
Output-Optimal Algorithms for Acyclic Join-Aggregate Queries

Xiao Hu
University of Waterloo
xiaohu@uwaterloo.ca

Abstract

The classic Yannakakis framework proposed in 1981 is still the state-of-the-art approach for tackling
acyclic join-aggregate queries [28, 19] defined over commutative semi-rings. It has been shown that
the time complexity of the Yannakakis framework is O(N + OUT) for any free-connex join-aggregate
query, where N is the input size of the database and OUT is the output size of the query result. This
is already output-optimal. However, only a general upper bound O(N ·OUT) on the time complexity of
the Yannakakis framework is known for the remaining class of acyclic but non-free-connex queries.

We first show a lower bound Ω
(
N ·OUT1− 1

outw +OUT
)

for computing an acyclic join-aggregate

query by semi-ring algorithms, where outw is identified as the out-width of the input query, N is the
input size of the database, and OUT is the output size of the query result. For example, outw = 2
for the chain matrix multiplication query, and outw = k for the star matrix multiplication query with
k relations. We give a tighter analysis of the Yannakakis framework and show that the Yannakakis
framework is already output-optimal on the class of aggregate-hierarchical queries. However, for the
large remaining class of non-aggregate-hierarchical queries, such as chain matrix multiplication, the
Yannakakis framework requires Θ(N · OUT) time. We next explore a hybrid version of the Yannakakis
framework and present an output-optimal algorithm for computing any general acyclic join-aggregate

query within Õ
(
N ·OUT1− 1

outw +OUT
)

time, matching the out-width-dependent lower bound up to

a poly-logarithmic factor. To our knowledge, this is the first polynomial improvement for computing
acyclic join-aggregate queries since 1981.

1 Introduction

We study the class of join-aggregate queries defined over commutative semi-rings, which has wide applications
in data analytical tasks. The Yannakakis framework proposed in 1981 is still the state-of-the-art approach for
tackling acyclic join-aggregate queries [28, 19]. A few fundamental questions remain after 40 years: What is
the minimum number of semi-ring operations required for computing an acyclic join-aggregate query? What
is the theoretical limitation of the classic Yannakakis framework? What is an output-optimal algorithm for
computing acyclic join-aggregate queries? In this paper, we will answer these challenging questions.

1.1 Problem Definition

Join Queries. A (natural) join is defined as a hypergraph q = (V, E), where the set of vertices V =
{x1, . . . , xℓ} model the attributes and the set of hyperedges E = {e1, . . . , ek} ⊆ 2V model the relations. Let
dom(x) be the domain of attribute x ∈ V. Let dom(X) =

∏
x∈X dom(x) be the domain of a subset X ⊆ V

of attributes. An instance of q is a set of relations R = {Re : e ∈ E}. Each relation Re consists of a set of
tuples, where each tuple is an assignment that assigns a value from dom(x) to x for every attribute x ∈ e. If
every relation Re is distinct, then Q does not contain self-joins. The full join result of q on R, denoted as
q(R), is defined as

q(R) = {t ∈ dom(V) : ∀e ∈ E , πet ∈ Re} ,

i.e., all combinations of tuples, one from each relation, such that they share the same values on their common
attributes.

1

ar
X

iv
:2

40
6.

05
53

6v
3

 [
cs

.D
B

]
 3

 J
ul

 2
02

4

non-output attributeoutput attribute

B2

B1

2

3

4

5

1

Cleanse Decompose

Figure 1: An illustration of the Cleanse and Decompose procedures [16].

For q = (V, E), a fractional edge covering is defined as a function ρ : E → [0, 1] such that
∑

e:A∈e ρ(e) ≥ 1
holds for each attribute A ∈ V. The fractional edge covering number of q, denoted as ρ∗(q), is defined as the
minimum sum of weight over all possible fractional edge coverings for q, i.e.,

ρ∗(q) = min
ρ:ρ is a fractional edge covering for q

∑
e∈E

ρ(e).

Join-Aggregate Queries. To study join-aggregate queries, we consider annotated relations [13, 19]. Let
(R,⊕,⊗) be a commutative semi-ring. Every tuple t is further associated with an annotation w(t) ∈ R. The
annotation of a full join result t ∈ q(R) is w(t) :=

⊗
e∈E

w(πet). A join-aggregate query is defined as a triple

Q = (V, E ,y), where q = (V, E) is a (natural) join query, and y ⊆ V is the set of output attributes (a.k.a. free
attributes). For simplicity, let ȳ = V − y be the set of non-output attributes (a.k.a. existential attributes).
The query result of Q on R, denoted as Q(R), is defined as

Q(R) = ⊕ȳq(R) =

(ty, w(ty)) : ty ∈ πyq(R), w(ty) =
⊕

t∈q(R):πyt=ty

w(t)

 ,

In plain language, a join-aggregate query (semantically) first computes the full join result q(R) and the
annotation of each result, which is the ⊗-aggregate of the tuples comprising the join result. Then it partitions
q(R) into groups by the attributes in y. Finally, for each group, it computes the ⊕-aggregate of the
annotations of the join result in that group. Join-aggregate queries include many commonly seen database
queries as special cases. For example, if we ignore the annotations, then it becomes a join-project query
πyq(R), also known as a conjunctive query. If we take R be the domain of integers and set w(t) = 1 for
every tuple t, it becomes the COUNT(*) GROUP BY y query; in particular, if y = ∅, the query computes the
full join size |q(R)|. If we take V = {A,B,C} with y = {A,C}, and E = {{A,B}, {B,C}}, it becomes the
matrix multiplication problem.

We use N =
∑

e∈E |Re| to denote the input size and OUT = |Q(R)| to denote the output size. Let
Qy = (y, {e ∩ y : e ∈ E}) be the sub-query derived by output attributes. For any instance of input size
N , it has been shown [3] that the largest output size is Θ

(
Nρ∗(Qy)

)
. We study the data complexity of

this problem by considering the query size (i.e., k and ℓ) as constants and measuring the time complexity
of algorithms by data-dependent quantities, such as N and OUT. Similar to [25], we confine ourselves to
algorithms that work with semi-ring elements as an abstract type. We can only copy them from existing
semi-ring elements or combine them using semi-ring operations.

Other Notations. In a join-aggregate query Q = (V, E ,y), we use EA = {e ∈ E : A ∈ e} to denote
the set of relations containing attribute A. An attribute A ∈ V is unique if it appears only in one relation,
i.e., |EA| = 1, and joint otherwise. Given an instance R, for a subset of attributes A ⊆ V, we define the
active domain of A as the collection of tuples in dom(A) that appears in at least one full join result of q on
R, i.e., πAq(R). For any n ∈ Z+, we use [n] to denote {1, 2, · · · , n}. For a pair of sets S1 and S2, we use
S1 − S2 = {x ∈ S1 : x /∈ S2} to denote the set minus operation.

Classification of Join-Aggregate Queries. We introduce the following three important classes of
join-aggregate queries that will be frequently discussed throughout the paper.

• Acyclic Query [7, 11, 17] There are many equivalent definitions of acyclic queries, and we use the
one based on generalized join tree [17]. A generalized relation Re is defined on the projection of one

2

input relation Re′ for e
′ ∈ E onto a subset of attributes e ⊆ e′. A join-aggregate query Q = (V, E ,y)

is acyclic if there exists a tree T such that (1) each node in T corresponds to an input relation or a
generalized relation; (2) every input relation in E corresponds to a node in T ; (3) for every attribute
A ∈ V, the set of nodes containing it forms a connected subtree of T . T is called a generalized join
tree of Q.

• Free-connex Query [4] A join-aggregate query Q = (V, E ,y) is free-connex if Q is acyclic and
(V, E ∪ {y},y) is also acyclic.

• Hierarchical Query [26] A join-aggregate query Q = (V, E ,y) is hierarchical if for any pair of
attributes A,B ∈ V, either EA ⊆ EB , or EB ⊆ EA, or EA ∩ EB = ∅.

A hierarchical query must be acyclic, and a free-connex query must also be acyclic. However, there is no
containment relationship between free-connex and hierarchical queries. See Figure 2.

1.2 Previous Upper Bounds

The Yannakakis framework can be slightly adapted for computing acyclic join-aggregate queries [28, 19].
As shown in Algorithm 7, it picks an arbitrary join tree1 T for Q rooted at node r. It first removes all
dangling tuples in the input instance R, i.e., those won’t appear in any full join result, in O(N) time via
a bottom-up and then a top-down phase of semi-joins. If OUT = 0, i.e., Q(R) = ∅, all input tuples will
be removed as dangling tuples. After being done with semi-joins, the Yannakakis framework performs joins
and aggregations in a bottom-up way. Specifically, it takes two relation Re and Re′ such that e is a leaf and
e′ is the parent of e, aggregate over non-output attributes that only appear in e but not in e′ by replacing
Re with ⊕ȳ∩(e−e′)Re, and replaces Re′ with Re ⋊⋉ Re′ . Then Re is removed, and the step repeats until only
one relation remains, say Rr. It will output ⊕ȳ∩eRr as the final result. The running time of the Yannakakis
framework is proportional to the largest intermediate join size (after dangling tuples are removed), which is
no larger than the full join size. Hence, the Yannakakis framework is always better than the naive solution
of computing the full join results and then projecting out non-output attributes. We note that the largest
intermediate join size could differ drastically on different query plans, i.e., each query plan of the Yannakakis
framework corresponds to a specific rooted join tree together with a specific sequence of joins and projections
in the bottom-up computation.

If Q is free-connex, there is a query plan that only generates at most O(OUT) intermediate join results
[19, 5], hence free-connex queries can be computed in O(N + OUT) time. Note that any acyclic full join
query is free-connex. Yannakakis gave an upper bound of O(N ·OUT) on the largest intermediate join size
for non-free-connex queries. For matrix multiplication query,

Qmatrix =
⊕
B

R1(A,B) ⋊⋉ R2(B,C),

the simplest acyclic but non-free-connex query, this bound has been improved to O
(
N ·
√
OUT

)
[2] by a

better analysis. This is also tight since there are instances with intermediate join result (which is also the

full join result for Qmatrix) as large as Θ
(
N ·
√
OUT

)
. This bound also extends to star queries (a.k.a. star

matrix multiplication),

Qstar =
⊕
B

R1(A1, B) ⋊⋉ R2(A2, B) ⋊⋉ · · · ⋊⋉ Rk(Ak, B),

on which the tight bound is O
(
N ·OUT1− 1

k

)
. But, for line queries (a.k.a. chain matrix multiplication),

Qline =
⊕

A2,A3,··· ,Ak

R1(A1, A2) ⋊⋉ R2(A2, A3) ⋊⋉ · · · ⋊⋉ Rk(Ak, Ak+1)

this bound O(N ·OUT) is already tight [16].

1Below, we always use “join tree” to denote “generalized join tree” for simplicity.

3

People have incorporated generalized hypertree decomposition techniques [14] together with worst-case
optimal join algorithms [23, 27] into the Yannakakis framework to handle cyclic join-aggregate queries.
Khamis et al. [20] showed that an arbitrary join-aggregate query Q can be computed in O

(
N#subw ·OUT

)
time, where #subw ≥ 1 is the #sub-modular width of Q [22]. And #subw = 1 if and only if Q is acyclic.
If restricting the generalized hypertree decompositions to be free-connex, one can also compute an arbitrary
join-aggregate query Q in O

(
N#fc-subw +OUT

)
time, where #fc-subw is the #free-connex sub-modular

width of Q [20]. Moreover, #fc-subw = 1 if and only if Q is free-connex. It is not hard to see that #fc-
subw ≥ #subw for any join-aggregate query. These two results are incomparable unless we know the value
of OUT.

There are some other works using fast matrix multiplication to speed up conjunctive queries [2, 10, 1, 16]
or graph pattern search (as a special case of self-joins) [8, 18, 9], but these techniques cannot be applied to
general join-aggregate queries. Other systematic works also study sparse chain matrix multiplication [12, 24,
6, 21], but without any theoretical guarantees on the output-optimality. We won’t pursue these dimensions
further.

1.3 Previous Lower Bounds

Before reviewing the lower bounds, we mention two necessary primitives proposed for join-project queries [16],
which have been adapted to join-aggregate queries below.

Cleanse(Q,R). For a join-aggregate query Q = (V, E ,y) and an instance R, the cleanse procedure
iteratively (i) removes a unique non-output attribute A ∈ V−y (suppose EA = {e}) and replaces relation Re

with
⊕

A Re; or (ii) removes a relation e ∈ E if there is another relation e′ ∈ E such that e ⊆ e′ and updates
the annotation of each tuple t ∈ Re′ by w(t)⊗ w (πet).

The complete procedure is described in Algorithm 6, which takes O(N) time. Q is called cleansed if no
more attribute or relation can be removed, and non-cleansed otherwise. In a cleansed query Q, every unique
attribute must be an output attribute.

Decompose(Q,R). The existential connectivity of a join-aggregate query Q = (V, E ,y) is defined as a
graph G∃

Q, where each e ∈ E is a vertex, and there is an edge between e, e′ ∈ E if they share some non-output
attribute(s), i.e., e∩ e′−y ̸= ∅. Let E1, E2, · · · , Eh ⊆ E be the connected components of G∃

Q. Each Ei defines
a sub-query Qi = (

⋃
e∈Ei

e, Ei,
⋃
e∈Ei

e ∩ y) and a sub-instance Ri = {Re : e ∈ Ei}. For a cleansed query Q, every

sub-query Qi is also cleansed.

Now, we are ready to review a non-trivial lower bound of computing acyclic join-aggregate queries by
semi-ring algorithms [16], which is built on the notion of free-width of the input query:

Definition 1 (free-width [16]). For any acyclic join-aggregate query Q = (V, E ,y), its free-width freew(Q)
is defined as follows:

• If Q is existentially disconnected with Q1,Q2, · · · ,Qh as sub-queries defined by G∃
Q,

freew(Q) = max
i∈[h]

freew(Qi).

• If Q is existentially connected but not cleansed, freew(Q) = freew(Q′) where Q′ is the cleansed version
of Q.

• If Q is existentially connected and cleansed,

freew(Q) = max
S⊆E:∀e∈S,e∩V• ̸=∅

|S|,

where V• denotes the set of unique attributes in Q.

Lemma 1 ([16]). For an arbitrary acyclic join-aggregate query Q without self-joins, given any 1 ≤ N and
1 ≤ OUT ≤ N freew, there is an instance R of input size Θ(N) and output size Θ(OUT) such that any

semi-ring algorithm computing Q(R) requires Ω
(
N ·OUT1− 1

freew +OUT
)
time, where freew is the free-width

of Q.

4

Join-Aggregate
Yannakakis Hybrid Yannakakis

Query

Matrix Θ
(
N ·

√
OUT

)
[28]

Star Θ
(
N ·OUT1− 1

k

)
[28]

Aggregate-
Θ
(
N ·OUT1− 1

outw

)
[28]

Hierarchical

Line
Θ(N ·OUT) [28]

Θ(N ·
√
OUT)

Acyclic Θ
(
N ·OUT1− 1

outw +OUT
)

acyclic

free-

aggregate-

hierarchical

connexstar

line
hierarchical

Figure 2: The left table compares the Yannakakis framework and our new algorithm. N is the input size
and OUT is the output size. k is the number of relations. outw is the out-width of the input query (see
Definition 1). The right figure shows the relationship between different classes of queries.

non-output attributeoutput attribute

1©

e3

e1

e2

e4 e5

e6

e7

e8

e6

e7

e8
e3

e1

e2

e4
e5

e9

e2

e3

e1

e10

e4
e5

e6

e7

e8

2©

Figure 3: An illustration of free-width and out-width of a join-aggregate query. The example query has
freew = 5, with five relations (as shown in blue) that exclusively contain some output attribute(s). But, it
has outw = 6 with an optimal fractional edge covering for Qy, where both blue and red relations are assigned
with weight 1. 1○ and 2○ are illustrated for the Separate procedure in Section 4.

1.4 Our Results

We focus on acyclic join-aggregate queries where the output attributes can be arbitrary. Our results are
summarized in Figure 2.

New Lower Bound. We start with proving a higher lower bound by identifying a new query-dependent
quantity noted as out-width for the input acyclic join-aggregate query. This lower bound has been matched
by our new upper bound (to be introduced soon).

Definition 2 (out-width). For any acyclic join-aggregate query Q = (V, E ,y), its out-width outw(Q) is
defined as follows:

• If Q is existentially disconnected with Q1,Q2, · · · ,Qh as sub-queries defined by G∃
Q,

outw(Q) = max
i∈[h]

outw(Qi).

• If Q is existentially connected but not cleansed, outw(Q) = outw(Q′) where Q′ is the cleansed version
of Q.

• If Q is existentially connected and cleansed, outw(Q) = ρ∗(Qy), where Qy = (y, {e∩ y : e ∈ E}) is the
sub-query derived by output attributes.

Remark 1. In Appendix A, we show outw(Q) = 1 if and only if Q is free-connex; and freew(Q) ≤ outw(Q)
for any acyclic query Q. Moreover, freew(Qstar) = outw(Qstar) = k, and freew(Qline) = outw(Qline) = 2. In
Figure 3, we give an example of Q on which freew(Q) < outw(Q).

Theorem 1. For an arbitrary existentially-connected acyclic join-aggregate query Q without self-joins, given
any 1 ≤ N and OUT ≤ Noutw, there exists an instance R of input size Θ(N) and output size Θ(OUT) such

5

that any semi-ring algorithm for computing Q(R) requires at least Ω
(
N ·OUT1− 1

outw +OUT
)
time, where

outw is the out-width of Q.

Theorem 2. For an arbitrary acyclic join-aggregate query Q = (V, E ,y) without self-joins, given any 1 ≤ N
and OUT ≤ Nρ∗(Qy) with the fractional edge covering number ρ∗(Qy) of Qy = (y, {e ∩ y : e ∈ E}), there
exists an instance R of input size Θ(N) and output size Θ(OUT) such that any semi-ring algorithm for

computing Q(R) requires at least Ω
(
min

{
Noutw, N ·OUT1− 1

outw

})
time, where outw is the out-width of Q.

New Upper Bound. As observed in [2], Yannakakis framework is optimal on star queries by matching
the lower bound in Lemma 1. In Appendix B.1, we extend the optimality of the Yannakakis framework to
general aggregate-hierarchical queries:

Definition 3 (Aggregate-Hierarchical Query). An acyclic join-aggregate query Q is aggregate-hierarchical
if the cleansed version of every connected sub-query in G∃

Q is hierarchical.

However, Yannakakis framework is Θ(
√
N)-factor away from optimal on any non-aggregate-hierarchical

query, such as line queries. This paper shows new upper bound for acyclic but non-aggregate-hierarchical
queries. Our main contribution is an output-optimal algorithm for computing existentially-connected queries,
as shown in Theorem 3:

Theorem 3. For an arbitrary existentially-connected acyclic join-aggregate query Q, and any instance R
of input size N and output size OUT, the Q(R) can be computed within Õ

(
N ·OUT1− 1

outw +OUT
)
time,

where outw is the out-width of Q.

For a general acyclic join-aggregate query Q and an arbitrary instance R, we can apply the Cleanse and
Decompose procedures as pre-processing. Then, it suffices to compute the query results for each connected
sub-query and combine them via join as the post-processing step. The whole framework is described in
Algorithm 1. The pre-processing and post-processing steps only take linear time regarding the input and
output size. Combining this observation with Theorem 3, we obtain Theorem 4.

Theorem 4. For an arbitrary acyclic join-aggregate query Q, and any instance R of input size N and output

size OUT, the Q(R) can be computed within Õ

(
N ·max

i∈[h]
|πyi
Q(R)|1−

1
outw +OUT

)
time, where Q1,Q2, · · · ,Qh

are the connected sub-queries defined by G∃
Q, and yi is set of output attributes in Qi for i ∈ [h].

Remark 2. For Theorem 3, as it is inherently challenging to compute or estimate OUT efficiently, we
follow the same framework as [16] by computing an O(1)-approximation of OUT on the fly, which only
increases the overall complexity by a logarithmic factor. More specifically, we obtain ˜OUT of OUT such that
˜OUT ≤ OUT ≤ 2 · ˜OUT, when invoking algorithms in Sections 2, 3 and 4.

Remark 3. For Theorem 4, consider an arbitrary sub-query Qi in G∃
Q, which is existentially connected. For

an arbitrary instance R of input size N and output size OUT, the largest output size for Qi is Θ
(
Noutw(Qi)

)
.

On the other hand, |πyi
Q(R)| ≤ |πyQ(R)| = OUT. Together with the fact that outw(Qi) ≤ outw(Q) for

i ∈ [h], we have

N ·max
i∈[h]
|πyi
Q(R)|1−

1
outw ≤ min

{
Noutw, N ·OUT1− 1

outw

}
.

Hence, the upper bound in Theorem 7 is optimal by matching the lower bound in Theorem 2.

2 Line Query

We start with the line queries (a.k.a. chain matrix multiplication):⊕
A2,A3,··· ,Ak

R1(A1, A2) ⋊⋉ R2(A2, A3) ⋊⋉ · · · ⋊⋉ Rk(Ak, Ak+1).

Suppose we are given ˜OUT such that ˜OUT ≤ OUT ≤ 2 · ˜OUT. Our algorithm consists of five steps:

6

Algorithm 1: AcyclicJoinAggregate(Q,R)
Input : an acyclic join-aggregate query Q and instance R;
Output: query result Q(R);

1 (Q1,R1), (Q2,R2), · · · , (Qh,Rh)← Decompose(Q,R);
2 foreach i ∈ [h] do
3 (Qi,Ri)← Cleanse(Qi,Ri) ▶ Algorithm 6;
4 (Q′

i,R′
i)← Separate(Qi,Ri); ▶ Section 4;

5 Si ← HybridYannakakis(Q′
i,R′

i); ▶ Algorithm 8;

6 return ⋊⋉i∈[h] Si;

Algorithm 2: Line
(
Qline,R, ˜OUT

)
Input : A line query Qline, an instance R of input size N and output size OUT, and parameter

˜OUT such that ˜OUT ≤ OUT ≤ 2 · ˜OUT;
Output: Query result Qline(R);

1 foreach i ∈ [k − 1] do
2 if i = 1 then T1(A1, A2)← R1(A1, A2);
3 else Ti(A1, Ai+1)← ⊕Ai

Si−1(A1, Ai) ⋊⋉ Ri (Ai, Ai+1);

4 Alight
i+1 ←

{
a ∈ dom(Ai+1) :

∣∣σAi+1=aTi

∣∣ ≤√
˜OUT

}
;

5 Aheavy
i+1 ←

{
a ∈ dom(Ai+1) :

∣∣σAi+1=aTi

∣∣ > √
˜OUT

}
;

6 Rlight
i ← Ri ⋉Alight

i+1 ;

7 Rheavy
i ← Ri ⋉Aheavy

i+1 ;

8 Qi ← ⊕A2,A3,··· ,Ak

(
⋊⋉j∈[i−1] R

light
j

)
⋊⋉ Rheavy

i ⋊⋉
(
⋊⋉k

j=i+1 Rj

)
;

9 Si(A1, Ai+1)← Ti(A1, Ai+1)⋉Alight
i+1 ;

10 Q∗ ← ⊕A2,A3,··· ,Ak

(
⋊⋉j∈[k−1] R

light
j

)
⋊⋉ Rk;

11 return Q1 ⊕Q2 ⊕ · · · ⊕ Qk−1 ⊕Q∗;

Step 1: Compute data statistics. For each value a ∈ dom(A2), we define its degree as the number of
tuples in R1 that displays value a in attribute A2, i.e., △(a) = |σA2=aR1|. A value a ∈ dom(A2) is heavy if

△(a) >
√

˜OUT, and light if 1 ≤ △(a) ≤
√

˜OUT. Let Aheavy
2 , Alight

2 be the set of heavy and light values in A2.

Let Rheavy
1 = R1⋉Aheavy

2 and Rlight
1 = R1⋉Alight

2 be the set of heavy and light tuples in R1 respectively. Then,

we iteratively partition relations by ordering R2, R3, · · · , Rk. Suppose relation Rj is partitioned into Rheavy
j

and Rlight
j , for every j ∈ [i− 1]. We next partition relation Ri as follows. For each value a ∈ dom(Ai+1), we

define its degree as the number of distinct values in dom(A1) that can be joined with a via tuples in relations

Rlight
1 , Rlight

2 , · · · , Rlight
i−1 , which is denoted as

△(a) =
∣∣∣πA1

{(
⋊⋉j∈[i−1] R

light
j

)
⋊⋉ (σAi+1=aRi)

}∣∣∣
A value a ∈ dom(Ai+1) is heavy if △ (a) >

√
˜OUT, and light if 1 ≤ △ (a) ≤

√
˜OUT. Let Aheavy

i+1 , Alight
i+1 be the

set of heavy, light values in Ai respectively. Let Rheavy
i = Ri ⋉ Aheavy

i+1 , and Rlight
i = Ri ⋉ Alight

i+1 be the set of
heavy, light tuples in Ri respectively. Note that there could be some tuples undefined.

We compute ∆(·) as described in Algorithm 2. For simplicity, we define two intermediate relations:

Ti (A1, Ai+1) =
⊕

A2,A3,··· ,Ai

(
⋊⋉j∈[i−1] R

light
j

)
⋊⋉ Ri,

Si(A1, Ai+1) =
⊕

A2,A3,··· ,Ai

(
⋊⋉j∈[i] R

light
j

)

7

and compute them in a recursive way as follows (with T1 = R1):

Ti (A1, Ai+1) =
⊕
Ai

Si−1 (A1, Ai) ⋊⋉ Ri(Ai, Ai+1)

Si (A1, Ai+1) = Ti (A1, Ai+1)⋉Alight
i+1

Once we have computed Ti for some i ∈ {1, 2, · · · , k−1}. We can identify the heavy and light values in Ai+1,

i.e., Aheavy
i+1 and Alight

i+1 . We can use Aheavy
i+1 , Alight

i+1 to partition Ri into Rheavy
i , Rlight

i . Then, Si can be computed

based on Ti and Alight
i+1 . Furthermore, Ti+1 can be computed based on Si and Ri+1.

We next analyze the cost. T1 can be computed within O(N) time and |T1| = O(N). Consider any

i ∈ {2, 3, · · · , k}. As there are N tuples in Ri, and each of them can be joined with at most
√

˜OUT

tuples in Si−1, implied by the definition of Rlight
i−1 , Ti can be computed within O

(
N ·
√
OUT

)
time. Also,

|Ti| = O
(
N ·
√
OUT

)
. The cost of computing Si is O(|Ti|) = O

(
N ·
√
OUT

)
.

Step 2: Partition Qline. After all relations are partitioned, we partition Qline into k sub-queries:

Qi = ⊕A2,A3,··· ,Ak

(
⋊⋉j∈[i−1] R

light
j

)
⋊⋉ Rheavy

i ⋊⋉
(
⋊⋉k

j=i+1 Rj

)
for i ∈ [k − 1], and Q∗ = ⊕A2,A3,··· ,Ak

(
⋊⋉j∈[k−1] R

light
j

)
⋊⋉ Rk.

Step 3: Compute Qi for each i ∈ [k − 1]. We invoke the Yannakakis framework over a join tree rooted
at R1 and compute Qi:

⊕A2
Rlight

1 ⋊⋉ · · ·
(
⊕Ai+1

Rheavy
i ⋊⋉

(
⊕Ai+2

Ri+1 ⋊⋉ · · · (⊕Ak+1Rk ⋊⋉ Rk+1)
))

After all dangling tuples are removed, each value in dom(Ak+1) can be joined with some tuple in Rheavy
i ,

hence can be joined with at least
√

˜OUT values in A1, implied by the definition of Aheavy
i+1 . As there are

OUT results in total, the active domain size of Ak+1 is at most O
(√

OUT
)
. The Yannakakis framework

materializes an intermediate relation πAj ,Aj+1,Ak+1
Qi in each step, for j = k, k− 1, · · · , 1, whose size can be

bounded by ∣∣πAj ,Aj+1,Ak+1
Qi

∣∣ ≤ |Rj(Aj , Aj+1)| ·
∣∣πAk+1

Qi

∣∣ = O
(
N ·
√
OUT

)
Hence, this step takes O

(
N ·
√
OUT

)
time.

Step 4: Compute Q∗. Note that we have computed Sk−1(A1, Ak) in Step 1. We next simply compute
⊕Ak

Sk−1(A1, Ak) ⋊⋉ Rk(Ak, Ak+1) for Q∗. As there are N tuples in Rk and each of them can be joined

with at most
√

˜OUT tuples in Sk−1, the total number of intermediate join result is O
(
N ·
√
OUT

)
. Hence,

this step takes O
(
N ·
√
OUT

)
time. It is equivalent to invoking the Yannakakis framework over a join tree

rooted at Rk.

Step 5: Aggregate all subqueries. Finally, we aggregate the results of all subqueries. As each subquery
produces at most OUT results, the total number of results is O(OUT). Hence, this step takes Õ(OUT) time.

Theorem 5. For Qline and an arbitrary instance R of input size N and output size OUT, if a O(1)-

approximation of OUT is known, the Qline(R) can be computed in Õ
(
N ·
√
OUT

)
time.

3 Fat Star Query

We next consider a fat star query Qfstar, which is a generalization of the star queries (a.k.a. star matrix
multiplication): ⊕

B1,B2,··· ,Bk

R0(B1, B2, · · · , Bk) ⋊⋉ R1(A1, B1) ⋊⋉ · · · ⋊⋉ Rk(Ak, Bk)

8

Moreover, outw(Qfstar) = k. Now, suppose we are given ˜OUT such that ˜OUT ≤ OUT ≤ 2 · ˜OUT. Our
algorithm consists of five steps:

Step 1: Compute data statistics. Consider an arbitrary i ∈ [k]. We first compute for each value b ∈
dom(Bi) its degree di(b) in Ri, defined as di(b) = |σBi=bRi|. A value b ∈ dom(Bi) is heavy if di(b) > ˜OUT

1
k ,

and light otherwise. Let Bheavy
i , Blight

i be the set of heavy and light tuples in attribute Bi respectively. Let

Rheavy
i = Ri ⋉Bheavy

i , Rlight
i = Ri ⋉Blight

i be the set of heavy and light tuples in relation Ri respectively. This
step can be done within O(N) time. We point out two straightforward observations:

Lemma 2. For any tuple t ∈ R0,
∏

i∈[k] di (πBi
t) ≤ OUT.

Lemma 3. For any b ∈ dom(Bi), di(b) · |σBi=bXi| ≤ OUT, where Xi = ⊕ȳ−{Bi}R0 ⋊⋉
(
⋊⋉j∈[k]−{i} Rj

)
.

Step 2: Partition Qfstar. Similarly, we can partition Qfstar into the k + 1 sub-queries:

Qi =
⊕

B1,B2,··· ,Bk

R0 ⋊⋉
(
⋊⋉j∈[i−1] R

light
j

)
⋊⋉ Rheavy

i ⋊⋉
(
⋊⋉k

j=i+1 Rj

)
, for i ∈ [k]

Q∗ =
⊕

B1,B2,··· ,Bk

R0 ⋊⋉
(
⋊⋉j∈[k] R

light
j

)
.

Step 3: Compute Qi for each i ∈ [k]. We invoke the Yannakakis framework over a join tree rooted

at Ri. To analyze the cost of this step, we need to unravel the execution of Yannakakis framework on Qi,
which computes

• Rnew(Bi, A1, · · · , Ai−1, Ai+1, · · · , Ak) =
⊕

B1,··· ,Bi−1,Bi+1,··· ,Bk

R0 ⋊⋉
(
⋊⋉j∈[i−1] R

light
j

)
⋊⋉

(
⋊⋉k

j=i+1 Rj

)
;

•
⊕
Bi

Rheavy
i

(
Ai, B

heavy
i

)
⋊⋉ Rnew (Bi, A1, · · · , Ai−1, Ai+1, · · · , Ak);

After removing dangling tuples, each tuple t ∈ R0 can be joined with at least di(πBi
t) > ˜OUT

1
k tuples

in Rheavy
i . Implied by Lemma 2, each tuple t ∈ R0 can participate in at most O

(
OUT1− 1

k

)
join results.

Hence, the number of intermediate join result materialized for computing Rnew is at most O
(
N ·OUT1− 1

k

)
.

Moreover, each value b ∈ dom(Bi) can be joined with di(b) > ˜OUT
1
k tuples in Rheavy

i . Implied by Lemma 3,

each b ∈ Bheavy
i can appear in at most O

(
OUT1− 1

k

)
tuples in Rnew. As there are at most N tuples in Rheavy

i ,

the number of intermediate join result materialized is at most O
(
N ·OUT1− 1

k

)
. Together, this steps takes

O
(
N ·OUT1− 1

k

)
time.

Step 4: Compute Q∗. For each i ∈ [k], we compute the following intermediate query result

Si (Bi, A1, · · · , Ai−1, Ai+1, · · · , Ak) =
⊕

B1,··· ,Bi−1,Bi+1,··· ,Bk

R0 ⋊⋉
(
⋊⋉j∈[k]−{i} Rlight

j

)
.

We compute for each value b ∈ dom(Bi), its degree △(b) in relation Si, defined as △(b) = |σBi=bSi|. A value

b ∈ dom(Bi) is large if △(b) > 2 · ˜OUT
1− 1

k , and small otherwise. Let Blarge
i , Bsmall

i be the set of large and

small values in Blight
i respectively. Let Rlarge

i = Rlight
i ⋉ Blarge

i , Rsmall
i = Rlight

i ⋉ Bsmall
i be the set of large and

small tuples in Rlight
i respectively. This way, we can further reduce Q∗ into following k + 1 sub-queries:

Q∗i =
⊕
Bi

Rsmall
i

(
Ai, B

small
i

)
⋊⋉ Si (Bi, A1, · · · , Ai−1, Ai+1, · · · , Ak)

for i ∈ [k], and Q∗∗ = ⊕B1,B2,··· ,Bk
R0 ⋊⋉

(
⋊⋉j∈[k] R

large
j

)
. However, we don’t need to compute Q∗∗ due to the

following fact:

9

Algorithm 3: FatStar
(
Qfstar,R, ˜OUT

)
Input : A fat star query Qfstar, an instance R of input size N and output size OUT, and

parameter ˜OUT such that ˜OUT ≤ OUT ≤ 2 · ˜OUT;
Output: Query result Qfstar(R);

1 foreach i ∈ [k] do

2 Blight
i ←

{
b ∈ dom(Bi) : 1 ≤ |σBi=bRi| ≤ ˜OUT

1
k

}
;

3 Bheavy
i ←

{
b ∈ dom(Bi) : |σBi=bRi| > ˜OUT

1
k

}
;

4 Rlight
i ← Ri ⋉Blight

i ;

5 Rheavy
i ← Ri ⋉Bheavy

i ;

6 Qi ←
⊕

B1,B2,··· ,Bk

R0 ⋊⋉
(
⋊⋉i−1

j=1 Rlight
j

)
⋊⋉ Rheavy

i ⋊⋉
(
⋊⋉k

j=i+1 Rj

)
;

7 foreach i ∈ [k] do

8 Si ←
⊕

B1,··· ,Bi−1,Bi+1,··· ,Bk

R0 ⋊⋉
(
⋊⋉j∈[k]−{i} Rlight

j

)
;

9 Bsmall
i ←

{
b ∈ Blight

i : |σBi=bSi| ≤ ˜OUT
1− 1

k

}
;

10 Rsmall
i ← Rlight

i ⋉Bsmall
i ;

11 Q∗i ← ⊕BiR
small
i ⋊⋉ Si;

12 return Q1 ⊕ · · · ⊕ Qk−1 ⊕Q1∗ ⊕ · · · ⊕ Qk∗ ;

Lemma 4. Q∗∗ = ∅.

Proof of Lemma 4. Consider an arbitrary i ∈ [k]. After removing all dangling tuples, each value in dom(Ai)

appears in at least 2 · ˜OUT
1− 1

k query results via some value in dom(Bi). Hence, the active domain size of

Ai is at most OUT

2· ˜OUT
1− 1

k
≤ OUT

2·(OUT
2)1−

1
k
≤ OUT

1
k . Suppose Q∗∗ ̸= ∅. Let t be an arbitrary join result of the

underlying join. Hence, πBi
t ∈ Blarge

i for every i ∈ [k]. Consider an arbitrary j ∈ [k]. The tuple t′ = πBj
t

appears in at most∣∣σBj=t′Sj

∣∣ ≤ ∏
i∈[k]−{j}

|dom(Ai)| ≤
(
OUT

1
k

)k−1

= OUT1− 1
k ≤ 2 · ˜OUT

1− 1
k

distinct tuples in Sj , contradicting the fact that πBj
t ∈ Blarge

j . Hence, such a join result t does not exist,
and Q∗∗ = ∅.

We show that Si can be computed in O
(
N ·OUT1− 1

k

)
time. There are at most N tuples in R0. Each

tuple t ∈ R0 can be joined with at most
∏

j∈[k]−{i}

dj
(
πBj t

)
≤ ˜OUT

1− 1
k tuples in

(
⋊⋉j∈[k]−{i} Rlight

j

)
. Hence,

the intermediate join size as well as the input size of Si, can be bounded by O
(
N ·OUT1− 1

k

)
. All other

data statistics can be computed in O
(
N ·OUT1− 1

k

)
time. For computing Q∗i, we note that each tuple

t ∈ Rsmall
i can be joined with at most ˜OUT

1− 1
k tuples in Si. As there are at most N tuples in Rsmall

i , the

number of intermediate join result materialized is at most O
(
N ·OUT1− 1

k

)
.

Step 5: Aggregate all subqueries. We aggregate the results of all subqueries. As each subquery
produces at most OUT results, and there are O(1) subqueries, this step takes Õ(OUT) time.

Theorem 6. For Qfstar of k relations and an instance R of input size N and output size OUT, if a O(1)-

approximation of OUT is known, the Qfstar(R) can be computed in Õ
(
N ·OUT1− 1

k

)
time.

10

4 Acyclic Query

4.1 Framework

Component 1: Separate(Q,R). We start with transforming an arbitrary acyclic query Q into a well-
separated one with nice properties:

Definition 4 (Well-separated Query). An acyclic join-aggregate query Q = (V, E ,y) is well-separated, if it
is cleansed and existentially connected while satisfying the following two conditions:

1○ every output attribute in y is a unique attribute;

2○ for each relation e ∈ E with e∩y ̸= ∅, there exists some other relation e′ ∈ E −{e} such that e−y ⊆ e′.

Lemma 5. For any cleansed and existentially-connected acyclic join-aggregate query Q and an instance R of
input size N , there is an algorithm that can construct within O(N) time a well-separated acyclic join-aggregate
query Q′ and an instance R′ of input size Θ(N), such that outw(Q) = outw(Q′) and Q(R) = Q′(R′).

The high-level idea behind the transformation is as follows. See a running example in Figure 3. Let
y• ⊆ y be the set of unique output attributes.

1○ As proved in Lemma 18, it is always feasible to find a subset Ey ⊆ E of outw relations, such that for
each output attribute A ∈ y, there exists some relation e ∈ Ey with A ∈ e. We assign each attribute
A ∈ y to an arbitrary relation e ∈ Ey with A ∈ e. Let π : y→ Ey be the assignment function. For each
joint output attribute A ∈ y − y•, we simply add a unique attribute xA to relation π(A) and “turn”
A into a non-output attribute. To preserve the equivalence of the query results, we force a one-to-one
mapping between dom(A) and dom(π(A)). The annotations of all tuples stay the same.

2○ Now we are left with a cleansed and existentially connected acyclic join-aggregate query Q = (V, E ,y),
such that each output attribute x ∈ y is a unique attribute. Consider an arbitrary relation e ∈ E with
e ∩ y ̸= ∅. If there exists no other relation e′ ∈ E such that e − y ⊆ e′, we just add another relation
e′′ such that e ∩ e′′ = e ∩ y and the remaining attribute in e′′ − e is a unique output attributes, and
“turn” all attributes in e ∩ e′′ into non-output attributes. Similarly, to preserve the equivalence of the
query results, we force a one-to-one mapping between the domain of attributes in e ∩ e′′ and that of
attribute in e′′ − e. The annotation of each tuple in such newly added relations is always 1.

It can be easily checked that in both steps of transformation, the out-width of the queries does not
change. If there is an algorithm that can compute an arbitrary instance R′ for Q′ of input size N and

output size OUT within O
(
N ·OUT

1− 1
outw(Q′) +OUT

)
time, then there is an algorithm that can compute

an arbitrary instance R for Q of input size Θ(N) and output size OUT within O
(
N ·OUT1− 1

outw(Q) +OUT
)

time. Below, we focus on well-separated queries. The complete procedure is given in Algorithm 4. Suppose
we are given ˜OUT such that ˜OUT ≤ OUT ≤ 2 · ˜OUT.

Component 2: Join Tree and Edge Label. Let Q = (V, E ,y) be an arbitrary well-separated query.
Since Q is cleansed, every unique attribute is an output attribute. Moreover, as Q is well-separated, each
output attribute is also unique. Let E• = {e ∈ E : e ∩ y ̸= ∅} denote the set of relations that contain some
(unique) output attribute. In an arbitrary join tree T of Q, a node e1 is a neighbor to another node e2 ∈ T
if there is an edge between e1, e2 in T . For a node e, let Ne denote the set of neighbors of e in T . A node is
a leaf if |Ne| = 1. We show an important observation for any well-separate join-aggregate query:

Lemma 6. For any well-separated query Q, there exists a join tree T for Q such that E• is exactly the set
of leaf nodes of T .

For a pair of incident nodes e1, e2, we use {e1, e2} to denote the undirected edge between them, use
(e1, e2) (resp. (e2, e1)) to denote the directed edge from e1 to e2 (resp. from e2 to e1). Removing the
edge {e1, e2} separates T into two connected subtrees Te1,e2 and Te2,e1 , which contains e1 and e2 separately.
Moreover, Te1,e2 defines a join-project query over relations residing in this subtree as:

Qe1,e2(R) := πy∪(e1∩e2)

(
⋊⋉e∈Te1,e2

Re

)
11

non-output attribute

output attribute

e2
e1

e3

e4

e0

e0e1

e2

e3

e4

e0e1

e2

e3

e4

e0e1

e2

e3

e4

e0e1

e2

e3

e4

small edge large edge limited edge

Q1 Q∗ Q∗1 Q∗∗

e1 e2 e3

e5 e4

e1 e2 e3

e5 e4

e1 e2 e3

e5 e4

Q1 Q2

e1 e2 e3

e5 e4

Q4 Q∗

e1 e2 e3

e4
e5

Figure 4: An illustration of our general framework on line query and fat star query.

For simplicity, we define ϕe1,e2 =
|E•∩Te1,e2 |

outw as the fraction of the number of relations containing some output
attribute(s) from the subtree Te1,e2 .

We next introduce the “label” to edges in T , with respect to the instance R. An edge (e1, e2) is large

if |σe1∩e2=tQe1,e2(R)| > ˜OUT
ϕe1,e2 holds for every tuple t ∈ πe1∩e2Re1 , and small if |σe1∩e2=tQe1,e2(R)| ≤

˜OUT
ϕe1,e2 holds for every tuple t ∈ πe1∩e2Re1 . Furthermore, we identify a more constrained label for small

edges. An edge (e1, e2) is limited if |πyQe1,e2(R)| ≤ ˜OUT
ϕe1,e2 . Note that a limited edge must be small, but

not vice versa.

Component 3: Easy Instance for Yannakakis Framework. We point out a critical observation on
the connection between small edges and the Yannakakis framework (see Section 4.2):

Lemma 7. For a well-separated join-aggregate query Q = (V, E ,y), given any instance R of input size N
and output size OUT, if there is a join tree T with a leaf node e1 ∈ E• whose unique in-going edge is small,

the Q(R) can be computed within O
(
N ·OUT1− 1

outw +OUT
)
time, where outw is the out-width of Q.

Component 4: Partition Procedure. However, such a leaf node with an in-going small edge may
not always exist. Also, it could be time-consuming to “check” whether an edge is small or not, since the
corresponding subquery may need to materialize a large number of intermediate results. The most interesting
part of this framework is an efficient way to partition the input instance such that every sub-instance is “easy”,
i.e., admits a join tree containing a leaf node with the unique in-going edge as small. More specifically, we
aim to obtain (in Section 4.3):

Lemma 8. For a well-separated query Q and an arbitrary instance R, there is an algorithm that can partition

R into O(1) sub-instances R1,R2, · · · ,Rℓ within O
(
N ·OUT1− 1

outw

)
time such that Q(R) =

⊕
i∈[ℓ]Q(Ri),

and for each Ri, there exists a join tree T with a leaf node e ∈ E• such that the edge (∗, e) is small, where
outw is the out-width of Q and where E• = {e ∈ E : e ∩ y ̸= ∅}.

Combine Lemma 5, Lemma 8 and Lemma 7, we obtain:

Theorem 7. For any existentially-connected acyclic join-aggregate query Q and an arbitrary instance R of
input size N and output size OUT, if a O(1)-approximation of OUT is known, the Q(R) can be computed

in Õ
(
N ·OUT1− 1

outw +OUT
)
time, where outw is the out-width of Q.

4.2 Proof of Lemma 7

We simply invoke the Yannakakis framework along the join tree T rooted at e1. Let e2 be the unique node

incident to e1. As edge (e2, e1) is small, every tuple t ∈ dom(e1 ∩ e2) appears in no more than ˜OUT
1− 1

outw

query result in Qe2,e1 , since |E• ∩ Te2,e1 | = |E•|−|E•∩Te1,e2 | = outw−1. Consider any node e with its parent

e′ in T (rooted at e1). It is easy to see that every tuple t′ ∈ dom(e∩ e′) appears in no more than ˜OUT
1− 1

outw

query result in Qe,e′ . Suppose not, assume there exists some tuple t′ ∈ dom(e ∩ e′) appears in more than

12

˜OUT
1− 1

outw query result in Qe,e′ . After removing all dangling tuples, there must exist some full join result t
such that πe∩e′ = t′. We note that πe1∩e2t ∈ πe1∩e2Re1 ; and moreover, the tuple πe1∩e2t will appear in at

least ˜OUT
1− 1

outw query result in Qe1,e2 via t′, contradicting the fact that edge (e2, e1) is small.
Now, we are ready to analyze the cost of Yannakakis framework on T (rooted at e1). Each time, it equiv-

alently picks an internal node e′ whose children are all leaves, say L, and materializes Re′ ⋊⋉ (⋊⋉e∈L Qe,e′).

As there are at most N tuples in Re′ , and each tuple can be joined with at most ˜OUT
1− 1

outw tuples in

⋊⋉e∈L Qe,e′ , the number of intermediate join result materialized is always bounded by O
(
N ·OUT1− 1

outw

)
.

Hence, Yannakakis framework takes O
(
N ·OUT1− 1

outw

)
time.

4.3 Proof of Lemma 8

At last, we come to the most technical part of Algorithm 4. We start with an input instance R and an
unlabeled join tree T . We iteratively partition R until all sub-instances fall into the “easy case” as captured
by Lemma 7 in line 5-9. In general, we can always apply two rules to label edges in line 10 and line 11-12,
as described in Lemma 9 and Lemma 10.

Lemma 9 (Large-Reverse-Limited). For a pair of incident nodes {e1, e2}, if edge (e1, e2) is large, edge
(e2, e1) must be limited.

Lemma 10 (Limited-Imply-Limited). For any node e1 with its neighbors Ne1 , if edge (e3, e1) is limited for
every node e3 ∈ Ne1 except e2 ∈ Ne1 , then edge (e1, e2) must be limited.

If no more edges can be labeled, we can further partition the input instance R as line 13-18. Consider an
unlabeled edge (e1, e2) such that (e3, e1) is small for every node e3 ∈ Ne1 −{e2}. We first compute Qe1,e2 by
invoking the Yannakakis framework with the join tree Te1,e2 rooted at e1. A tuple t ∈ dom(e1∩e2) is heavy if

it can be joined with at least ˜OUT
ϕe1,e2 query result in Qe1,e2 , and light otherwise. We also partition tuples

in Re1 as heavy and light, by attributes e1 ∩ e2. Now, we can partition the instance into two sub-instances,
which contains heavy and light tuples in Re1 separately, and two copies of T in which edge (e1, e2) is labeled
as large and small separately. We continue applying this procedure recursively to every sub-instance, until
all of them falls into the case in line 5-9. At last, we just aggregate all these sub-queries. See two examples
in Figure 4.

Example 1. For Qline with k = 5, E• = {e1, e5}. We start with an arbitrary leaf node say e1, and partition

R1 into Rheavy
1 , Rlight

1 . For Q1, edge (e1, e2) is large. Implied by Lemma 9, edge (e2, e1) is limited. We next

choose e2. As edge (e1, e2) is small, we further compute Qe2,e3 (i.e., S2) and partition R2 into Rheavy
2 , Rlight

2 .
We continue this process until obtaining k sub-queries as in Section 2. Consider an arbitrary sub-query Qi

in which edge (ei, ei+1) is large. Implied by Lemma 9, edge (ei+1, ei) is limited. Applying Lemma 10 to
edges (ei, ei−1), (ei−1, ei−2), · · · , (e2, e1) iteratively, we conclude that edge (e2, e1) is limited. Consider the
remaining sub-instance Q∗ such that (ei, ei+1) is small for every i ∈ [4]. It automatically falls into the “easy
case”, since e5 ∈ E• is a leaf node.

Example 2. For Qfstar with k = 4, E• = {e1, e2, e3, e4}. We start with an arbitrary leaf node say e1, and

partition R1 into Rheavy
1 and Rlight

1 . For Q1, edge (e1, e0) is small. We continue to visit e2 and further
partition R2. After visiting all leaf nodes, we are left with a sub-instance in which (e0, ei) is large for every
i ∈ [4]. Implied by Lemma 9, (ei, e0) is limited for every i ∈ [4]. We pick an unlabeled edge (e0, e1) and
further partition Re0 by Qe0,e1 (i.e., S1). For Q∗1, edge (e0, e1) is small. It continues to consider (e0, e2) and
further partitions the remaining sub-instance. At last, we are left with Q∗∗, where (e0, ei) is labeled as large
for every i ∈ [4]. Implied by Lemma 9, edge (ei, e0) must be limited for every i ∈ [4]. Implied by Lemma 10,
edge (e0, e4) must be limited, which contradicts the fact that (e0, e4) is large. Hence, Q∗∗ = ∅.

Correctness. Although the Algorithm 4 is non-deterministic, we can show that Algorithm 4 quickly termi-
nates after running the while-loop at line 4-19 for at most 2 · |E| iterations.

Lemma 11. Algorithm 4 terminates after running the while-loop at line 3-20 for at most 2 · |E| iterations.

13

Algorithm 4: HybridYannakakisWithOUT (Q,R, ˜OUT)

Input : A well-separated query Q, an instance R of input size N and output size OUT, and
parameter ˜OUT such that ˜OUT ≤ OUT ≤ 2 · ˜OUT;

Output: A set of sub-instances as described in Lemma 8;
1 T ← a unlabeled join tree of Q whose leaf nodes correspond to E• = {e ∈ E : e ∩ y ̸= ∅};
2 P ← {(T ,R)}, S ← ∅;
3 while P ̸= ∅ do
4 foreach (T ,R) ∈ P do
5 if ∃ a leaf node e in T s.t. edge (∗, e) is small then
6 P ← P − {(T ,R)};
7 L ← Q(R) computed by Yannakakis framework along T rooted at e;
8 if S = ∅ then S ← L;
9 else S ← S ⊕ L;

10 if ∃ unlabeled (e1, e2) in T ′ s.t. (e2, e1) is large then label (e1, e2) as limited;
11 if ∃ unlabeled (e1, e2) in T ′ s.t. (e3, e1) is limited for every e3 ∈ Ne1 − {e2} then
12 label (e1, e2) as limited;
13 if ∃ unlabeled (e1, e2) s.t. (e3, e1) is small for every e3 ∈ Ne1 − {e2} then
14 He1,e2 ←

{
t ∈ dom(e1 ∩ e2) : |σe1∩e2=tQe1,e2 | > ˜OUT

ϕe1,e2

}
;

15 R1 ← R− {Re1}+ {Re1 ⋉He1,e2};
16 R2 ← R− {Re1}+ {Re1 ▷ He1,e2};
17 T1, T2 ← T with (e1, e2) labeled as large, small separately;
18 P ← P − {(T ,R)}+ {(T1,R1) , (T2,R2)};
19 return S;

Lemma 12 (Not-All-Large). For an arbitrary connected subtree T1 of T , let T2 be the resulted subtree after
removing T1 from T . If T2 is disconnected, then there must exist a pair of nodes e1 ∈ T1, e2 ∈ T2 such that
(e1, e2) is an edge in T but not large.

Proof of Lemma 11. In each iteration of the while-loop, for every sub-instance that do not fall into the base
case, one unlabeled edge gets labeled. Below, we will prove that for a sub-instance with an arbitrary partial
labeling, if no labeling rule can be applied further, it must fall into the base case at line 5. As there are
most 2 · |E| unlabeled edges in the beginning, the while-loop runs at most 2 · |E| iterations until all edges
are labeled. Hence, Algorithm 4 will terminate after running the while-loop for at most 2 · |E| iterations.
Consider any sub-instance R′ with an arbitrary partial labeling on T . By contradiction, we assume that
there exists no unlabeled edge to which line 10, or line 11-12, or line 13-18 of Algorithm 4 can be applied.
In Algorithm 5, we show how to identify a leaf node e ∈ T such that (∗, e) is small, hence this sub-instance
always falls into the easy case.

The high-level idea of Algorithm 5 is to conceptually remove nodes in T , until a single node is left, which
is exactly the leaf node as desired. We root T at an arbitrary node r ∈ E• ∩ T . Let pe be the parent of e in
this rooted tree. If there exists a node e such that the edge (e, pe) is large, but the edge (e′, pe′) is small for
every node e′ residing in the subtree rooted at e, we simply remove the whole subtree Te,pe

and continue.
Otherwise, every (e, pe) is small, including the edge (∗, r) incident to r, hence r is returned.

It remains to show that line 5 will always be triggered by Algorithm 5. In the execution, T is always a
connected subtree. Moreover, T ∩ E• ̸= ∅. To show this, we need an important observation in Lemma 12.
By contradiction, assume T ∩ E• = ∅. Let T ′ be the subtree(s) removed from the initial join tree. As T is
connected and T ∩ E• = ∅, T ′ must be disconnected. Moreover, for each pair of nodes e1 ∈ T and e2 ∈ T ′,
the subtree Te2,e1 has been removed due to the fact that edge (e1, e2) is large. This way, Lemma 12 is
violated on T , coming to a contradiction. Hence, T ∩ E• ̸= ∅ always holds in the execution process. This
means that it is always feasible to root T at some node in T ∩ E•, and further shrink T . As T has a limited
size, it will finally end with the case that every edge (e, pe) is small for any e ∈ T , i.e., triggering line 5.

Time Complexity. When an unlabeled edge gets labeled in line 13-18, the associated instance R will

14

Algorithm 5: IdentifyLeaf(Q,R, T)
Input : A well-separated query Q = (V, E ,y), an instance R and a labeled join tree T with leaf

nodes E• = {e ∈ E : e ∩ y ̸= ∅}, in which no more edges can be labeled by line 10-18 in
Algorithm 4;

Output: A leaf node as described in Lemma 7;
1 while true do
2 Root T at an arbitrary node r ∈ T ∩ E•;
3 foreach e ∈ T do pe ← the parent node of e;
4 if ∃ a node e ∈ T such that (e, pe) is large but (e′, pe′) is small for every node e′ in the subtree

rooted at e then
5 T ← T − Te,pe ;
6 else return r;

be partitioned into two sub-instances R1,R2. As each edge will be labeled once, and there are O(1) edges
to be labeled, the total number of sub-instances returned at last is still O(1). The cost of Algorithm 4 is
dominated by that of computing Qe1,e2 . We invoke the Yannakakis framework along the join tree Te1,e2
rooted at e1. Following the similar analysis of Lemma 7, for an arbitrary node e3 ∈ Ne1 − {e2}, the

subquery Qe3,e1 can be computed within O
(
N ·OUTϕe3,e1

)
time. Then, Qe1,e2 is computed as follows:

Qe1,e2 = πy∪(e1∩e2)Re1 ⋊⋉
(
⋊⋉e3∈Ne1

−{e2} Qe3,e1

)
. There are at most N tuples in Re1 . Each of them can

be joined with at most
∏

e3∈Ne1−{e2}
˜OUT

ϕe3,e1 = ˜OUT
ϕe1,e2 ≤ ˜OUT

1− 1
outw tuples in

(
⋊⋉e3∈Ne1

−e2 Qe3,e1

)
,

hence the Qe1,e2 can be computed within O
(
N ·OUT1− 1

outw

)
time. All other statistics can be computed

within asymptotically same time complexity. From Lemma 8, line 13-19 will be invoked at most O(1) times.

Hence, the total time complexity of Algorithm 4 can be bounded by O
(
N ·OUT1− 1

outw

)
.

5 Lower Bound

In [2], it has been shown that for the sparse matrix multiplication problem, and parameters N,OUT ≤ N2,
there exists an instance R of input size Θ(N) and output size Θ(OUT) such that any semi-ring algorithm

has to incur a cost of Ω
(
N ·
√
OUT

)
. The similar argument can be extended to star queries. We will also

rely on this existing lower bound to establish our new lower bound.

Lemma 13 ([2]). For the star join-aggregate query Qstar of k relations, parameters N,OUT ≤ Nk, there
exists an instance R of input size N and output size OUT such that any semi-ring algorithm for computing

Q(R) requires at least Ω
(
N ·OUT1− 1

k

)
time.

Proof of Lemma 13. We construct a hard instance R of input size Θ(N) and output size OUT for Qstar =

⊕BR1(A1, B) ⋊⋉ R2(A2, B) ⋊⋉ · · · ⋊⋉ Rk(Ak, B) as follows. There are OUT1/k distinct values in each attribute

Ai for i ∈ [k]. There are N ·OUT−1/k distinct values in attribute B. Each relation Ri is a Cartesian product
between Ai and B. It can be checked that each relation contains exactly N tuples. Any semi-ring algorithm

has to compute all full join result, which is as large as Θ
(
N ·OUT1−1/k

)
for this hard instance, hence

requires at least Ω
(
N ·OUT1−1/k

)
time.

Proof of Theorem 1. Consider an arbitrary existentially-con-nected acyclic join-aggregate query Q, with
parameters 1 ≤ N and OUT ≤ Noutw. We show a reduction from Q to Qstar with outw relations. Suppose
we are given a hard instance R for Qstar. We distinguish two cases. First, we assume Q is cleansed for
simplicity.

Implied by Lemma 19, let S ⊆ y be the set of output attributes such that no pair of them appears
in the same relation, and |S| = outw. Each output attribute A ∈ y − S contains one distinct value {∗}.

15

Each output attribute A ∈ S contains OUT
1

outw distinct values. Each non-output attribute B ∈ ȳ contains

N · OUT− 1
outw distinct values. For each relation Re, |e ∩ S| ≤ 1. The projection of Re onto all non-output

attributes contains tuples in a form of (bi, bi, · · · , bi), for i ∈
[
N ·OUT1− 1

outw

]
. The projection of Re onto all

output attributes is the full Cartesian product. Moreover, Re = (πyRe)× (πȳRe). For each output attribute
A ∈ S, we choose an arbitrary relation e ∈ E such that A ∈ e. Note that all chosen relations are also
distinct. Let ES be the set of chosen relations. We specify an arbitrary one-to-one mapping from relations in
Qstar and relations in ES , say Ri corresponds to Si. From our construction above, there is also a one-to-one
mapping between tuples in Ri and Si. We just set the annotation of a tuple t ∈ Si as the same as t′ ∈ Ri,
if t corresponds to t. For every remaining relation Re in R, we simply set the annotation of each tuple as 1.
As |e ∩ S| ≤ 1 for each relation e ∈ E , it can be checked that each relation contains at most N tuples. The
output size of this query is exactly OUT.

It is not hard to see ⊕V−SQ(R) = Qstar(Rstar). Any semi-ring algorithm that can compute Q(R)
within O

(
N ·OUT1− 1

outw

)
time, can also compute Qstar(Rstar) within O

(
N ·OUT1− 1

outw

)
time. Hence, this

automatically follows Lemma 13.
Now, we consider the second case whereQ = (V, E ,y) is not cleansed. LetQ′ = (V ′, E ′,y′) be the cleansed

version of Q, and R′ be the instance constructed for Q′ as the first case. Implied by the cleanse procedure,
y = y′. Each non-output attribute B ∈ V − V ′ contains one distinct value {∗}. For each e′ ∈ E − E ′, there
must exist a relation e ∈ E ′ such that e′ ⊆ e. The relation Re′ is just a projection of Re onto attribute e′,
where each tuple has its annotation as 1. The argument for the first case applies here.

Proof of Theorem 2. Consider an arbitrary acyclic join-aggre-gate query Q = (V, E ,y), with parameters
1 ≤ N and OUT ≤ Nρ∗(Qy). Let outw be the out-width of Q. The case when Q is existentially connected
has been proved by Theorem 1. We next assume that Q is existentially disconnected. Let Q1,Q2, · · · ,Qh

be the connected sub-queries in G∃
Q. Without loss of generality, assume outw(Q1) = outw. We can construct

an instance as Theorem 1 with parameters N and min {OUT, Noutw}. Suppose Q1 = (V1, E1,y1). More
specifically, each attribute in V−V1 contains one distinct value {∗}. Consider an arbitrary relation e ∈ E−E1.
If e ∩ V1 = ∅, relation Re only contains one tuple in a form of (∗, ∗, · · · , ∗). Otherwise, e ∩ V1 ⊆ y. In this
case, Re = (πyRe)× (πȳRe). Note that each tuple in Re has its annotation as 1. The following argument in
Theorem 1 applies here.

16

References

[1] A. Abboud, K. Bringmann, N. Fischer, and M. Künnemann. The time complexity of fully sparse matrix
multiplication. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 4670–4703. SIAM, 2024.

[2] R. R. Amossen and R. Pagh. Faster join-projects and sparse matrix multiplications. In Proceedings of the 12th
International Conference on Database Theory, pages 121–126. ACM, 2009.

[3] A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational joins. SIAM Journal on
Computing, 42(4):1737–1767, 2013.

[4] G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and constant delay enumeration. In
International Workshop on Computer Science Logic, pages 208–222. Springer, 2007.

[5] N. Bakibayev, T. Kocisky, D. Olteanu, and J. Zavodny. Aggregation and ordering in factorised databases. In
Proc. International Conference on Very Large Data Bases, 2013.

[6] H. Barthels, M. Copik, and P. Bientinesi. The generalized matrix chain algorithm. In Proceedings of the 2018
International Symposium on Code Generation and Optimization, pages 138–148, 2018.

[7] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic database schemes. Journal of
the ACM, 30(3):479–513, 1983.

[8] A. Björklund, R. Pagh, V. V. Williams, and U. Zwick. Listing triangles. In International Colloquium on
Automata, Languages, and Programming, pages 223–234. Springer, 2014.

[9] M. Dalirrooyfard, S. Mathialagan, V. V. Williams, and Y. Xu. Listing cliques from smaller cliques. arXiv
preprint arXiv:2307.15871, 2023.

[10] S. Deep, X. Hu, and P. Koutris. Fast join project query evaluation using matrix multiplication. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data, pages 1213–1223, 2020.

[11] R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. Journal of the ACM, 30(3):514–
550, 1983.

[12] S. S. Godbole. On efficient computation of matrix chain products. IEEE Transactions on Computers, 100(9):864–
866, 1973.

[13] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In Proc. ACM Symposium on Principles
of Database Systems, 2007.

[14] M. Grohe and D. Marx. Constraint solving via fractional edge covers. ACM Transactions on Algorithms
(TALG), 11(1):1–20, 2014.

[15] X. Hu. Cover or pack: New upper and lower bounds for massively parallel joins. In Proceedings of the 40th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 181–198, 2021.

[16] X. Hu. Fast matrix multiplication for query processing. Proceedings of the ACM on Management of Data,
2(2):1–25, 2024.

[17] M. Idris, M. Ugarte, and S. Vansummeren. The dynamic Yannakakis algorithm: Compact and efficient query
processing under updates. In Proc. ACM SIGMOD International Conference on Management of Data, 2017.

[18] C. Jin, V. V. Williams, and R. Zhou. Listing 6-cycles. In 2024 Symposium on Simplicity in Algorithms (SOSA),
pages 19–27. SIAM, 2024.

[19] M. R. Joglekar, R. Puttagunta, and C. Ré. AJAR: Aggregations and joins over annotated relations. In Proc.
ACM Symposium on Principles of Database Systems, 2016.

[20] M. A. Khamis, R. R. Curtin, B. Moseley, H. Q. Ngo, X. Nguyen, D. Olteanu, and M. Schleich. Functional
aggregate queries with additive inequalities. ACM Transactions on Database Systems (TODS), 45(4):1–41,
2020.

[21] C. Lin, W. Luo, Y. Fang, C. Ma, X. Liu, and Y. Ma. On efficient large sparse matrix chain multiplication.
Proceedings of the ACM on Management of Data, 2(3):1–27, 2024.

[22] D. Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. Journal of the
ACM (JACM), 60(6):1–51, 2013.

[23] H. Q. Ngo. Worst-case optimal join algorithms: Techniques, results, and open problems. In Proceedings of
the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 111–124. ACM,
2018.

[24] K. Nishida, Y. Ito, and K. Nakano. Accelerating the dynamic programming for the matrix chain product on
the gpu. In 2011 Second International Conference on Networking and Computing, pages 320–326. IEEE, 2011.

[25] R. Pagh and F. Silvestri. The input/output complexity of triangle enumeration. In Proc. ACM Symposium on
Principles of Database Systems, 2014.

[26] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic databases, synthesis lectures on data management.
Morgan & Claypool, 2011.

[27] T. L. Veldhuizen. Leapfrog triejoin: A simple, worst-case optimal join algorithm. In Proc. International

17

Conference on Database Theory, 2014.

[28] M. Yannakakis. Algorithms for acyclic database schemes. In Proc. International Conference on Very Large
Data Bases, pages 82–94, 1981.

A Missing Materials in Section 1

Algorithm 6: Cleanse(Q = (V, E ,y),R)
1 Let T be a join tree of Q;
2 while visit nodes a bottom-up way (excluding the root) do
3 foreach node e visited do
4 e′ ← the parent of e;
5 Re′ ← Re′ ⋉Re;

6 while visit nodes a top-down way (excluding the root) do
7 foreach node e visited do
8 e′ ← the parent of e;
9 Re ← Re ⋉Re′ ;

10 while true do
11 if ∃B ∈ ȳ s.t. |EB | = 1 then
12 Re ← ⊕BRe;
13 e← e− {B};
14 V ← V − {B};
15 if ∃e, e′ ∈ E s.t. e ⊆ e′ then
16 Re′ ← Re′ ⋊⋉ Re;
17 E ← E − {e};
18 if Q does not change from last iteration then break;

19 return updated Q,R;

Algorithm 7: Yannakakis(Q = (V, E),y,R) [28, 19]
1 Let T be a join tree of Q rooted at r;
2 while visit nodes a bottom-up way (excluding the root r) do
3 foreach node e visited do
4 e′ ← the parent of e;
5 Re′ ← Re′ ⋉Re;

6 while visit nodes a top-down way (excluding the root r) do
7 foreach node e visited do
8 e′ ← the parent of e;
9 Re ← Re ⋉Re′ ;

10 while visit nodes a bottom-up way (excluding the root r) do
11 foreach node e visited do
12 e′ ← the parent of e;
13 Re ← ⊕ȳ∩(e−e′)Re;
14 Re′ ← Re ⋊⋉ Re′ ;

15 return ⊕ȳ∩rRr for the root r;

Lemma 14. For an acyclic join-aggregate query Q, outw(Q) = 1 if and only if Q is free-connex.

Lemma 15 ([4], Lemma 21). For any free-connex join-aggregate Q = (V, E ,y), there exists a join tree T ′

for (V, E ∪ Ey,y) and a subset of relations Econ ⊆ E ∪ Ey such that the corresponding nodes of Econ form a
connex subtree of T ′, i.e., Econ includes the root of T ′, y =

⋃
e∈Econ

e and the subtree is connected.

18

Proof of Lemma 14. We mention an equivalent definition of free-connex join-aggregate queries based on join
tree, in Lemma 15.

If Direction. For a free-connex join-aggregate query Q, if applying the cleanse procedure, we will it-

eratively remove all non-output attributes and be left with Econ. Let Qcon =
(⋃

e∈Econ
e, Econ,y

)
. As Econ

only contains output attribute, in the existential-connectivity graph of G∃
Qcon

, every single relation forms a
connected subquery with out-width 1. Hence, Q has out-width as 1.

Only-If Direction. Consider an arbitrary acyclic join-aggregate query Q = (V, E ,y) with outw(Q) = 1.
Let Q′ = (V ′, E ′,y) be the cleansed version of Q. Note that outw(Q′) = 1. Moreover, for each connected
subquery Q′

i in G∃
Q′ , outw(Q′

i) = 1. We note that Q′
i is cleansed, is existentially connected, and has

outw(Q′
i) = 1, Q′

i must be a single relation with all attributes as output attributes. Putting all sub-queries
together, Q′ must be an acyclic full join query. We next build a join tree for Q as follows.

• We build a join tree T ′ for Q′.

• For each relation e ∈ E ′, if there is some non-output unique attribute from e, we create a relation e′

such that e′ contain all non-output unique attribute from e, as well as all remaining attributes in e,
and add e′ as a child of e.

• We revisit the cleanse procedure on Q in Algorithm 6. For each relation e removed in line 20 due to
the fact that e ⊆ e′ for some e′ ∈ E , we add e (or the subtree rooted at e) as a child of e′.

Let T be the resulted tree. It can be easily checked that T is a valid join tree for Q, satisfying all properties
in Lemma 15. Hence, Q is free-connex, which completes the whole proof.

Lemma 16. For any acyclic query Q, freew(Q) ≤ outw(Q).

Proof. If Q is non-cleansed, then freew(Q) = freew(Q′) and outw(Q) = outw(Q′) for the cleansed version
Q′. Below, it suffices to assume that Q is cleansed. Let E ′ ⊆ E be the set of relations that contain a
unique output attribute, such that |E ′| = freew(Q). We note that any fractional edge covering of Q must
assign weight 1 to every relation in E ′; otherwise, some unique output attribute is not covered. Hence,
outw(Q) ≥ |E ′| = freew(Q).

B Yannakakis Framework Revisited

B.1 Aggregate-Hierarchical Query

Theorem 8. For any aggregate-hierarchical query Q and an instance R of input size N and output size
OUT, there is a query plan of Yannakakis framework that can compute the query result Q(R) within

O
(
N ·OUT1− 1

outw +OUT
)
time.

Given an aggregate-hierarchical query Q = (V, E ,y) and an instance R of input size N and output size
OUT, we can first apply the cleanse and decompose procedures. It suffices to compute the results for each
connected sub-query first and then combine them over all sub-queries via join. These pre-processing and
post-processing steps take O(N +OUT) time. In the remaining, we assume that Q is cleansed, existentially
connected and hierarchical.

We mention that such a query Q = (V, E ,y) has an attribute tree H, such that (i) there is a one-to-one
correspondence between attributes in V and nodes in H; (ii) each relation corresponds to a leaf-to-root
path; (iii) every leaf node (that corresponds to a unique attribute) must be an output attribute. Note that
|E| = outw. In H, let Hx be the subtree of H rooted at attribute x ∈ V. Let Qx be the sub-query derived
by relations that contain attribute x, i.e., Qx = (Vx, Ex,yx), where Vx =

⋃
e∈Ex

e and yx = y ∩ Vx. Let
path(x1, x2) denote the set of nodes lying on the path between x1 and x2 in H. We build a join tree T for
Q as follows. Consider the children of the root attribute in H. Let {E1, E2, · · · , Ej} be a partition of E such
that all relations in Ei shares one common child attribute. We build a join tree Ti for each group Ei, and
then add Ti for every i < j as the last (j − 1) child nodes of the root of Tj . See an example in Figure 5.

19

We apply the Yannakakis framework along such a join tree by traversing nodes in a post order. Below, we
aim to bound the number of intermediate join results materialized by this specific query plan of Yannakakis
framework. For simplicity, we define

fq,y,R(x) =
∣∣πpath(x,r)∪(y∩Hx)q(R)

∣∣
for an attribute x ∈ V. The number of intermediate join result that materialized is exactlyO

(
max
x∈H

fq,y,R(x)

)
.

Let I(Q, N,OUT) denote the class of all input instances of input size N and output size OUT for Q. We
can further rewrite the size bound above as:

max
R∈I(Q,N,OUT)

max
x∈H

fq,y,R(x) ≤ max
x∈H

max
R∈I(Q,N,OUT)

fq,y,R(x)

Then, it suffices to prove for an arbitrary attribute x ∈ H:

max
R∈I(Q,N,OUT)

fq,y,R(x) ≤ N ·OUT1− 1
|Ex|

As |Ex| ≤ outw, we come to the desired result. Let’s take a closer look at the sub-query fq,y,R(x) derived,
which is captured by the class of generalized star query below. Implied by Lemma 17, we complete the whole
proof.

Definition 5 (Generalized Star Query). A cleansed, existentially-connected and hierarchical query Q =
(V, E ,y) is a generalized star if V − y ⊆

⋂
e∈E e.

Lemma 17. For a generalized star query Q = (V, E ,y) of k relations, given any parameter 1 ≤ N and

OUT ≤ Nk, we have max
R∈I(Q,N,OUT)

|⋊⋉e∈E Re| = O
(
N ·OUT1− 1

k

)
.

Proof. We distinguish two cases. If
⋂

e∈E e ⊆ y, |⋊⋉e′∈E Re′ | = OUT holds for an arbitrary instance R ∈
I(Q, N,OUT). As OUT ≤

∏
e∈E |Re|, this result automatically holds. In the following, we assume

⋂
e∈E e−

y ̸= ∅. Let z =
⋂

e∈E e ∩ y. Our proof consists of two steps:

Step 1. Consider a derived sub-query Q′ = (V ′, E ′,y′) where V ′ = V − z, E ′ = {e ∩ V ′ : e ∈ E} and
y′ = y − z. We will prove

max
R∈I(Q′,N,OUT)

|⋊⋉e∈E Re| = O
(
N ·OUT

1− 1
|E′|

)
with a similar argument made in [2].

Let
⋂

e∈E′ e = {B} be the unique non-output attribute appearing in all relations from Q′. Suppose
dom(B) = {b1, b2, · · · , bℓ}. We introduce a variable ∆i for each value bi to denote the number of input
tuples that display bi in attribute B. A closely related sub-problem is to produce as many as full join
result. If |σB=biRe| ≠ |σB=biRe′ | for any pair of relations e ̸= e′, there always another solution where
|σB=biRe| = |σB=biRe′ | = 1

2 · (|σB=biRe|+ |σB=biRe′ |). It can be easily shown that the transformed solution
satisfies the input size constraint while producing larger (or at least no smaller) number of full join result.

Moreover, the largest number of full join result can be produced is
(

∆i

|E′|

)|E′|
. Hence, our overall optimization

problem can be optimized as follows:

max.

(
1

|E ′|

)|E′|

·
∑
i∈[ℓ]

∆
|E′|
i

subject to.
∑
i∈[ℓ]

∆i ≤ N

∆i ≤ OUT
1

|E′| ,∀i ∈ [ℓ]

is a valid solution with larger number of full join result produced. The optimal solution N · OUT
1− 1

|E′| is

achieved when ∆i = OUT
1

|E′| and ℓ = N

OUT
1

|E′|
.

20

A

B C

D E F G

H I J K
ABDH

ABDI

ABEK

ABEJ

ACF

ACG

non-output attributeoutput attribute

Figure 5: An illustration of the attribute tree (left) and join tree (right) of a cleansed, existentially connected
and hierarchical join-aggregate query Q = ⊕A,C,D,ER1(A,B,D,H) ⋊⋉ R2(A,B,D, I) ⋊⋉ R3(A,B,E, J) ⋊⋉
R4(A,B,E,K) ⋊⋉ R5(A,C, F) ⋊⋉ R6(A,C,G).

A1 A2 A3 A4

OUT
2

N

OUT
N
2 1

1
N

OUTN
2

OUT
2

Figure 6: An illustration of hard instance for Yannakakis framework on line-3 query [16].

Step 2. Consider an arbitrary instance R of Q. Let z1, z2, · · · , zℓ be the values in the active domain of

z in R. Let Ni =
∑
j∈[ℓ]

|σz=ziRj | and OUTi =
∏
j∈[ℓ]

|σz=ziRj |. Implied by Step 1, the largest number of full

join result can be produced is at most O
(
Ni ·OUT

1− 1
k

i

)
. Given the following two constraints∑

i∈[ℓ]

Ni = N, and
∑
i∈[ℓ]

OUTi = OUT,

the largest number of full join result produced can be bounded by∑
i∈[ℓ]

Ni ·OUT
1− 1

|E|
i ≤

∑
i∈[ℓ]

Ni ·OUT1− 1
k ≤ N ·OUT1− 1

|E| .

As |E| = k, this is exactly O
(
N ·OUT1− 1

k

)
.

B.2 Non-Aggregate-Hierarchical Query

As shown in [16], Yannakakis framework indeed incurs Θ(N · OUT) time for line queries. We first revisit
the hard instance constructed for line-3 query as shown in Figure 6. Consider an arbitrary acyclic but non-
aggregate-hierarchical join-aggregate query Q. Let Q′ be its cleansed version. Let Q1,Q2, · · · ,Qh be the
connected sub-queries in G∃

Q′ . As Q is acyclic, every sub-query Qi is also acyclic. As Q is non-aggregate-
hierarchical, at least one sub-query is not hierarchical, say Q1. There must exist a pair of attributes x, x′

and three relations e, e′, e′′ such that x ∈ e ∩ e′ − e′′ and x′ ∈ e′ ∩ e′′ − e. Let T be a join tree of Q1. As Q1

is cleansed, every leaf node must contain some unique attribute.
It is always feasible to find a pair of leaf nodes e1, en in T such that e, e′′ ∈ path(e1, en), e ∈ path(e1, e

′′)
and e′′ ∈ path(e′, en). It could be possible that e = e1 or e′′ = en. Let A1, An+1 be an arbitrary unique
output attribute in e1, en separately. As Q1 is existentially connected, there must exists a subset S of m
relations in path(e1, en) (including e1 and en) and a subset of non-output attributes B1, B2, · · · , Bm such
that B1 ∈ e1, Bn ∈ en, Bi, Bi+1 ∈ ei for some relation ei ∈ path(e1, en), and there exists no relation e′ such
that Bi, Bj ∈ e′ for any |j − i| > 1. Otherwise, Q1 is not existentially connected.

Give an instance Rline of line-3 query Qline, we construct an instance R for Q as follows. We set dom(x) =
{∗} for every attribute x ∈ V − {C1, C2, B1, B2, · · · , Bm}. We use C1 to simulate A1, use C2 to simulate

21

Algorithm 8: HybridYannakakis(Q = (V, E ,y),R)
Input : A well-separated query Q and an instance R;
Output: Query result Q(R);

1 if |E| = 1, say E = {e} then return ⊕ȳRe;
2 Ey ← {e ∈ E : e ∩ y ̸= ∅};
3 e← an arbitrary relation in ∈ Ey;
4 Put an ordering on elements in πe∩yRe as a1, a2, a3, · · · ;
5 S

(0)
e ← Re, i← 1;

6 while true do

7 S
(i)
e ← ∅;

8 foreach t ∈ S
(i−1)
e do

9 Suppose πe∩yt = aj ;
10 t′ ← a tuple with πe∩yt

′ = a⌊ j+1
2 ⌋ and πAt

′ = πAt for any attribute A ∈ e− y;

11 S
(i)
e ← S

(i)
e ∪ {t′};

12 if
∣∣∣πe∩yS

(i)
e

∣∣∣ = 1 then break;

13 i← i+ 1;

14 Re′ ← Re′ ⋉ S
(i)
e ;

15 Q′ ← (V − e ∩ y, E − {e},y − e);

16 J (i) ←
(
πe∩yS

(i)
e

)
×HybridYannakakis (Q′,R− {Re});

17 while i > 0 do

18 J (i−1) ← HybridYannakakisWithOUT
(
Q,R− {Re}+

{
S
(i−1)
e

}
, 2 · |J (i)|

)
; ▶

Algorithm 4;
19 i← i− 1;

20 return J (0);

A4, B1 to simulate A2 and all remaining attributes B2, B3, · · · , Bm to simulate A3. For any relation e,
such that |e ∩ {B2, B3, · · · , Bm}| > 1, the projection of Re onto {B2, B3, · · · , Bm} should be a one-to-one
mapping. The argument for line-3 query can be applied for Q similarly, i.e., any query plan of the Yannakakis
framework requires Θ(N ·OUT) time.

C Missing Proofs in Section 4

Lemma 18. There exists a subset Ey ⊆ E of relations such that |Ey| = outw and for each output attribute
A ∈ y, there exists some relation e ∈ Ey with A ∈ e.

Proof of Lemma 18. Consider the sub-query Qy = (y, {e ∩ y : e ∈ E}) derived by output attributes. As Q
is acyclic, Qy is also acyclic. As shown in [15], every acyclic query has an optimal fractional edge covering
ρ∗ that is also integral, i.e., ρ∗(e) = 1 or ρ∗(e) = 0 for any relation e ∈ E . Let Ey ⊆ E be the set of relations
for which ρ∗(e) = 1 holds for every e ∈ Ey. For every attribute A ∈ y, there must exist a relation e ∈ Ey
such that A ∈ e. Implied by the definition of out-width, |Ey| = outw.

Lemma 19. For an existentially-connected and cleansed acyclic join-aggregate query Q = (V, E ,y) of out-
width outw, there exists a subset S of outw attributes such that no pair of them appear in the same relation
from E.

Proof of Lemma 19. Consider the sub-query Qy = (y, {e ∩ y : e ∈ E}) derived by output attributes, which
is also acyclic, and an arbitrary join tree T . Initially, we set S = ∅. As shown in [15], the following greedy
strategy leads to an optimal fractional edge covering that is also integral. It iteratively performs the following
two procedures: (i) removes a relation e if there exists another relation e′ such that e ⊆ e′; (ii) if there exists

22

e4e1

e2

e3

e5

e6

e7

e8e10

e9

Figure 7: A join tree constructed for the join-aggregate query in Figure 3, where E• = {e2, e9, e3, e10, e6, e8}.

a relation e containing some unique attribute, we remove relation e as well as all attributes in e, and add an
arbitrary attribute in e to S. It can be easily checked that |S| = outw, and no pair of them appears in the
same relation from E .

Proof of Lemma 5. Below, we show the separate procedure with two steps. See Figure 3.

Step 1. Consider a cleansed and existentially connected acyclic join-aggregate query Q = (V, E ,y). Let
y• ⊆ y be the set of unique output attributes. Let y − y• be the set of joint output attributes.

Suppose Ey ⊆ E is the subset of relations identified in Lemma 18. We assign each attribute A ∈ y to an
arbitrary relation e ∈ Ey with A ∈ e. Let π : y→ Ey be the assignment function.

We construct a query Q′ = (V ′, E ′,y) based on Q as follows. First, V ′ includes all attributes in V. For
each output attribute A ∈ y−y•, we add a distinct attribute xA /∈ V to V ′. For each relation e ∈ E , we add
a relation eπ to E ′ as follows. If e ∈ Ey, eπ includes all attributes in e as well as the new attribute xA for
each joint output attribute A ∈ e ∩ (y − y•). Otherwise, eπ includes all attributes in e by replacing every
joint output attribute A ∈ e ∩ (y − y•) with xA if there exists any. More precisely,

eπ =

{
e+

(⋃
A∈e∩(y−y•):π(A)=e{xA}

)
if e ∈ Ey

e− y + {xA : A ∈ e ∩ (y − y•)} otherwise

It is not hard to see outw(Q) = outw(Q′). Moreover, each output attribute in y is unique in Q′.
Given an arbitrary instance R for Q, we construct an instance R′ for Q′ as follows. For each relation

e ∈ E , we add a relation Reπ to R′ by distinguishing the following three cases:

- Case 1: e ∩ y = ∅ or e ∩ (y − y•) = ∅. In this case, e = eπ, and we just add Re to R′.

- Case 2: e ∩ (y − y•) ̸= ∅ and e ∈ Ey. For each tuple t ∈ Re, we add a new tuple t′ to Reπ with the
same annotation, such that πet

′ = πet, and πxA
t′ = πAt for each A ∈ e ∩ (y − y•).

- Case 3: e ∩ (y − y•) ̸= ∅ and e /∈ Ey. For each tuple t ∈ Re, we add a new tuple t′ to Reπ with the
same annotation, such that πe−yt

′ = πe−yt, and πxA
t′ = πAt for each A ∈ e ∩ −y.

From our construction above, there is a one-to-one correspondence between Q(R) and Q′(R′).

Step 2. Now, suppose we are given a cleansed and existentially connected acyclic join-aggregate query
Q = (V, E ,y), such that |{e ∈ E : x ∈ e}| = 1 holds for each output attribute x ∈ y. Let y∗ = {x ∈ y :
x ∈ e, ̸ ∃e′ ∈ E , such that e− y ⊆ e′}. We next construct a well-separated query Q′ = (V ′, E ′,y) as follows.
First, V ′ include all attributes in V. For each output attribute A ∈ y∗, we add a distinct attribute zA /∈ V
to V ′. For each relation e ∈ E with e ∩ y∗ = ∅, we add e′ = e to E ′. For each relation e ∈ E with e ∩ y∗ ̸= ∅,
we add e′ = e−y+ {zA : A ∈ e∩y∗}, and e′′ = (e∩y∗) + {zA : A ∈ e∩y∗} to E ′. It is not hard to see that
outw(Q) = outw(Q′). Moreover, each relation e′′ ∈ E ′ with e′′ ∩ y ̸= ∅ is now an ear in Q′.

Given an arbitrary instance R for Q, we construct an instance R′ for Q′ as follows. Consider an arbitrary
relation e ∈ E .

- Case 1: e ∩ y∗ = ∅. In this case, we just add Re to R′.

- Case 2: e ∩ y∗ ̸= ∅. For each tuple t ∈ Re, we add a new tuple t′ to Re′ with the same annotation,
such that πe−yt = πe−yt

′ and πAt = πzAt
′ for each attribute A ∈ e ∩ y∗. For each tuple t ∈ πe∩y∗Re,

we add a new tuple t′′ to Re′ with annotation as 1, such that πe∩y∗t = πe∩y∗t′′ and πAt = πzAt
′′ for

each attribute A ∈ e ∩ y∗.

23

From our construction above, there is a one-to-one correspondence between Q(R) and Q′(R′).

Proof of Lemma 6. By definition, |E•| = outw. Let T be a join tree of Q = (V, E ,y) built as follows: (i) we
first build a join tree T ′ for relations in E − E•; (ii) for each relation e ∈ E•, we pick an arbitrary relation
e′ ∈ E − E• such that e − y• ⊆ e′ and add e as a child of e′. It can be easily checked that T is a valid join
tree for Q. See Figure 7. We next show that E• is exactly the set of leaf nodes of T . By the construction
above, each relation e1 ∈ E• is added as a leaf of T . On the other hand, consider a leaf node e2 in T but
e2 ∈ E − E•. Let e3 be the unique node incident to e2. Implied by the property of join tree, there must be
e3−y• ⊆ e2. If e3 ∩• = ∅, e3 ⊆ e2, which contradicts the fact that Q is cleansed. Otherwise, e3 ∈ E•, which
contradicts the assumption e3 /∈ E•. Together, E• is exactly the set of leaf nodes of T .

Proof of Lemma 9. Consider an arbitrary tuple t ∈ dom(e1 ∩ e2). As (e1, e2) is large, t can be joined
with at least OUTϕe1,e2 query result of Qe1,e2 . After removing dangling tuples, every tuple t′ ∈ πyQe2,e1

can appear together with at least OUTϕe1,e2 tuples from πy−e1Qe1,e2 in the final query result. This way,

|πyQe2,e1 | ≤ OUT1−ϕe1,e2 = OUTϕe2,e1 . Hence, (e2, e1) is limited.

Proof of Lemma 10. For Qe1,e2 , we observe the following:

|πyQe1,e2 | ≤
∏

e3∈Ne1
−{e2}

|πyQe3,e1 | ≤
∏

e3∈Ne1
−{e2}

OUTϕe3,e1 ≤ OUTϕe1,e2

where the first inequality follows that
⋃

e∈Te1,e2

(e ∩ y) =
⋃

e3∈Ne1
−{e2}

⋃
e∈Te1,e2

(e ∩ y) and the second inequality

follows that
∑

e3∈Ne1
−{e2}

ϕ(e3, e1) = ϕ(e1, e2). By definition, (e1, e2) must be limited.

Proof of Lemma 12. Let E ′ be the subset of nodes in T1 that are incident to some node in T2. For each node
e ∈ E ′, let pe be the unique node from T2 incident to e. By contradiction, we assume that edge (pe, e) is
large for every e ∈ E ′. Implied by Lemma 9, edge (e, pe) is limited for every e ∈ E ′. Consider an arbitrary
e′ ∈ E ′. We observe that for every tuple t ∈ dom(e′ ∩ pe′), it can be joined with at most

πe∈E′−{e′}OUTϕe,pe ≤ OUT
∑

e∈E′−{e′} ϕe,pe = OUT
ϕp

e′ ,e
′

query results in Qpe′ ,e
′ , contradicting the fact that edge (pe′ , e

′) is large.

24

	1 Introduction
	1.1 Problem Definition
	1.2 Previous Upper Bounds
	1.3 Previous Lower Bounds
	1.4 Our Results

	2 Line Query
	3 Fat Star Query
	4 Acyclic Query
	4.1 Framework
	4.2 Proof of Lemma 7
	4.3 Proof of Lemma 8

	5 Lower Bound
	A Missing Materials in Section 1
	B Yannakakis Framework Revisited
	B.1 Aggregate-Hierarchical Query
	B.2 Non-Aggregate-Hierarchical Query

	C Missing Proofs in Section 4

