x and Virtuoso under small and very

large LUBM configurations. gStore always performs (some-

times an order of magnitude) better than Virtuoso, with

the latter sometimes failing to complete within the 30

minute window we allocated for executing queries. As

expected, and as noted above, RDF-3x does better than

gStore when the query contains a triple pattern has

high selectivity because it refers to a constant. Even

for these queries, gStore still performs very well with

sub-second response time. For other queries (i.e., those

that involve implicit joins), gStore’s performance is su-

perior to RDF-3x.

We also performed cross-query set evaluation to test

the performance of systems according to the order of

triple pattern evaluation. For example, query Q2 in the

original LUBM workload (Table 15) is identical to Q1

we report (Table 14) except for the different triple pat-

tern orders. For these queries, RDF-3x’s performance

varies by 29–119 times, while gStore performance varies

by 3 times. Naturally, both systems would benefit from

optimizing join orders, but gStore performance appears

to be more stable.

We also compare the three systems over the Yago2

dataset (query sets in Tables 8 and 11). The results in

Table 5 demonstrate that gStore is faster than Virtuoso

4 We revised the original 14 to remove type reasoning that
gStore does not currently support; the resulting queries re-
turn larger result sets since there is no filtering as a result
of type reasoning. For completeness, these are included in
Online Supplements as Table 15.

Table 3: Scalability of Index Building

Data Set

Raw Data Offline
Processing
Time

Index Size
(KB)

RDF N3 File
Size(KB)

Number of
Triples

Number of
Entities

LUBM-100 1,499,131 13,402,474 2,178,865 12m23s 852,448

LUBM-200 3,007,385 26,691,773 4,340,588 32m11s 1,190,856

LUBM-500 7,551,065 66,720,02 10,846,157 1h5m9s 1,640,281

LUBM-1000 15,136,798 133,553,834 21,715,108 2h10m15s 3,071,205

Yago 3,126,721 19,012,854 4,339,591 20m35s 1,305,267

Yago2 23,216,336 183,183,314 10,557,352 8h55m21s 3,071,205

Table 4: Scalability of Query Performance on LUBM

Queries
Query Response Time (msec)

LUBM-100 LUBM-1000

gStore RDF-3x Virtuoso gStore RDF-3x Virtuoso

Q1 1310 22634 2152 43832 202728 54460

Q2 236 4276 30560 1563 15008 > 30 mins

Q3 208 216 1981 1491 1737 7784

Q4* 153 44 1341 680 30 1357

Q5* 129 48 312 131 12 243

Q6* 227 20 843 828 49 842

Q7 1016 960 5257 8301 14072 36848

∗ indicates the query contains at least one constant entity.

Table 5: Scalability of Query Performance on Yago2

Query Response Time (msec)

Exact
Queries

A1* A2* B1* B2 B3 C1 C2*

gStore 251 230 2157 131 198 875 865

RDF-3x 35 26 921 289 228 219077 80

Virtuoso 1544 3213 23447 2777 6240 151337 23275

Wildcard
Queries

AW1* AW2* BW1* BW2 BW3 CW1 CW2*

gStore 3226 6122 8644 268 3197 15183 6189

Virtuoso 3338 10109 33728 2388 21482 >30min 69031

∗ indicates the query contains at least one constant entity.

by orders of magnitude in exact queries, and outper-

forms Virtuoso greatly in wildcard queries. This is be-

cause gStore utilizes the same (signature-based) prun-

ing strategy for wildcard queries, while Virtuoso adopts

the post-processing technique to handle them. Similar

to LUBM results, the relative performance of gStore

and RDF-3x depend on the selectivity of the triple pat-

terns that include constants for which extensive index-

ing can be exploited. RDF-3x does not support wildcard

queries, thus, we have not compared the two systems

for those queries.

12 Conclusions

In this paper, we described gStore, which is a graph-

based triple store. Our focus is on the algorithms and

data structures that were developed to answer SPARQL

queries efficiently. The class of queries that gStore can

handle include exact, wildcard, and aggregate queries.

The performance experiments demonstrate that com-

pared to two other state-of-the-art systems that we con-

sider, gStore has more robust performance across all

these query types. Other systems either do not support

25

some of these query types (e.g., none of the systems

support wildcard queries and only Virtuoso supports

aggregate queries) or they perform considerably worse

(e.g., Virtuoso handles exact and aggregate queries, but

is consistently worse than gStore). The techniques can

handle dynamic RDF repositories that may be updated.

gStore is a fully implemented and operational system.

There are many directions that we intend to follow.

These include support for partitioned RDF reposito-

ries, parallel execution of SPARQL queries, and further

query optimization techniques.

13 Acknowledgements

Lei Zou’s work was supported by National Science Foun-

dation of China (NSFC) under Grant 61370055 and

by CCF-Tencent Open Research Fund. M. Tamer zsu’s

work was supported by Natural Sciences and Engineer-

ing Research Council (NSERC) of Canada under a Dis-

covery Grant. Lei Chen’s work was supported in part

by the Hong Kong RGC Project M-HKUST602/12, Na-

tional Grand Fundamental Research 973 Program of

China under Grant 2012-CB316200, Microsoft Research

Asia Grant, and a Google Faculty Award. Dongyan

Zhao was supported by NSFC under Grant 61272344

and China 863 Project under Grant No. 2012AA011101.

References

1. D. J. Abadi, A. Marcus, S. Madden, and K. Hollenbach.
SW-Store: a vertically partitioned DBMS for semantic
web data management. VLDB J., 18(2):385–406, 2009.

2. D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollen-
bach. Scalable semantic web data management using ver-
tical partitioning. In Proc. 33rd Int. Conf. on Very Large
Data Bases, pages 411–422, 2007.

3. M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix
“bit” loaded: a scalable lightweight join query processor
for RDF data. In Proc. 19th Int. World Wide Web Conf.,
pages 41–50, 2010.

4. P. A. Bernstein and D.-M. W. Chiu. Using semi-joins to
solve relational queries. J. ACM, 28(1):25–40, 1981.

5. V. Bönström, A. Hinze, and H. Schweppe. Storing RDF
as a graph. In Proc. 1st Latin American Web Congress,
pages 27–36, 2003.

6. J. Broekstra, A. Kampman, and F. van Harmelen.
Sesame: A generic architecture for storing and querying
RDF and RDF schema. In Proc. 1st Int. Semantic Web
Conf., pages 54–68, 2002.

7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 2001.

8. U. Deppisch. S-tree: A dynamic balanced signature index
for office retrieval. In Proc. 9th Int. ACM SIGIR Conf.
on Research and Dev. in Inf. Retr., pages 77–87, 1986.

9. C. Faloutsos and S. Christodoulakis. Signature files: An
access method for documents and its analytical perfor-
mance evaluation. ACM Trans. Inf. Syst., 2(4):267–288,
1984.

10. L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, L. Pietarinen, and D. Srivastava. Us-
ing q-grams in a DBMS for approximate string process-
ing. IEEE Data Eng. Bull., 24(4):28–34, 2001.

11. L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava.
Text joins in an RDBMS for web data integration. In
Proc. 12th Int. World Wide Web Conf., pages 90–101,
2003.

12. Y. Guo, Z. Pan, and J. Heflin. LUBM: a benchmark for
OWL knowledge base systems. J. Web Sem., 3(2-3):158–
182, 2005.

13. A. Gupta, , and V. H. Dallan Quass. Aggregate-query
processing in data warehousing environments. In Proc.
21st Int. Conf. on Very Large Data Bases, pages 358–
369, 1995.

14. A. Harth, J. Umbrich, A. Hogan, and S. Decker. YARS2:
A federated repository for querying graph structured
data from the web. In Proc. 6th Int. Semantic Web
Conf., pages 211–224, 2007.

15. J. Hoffart, F. M. Suchanek, K. Berberich, E. L. Kelham,
G. de Melo, and G. Weikum. YAGO2: Exploring and
querying world knowledge in time, space, context, and
many languages. In Proc. 20th Int. World Wide Web
Conf., pages 229–232, 2011.

16. E. Hung, Y. Deng, and V. S. Subrahmanian. RDF aggre-
gate queries and views. In Proc. 21st Int. Conf. on Data
Eng., pages 717–728, 2005.

17. T. Johnson and D. Shasha. B-trees with inserts and
deletes: Why free-at-empty is better than merge-at-half.
J. Comput. Syst. Sci., 47(1):45–76, 1993.

18. H. Kitagawa and Y. Ishikawa. False drop analysis of set
retrieval with signature files. IEICE Trans. on Inf. and
Syst., E80-D(6):1–12, 1997.

19. T. Neumann and G. Weikum. RDF-3X: a RISC-style en-
gine for RDF. Proc. VLDB Endow., 1(1):647–659, 2008.

20. T. Neumann and G. Weikum. Scalable join processing
on very large RDF graphs. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 627–640, 2009.

21. T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. VLDB J., 19(1):91–
113, 2010.

22. T. Neumann and G. Weikum. X-RDF-3X: Fast querying,
high update rates, and consistency for RDF databases.
Proc. VLDB Endow., 1(1):256–263, 2010.

23. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. ACM Trans. Database Syst.,
34(3):16:1–16:45, 2009.

24. D. Y. Seid and S. Mehrotra. Grouping and aggregate
queries over semantic web databases. In Proc. Int. Conf.
on Semantic Computing, pages 775–782, 2007.

25. D. Shasha, J. T.-L. Wang, and R. Giugno. Algorith-
mics and applications of tree and graph searching. In
Proc. 21st ACM Symp. on Principles of Database Sys-
tems, pages 39–52, 2002.

26. M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and
D. Reynolds. SPARQL basic graph pattern optimization
using selectivity estimation. In Proc. 17th Int. World
Wide Web Conf., pages 595–604, 2008.

27. E. Tousidou, P. Bozanis, and Y. Manolopoulos.
Signature-based structures for objects with set-valued at-
tributes. Inf. Syst., 27(2):93–121, 2002.

28. E. Tousidou, A. Nanopoulos, and Y. Manolopoulos. Im-
proved methods for signature-tree construction. Comput.
J., 43(4):301–314, 2000.

29. O. Udrea, A. Pugliese, and V. S. Subrahmanian. GRIN:
A graph based RDF index. In Proc. 22nd National Conf.
on Artificial Intelligence, pages 1465–1470, 2007.

26

30. C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextu-
ple indexing for semantic web data management. Proc.
VLDB Endow., 1(1):1008–1019, 2008.

31. K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds.
Efficient RDF storage and retrieval in Jena2. In Proc. 1st
Int. Workshop on Semantic Web and Databases, pages
131–150, 2003.

32. X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent
structure-based approach. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 335–346, 2004.

33. Y. Yan, C. Wang, A. Zhou, W. Qian, L. Ma, and Y. Pan.
Efficient indices using graph partitioning in RDF triple
stores. In Proc. 25th Int. Conf. on Data Eng., pages
1263–1266, 2009.

34. P. Yuan, P. Liu, H. Jin, W. Zhang, and L. Liu. TripleBit:
A fast and compact system for large scale RDF data.
Proc. VLDB Endow., 6(7):517–528, 2013.

1

Online Supplements

A. Queries Used in Experiments

Table 6: Exact SPARQL Queries in Yago

A1 SELECT ?gn ?fn WHERE {?p y:hasGivenName
?gn.?p rdf:type <wordnet scientist 110560637>.?p

y:bornIn ?city.?city y:locatedIn <Switzerland>.?p
y:hasAcademicAdvisor ?a.?a y:bornIn ?city2.?city2
y:locatedIn <Germany> }

a oriented fact query, i.e., finding scientists
from Switzerland with a doctoral advisor from

Germany

A2 SELECT ?name WHERE { ?a rdfs:label
?name .?a rdf:type wordnet actor 109765278.?a

y:livesIn ?city .?city y:locatedIn ?state .?state
y:locatedIn “New York” .?a y:actedIn ?m1
.?m1 rdf:type “wordnet movie 106613686”.?m1
y:hasProductionLanguage “English

language”.?a y:directed ?m2 .?m2
rdf:type “wordnet movie 106613686”.?m2
y:hasProductionLanguage “English language” }

a oriented fact query, i.e., finding a person
who is both an actor and a director of English

movies.

B1 SELECT distinct ?name1 ?name2 WHERE { ?a1 rdfs:label
?name1. ?a2 rdfs:label ?name2.?a1 y:livesIn ?city1.?a2
y:livesIn ?city2.?city1 y:locatedIn “England”.?city2
y:locatedIn “England”.?a1 y:actedIn ?movie.?a2 y:actedIn
?movie.FILTER (?a1 != ?a2) }

a relationship oriented query, finding two ac-
tors from England playing together in the
same movie.

B2 SELECT ?name1 ?name2 WHERE { ?p1 rdfs:label
?name1 .?p2 rdfs:label ?name2 .?p1 y:isMarriedTo ?p2 .?p1
y:bornIn ?city .?p2 y:bornIn ?city. }

a relationship oriented query, finding a couple
who was born in the same city.

B3 SELECT distinct ?name1 ?name2 WHERE {?p1
y:hasFamilyName?name1.?p2 y:hasFamilyName
?name2.?p1 rdf:type “wordnet scientist 110560637”.?p2
rdf:type “wordnet scientist 110560637”. ?p1

y:hasWonPrize ?award. ?p2 y:hasWonPrize ?award.?p1
y:bornIn ?city. ?p2 y:bornIn ?city. FILTER (?p1 != ?p2)
}

a relationship oriented query, finding two sci-
entists who born in the same place and won
the same prize.

C1 SELECT distinct ?name1 ?name2 WHERE { ?p1
y:hasFamilyName?name1.?p2 y:hasFamilyName

?name2.?p1 rdf:type “wordnet scientist 110560637”.?p2
rdf:type “wordnet scientist 110560637”.?p1 [] ?city.?p2 []
?city.?city rdf:type <wordnet site 108651247>.FILTER

(?p1 != ?p2) }

a relationship oriented query with unknown
predicates, finding two scientists related to the

same city.

C2 SELECT distinct ?name WHERE { ?p

rdfs:label ?name.?p [] ?c1.?p [] ?c2.?c1 rdf:type
<wordnet village 108672738>.?c2 rdf:type
<wordnet site 108651247>.?c1 rdfs:label “London”.?c2

rdfs:label “Paris”. }

a relationship oriented query with unknown

predicates, finding a person who is related to
both London and Pairs.

Table 7: Exact SPARQL Queries in DBLP

Q1 SELECT ?x1 WHERE {?x1 foaf:name “Jiawei Han”.?x1

rdf:type foaf:Person.?x2 dc:creator ?x1.?x2 dc:identifier

“VLDB”.?x2 rdf:type :Inproceedings}

A query with two star subqueries, finding Ji-

awei Han’s VLDB papers.

Q2 SELECT ?x2 ?x3 WHERE {?x1 foaf:name “Jiawei

Han”.?x1 rdf:type foaf:Person.?x2 dc:creator ?x1.?x2

dc:identifier “VLDB”.?x2 rdf:type : Inproceedings.?x3

dc:creator ?x1.?x3 dc:identifier “ICDE”.?x3 rdf:type : In-

proceedings }

A query with three star subqueries, finding

Jiawei Han’s VLDB and ICDE papers.

Q3 SELECT ?x1 ?x2 WHERE { ?x1 foaf:name “Jiawei

Han”.?x2 :year “1999”.?x2 dc:creator ?x1}
A query with two star subqueries, finding Ji-

awei Han’s papers in 1999.

Q4 SELECT ?x1 WHERE {?x1 foaf:name “Jiawei Han”.?x1

rdf:type foaf:Person.?x2 dc:creator ?x1.?x2 dc:identifier

“ICDE”.?x2 :year “2001”}

A query with two star subqueries, finding Ji-

awei Han’s ICDE papers in 2001.

Q5 SELECT ?x1 ?x2 WHERE {?x1 foaf:name “Jiawei

Han”.?x1 rdf:type foaf:Person.?x2 dc:creator ?x1.?x2

booktitle “CIKM” }

A query with two star subqueries, finding Ji-

awei Han’s CIKM papers.

Q6 SELECT ?x2x3 WHERE {?x1 rdf:type foaf:Person.?x2

dc:creator ?x1.?x2 dc:identifier “ICDE”.?x2 rdf:type

: Inproceedings.?x3 dc:creator ?x1.?x3 dc:identifier

“SIGMOD”.}

A query with three stars, finding some persons

who have both ICDE and SIGMOD papers.

B. Proofs of Theorems

In order to make it easier to follow, we duplicate the

theorem statements before giving their proofs.

Theorem 1 RS ⊆ CL holds.

Proof According to Definition 3, given a query graph

Q with n vertices {v1, ..., vn}, {u1, ..., un} is a subgraph

match of Q over RDF graph G. Based on the match,

we define a function F , where F (vi) = ui, where i =

Table 8: Exact SPARQL Queries in Yago2

A1 SELECT ?gn ?fn WHERE { ?p hasGiven-
Name ?gn. ?p hasFamilyName ?fn . ?p type star

<wordnet scientist 110560637>. ?p wasBornIn ?city
. ?p hasAcademicAdvisor ?a . ?city isLocatedIn
<Switzerland>. ?a wasBornIn ?city2 . ?city2

isLocatedIn transitive <Germany> . }

a oriented fact query, i.e., finding scientists
from Switzerland with a doctoral advisor from

Germany

A2 SELECT ?n WHERE { ?a hasPreferredName ?n .

?a type wordnet actor 109765278. ?a livesIn ?city .
?a actedIn ?m1 . ?a directed ?m2 . ?city isLo-
catedIn ?state . ?state isLocatedIn <Africa> . ?m1

type star <wordnet movie 106613686> . ?m2 type star
<wordnet movie 106613686>. }

a oriented fact query, i.e., finding a person

who is both an actor and a director of English
movies.

B1 SELECT distinct ?n1 ?n2 WHERE { ?a1 hasPre-
ferredName ?n1 . ?a2 hasPreferredName ?n2 . ?a1
wasBornIn ?city1. ?a2 wasBornIn ?city2 . ?city1

isLocatedIn transitive <United States> . ?city2
isLocatedIn transitive <United States> . ?a1 actedIn
?m . ?a2 actedIn ?m . FILTER (?a1 != ?a2) }

a relationship oriented query, finding two ac-
tors from England playing together in the
same movie.

B2 SPARQL SELECT ?n1 ?n2 WHERE { ?a1 hasPreferred-
Name ?n1 . ?a2 hasPreferredName ?n2 . ?a1 isMarriedTo

?a2 . ?a1 wasBornIn ?city . ?a2 wasBornIn ?city .}

a relationship oriented query, finding a couple
who was born in the same city.

B3 SPARQL SELECT distinct ?n1 ?n2 WHERE { ?a1

hasFamilyName ?n1 .?a2 hasFamilyName ?n2 . ?a1
type star <wordnet scientist 110560637> . ?a2 type star¿
<wordnet scientist 110560637> . ?a1 hasWonPrize ?award

. ?a2 hasWonPrize ?award . ?a1 wasBornIn ?city . ?a2 was-
BornIn ?city . FILTER (?a1 != ?a2) }

a relationship oriented query, finding two sci-

entists who born in the same place and won
the same prize.

C1 SELECT distinct ?n1 ?n2 WHERE { ?a1 has-
FamilyName ?n1 . ?a2 hasFamilyName ?n2 . ?a1
type star <wordnet scientist 110560637> . ?a2 type star

<wordnet scientist 110560637> . ?a1 ?p1 ?city . ?a2 ?p2
?city . ?city type star <wordnet site 108651247> . FIL-
TER (?a1 != ?a2) }

a relationship oriented query with unknown
predicates, finding two scientists related to the
same city.

C2 SPARQL SELECT distinct ?n WHERE { ?p
hasPreferredName ?n . ?p ?p1 ?city1 . ?p ?p2

?city2 . ?city1 type star <wordnet site 108651247 .
?city1 type star <wordnet site 108651247 . ?city1
hasPreferredName“London′′.?city2hasPreferredName
“Paris” . }

a relationship oriented query with unknown
predicates, finding a person who is related to

both London and Pairs.

Table 9: SPARQL Queries with Wildcards in Yago

A1 SELECT ?gn ?fn WHERE {?p y:hasGivenName
?gn.?p rdf:type ?a.?p y:bornIn ?city.?city
y:locatedIn ?b.?p y:hasAcademicAdvisor ?a.?a

y:bornIn ?city2.?city2 y:locatedIn ?c. FILTER
regex(str(?a),“scientist”).regex(str(?b),“Switzerland”).
regex(str(?b),“Germany”)}

a oriented fact query with wildcards, i.e., find-
ing scientists from Switzerland with a doctoral
advisor from Germany

A2 SELECT ?name WHERE { ?a rdfs:label ?name
.?a rdf:type “wordnet actor 109765278”.?a

y:livesIn ?city .?city y:locatedIn ?state .?state
y:locatedIn “New York” .?a y:actedIn ?m1
.?m1 rdf:type “wordnet movie 106613686”.?m1

y:hasProductionLanguage ?a.?a y:directed ?m2
.?m2 rdf:type “wordnet movie 106613686”.?m2
y:hasProductionLanguage ?b.FILTER
regex(str(?a),“English”).regex(str(?b),“English”)}

a oriented fact query with wildcards, i.e., find-
ing a person who is both an actor and a direc-

tor of English movies.

B1 SELECT distinct ?name1 ?name2 WHERE {
?a1 rdfs:label?name1.?a2 rdfs:label ?name2.?a1
y:livesIn ?city1.?a2 y:livesIn ?city2.?city1
y:locatedIn ?a.?city2 y:locatedIn ?b.?a1 y:actedIn
?movie.?a2 y:actedIn ?movie.FILTER (?a1 !=

?a2.regex(str(?a),“England”).regex(str(?b),“England”)) }

a relationship oriented query with wildcards,

finding two actors from England playing to-
gether in the same movie.

B2 SELECT ?name1 ?name2 WHERE { ?p1 rdfs:label
?name1 .?p2 rdfs:label ?name2 .?p1 y:isMarriedTo ?p2 .?p1
y:bornIn ?city .?p2 y:bornIn ?city.}

a relationship oriented query with wildcards,
finding a couple who was born in the same
city.

B3 SELECT distinct ?name1 ?name2 WHERE { ?p1
y:hasFamilyName?name1.?p2 y:hasFamilyName

?name2.?p1 rdf:type ?a.?p2 rdf:type ?b.?p1
y:hasWonPrize ?award.?p2 y:hasWonPrize ?award.?p1
y:bornIn ?city.?p2 y:bornIn ?city.FILTER (?p1 !=
?p2,regex(str(?a),“scientist”).regex(str(?b),“scientist”)) }

a relationship oriented query with wildcards,
finding two scientists who born in the same

place and won the same prize.

C1 SELECT distinct ?name1 ?name2 WHERE { ?p1
y:hasFamilyName?name1.?p2 y:hasFamilyName

?name2.?p1 rdf:type ?a.?p2 rdf:type ?b.?p1 []
?city.?p2 [] ?city.?city rdf:type ?c.FILTER (?p1 !=
?p2,regex(str(?a),“scientist”).regex(str(?b),“scientist”).

regex(str(?c),“site”)) }

a relationship oriented query with unknown
predicates and wildcards, finding two scien-

tists related to the same city.

C2 SELECT distinct ?name WHERE { ?p rdfs:label

?name.?p [] ?c1.?p [] ?c2.?c1 rdf:type <wordnet
village 108672738>.?c2 rdf:type <wordnet site
108651247>.?c1 rdfs:label ?a.?c2 rdfs:label ?b.FILTER

(regex(str(?a),“London”).regex(str(?b),“Paris”)) }

a relationship oriented query with unknown

predicates and wildcards, finding a person
who is related to both London and Pairs.

1, ..., n. Since there are only entity and class vertices in

data signature graph G∗ and query signature graph Q∗,

we only consider the entity and class vertices. We delete

all literal vertices from query graph Q to get {v1, ..., vn}
to get {v′1, ..., v′m}. Obviously, v′i (i = 1, ...,m) is a ver-

tex in query signature graph Q∗. We only need to prove

that (F (v′1), ..., F (v′m)) is a match of {v′1, ..., v′m} ac-

cording to Definition 8. Since u′i(= F (v′i), i = 1, ...,m)

is a matching vertex of vi in the RDF graph G, all

2

Table 10: SPARQL Queries with Wildcards in DBLP

Q1 SELECT ?x1 WHERE {?x1 foaf:name ?a.?x1 rdf:type

foaf:Person.?x2 dc:creator ?x1.?x2 dc:identifier

?b.?x2 rdf:type :Inproceedings. }. FILTER

(regex(str(?a),“Jiawei”).regex(str(?b),“VLDB”)) }

A wildcard query with two star subqueries,

finding Jiawei Han’s VLDB papers.

Q2 SELECT ?x2, x3 WHERE {?x1 foaf:name ?a.?x1

rdf:type foaf:Person.?x2 dc:creator ?x1.?x2 dc:identifier

?b.?x2 rdf:type : Inproceedings.?x3 dc:creator ?x1.?x3

dc:identifier ?c.?x3 rdf:type : Inproceedings. FIL-

TER (regex(str(?a),“Jiawei”).regex(str(?b),“VLDB”).

regex(str(?c),“ICDE”))}

A query with three star subqueries, finding

Jiawei Han’s VLDB and ICDE papers.

Q3 SELECT ?x1, ?x2 WHERE { ?x1 foaf:name

?a.?x2 :year ?b.?x2 dc:creator ?x1. FILTER

(regex(str(?a),“Jiawei”).regex(str(?b),“1999”))}

A query with two star subqueries, finding Ji-

awei Han’s papers in 1999.

Q4 Q3SELECT ?x1 WHERE { ?x1 foaf:name ?a.?x1

rdf:type foaf:Person.?x2 dc:creator ?x1.?x2 dc:identifier

?b.?x2 :year ?c. FILTER (regex(str(?a),“Jiawei”).

regex(str(?b),“ICDE”). regex(str(?c),“2001”)) }

A query with two star subqueries, finding Ji-

awei Han’s ICDE papers in 2001.

Q5 SELECT ?x1 ?x2 WHERE { ?x1 foaf:name ?a.?x1 rdf:type

foaf:Person.?x2 dc:creator ?x1.?x2 booktitle ?b. FILTER

(regex(str(?a),“Jiawei”).regex(str(?b),“CIKM”)) }

A query with two star subqueries, finding Ji-

awei Han’s CIKM papers.

Q6 SELECT ?x2, x3 WHERE { ?x1 rdf:type

foaf:Person.?x2 dc:creator ?x1.?x2 dc:identifier

?a.?x2 rdf:type : Inproceedings.?x3 dc:creator

?x1.?x3 dc:identifier ?b.?x3 :year ?c. FILTER

(regex(str(?a),“ICDE”).regex(str(?b),“SIGMOD”).

regex(str(?c),2000) }

A query with three stars, finding some persons

who have both ICDE and SIGMOD papers.

Table 11: SPARQL Queries with Wildcards in Yago2

AW1 SELECT ?gn ?fn WHERE { ?p hasGivenName ?gn. ?p

hasFamilyName ?fn . ?p type star ?w1. ?p wasBornIn ?city

. ?p hasAcademicAdvisor ?a . ?city isLocatedIn ?w2. ?a

wasBornIn ?city2 . ?city2 isLocatedIn transitive ?w3 .

FILTER (regex(?w1,“scientist”) && regex(?w2, “Switzer-

land”) && regex(?w3,“Germany”)) }

a oriented fact query, i.e., finding scientists

from Switzerland with a doctoral advisor from

Germany

AW2 SELECT ?n WHERE { ?a hasPreferredName ?n . ?a

type ?w1. ?a livesIn ?city . ?a actedIn ?m1 . ?a di-

rected ?m2 . ?city isLocatedIn ?state . ?state isLocate-

dIn ?w2 . ?m1 type star ?w3 . ?m2 type star ?w3. FIL-

TER (REGEX(?w1,“actor”) && REGEX(?w2,“Africa”)

&®EX(?w3,“movie”)) }

a oriented fact query, i.e., finding a person

who is both an actor and a director of English

movies.

BW1 SELECT distinct ?n1 ?n2 WHERE { ?a1 hasPre-

ferredName ?n1 . ?a2 hasPreferredName ?n2 . ?a1

wasBornIn ?city1. ?a2 wasBornIn ?city2 . ?city1

isLocatedIn transitive ?w1 . ?city2 isLocatedIn transitive

?w2 . ?a1 actedIn ?m . ?a2 actedIn ?m . FIL-

TER ((?a1 != ?a2) && REGEX(?w1,“United”) &&

REGEX(?w2,“States”)) }

a relationship oriented query, finding two ac-

tors from England playing together in the

same movie.

BW2 SPARQL SELECT ?n1 ?n2 WHERE { ?a1 hasPreferred-

Name ?n1 . ?a2 hasPreferredName ?n2 . ?a1 isMarriedTo

?a2 . ?a1 wasBornIn ?city . ?a2 wasBornIn ?city .}

a relationship oriented query, finding a couple

who was born in the same city.

BW3 SPARQL SELECT distinct ?n1 ?n2 WHERE { ?a1

hasFamilyName ?n1 .?a2 hasFamilyName ?n2 . ?a1

type star ?w1 . ?a2 type star ?w2 . ?a1 hasWonPrize

?award . ?a2 hasWonPrize ?award . ?a1 wasBornIn ?city

. ?a2 wasBornIn ?city . FILTER ((?a1 != ?a2) &&

REGEX(?w1,“scientist”) && REGEX(?w2,“scientist”)) }

a relationship oriented query, finding two sci-

entists who born in the same place and won

the same prize.

CW1 SELECT distinct ?n1 ?n2 WHERE { ?a1 hasFamilyName

?n1 . ?a2 hasFamilyName ?n2 . ?a1 type star ?w1. ?a2

type star ?w2. ?a1 ?p1 ?city . ?a2 ?p2 ?city . ?city type star

?w3 . FILTER ((?a1 != ?a2) && REGEX(?w1,“scientist”)

&& REGEX(?w2,“scientist”) && REGEX(?w3,“site”)) }

a relationship oriented query with unknown

predicates, finding two scientists related to the

same city.

CW2 SPARQL SELECT distinct ?n WHERE { ?p hasPre-

ferredName ?n . ?p ?p1 ?city1 . ?p ?p2 ?city2 .

?city1 type star ?w1 . ?city1 type star ?w1. ?city1

hasPreferredName?w2.?city2hasPreferredName

?w3. FILTER (REGEX(?w1,“site”) &&

REGEX(?w2,“London”) && REGEX(?w3,“Paris”))

}

a relationship oriented query with unknown

predicates, finding a person who is related to

both London and Pairs.

Table 12: Aggregation SPARQL Queries in Yago

SA1 SELECT ?u COUNT(?m) WHERE {?m
<hasUTCOffset> ?u } GROUP BY ?u

high aggregation ratio, but the cardinality of
the ratio of the solution set to non-aggregation

query is small. Group all places by their UTC
offsets.

SA2 SELECT ?b COUNT(?m) WHERE {?m <bornOnDate>
?b } GROUP BY ?b

high aggregation ratio, and the cardinality of
the ratio of the solution set to non-aggregation
query is large. Group all individuals by their

birth years.

SA3 SELECT ?f ?g COUNT(?m) WHERE {?m

<hasFamilyName> ?f ?m <hasGivenName> ?g }
GROUP BY ?f, ?g

low aggregation ratio, and the cardinality of

the ratio of the solution set to non-aggregation
query. Group all persons by their family names
and given names.

GA1 SELECT ?b ?u AVG(?p) WHERE { ?m <livesIn> ?c. ?m
<bornOnDate> ?b. ?c <hasUTCOffset > ?u } GROUP

BY ?b, ?u

join two SA queries that have high aggregation
ratio

GA2 SELECT ?f ?d COUNT(?b) WHERE {?m

<hasFamilyName> ?f. ?m <created> ?b. ?b
<createdOnDate> ?d. } GROUP BY ?f, ?d

join two SA queries one with high aggregation

ratio, the other one with low aggregation ratio

GA3 SELECT ?f ?b COUNT(?m) WHERE {?m
<hasFamilyName> ?f. ?n <hasFamilyName> ? b.
?m <hasAcademicAdvisor > ?b } GROUP BY ?f , ?b

join two SA queries, S1, S2, |S′1| and |S′2|
(which are non-aggregation versions of the re-

spective queries) are large, but |GA3′| is small

neighbors of vi also have the matching vertices in G.

Thus, according to the encoding strategy in Definition

6, we know that vSig(u′i)&vSig(v′i) = vSig(v′i). Thus,

Table 13: Aggregation SPARQL Queries in LUBM

Sample Queries

SA1 SELECT ?p COUNT(?m) WHERE {?m <rdf:type> ?p.}
GROUP BY ?p

high aggregation ratio, and the cardinality of
the solution set to non-aggregation query is
large. Group all entities by their types.

SA2 SELECT ?t COUNT(?m) WHERE {?m <ub:name> ?n.

?m <ub:researchInterest> ?t.} GROUP BY ?t

low aggregation ratio, but the cardinality of

the solution set to non-aggregation query is
large. Group all persons by their research in-
terests.

SA3 SELECT ?p ?a COUNT(?m) WHERE {?m <rdf:type>
?p. ?m <ub:publicationAuthor> ?a.} GROUP BY ?f ?g

A group-by dimension is a link property (?a)
Group by all publications by their types and

the authors.

GA1 SELECT ?s ?d COUNT(?x) WHERE { ?x <rdf:type> ?s.

?y <rdf:type> ?d. ?x <ub:memberOf> ?y } GROUP BY
?s ?d

join two SA queries that have high aggregation

ratios.

GA2 SELECT ?t ?z COUNT(?x) WHERE {?x <rdf:type> ?t.
?x <ub:worksFor> ?y. ?y <ub:subOrganizationOf> ?z.}
GROUP BY ?t ? z

join two SA queries. One has high aggregation
ratio and the other one has low aggregation
ratio

GA3 SELECT ?x ?y COUNT(?z) WHERE {?x <rdf:type>
ub:Student. ?y <rdf:type> ub:Faculty. ?z <rdf:type>

ub:Course. ?x <ub:advisor> ?y. ?y <ub:teacherOf> ?z.
?x <ub:takesCourse> ?z.} GROUP BY ?x ?y

The join structure in GA3 is a triangle.

Table 14: SPARQL Queries in LUBM

Q1 SELECT ?x ?y ?z WHERE { ?z ub:subOrganizationOf ?y . ?y
rdf:type ub:University . ?z rdf:type ub:Department . ?x

ub:memberOf ?z . ?x rdf:type ub:GraduateStudent . ?x
ub:undergraduateDegreeFrom ?y . }

This query has large input and low selectiv-
ity. Furthermore, it is a triangular pattern of

relationships between the objects.

Q2 SELECT ?x WHERE { ?x rdf:type ub:Course . ?x ub:name ?y .
}

This query has large input and low selectivity.

Q3 SELECT ?x ?y ?z WHERE { ?x rdf:type
ub:Undergraduate-Student. ?y rdf:type ub:University . ?z
rdf:type ub:Department . ?x ub:memberOf ?z . ?z

ub:subOrganizationOf ?y . ?x ub:undergraduateDegreeFrom ?y .
}

The query is the same with S-Q1 except that
the student is an undergraduate student. The
output size is 0.

Q4 SELECT ?x WHERE { ?x ub:worksFor <http://www.-
Department0.University0.edu> . ?x rdf:type ub:FullProfessor . ?x
ub:name ?y1 . ?x ub:emailAddress ?y2 . ?x ub:telephone ?y3 . }

This query has a star-style query and it has a
constant entity.

Q5 SELECT ?x WHERE { ?x ub:subOrganizationOf

<http://www.Department0.University0.edu . ?x rdf:type
ub:Research- Group}

This query has a star-style query and it has a

constant entity.

Q6 SELECT ?x ?y WHERE { ?y ub:subOrganizationOf
<http://www.University0.edu> . ?y rdf:type ub:Department .
?x ub:worksFor ?y . ?x rdf:type ub:FullProfessor . }

This query join two stars and one star has a
constant entity.

Q7 SELECT ?x ?y ?z WHERE { ?y ub:teacherOf ?z . ?y rdf:type
ub:FullProfessor . ?z rdf:type ub:Course . ?x ub:advisor ?y . ?x

rdf:type ub:UndergraduateStudent . ?x ub:takesCourse ?z }

This is a complex query, since it contains a lot
of join steps

Table 15: Original SPARQL Queries in LUBM (Type

inferencing removed)

Q1 SELECT ?x WHERE { ?x rdf:type ub:GraduateStudent. ?x
ub:takesCourse
http://www.Department0.University0.edu/GraduateCourse0 }

This query has large input and high selectiv-
ity. Finding all students who take some course.

Q2 SELECT ?x ?y WHERE { ?x rdf:type ub:GraduateStudent. ?x

ub:undergraduateDegreeFrom ?y. ?x ub:memberOf ?Z. ?y
rdf:type ub:University. ?Z rdf:type ub:Department. ?Z
ub:subOrganizationOf ?y. }

This query has large input and high selec-

tivity. Furthermore, it is a triangular pattern
of relationships between the objects. Finding
all students who take some courses that are
hosted by their department.

Q3 SELECT ?x WHERE { ?x rdf:type ub:Publication. ?x

ub:publicationAuthor
http://www.Department0.University0.edu/AssistantProfessor0 }

This query has large input and high selectiv-

ity. Finding all papers that are published by
some assistant professor.

Q4 SELECT ?x ?y1 ?y3 WHERE { ?x ub:worksFor
http://www.Department0.University0.edu. ?x ub:name ?y1. ?x
ub:emailAddress ?y2. ?x ub:telephone ?y3. }

This query has small input and high selectiv-
ity. Finding the emails and telephone numbers
of employee who worked for some department.

Q5 SELECT ?x WHERE { ?x ub:memberOf
http://www.Department0.University0.edu. }

It is a simple query. Finding all members of
some department. Very high selectivity

Q6 SELECT ?x WHERE { ?x rdf:type ub:UndergraduateStudent. } This query has a large number of output re-
sults. Finding all undergraduate students.

Q7 SELECT ?x ?y WHERE {?x rdf:type ub:UndergraduateStudent.
?x ub:takesCourse ?y. ?y rdf:type ub:Course. }

This query has a large number of output re-
sults. Finding all undergraduate students and

the courses they take.

Q8 SELECT ?x ?y WHERE { ?x rdf:type
ub:UndergraduateStudent. ?x ub:memberOf ?y. ?x
ub:emailAddress ?Z. ?y rdf:type ub:Department. ?y
ub:subOrganizationOf http://www.University0.edu }

This query is more complex than Query 7 by
including one more property. Finding all un-
dergraduate students of some university. High
selectivity.

Q9 SELECT ?x ?y WHERE { ?x rdf:type

ub:UndergraduateStudent. ?x ub:advisor ?y. ?x ub:takesCourse
?Z. ?y ub:teacherOf ?Z. ?Z rdf:type ub:Course }

This query has a triangle pattern. Finding all

undergraduate students who take his advisor’s
course.

Q10 SELECT ?x WHERE { ?x rdf:type ub:GraduateStudent. ?x
ub:takesCourse
http://www.Department0.University0.edu/GraduateCourse0 }

This is a simple query. Finding all students
who take some course.

Q11 SELECT ?x ?y WHERE { ?x rdf:type ub:ResearchGroup. ?x
ub:subOrganizationOf ?y. ?y ub:subOrganizationOf

http://www.University0.edu. }

This is a star query. Finding all organizations
of some university.

Q12 SELECT ?x ?y WHERE { ?x ub:headOf ?y. ?y rdf:type

ub:Department. ?y ub:subOrganizationOf
http://www.University0.edu. }

Input of this query is small. Finding the de-

partment heads of some university.

Q13 SELECT ?x WHERE { ?x ub:undergraduateDegreeFrom
http://www.University0.edu }

This query has a large number of output re-
sults. Finding all students graduate from some
university.

Q14 SELECT ?x WHERE { ?x rdf:type ub:UndergraduateStudent } This query represents those with large input
and low selectivity. Finding all undergraduate

students

(F (v′1), ..., F (v′m)) forms a subgraph match of {v′1, ..., v′m}
in a data signature graph G∗. ut

3

Theorem 2 Given a query signature graph Q∗ with n

vertices {v1, . . . , vn}, a data signature graph G∗ and

VS∗-tree built over G∗:

1. Assume that n vertices {u1, . . . , un} forms a match

(Definition 8) of Q∗ over G∗. Given a summary

graph GI in VS∗-tree, let ui’s ancestor in GI be

node dIi . (dI1, ..., d
I
n) must form a summary match

(Definition 10) of Q∗ over GI .

2. If there exists no summary match of Q∗ over GI ,

there exists no match of Q∗ over G∗.

Proof (1) According to Definition 8, vSig(vi)& vSig(ui) =

vSig(vi). Since dIi is an ancestor of ui, vSig(ui)&vSig(dIi) =

vSig(ui). Therefore, we can conclude that vSig(vi)&

vSig(dIi) = vSig(vi).

If there is an edge from vi to vj in Q∗, there is also

an edge from ui to uj in G∗; and Sig(−−−→vi, vj)&Sig(−−−→ui, uj)

= Sig(−−−→vi, vj). Since dIi and dIj are ancestors of ui and uj ,

respectively, according to VS∗-tree’s structure, we know

that Sig(−−−→ui, uj)&Sig(
−−−→
dIi , d

I
j) = Sig(−−−→ui, uj). Therefore,

we can conclude that Sig(−−−→vi, vj)&Sig(
−−−→
dIi , d

I
j) = Sig(−−−→vi, vj).

In summary, according to Definition 10, we know

that (dI1, ..., d
I
n) is a summary match of Q∗ in GI .

(2) The second claim in Theorem 2 can be proved

according to the first claim by the contradiction. ut

Theorem 3 Any entity vertex u in RDF graph G is

accessed once in computing aggregate sets of trie-index

by Algorithm 6.

Proof According to T-index’s structure, each entity ver-

tex u is only in one path of T-index. Assume that u cor-

responds to node O in T-index. The dimension values

of u only need to be accessed when computing MS(O).

Aggregate sets of O’s ancestor nodes can be computed

from its children nodes without accessing the original

data. ut

C. T-index Construction and Maintenance

Construction

The construction algoirthm of T-index is given in Al-

gorithm 6. Initially, a scan of DB derives a list of all

dimensions, and the dimension list DL is created. We

introduce a root node into T-index (Lines 1-2 in Al-

gorithm 6). When we insert a transaction A(u) into

T-index, we find a node Oi, where the path reaching

Oi is the maximal prefix of A(u) (Line 4). The maxi-

mal prefix means that (1) the path reaching node Oi is

a length-n prefix of A(u) and (2) there exists no path

that is a length-(n + 1) prefix of A(u). Let {l1, ..., lNi}
be the dimensions along the path from the root to node

Oi and {pi, ..., pk} be A(u)’s dimensions. If {l1, ..., lNi}
⊂ {p1, ..., pk}, then we need to add new nodes to ex-

tend the path (Lines 5-6). Specifically, we introduce

a new node Oj as a child of node Oi to denote the

(n+ 1)-th dimension of A(u). Iteratively, we introduce

(|A(u)|−n) new nodes (i.e., nodes corresponding to di-

mensions {p1, ..., pk} \ {l1, ..., lNi}) to extend the path

from node Oi. We register these newly introduced nodes

into the corresponding dimensions in DL (Line 7). Fur-

thermore, we update vertex lists of each node along the

path (Line 9). We iterate and insert all transactions

into T-index (Lines 3-10).

Algorithm 6 T-index and Materialized Aggregate Sets

Input: Transaction Database DB
Input: RDF graph G
Output: T-tree and aggregate sets associated with each

node.
1: Scan DB to find all dimensions and build dimension list
DL.

2: Introduce a root node into T-tree
3: for each transaction A(u) in DB do
4: Find a node Oi in T-tree, where the path reaching Oi

(i.e.,{N0, ..., Ni}) is the maximal prefix of A(u). Let
{l1, ..., lNi

} be dimensions along path {N0, ..., Ni}.
5: if {l1, ..., lNi

} ⊂ {p1, ..., pk}, where {p1, ..., pk} are
A(u)’s dimensions then

6: Introduce |A(u)−n| nodes {p1, ..., pk} \ {l1, ..., lNi
}

to extend the path from node Oi.
7: Register these new introduce nodes into the corre-

sponding dimensions in DL
8: Record the ID of transaction A(u) into vertex lists

Oi.L, where i = 0, ..., k
9: for each child Oi of the root do

10: Call Function PostOrderVisit(Oi) (Algorithm 7)

Algorithm 7 Function: PostOrderVisit(O)

1: for each child node Oi of O do
2: Call Function PostOrderVisit(Oi).
3: for each child Oi of O do
4: compute MS′(Oi) =

∏
(p1,p2,...,pn)

MS(Oi).

5: MS(O) =
⋃
iM
′(Oi)

6: for each vertex u in O.L but not in
⋃
iNi.L do

7: F ′(u) =
∏

(p1,...,pn)
u

8: if there exists some aggregate tuple t′, where t′.D =
F ′(u) then

9: Register vertex ID of u in vertex list t.L
10: else
11: Generate a new aggregate tuple t′, where t′.D =

F ′(u) and insert vertex ID of u into t′.L
12: Insert t′ into MS(O)

4

Maintenance

Updates of the RDF data requires efficient maintenance

of T-index. Obviously, updates can be modeled as a

sequence of triple deletions and triple insertions. As

mentioned earlier, all dimensions are ordered in their

frequency descending order in dimension list DL to im-

prove SA query evaluation performance. However, RDF

data updates may change the order of dimensions in

DL requiring special care during index maintenance.

Therefore, we consider updates of T-index in two cases

based on whether or not the order of dimensions in DL

changes.

Dimension List DL’s order does not change

Consider the insertion of a new triple 〈s, p, o〉. If p is a

link property, we do not need to update the T-index.

Thus, we only consider the case when p is an attribute

property, i.e., dimension.

If s does not occur in the existing RDF data, we

introduce a new transaction into D. We insert the new

transaction into one path of T-index following Defini-

tion 16. Accordingly, we need to update the material-

ized aggregate sets MS(Oi) along the path. The de-

tailed steps are the same as Lines 4-9 in Algorithm 6.

If s is already in the existing RDF graph, assume

that s’s existing dimensions are {p1, ..., pn} and Freq(pi)

> Freq(p) > Freq(pi+1) in dimension list DL. Again,

in the case of equality, order is chosen arbitrarily. This

means that the new inserted dimension p should be in-

serted between pi and pi+1. We locate two nodes Oi and

On, where the path reaching node Oi (and On) has di-

mensions (p1, ..., pi) (and (p1, ..., pi, ...pn)5). We remove

subject s from all materialized sets along the path be-

tween nodes Oi+1 and On, where Oi+1 is a child node

of Oi. Then, we insert dimensions (p, pi+1, ..., pn) into

T-index from node Oi, and update the materialized sets

along the path.

Consider inserting a triple

〈y:Franklin D. Roosevelt, bornOnDate,“1882-01-30”〉
into RDF triple table T shown in Figure 1a, where

y:Franklin D. Roosevelt

corresponds to vertex 007.

Although inserting the triple changes the frequency

of dimension “bornOnDate”, it does not lead to chang-

ing the order in DL. 007’s dimensions are (hasName,

gender, title). According to dimension order, the in-

serted triple should be placed between “gender” and

“title”. Therefore, we delete 007 from path “O2 − O7”

in the original T-index. Then, we insert 007 into path

5 Although dimension list is a set, when the order is impor-
tant, we specify them as a list enclosed in ().

O0

O1

O2

O3

O4

O5

O6

O8

O9

root

hasName

gender

bonOnDate

title

diedOnDate

diedOnDate

foundingYear

foundingYear
{001,002,003,004,005,007,009}

{001,005,007,009}

{001,005,007, 009}

{001,005,007}

{001}

{009}

{002,004}

{006,008}

hasName gender bornOnDate title L

Abraham
Lincoln

Male 1865-04-15 President {001}

Reese With-
erspoon

Female 1976-03-22 Actress {005}

Franklin D.

Roosevelt

Male 1882-01-30 President {007}

MS(O4)

hasName:7

foundingYear:4

gender:4

bornOnDate:4

title:3

diedOnDate:2

Dimension
List DL

Fig. 24: Addition of Triple 〈y:Franklin D. Roosevelt,
bornOnDate,“1882-01-30”〉

“O2−O3−O4”. Path “O2−O7” is deleted, since the up-

dated aggregate sets in O7 are empty. Figure 24 shows

the updated T-index after inserting the triple.

Suppose now that we need to delete a triple 〈s, p, o〉,
where p is an attribute property as discussed above. As-

sume that s’s existing dimensions are {p1, ..., pn} and

p = pi, i.e., p and pi are the same dimension. We

locate two nodes Oi and On, where the path reach-

ing node Oi (and On) has dimensions (p1, ..., pi) (and

(p1, ..., pi, ...pn)). We remove subject s from all mate-

rialized sets along the path between nodes Oi+1 and

On. Then, we insert dimensions (pi+1, ..., pn) into T-

index from node Oi, and update the materialized sets

along the path. Again T-index itself does not need to

be modified.

Dimension List DL’s order changes

Some triple deletions and insertions that affect dimen-

sion frequency will lead to changing the order of di-

mensions in DL. Assume that two dimensions pi and

pj need to be swapped in DL due to inserting or delet-

ing one triple 〈s, p, o〉. Obviously, j = i+ 1, i.e., pi and

pj are adjacent to each other in DL 6.

Updates are handled in two phases. First, we ignore

the order change in DL and handle the updates using

the method in Section 13. Second, we swap pi and pj
in DL, and change the structure of T-index and the

relevant materialized sets.

We focus on the second phase. There are only three

categories of paths that can be affected by swapping

6 Assume that some dimensions pi, pi+1, ..., pj−1 pj have
the same frequency. If we insert one triple 〈s, p, o〉, we need
to swap adjacent dimensions several times.

5

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

root

hasName

gender

bonOnDate

title

diedOnDate

diedOnDate

title

foundingYear

foundingYear
{001,002,003,004,005,007,009}

{001,005,007,009}

{001,005,007, 009}

{001,005,007}

{001}

{009}

{005,007}

{002,004}

{006,008}

hasName gender bornOnDate title L

Abraham
Lincoln

Male 1865-04-15 President {001}

MS(O4)
hasName gender bornOnDate diedOnDate L

Marilyn
Monroe

Female 1926-06-01 1962-0805 {001}

MS(O4)

hasName gender bornOnDate L

Abraham
Lincoln

Male 1985-04-15 {005}

Marilyn
Monroe

Female 1926-07-01 {009}

MS(O3)
hasName gender title L

Reese
Witherspoon

Female Actress {005}

Franklin D.

Roosevelt

Male President {007}

MS(O7)

hasName:7

foundingYear:4

gender:4

bornOnDate:2

title:3

diedOnDate:2

Dimension
List DL

(a) Phase 1

O0

O1

O2

O
′

3

O
′

4

O5

O
′′

3

O6

O8

O9

root

hasName

gender

title bornOnDate

bornOnDate

diedOnDate

diedOnDate

foundingYear

foundingYear
{001,002,003,004,005,007,009}

{001,005,007,009}

{001,005,007}

{001}

{001}

{009}

{009}

{002,004}

{006,008}

hasName gender bornOnDate title L

Abraham
Lincoln

Male 1865-04-15 President {001}

MS(O4)
hasName gender bornOnDate diedOnDate L

Marilyn
Monroe

Female 1926-06-01 1962-0805 {009}

MS(O6)

hasName gender title L

Reese
Witherspoon

Female Actress {005}

Franklin D.

Roosevelt

Male President {007}

Abraham

Lincoln

Male President {001}

MS(O
′
3)

hasName:7

foundingYear:4

gender:4

title:3

bornOnDate:2

diedOnDate:2

Dimension
List DL

(b) Phase 2

Fig. 25: Deletion of triple 〈y:Reese Witherspoon, bornOnDate, “1976-03-22”〉

pi and pj : (1) path has both dimensions pi and pj ,

i.e., path has dimensions (p1, .., pi, pj , ..., pm); (2) path

shares a prefix (p1, ..., pi) with a path in the first cat-

egory; and (3) path shares a prefix (p1, ..., pi−1) with

a path in the first category and pi−1’s child is pj . We

discuss below how to update the three categories of af-

fected path.

We first locate all paths in the first category, i.e.,

find all paths that have both dimensions pi and pj . Con-

sider one such pathH with dimensions (p1, ..., pi, pj , ..., pn).

Nodes Oi and Oj have dimensions pi and pj , respec-

tively. We rename Oi as O′i and Oj as O′j . Moreover,

we set O′i’s corresponding dimension to be pj and O′j ’s

corresponding dimension to be pi. We compute aggre-

gated set MS(O′i) by projecting MS(Oj) over dimen-

sions (p1, ..., pi−1, pj), i.e., MS(O′i) =
∏

(p1,...,pi−1,pj)

MS(Oj) and set MS(O′j) = MS(Oj), since they have

the same group by dimensions.

If node Oi has a branch (i.e. Oi has other child nodes

in addition to Oj) in the original T-index, which is ex-

actly the case belonging to the second category, we in-

troduce a node O′′i as a child of Oi−1, where Oi−1 is a

parent of Oi in the original T-index, and set the dimen-

sion in O′′i as pi. We move all child nodes of Oi except

for Oj to be children of O′′i . We compute aggregate set

MS(O′′i) = MS(Oi) \
∏

(p
1
,...,pi)

MS(Oj). Specifically,

for each aggregate tuple t in MS(Oi), we check whether

there exists an aggregate tuple t′ ∈
∏

(p
1
,...,pi)

MS(Oj),

where t.D = t′.D. If there exists such an aggregate

tuple, we generate a new aggregate tuple t′′, where

t′′.D = t.D, and t′′.L = t.L \ t′.L, and insert t′′ into

MS(O′′i). Otherwise, we insert t into MS(O′′i) directly.

If node Oi−1 has a child Om whose corresponding

dimension is pj , where Oi−1 is a parent of Oi in the orig-

inal T-index, which is a case belonging to the third cate-

gory, we merge nodeO′j andOm. Specifically, we remove

Om and move Om’s child nodes to be O′i’s child nodes.

Then, we compute MS(O′i) = MS(O′i) ∪ MS(Om).

Specifically, for each aggregate tuple t in MS(Om), we

check if there exists an aggregate tuple t′ in MS(O′i),

where t.D = t′.D. If so, we set t′.L = t′.L∪ t.L. Other-

wise, we insert t into MS(O′i) directly.

Consider deleting the triple 〈y:Reese Witherspoon,

bornOnDate, “1976-03-22”〉 from the RDF triple table

T shown in Figure 1a. This changes the order of “ti-

tle” and “bornOnDate” in dimension list DL, since the

frequency of “bornOnDate” is changed to 2. We first

assume that the order does not change, and we delete
the triple using the method in Section 13. Figure 25a

shows the updated T-index after the first phase.

Now, we swap “title” and “bornOnDate”. Path H1

=“O0− O1 −O2 −O3 −O4 −O5” is a path in the first

category, since O3 and O4’s corresponding dimensions

are “bornOnDate” and “title”. Path H2 =“O0 − O1 −
O2 − O3 − O6” is a path in the second category, since

it shares prefix (O0 − O1 − O2 − O3) with H1. Path

H3=“O0−O1−O2−O7” is one path in the third cate-

gory, since it shares prefix “O0−O1−O2” with H1 and

O2’s child node’s dimension is “title”.

In the first step of phase 2, we first find the path

“O0 − O1 − O2 − O3 − O4”, where the dimensions in

O3 and O4 are “bornOnDate” and “title”, respectively.

Then, we rename O4 as O′4 with dimension “bornOn-

Date”, and rename O3 as O′3 with dimension “title”.

MS(O′4) = MS(O4) andMS(O′3) =
∏

(hasName,gender,title)

MS(O4). Since transaction 009 does not have dimen-

sion “title”, we introduce a new nodeO′′3 , andMS(O′′3) =

MS(O3)−
∏

(hasName,gender,bornOnDate)MS(O4). Finally,

6

we merge nodes O7 with node O′3, since they share the

same prefixes. Figure 25b shows the final updated T-

index.

D. Additional Experiments

Effect of Pruning Power

Theorem 1 shows that CL (matches of Q∗ over G∗) is

a subset of RS (matches of Q over G). Figure 26 shows

both |CL| and |RS| of queries over Yago dataset. We

find that |CL| < 3× |RS|, which indicates the low cost

of the verification process in our method.

A1 A2 B1 B2 B3 C1 C2
0

200

400

600

800

Queries

Q
u
er

y
R

es
p

on
se

T
im

e
(i

n
m

s)

RS
CL

Fig. 26: |RS| VS. |CL| over Yago Dataset

BVS∗-Query Algorithm vs VS∗-Query Algorithm

We compare the two query algorithms, BVS∗-Query

(Algorithm 1) and VS∗-query (Algorithm 2) over both

Yago and DBLP datasets. Figure 27 shows that VS∗-

query algorithm is much faster than BVS∗-Query al-

gorithm. The reason behind that is the following: For

each summary match, we always need to materialize all

child states in BVS∗-Query, which is quite expensive.

However, VS∗-query algorithm uses VS∗-tree to reduce

the search space instead of materializing all summary

matches in all non-leaf levels.

S-tree+Join VS. gStore

In order to find matches of Q∗ over G∗, a straightfor-

ward method can work as follows: for each vertex vi in

Q∗, we can employ S-tree to find Ri = {ui1 , ..., uin},
where vSig(uij)&vSig(vi) = vSig(vi) and uij ∈ G∗.

Then, according to the structure of Q∗, we join these

lists Ri to find matches of Q∗ over G∗. A key problem

is that |Ri| may be very large. Consequently, it is quite

expensive to join Ri. According to our experiments in

Yago, |Ri| >1000 in many queries. Different from S-

tree+Join method, |Ri| is shrunk according to Theorem

A1 A2 B1 B2 B3 C1 C2
0

1,000

2,000

3,000

4,000

Queries

Q
u
er

y
R

es
p

o
n
se

T
im

e
(i

n
m

s)

BVS∗-Query
VS∗-Query

Fig. 27: BVS∗-Query vs VS∗-query

2. Therefore, VS∗-query algorithm in our gStore system

is much faster than S-tree+Join method, as shown in

Figure 28a. Given a sample query in our experiment in

Figure 28b, we show the candidate sizes for each vertex

vi in Q using S-tree and VS∗-tree for pruning, respec-

tively. Obviously, VS∗-tree provides stronger pruning

power. Thus, VS∗-query algorithm is much faster than

S-tree+Join.

A1 A2 B1 B2 B3 C1 C2
0

1,000

2,000

3,000

4,000

5,000

6,000

Queries

Q
u

er
y

R
es

p
on

se
T

im
e

(i
n

m
s)

S-tree+Join
gStore

(a) S-tree+Join Over Yago

S-tree VS*-Tree

x1 810 810

x2 424 197

x3 66 66

x4 36187 6686

?x y:hasGivenName ?x5

?x1 y:hasFamilyName ?x6
?x1 rdf:type <wordnet scientist 110560637>
?x1 y:bornIn ?x2
?x1 y:hasAcademicAdvisor ?x4

?x2 y:locatedIn <Switzerland>
?x3 y:locatedIn <Germany>
?x4 y:bornIn ?x3

(b) |CL| for Sample Query

Fig. 28: S-tree+Join vs. gStore

We also compare gStore with other algorithms over

LUBM-100 benchmark datasets in Figure 29.

Effect of δ on VS∗-tree Pruning Power

Tables 16 and 17 depict the effect of different δ values

on the number of 1’s at each node of the VS∗-tree. The

lower the number of 1’s, the better is the pruning power.

13.0.1 Evaluating Dimension Orders in DL

In this subsection, we evaluate the affect of the order

of dimensions DL using both Yago and LUBM datasets

(aggregate LUBM queries are given in Table 13 in On-

line Supplements). Table 18 shows that the descending

frequency order leads to the least number of nodes in T-

index, the minimal total size and the minimal building

7

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
0

1,000

2,000

3,000

4,000

5,000

6,000

Queries

Q
u
er

y
R

es
p

on
se

T
im

e
(i

n
m

s)
gStore

RDF-3X
SW-Store
x-RDF-3x

BigOWLIM
GRIN

Fig. 29: Exact Queries over LUBM Dataset

Table 16: Yago Data – No. of 1’s at Various Levels

δ 1st level 2nd level 3rd level

80 221 211 181

70 191 172 159

60 181 161 151

50 173 155 145

40 167 153 142

30 165 149 138

Table 17: DBLP Data – No. Of 1’s at Various Levels

δ 1st level 2nd level 3rd level

80 183 139 103

70 161 120 91

60 153 115 82

50 140 109 75

40 138 105 73

30 135 102 68

time, since this order ensures that more prefixes can

be shared among different transactions. Furthermore,

we find that T-index in LUBM has a small number of

nodes. This is because LUBM data is more structured

than Yago data, since all RDF triples are generated

following an ontology in LUBM. The structured data

causes most entities to have almost equal dimensions;
thus, they introduce few branches in T-index, i.e., the

number of nodes is small.

Table 18: Evaluating T-index

Datasets
Dimension
Order

Construction Time (sec) Index size (MB) Node #

T-

index

Aggregate

Sets

Total

Time

T-index

Aggregate

Sets

Total

Size

T-

index

(including

vertex lists in

each node

Yago

Frequency
Decreas-
ing

28 41 69 17 158 175 672

Frequeny

Increas-
ing

35 58 93 19 210 229 810

Random 32 52 80 18 180 198 750

LUBM

Frequency
Decreas-

ing

48 24 72 16 249 265 15

Frequeny
Increas-
ing

53 36 89 20 287 307 22

Random 50 31 81 18 271 289 16

We evaluate the online performance of different di-

mension orders in answering SA queries. Table 19 shows

Table 19: Evaluating Dimension Orders in DL

Dimension

Order

Query Response Time (msec) Number of Accessed Nodes

Yago LUBM Yago LUBM

SA1 SA2 SA3 SA1 SA2 SA3 SA1 SA2 SA3 SA1 SA2 SA3

Frequency

Decreas-
ing

52 163 951 19 28 160 4 5 3 2 1 3

Frequency

Increas-
ing

150 236 1223 31 45 235 34 72 8 3 2 3

Random 67 200 1103 27 37 189 7 36 5 2 2 2

that SA query on T-index using descending frequency

order has the fastest response time, since it accesses the

minimal number of nodes in T-index.

Furthermore, our experiments show that the ran-

dom choice of the order for dimensions with the same

frequency does not affect online performance, because

only a few dimensions have the same frequency, and T-

index’s size and node numbers are similar in different

arbitrarily defined orders.

Additional Scalability Experiments

The full set of scalability experiments involving gStore,

RDF-3x, and Virtuoso are given in Table 20. The first

and last columns are identical to what is reported in

Table 4 in Section 11.8; they are included here for com-

pleteness.

8

Table 20: Scalability of Query Performance on LUBM

Queries
Query Response Time (msec)

LUBM-100 LUBM-200 LUBM-500 LUBM-1000

gStore RDF-3x Virtuoso gStore RDF-3x Virtuoso gStore RDF-3x Virtuoso gStore RDF-3x Virtuoso

Q1 1310 22634 2152 4146 44589 11653 24691 99231 28252 43832 202728 54460

Q2 236 4276 30560 393 7595 71807 857 7084 >30 mins 1563 15008 > 30 mins

Q3 208 216 1981 297 480 2175 688 860 4868 1491 1737 7784

Q4* 153 44 1341 162 52 1358 311 6 1357 680 30 1357

Q5* 129 48 312 163 15 312 246 4 328 131 12 243

Q6* 227 20 843 367 29 827 726 20 827 828 49 842

Q7 1016 960 5257 1786 2901 8861 4859 5513 19546 8301 14072 36848

Note that ∗ means that the query contains at least one constant entity.

