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Abstract

FIFO channel systems, in which messages between processes are cached in queues,
are fundamental to the modeling of concurrency. A great deal of effort has gone into
identifying scenarios where reasoning about such systems is decidable, often through
establishing that the language of all channel contents is regular. Most prior results
in this area focus on the effect of repetitions of individual operations sequences or
they constrain the channels either to be lossy or to be polynomially bounded (that
is, the number of words of a given length describing channel contents is bounded
by a polynomial).

We focus on piecewise languages for both describing operations and channel con-
tents. Piecewise languages restrict the Kleene star operation to be applied to sets
of letters only. For example, a(b+ ¢)* is piecewise (but not polynomially bounded).
These languages correspond to the Yo class of the first-order quantifier hierarchy.
It is already known that piecewiseness plays a key role in establishing regular-
ity results about parameterized systems subjected to rewritings according to semi-
commutation rules.

In this paper, we show that piecewiseness is central to the understanding of
FIFO channel systems. Our contribution is to study the effect of iterating sets of
operations, while extending and unifying previous work on both lossy and perfect
FIFO systems. In particular, we show that well-quasi-orderings are important to 3o,
not only to the lossy systems of II;. Moreover, we show that Yo also describes limits
in a class of FIFO systems that include iterations of arbitrary sets of simultaneous
read and write operations.
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Fig. 1. ECLIPSE call structure
1 Introduction

We show that the class of piecewise languages are important to the under-
standing of finite-state systems that communicate over unbounded channels.
Piecewise languages are regular languages that are finite unions of simply
piecewise languages of the form Mfa, --- M} a, M |, where the M,’s are sub-
sets of a finite alphabet ¥ of symbols and the a;’s are elements of ¥. To
express the language consisting of € (the empty word), we allow n = 0. Note
that if M; = {}, then M} is ¢; also, it can be seen that replacing the a;’s by
finite strings of u;’s does not affect the class of languages defined.

Piecewise languages can also be characterized as >s-languages of the quan-
tifier alternation hierarchy for first-order logic on words over the signature
(<,a(-)aex) or as the level 1% of the concatenation hierarchy of Straubing-
Thérien, see [19]. More simply, piecewise languages are those recognized by
nondeterministic automata whose only nontrivial strongly connected compo-
nents are states with self-loops.

1.1  Motivating example

Our investigations have a practical background. ECLIPSE (now called BoxOS)
is a next-generation telephony service over IP infrastructure developed at
AT&T Labs; see [8] for our earlier work on model-checking ECLIPSE. Tele-
phone calls are structured as in Figure 1. Boxes at the end points repre-
sent telephones, intermediate boxes represent call features, for example call-
forwarding-on-busy, and the arrows represent, possibly unbounded, perfect
communication channels, or queues, that pass messages from endpoint to end-
point. However, at a sufficiently high level of granularity, each box represents
a finite state transducer.

Our focus is on the problems inherent in checking properties of systems
composed of several boxes. Consider the transparent box described on the
left of Figure 2. This transparent box represents a communication template
that all system boxes must implement. Figure 2 has been simplified for this
presentation in several important ways: the feature box in the picture commu-
nicates with only one neighbor, in general, communication may by n-way, and
is usually two-way. Simple replication of the one-way communication func-
tionality to create a two-way machine results in a feature with 17 states —
the neighbors are not symmetric, one will be the initiating, upstream feature,
the other the receiving, downstream feature.

The transparent box communicates with one neighbor across two separate
channels. Messages from the neighbor, in this case an initiating, upstream,
environment (cf.[8]), representing the caller, are received via the callerIn
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callerln?Setup
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callerOut! Ack &
;

callerIn?StatusA -> linked callerln?StatusB -->
callerOut! StatusA callerOut! StatusB

calerIn?Teardown

callerOut! Ack

Fig. 2. Abstract Transparent Feature Box

channel. Messages sent back to the caller are sent on the callerOut channel.
A message is received with the ‘7" symbol and sent with the ‘!” symbol.
So callerIn?Setup indicates a call setup message received on the callerIn
channel.

At present, we are not concerned with the full details, but we note that
the structure of the transparent box in Figure 2 is piecewise. To achieve
piecewiseness we have abstracted the transparent box by replacing the original
linked state and its left and right neighbors, given in the figure on the right by
the linked state given in the full box on the left. The state on the left has the
same functionality as the figure on the right. The difference is the addition
of conditional operations of the form callerIn?Status — callerOut!Status
where the Status message is sent to the caller only if the Status message has
been received from the caller first.

The global state of a system is describable by the states of the automata
corresponding to the boxes in addition to joint content, which is a word listing
the contents of each channel in some predetermined order. In other words,
we operate with recognizable relations describing the channels (see Proposi-
tion 2.7). Although Figure 2 presents a single feature as a piecewise automa-
ton, it is possible to compose piecewise automata, representing individual
processes, and obtain a piecewise product automaton, whose states are called
control states. A pair consisting of a control state and joint content is a global
state. The set of possible joint contents at a control state is the channel
language of the state.
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For each control state, we are interested in describing the limit set of all
join contents that may arise from a set of initial global states. The ability to
calculate the limit set is important to the automatic verification of properties
of the system. Generally, of course, this is not possible; in fact the limit set is
usually not a regular language.

1.2  Our contributions

Our main insight is that limit languages of systems described with piecewise
operations languages remain regular even if conditional operations are added
to a set of transitions iterated on FIFO systems. In particular, we show that
for single channel systems, the action of piecewise languages of operations
preserves regularity (and piecewiseness) of initial channel languages (Proposi-
tion 3.2).

For multiple channel systems, we show that the limit language is piecewise
if the initial language is piecewise. Our construction is not effective, but we
provide an algorithm for calculating the limit language if no message may
circulate indefinitely. A technical tool we introduce is that of the repetition
piecewise languages, that are a subclass of I1; repetition piecewise languages
enjoy attractive closure properties, for example, under arbitrary unions.

The paper is organized as follows. We discuss related work below. In
Section 2, we provide an overview of the mathematics of regular languages
as applied to the description of perfect and lossy FIFO systems; we include
several known results that bear on piecewise languages along with new con-
tributions. In Section 3, we introduce operation languages and their actions
on channel languages. In addition to Proposition 3.2, we consider multiple-
channel systems with and without conditional operations. Finally, we provide
a summary of our results in Section 4 along with a statement of problems still
to be solved.

1.3 Previous work

FIFO systems with finite control and unbounded channels have been studied
extensively, so our survey will not be comprehensive. Despite the undecid-
ability of interesting questions about even one-channel systems[10], tractable
scenarios have been investigated since Pachl’s work[18,17]. Among other pre-
cursors to modern techniques, Pachl introduces assertions for proving protocol
properties. These assertions are in the form of recognizable or rational descrip-
tions of the joint content of the channels. (Rational descriptions are more
general than recognizable ones, but have apparently not been considered since
Pachl’s work.) In the framework of [10,17], a limit language, which may not
be regular, is naturally associated to each control state. But Pachl notes that
if recognizable, but not rational, assertions are associated to control states, it
is decidable whether the assertions hold across transitions (and whether the
assertion associated with the initial control state holds). Consequently, Pachl
shows that if the limit language L is known to be regular, then the reachability
question, whether w € L for joint content w, is decidable (it suffices to inter-
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leave the two algorithms: one that enumerates words in the limit language
and one that verifies enumerated assertions and tests whether w is outside the
enumerated assertions). Of course, this algorithm is unusable in practice, and
it does not explain when limit languages are regular. Also, a reduction from
the Post Correspondence Problem shows that even when the limit language is
known to be regular, determining it may still be undecidable[14].

An appealing general model to distributed systems with queues is that of
FIFO nets, which are formulated as Petri nets except that places are replaced
by FIFO channels. The survey [16] contains several decidability results, but
they depend on the channel languages being bounded (that is, a subset of some
language wg - - - w}_;, where the w;’s are words).

For lossy FIFO systems, where it is assumed that any message may be lost,
otherwise undecidable problems such as reachability become decidable thanks
to well-quasi-orderings on channel contents[4,14].

The work mentioned so far does generally speaking not offer methods for
calculating the limit languages; instead, the central theme is on deciding prop-
erties such as reachability and deadlock freedom. Also, safety properties about
the control states (which do not include the joint content) may easily be re-
duced to reachability; see [4].

Boigelot et al. studied the problem of calculating limit languages. For f a
receive, send, or simultaneous read and write operation, [6] proposes detailed
automata-theoretic algorithms that calculate the effect f: L of the operation
when applied to channel language L as well of the effect f*: L of the iterated
operation. Using derivatives[12], we reformulate these results in elementary
terms. Also, [6] proposes a heuristic for calculating limit sets: if there is a
transition from control state p to control state ¢ on an operation f, then the
channel language L(q) of ¢ is updated to be L(q) := L(q) U f: L(p) and for
loops, that is, transitions from p to p, the update is accelerated as L(p) :=
f*:L(p); in this way, an arbitrary number of loop traversals is considered at
once. Moreover, it is proposed that the accelerated updates are prioritized
over transitions among different control states. The resulting algorithm is
called loop-first search. Our Proposition 3.3 shows that our results on limit
languages for single-channel systems permit a stronger acceleration algorithm
when multiple loops are considered simultaneously. Another heuristic of [6]
is to combine read and write operations that would otherwise constitute a
two-cycle. We call these operations conditional and our present study focuses
on iterations of sets that include such operations.

While [6] only considers the effect of individual actions, [5] presents a de-
tailed treatment of the iteration of sets of operation sequences. In particular,
various conditions are provided on such sets that characterize when their it-
erations preserve recognizability. However, the conditions are applicable only
to sets that satisfy a condition of read synchronization: if t? and t'? are se-
quences in the set, then the subsequence of read operations in ¢ and that of ¢/
are the same. We do not impose such restrictions, but we consider only sets
of operation sequences that consist of a single operation or of a combined read
and write operation.

In [7], the operation sequences that preserve regularity of channel languages

b}
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is characterized; they are called non-counting and the set of such sequences is
shown to be recognizable.

A special kind of regular expression, called semilinear, was introduced
in [15] as a symbolic representation of regular, bounded languages describing
channel contents. Unfortunately, a bounded language L has polynomial den-
sity: there are at most P(n) words of size n for some polynomial P. This may
be a severe restriction; for example, it precludes sending a’s and b’s that are
arbitrarily interspersed.

Again based on well-quasi-orderings, [2] identifies languages at the I1; level
of the first-order hierarchy as fundamental to representing the content of lossy
channels in FIFO systems. The simple regular expressions (SRE’s) introduced
there encode II; sets; they look superficially similar to piecewise expressions
(the difference is that a; is substituted for @;? in SRE’s); that is, these lan-
guages are the downward closed languages under the scattered subword or-
dering. This class is properly contained in > since the first-order hierarchy
is strict.

The importance of piecewise languages to parameterized networks of finite-
state processes is established in [9], where it is shown that applying semicom-
mutation rewriting rules of the form ab — ba to piecewise languages yields
limit languages that are also piecewise. This result also follows from the
observation that semicommutation preserves the anchor length of piecewise
expressions (defined in Section 2) combined with our Proposition 2.9 that
any anchor-length-bounded union of piecewise languages is piecewise. Impor-
tantly, in [9], an effective way of calculating the limit language under semi-
commutative rewriting is given. In our case, we do not know if the limit of
piecewise operation languages acting on multiple FIFO channel systems is ef-
fectively piecewise, but we do know that this is the case for a single-channel
system (Proposition 3.2). Based on [20], representations for piecewise lan-
guages and complexity results are also discussed in [9]. A general approach
to the Straubing-Thérien Hierarchy, including characterizations of piecewise
languages, is provided in [20,19].

Piecewise languages include the piecewise testable languages [21] (a piece-
wise testable language is a piecewise language L for which the sets M; in the
expression defining it are all equal to ). So there is a historic reason for
naming the Y, class “piecewise languages”. Previously, the name “Alphabetic
Pattern Constraints” has been suggested|[9].

2 Preliminaries and notation

2.1 Regular and piecewise languages

A regular expression R over Y is of the form a, where a € ¥, R'- R", R' + R’
R, 0, or 1. The symbol 0 denotes the empty language, and 1 denotes the
language {€}; in particular, we have 1 = 0*. The language £(R) denoted by
a regular expression is defined in the usual way. We sometimes just write R
when we mean L£(R). In particular, we have R-1 = R and R-0 = 0. In
a further abuse of notation, we sometimes regard a set M C ¥ U {¢} as a
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regular expression, namely the sum of elements in M. The expression test(R)
is 1if L(R) # 0 and 0 if L(R) = (). For notational convenience inside tests,
we use the operator N to denote the intersection operator of extended regular
expressions.

An automaton A over an alphabet X is of the form (3, Q, A, ¢°, QF). The
automaton is deterministic if for all ¢ and a there is exactly one ¢’ such that
(q,a,q") € A. A partially ordered automaton (A, <) is an automaton together
with a partial ordering < on its states such that for any (¢, a,¢’) € A it holds
that ¢ < ¢'.

A language is simply piecewise if it can be expressed by a regular expression
of the form M;ay - - - MjapM; . |, where M; C ¥ and a; € ¥ U {€¢}. A language
L is piecewise if it is a union of simply piecewise languages. L is repetition
piecewise if all a;’s are e. If L is a union of sets of the form Mjay - - - My a, M,
such that for all ¢ it holds that a; # € and a; ¢ M;, then L is deterministic
piecewise . In particular, 0 (= ¥*) and 1 (= (*) are deterministic piecewise.

We summarize properties that are well-known (although we believe (e) has
not been reported before):

Proposition 2.1 (a) (a+ b)*ab is piecewise, but not deterministic piecewise.
(b) Every deterministic piecewise language is piecewise. (c) Piecewise lan-
guages are star-free; more precisely, they are models of Ya-sentences (first-
order logic formulas in prenex form with quantifier prefix 3---3V---V) over
signature (<, a(+)qex); they are closed under finite unions, finite intersections,
concatenation, shuffle, and projections (defined by letter-to-letter mappings)
and inverse homomorphisms, but not under complementation and substitu-
tions. (d) Deterministic piecewise languages are closed under boolean oper-
ations and inverse homomorphisms, but not under concatenation, shuffle, or
projections. (e) Repetition piecewise languages are deterministic piecewise and
closed under finite unions and intersections, concatenation, shuffle, and pro-
jections, but not under substitutions or inverse homomorphisms.

Let < be the partial order on words defined by x < y if x is a scattered
subword of y, that is, by deleting letters in y one may obtain x. For a set
of words A define A<, the upward closure of A, to be the set of words y
for which # < y for some # € A. Define A%, the downward closure of A,
to consist of words y for x > y and x € A. The partial ordering < is a
well-quasi-ordering according to Higman’s Lemmal[l] (a well-quasi-ordering
is a transitive, reflexive relation such that any upwards closed subset has
finitely many minimal elements). Note that a repetition piecewise language L
is downwards closed, that is L = L=. For L C ¥*, define CL to be ¥*\ L. The
following is well-known:

Proposition 2.2

(a) A repetition piecewise language L is of the form L = CAS for some finite
A.

(b) Any downward closed L is piecewise (in fact Iy, see [19], or SRE[3]).
Proof.



A ALJLIRAVILIVANLS Oo L VL LAV

(a) L is downward closed. So, CL is upward closed, that is, (CL)S = CL. By
Higman’s Lemma, there is a finite A such that A< = CL.

(b) (Hint) If L is downward closed, then CL is upward closed and hence regular
by Higman’s Lemma. So, L = L= is regular. Now a simple inductive
transformation of a regular expression R with £(R) = L yields an equivalent
piecewise expression.

O

We have not found the following property in the literature:

Proposition 2.3 The following are alternative characterizations of repetition
piecewise languages L.

(a) L is recognized by a deterministic, partially ordered, minimal automaton
such that at most one state is rejecting (and it is a sink state) and for every
transition (s,a, s’) there is also a transition (s',a,s').

(b) The canonical congruence =y, (defined by v =y if and only if for all u,v it
holds that uxv € L < uyv € L) is of finite index, Va € ¥ : a =1 a?, and
Vu:u-ve L =uclL.

Proposition 2.4 [13] The following are alternative characterizations of de-
terministic piecewise languages L.

(a) L is recognized by a deterministic, partially ordered automaton.

(b) The canonical congruence =y, is of finite index and there is an n > 0 such
that Ve, y : (z-y)" = (z-y)" - x.

Thus, it is also straightforward to determine whether a given language is
deterministic piecewise.

Proposition 2.5 The following are alternative characterizations of piecewise
languages L.

(a) L is recognized by a (possibly nondeterministic) partially ordered automaton.

(b) [20] The canonical congruence =y, is of finite index and there is an n > 0
such that Vx,y,u,v : (c(x) =c(y) N u-2"-veL)=u-(z"-y-2") v €L,
where ¢(x) is the set of letters occurring in x.

Proposition 2.5 can be used to decide whether a given regular language is
piecewise; an efficient algorithm is provided in [9].

Proposition 2.6 The union L of any family of repetition piecewise languages
1S repetition piecewise.

Proof. (Hint) By Proposition 2.2(b), L is regular. Use Proposition 2.3(b).
O

Recall (from say[22]) that a relation p C (3*) is recognizable if and only
8
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p=J LRY x - x L(R_y) (1)
0<i<I

for some number I and some regular expressions R; over Y. The following is
known:

Proposition 2.7 Let p be a K-ary relation over ¥*. Define L(p) = {wy -
#HoooHwg_q | (wo,...,wkg_1) € p}. Then L(p) is a regular language over
S UA{#} if and if only if p is recognizable.

Moreover, L£(p) is piecewise if and only if the R; ; can be chosen to be piece-
wise. In that case, we say that a recognizable relation is repetition piecewise.

Proposition 2.8 The union L of any family of repetition piecewise relations
15 repetition plecewise.

Proof. The proof is similar to that of Proposition 2.6. We use the fact
that a product of well-quasi-orderings is well-quasi-ordered. O

The anchor sequences of a piecewise expression

R = Z Mf ai - 'Mlj;aéc(i) Ii(i-i—l)

i<l

is the set {aj---aj|i < I}. The anchor length of R is max,<; k(i) and the
anchor length of piecewise L is the minimum anchor length of an R such that

L(R)=L.

Proposition 2.9 The union L of any family of piecewise languages of bounded
anchor length is piecewise.

Proof. (Idea) By a rearrangement of the simply piecewise expressions of
the languages of the family, it suffices to consider a finite union of languages
Ly, where L, is a union of simply piecewise languages all having the same
anchor sequence. We use here the facts that there are only finitely many such

anchor sequences and that piecewise languages are closed under finite union.
Thus, consider Ly = (J;5, L(R'), where

R = M{'*ai T Mgai(z)Mé?eH)

Then use Proposition 2.8. O
We now recall that the left residual operation (or derivative[11]) is defined as

9
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a '0=0
a'1=0
a 'b=test(aNb)
a'(R-S)=a'R-S+ test(RN1)-a 'S
a'(R+8S)=a'R + a 'S
a'(R)=a 'R R
and that £(a"'R) = {v | a-v € L(R)}. Similarly, we may define a residual
operation for M*, where M C X:

(M*)'0=0
(M*)'1=1
(M) 'a=a + test(an M)
(M) (R-S)=(M*)"'R-S + test(RNM*)-(M*)"'S
(M*) Y (R+8)=(M*)"'R + (M*)"'S
(M) (R)=(M*)"'R-R*+1

Then, it can be verified that

LM 'Ry ={v|Fue L(M*):u-veLR)}

2.2 Channels and transformations

A channel over ¥ is a FIFO queue whose contents is described by a word
w € X*. A channel operation f is of the form ?a, !a, or 7a —!b, where
a,b € 3. We use the notation f:w for the action of an operation f applied to
channel contents w. This action is defined as follows:

e ?a is an input operation that removes an a from the channel. The channel
contents must be of the form a - w for this operation to be enabled. The
action of 7a on channel contents a - w is w; that is, 7a:a - w = w.

e la is an output operation that transform the channel from w to w - a; that
is, la:w = w - a.

e ?7a —!b is a conditional output operation that is enabled if the channel
contents is of the form a - w. The resulting channel contents is w - b; that
is, 7a—!b:a-w =w-b.

For any ¥, the set of operations is denoted X,,. If we denote the set of
input operations by ¥,, the set of output operations by .., and the set of
conditional output operations by Y.y, then we have X, = i U Xgu U Xeout-

We sometimes consider systems with more than one channel. In those
cases, the channels have names in a finite set assumed to be of the form
{0,..., K —1}. A channel operation f in a multiple channel system is of the
form k?a (read a from channel k), kla (write a to channel k) or k7a — E'lb
(write b to channel &’ while reading a from channel k), where 0 < k, k' < K.
For systems with more than one channel, we define ¥, to be the set of all

10
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operations; Y., Yout, and Yoy are defined as for one-channel systems.

2.8 Describing channel contents

The joint content at a given instant for systems with K channels is a mapping
w € {0,..., K — 1} — ¥*. We usually regard joint content as a word of the
form w = wq-# - - #-wi_1, where # is not in ¥ and w; = w(i) for 0 < i < K.
A set of such words is called a channel language.

3 Operations languages acting on channel languages

3.1  Operation languages

Operations are extended to act on channel languages:
f:L={f:w| f is enabled on w}

Furthermore, operations are homomorphically extended to strings of opera-
tions according to:

e:L=1L and f-t:L=t:f:L,

where f € X, and t € 3% . An operation language T' is a subset of 37 . The
action T': L of T on L is defined as {t :w | w € L,t € T}. We will also
sometimes use 7" as a symbol denoting a regular expression over X,,. The
following is well-known, see [6], except for the emphasis on piecewiseness:

Proposition 3.1 For the single channel case, the following hold:

(a) For reqular (piecewise) L, it holds that ?a: L, la: L, 7a—'b: L, 7a*: L,
and la*: L are reqular (piecewise).

(b) For any F C X, and any reqular (piecewise) L, F: L is regular (piece-
wise).

(c) For any F C ¥, U Yoy and any reqular (piecewise) L, F*: L is regular
(piecewise).

Proof.

(a) Case ?a:L. We have ?a: L = a 'L. Case la:L. Clearly, la:L = L - a.
Case 7a—!b: L. We have ?2a—!b:L =a (L D).

(b) We have that F': L = > . f: L. The statement follows from this
observation.

(¢) Let M ={a|?a € F} and N = {a |la € F}. Then it can be seen that
F L= (M*)"Y(L-N%).
O

11
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3.2 One-channel systems with conditional operations

We note that an occurrence of letter a in an initial word w may be transformed
to an occurrence of b through the use of a conditional operation 7a—!b when
the occurrence of a is at the beginning of the channel. We call the occurrence
of b a transform of the occurrence of a. During repeated applications of F'
an initial letter occurrence may be repeatedly transformed, each time the
occurrence again is at the front of the channel. But it is also possible that a
transform is dropped due to an unconditional input operation. In this case,
we insert an invisible marker e so that the channel contents always can be
understood as a transformed, cyclic permutation of the initial word. We shall
make these notions more precise below in the proof of the following:

Proposition 3.2
(a) For any F C X, and any regular (piecewise) L, F*: L is reqular (piecewise).

(b) For any piecewise reqular T C X,,, T : L is regular (piecewise) if L is
reqular (piecewise).

Proof. (a) [Very brief idea] Let F, = F N Xy, Four = F N oy, and
Foowt = F N XYeou- To keep track of unconditionally introduced letters and
their transforms, define the monotone function 1 on 2* according to

¢(M) - Fout U Fcout(M>

Use ¢ to keep track of what may happen to a letter occurrence a in a word of
L:

{e} feeMorMNE,#0
0 otherwise

¢(M) - Fcout(M) U {

where we use the symbol € to represent the case that the letter or its trans-
form has been dropped. We shall study the effect of repeated applications of
operations in F' to an initial word w = ag---a,—1. To do so, we keep track
of the abstract transformations determined by the transforms of the letter oc-
currences ay for k < n. We write a series of languages L; ; that describe the
various stages and use properties of ¢ and i to prove that finitely many of
these languages describe the limit.
([

Iterating a set of operations is stronger than repeatedly iterating each of
the operations:

Proposition 3.3 There is a set F' = {f, g} of single-channel operations and
a piecewise language L such that F*:L can be calculated from Proposition 3.2
and such that (f* - g*)*: L denotes a strictly increasing sequence of languages.

Proof.  Consider ¥ = {a,b,c}, f =%alb, g =7alc, L = L(a*). Then,
F*:L =% -{b,c}* and (f*-g*)*: L =% (b* - c*)k. O

This shows that our results strengthen the acceleration technique of [6] (see
the discussion in Section 1.3). The more elaborate techniques of [5] do also

12
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work for this example, because each element of F' reads the same letter—thus
the condition of read synchronization (see Section 1.3) holds. If we instead
use ¥ = {a,d,b,c}, f =7alb, g =7a'lc, then this condition does not hold; thus
Proposition 3.2 strengthens the results of [5] as well. Note, that an instance
of this scenario is found in our feature described in Figure 2.

3.3 Multiple-channel systems with unconditional operations

A K-operation language is a set of finite sequences of channel operations for
a system with K channels. We consider here the case K = 2, since the
generalization to systems with more than two channels will be straightforward.

Proposition 3.4 Consider a multiple channel system subjected to only un-
conditional operations.

(a) For F with F C ¥, U Yo, F*: L is reqular (piecewise) if L is reqular
(piecewise). The same holds for f € ¥, acting on L.

(b) For a piecewise expression T containing only unconditional operations,
T: L is reqular (piecewise) if L is reqular (piecewise).

Proof.

(a) According to Proposition 2.7, we may assume that L is 20§i<1 R 0#R; 1
for some . Define My = {a | k7a € F} and Ny = {a | kla € F} for
k=0 and k= 1. Then,

F*:L= (M) ""(Rio- N§)#(M;) ™" (Riy - NY)

0<i<I

Thus, F*: L is regular (piecewise) if L is regular (piecewise). In a similar
vein, using Proposition 3.1(a), we have for any single f € ¥;, U ¥, that
f acting on L preserves regularity and piecewiseness.

(b) By assumption, 7" is the sum of simply piecewise expressions of the form
F§ fo--- feF 1 on which (a) can be applied inductively.

O

These results also do not rely on a condition of read synchronization[5] imposed
on F.

3.4 Multiple-channel systems with conditional operations

Even when we consider just two-channel systems seeded by a regular language,
the limit language for a set of operations F' may be non-regular. Consider
F = {070 — 1la,070 — 0I/,0?70' — 1!b} and the initial channel language
Ly = (ab)*#. The idea is that first all the a’s are transferred to channel 1,
then all the b’s (after each b has temporarily been renamed to ). We have
that F* (L) N L(#a*b*) = {#a"b" | n > 0}; hence, F*: L;,; is not regular.

However, if the initial language is piecewise, then the limit language is also
piecewise.

13
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Proposition 3.5 For a multiple channel system, F* : L is piecewise if L is
precewise.

Proof. (Idea) F*: L is a countable union of languages that express ar-
bitrary finite interleavings of channel operations. We work with piecewise
expressions describing the joint content, and we show that operations do not
change the anchor length. We then use Proposition 2.9. O

Unfortunately, the proof of Proposition 3.5 is non-effective: it provides us
with no algorithm for calculating the limit language as a function of F' and L.

For systems that do not allow a letter a to be passed around in cycles
through different channels, we are able to provide an effective algorithm for
calculating T': L.

We say that the communication structure CS(F') is the directed graph on
{0,..., K — 1} with edges {(k, k) | Ja,b : k?7a — k'lb € F'}. The communi-
cation structure of F' is acyclic if CS(F) is acyclic. And, the communication
structure of a piecewise expression 7T is acyclic if each set F' occurring in 7' is
acyclic.

Proposition 3.6 From a piecewise expression T (denoting a K-operation
language) with acyclic communication structure and a piecewise expression
L (denoting a K-channel language) a piecewise expression for T : L can be
effectively constructed.

4 Summary

Our results for piecewise operations languages can be summarized in the fol-
lowing table:

Channel configuration

one multiple w/o | multiple w acyclic | multiple
conditionals | comm. struct.
piecewise | eff. piecewise | eff. piecewise | eff. piecewise piecewise
regular eff. regular eff. regular non-regular non-regular

The row is the type of language describing initial channel content and the col-
umn is the type of the channel configuration. In all cases, we assume that the
operation language is itself piecewise. As indicated, our results for extracting
the regular or piecewise limit language are generally effective (algorithms are
implicit in our proofs).
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