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ABSTRACT
This paper considers enumerating answers to similarity join queries

under dynamic updates: Given two sets of points 𝐴, 𝐵 in R𝑑 , a
metric 𝜙 (·), and a similarity threshold 𝑟 > 0, it asks to report all

pairs of points (𝑎, 𝑏) ∈ 𝐴×𝐵 with 𝜙 (𝑎, 𝑏) ≤ 𝑟 . Our goal is to design

an index that can be efficiently updated when an input point is

inserted or deleted. Furthermore, whenever asked, it enumerates all

join results with worst-case delay guarantee, i.e., the time between

enumerating two consecutive answers is bounded. A minimal index

is one that can be built in near-linear time with near-linear space,

and supports polylog-time maintenance under update and polylog-

delay enumeration.

We propose several efficient indexes for answering similarity

joins under ℓ1, ℓ2, and ℓ∞ metrics. More specifically, we obtain a

minimal index for exact similarity join enumeration under ℓ1/ℓ∞
metrics; and a minimal index for approximated similarity join enu-

meration under ℓ2 metric, where the distance threshold is a soft

constraint. In high dimensions, we present an efficient index toward

a worst-case delay-guarantee framework using locality sensitive
hashing (LSH). Beyond a fixed similarity threshold, we also in-

vestigate the setting in which the similarity threshold is part of

enumeration queries. If the input has bounded spread, we propose a

unifiedminimal index for approximated similarity join enumeration

under any ℓ𝑝 norm, which is oblivious to the threshold 𝑟 .
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1 INTRODUCTION
Dynamic queries are central to many real-time data analytical sys-

tems, where input data can be updated. Given a database D and

a query 𝑄 , let 𝑄 (D) be the result of query over D. An update

Δ on D could be an insertion or deletion of a tuple. The goal is

to design data structures such that 𝑄 (D + Δ) can be computed

efficiently. Traditional databases have approached this problem

with incremental view maintenance [31] or high-order incremental
view maintenance [4, 40, 41, 46], by materializing a set of views

based on the original query or delta queries (taking changes to the

view as a new query) recursively. However, this approach suffers

from the high space complexity of views, and unbounded time of

maintenance after each update.

A different approach for handling this problem is to build an

index for D such that each result of𝑄 (D) can be enumerated from
it efficiently. In large-scale analytical systems, the query result

may be huge and an application may process the first few answers

while waiting for the remaining ones. From this perspective, it is

useful to obtain an index that offers guarantees for the regularity of
the enumerating process; the delay is an important measurement.

Formally, 𝛿-delay enumeration requires that the time between the

start of the enumeration process to the first result, the time between

any consecutive pair of results, and the time between the last result

and the termination of the enumeration process should be at most 𝛿 .

We are interested in constant-delay enumeration [10]. Furthermore,

in the dynamic setting, any index should also be updated efficiently

once a tuple is inserted or deleted.

In this paper, we focus on similarity join, which has been exten-

sively studied in the database and data mining literature [21, 37, 49,

54, 55]. However, it is still unraveled how to enumerate answers to

similarity join queries using indexes that can be updated efficiently,

with provable guarantees on their performance. This work makes

progress on this question.

1.1 Problem definition
The similarity-join problem is defined as follows: Given two sets of

points𝐴 and 𝐵 in R𝑑 , a metric 𝜙 (·), and a similarity threshold 𝑟 > 0,

report all pairs of points (𝑎, 𝑏) ∈ 𝐴 × 𝐵 with 𝜙 (𝑎, 𝑏) ≤ 𝑟 . Let 𝑛 =

|𝐴| + |𝐵 | be the input size. We are also interested in the case where

the distance threshold is a soft constraint. For some parameter 𝜀 > 0,

the 𝜀-approximate similarity join relaxes the distance threshold: all

pairs of points (𝑎, 𝑏) ∈ 𝐴×𝐵 with 𝜙 (𝑎, 𝑏) ≤ 𝑟 should be returned, as

well as some pairs of points (𝑎, 𝑏) ∈ 𝐴×𝐵 with 𝑟 < 𝜙 (𝑎, 𝑏) ≤ (1+𝜀)𝑟
may be returned. No pair (𝑎, 𝑏) ∈ 𝐴 × 𝐵 with 𝜙 (𝑎, 𝑏) > (1 + 𝜀)𝑟 is
returned. In this paper, we are mostly interested in the ℓ1, ℓ2 and

ℓ∞ metrics, although some of our results can be extended to other

metrics as well.

When considering a similarity-join query in dynamic setting, our

goal is to design an index that can be efficiently updated when an

input point is inserted or deleted. Furthermore, whenever a query

is issued, it enumerates all (exact or approximate) join results with

worst-case delay guarantee. The complexity of such an index is

measured by the following three parameters, space for storing the

index, update time for the index after inserting/deleting a point,

and the worst-case delay once an enumeration query is issued. An

index for dynamic similarity join is called optimal if it uses linear
space, and supports constant-time maintenance under update and

constant-delay enumeration [14, 35]. Obviously, an optimal index is

the best we could hope for, but may not always be achievable. In this

paper, we relax this notion slightly by tolerating poly-logarithmic

factors in each quality measure, i.e., an index is minimal if it has
𝑂 (𝑛polylog(𝑛)) size and supports polylog-time maintenance and

polylog-delay enumeration.

1.2 Previous results
Dynamic enumeration of conjunctive query. Equi-join is a spe-
cial case of similarity join with 𝑟 = 0, i.e., two tuples can be joined if



and only if their join attributes are equal. Enumeration of conjunc-

tive queries against relational databases has been studied [10, 17, 53]

in the static settings for a long time, but little is known under update.

The dynamic descriptive complexity framework was first introduced

in [50], for the expressive power of first-order logic on dynamic

database (see [52] for a survey). However, this is different from

our goal of designing an efficient index under update. In 2017, two

simultaneous papers [14, 35] started to study the computational

complexity of conjunctive query evaluation under updates. Both

obtain a dichotomy that the minimal index exists for a conjunctive

query if and only if it is q-hierarchical (e.g., the simplest equi-join

over two tables is q-hierarchical). However, for non-q-hierarchical

queries, the update time must be at least Ω(𝑛
1

2
−𝜀 ) for any small con-

stant 𝜀 > 0, if we want 𝑂 (1)-delay enumeration. This result is very

negative, since q-hierarchical queries are a very restricted class; for

example, the matrix multiplication query 𝜋𝑋,𝑍𝑅1 (𝑋,𝑌 ) Z 𝑅2 (𝑌, 𝑍 )
and the line-3 join 𝑅1 (𝑋,𝑌 ) Z 𝑅2 (𝑌, 𝑍 ) Z 𝑅3 (𝑍,𝑊 ) are already
non-q-hierarchical. Indexes have been designed for certain specific

non-q-hierarchical queries, including 𝛼-acyclic join [35], triangle

join [38] and hierarchical join [39], but none of them achieved

the minimal index, due to inherent difficulties with the worst case.

Very recently, [56] has proposed an index for acyclic joins under

foreign-key constraints and shown a more fine-grained analysis

on the update sequence. Meanwhile, there is no previous work

on dynamic enumeration for similarity joins with 𝑟 > 0. A naive

solution by maintaining all join results explicitly leads to an index

of 𝑂 (𝑑𝑛2) size that can be built in 𝑂 (𝑑𝑛2) time, updated in 𝑂 (𝑑𝑛)
time and support 𝑂 (1)-delay enumeration.

Range search. A widely studied problem related to similarity

join is range searching: Preprocess a set 𝐴 of points in R𝑑 with an

index so that for a query range 𝛾 (e.g., rectangle, ball, simplex), all

points of 𝐴 ∩ 𝛾 can be reported quickly; alternatively, the points

in 𝐴 may have weights and we may wish to perform a simple

aggregation operation (e.g., SUM, MIN, MAX) on the weight of

𝐴 ∩ 𝛾 . A particular instance of range searching, the so-called fixed-
radius-neighbor searching, in which the range is a ball of fixed radius
centered at query point is particularly relevant for similarity join.

For the given metric 𝜙 , let B𝜙 (𝑥, 𝑟 ) be the ball of radius 𝑟 centered
at 𝑥 . The shape of ball depends on the metric 𝜙 . A similarity join

query can be answered by querying 𝐴 with ranges B𝜙 (𝑥, 𝑟 ) for all
𝑏 ∈ 𝐵.

There is extensive literature on range searching both in databases

and computational geometry. It is beyond the scope of this paper

to give an overview of these results; we refer the readers to various

surveys [2, 3, 12, 58]. We note that if the query ranges are axis-

parallel rectangles, then an index of 𝑂 (𝑛) size can be constructed

in 𝑂 (𝑛) time so that a query can be answered in 𝑂 (1) time. Here

𝑂 (𝑓 (𝑛)) means 𝑂 (𝑓 (𝑛)polylog(𝑛)); the exponent of the hidden

poly-log factor in 𝑂 (·) notation is a constant but may depend on

𝑑 . If the query ranges are simplices, balls, or more generally semi-

algebraic sets, then the best-known index of 𝑂 (𝑛) size answers a
query in 𝑂 (𝑛1−1/𝑑 ) [2, 18]. Techniques exist to improve the query

time by increasing the size of the index [43]. Many of the range

searching indexes can be modified to handle dynamic updates in

the input sets, using the standard dynamization techniques [13].

Notwithstanding a close relationship between range searching

and similarity join, the indexes for the former cannot be used for

the latter for two main reasons. First, it is too expensive to query 𝐴

with B𝜙 (𝑏, 𝑟 ) for every 𝑏 ∈ 𝐵 whenever an enumeration query is

issued, especially since many queries may return empty set, and

it is not clear how to maintain the query results as the input set

𝐴 changes dynamically. Second, range-searching indexes do not

guarantee bounds on the delay between reporting successive points;

they only focus on minimizing the overall query time.

In order to support dynamic insertions/deletions in range search-

ing problems, the set of the input items is usually partitioned into

non-overlapping groups (for example 𝑂 (log𝑛) groups) [13], and
for each such group, an independent index is built. There are a

lot of known methods on how to efficiently update the indices if

specific conditions are met (see [27] for more details). A query is

executed by all different indices and the results are merged to return

the final answer. In our similarity join query, it is not possible to

construct such a scheme over all input points 𝐴 ∪ 𝐵 and use the

known techniques. The reason is that if we have have two sets

𝑃1 = 𝐴1 ∪ 𝐵1, and 𝑃2 = 𝐴2 ∪ 𝐵2 with 𝐴1 ∪𝐴2 = 𝐴 and 𝐵1 ∪ 𝐵2 = 𝐵

and get the solution to the similarity join query in 𝑃1 and 𝑃2 in-

dependently, we cannot efficiently merge the solutions to get an

overall solution over 𝑃1 ∪ 𝑃2. The main problem is that a point

in 𝐴1 might be within distance 𝑟 from a point in 𝐵2; there can be

many dependencies between the two groups. Hence, new ideas are

needed to overcome this challenge.

Scalable continuous query processing. The range-searching
problem asks to answer a query on the current snapshot of the

data. There has been some work on scalable continuous query pro-

cessing, especially in the context of data streams [20, 23, 60] and

publish/subscribe [28], where the queries are standing queries and

whenever a new data item arrives, the goal is to report all queries

that are affected by the new item (e.g., in the context of range

queries, reporting all query ranges that contain the new item) [5, 6].

One can view𝐴 as the data stream and B𝜙 (𝑏, 𝑟 ) as standing queries,
and we update the results of queries as new points in 𝐴 arrive.

There are, however, significant differences with similarity joins —

arbitrary deletions are not handled; continuous queries do not need

to return previously produced results; basing enumeration queries

on a solution for continuous queries would require accessing previ-

ous results, which can be prohibitive if stored explicitly. Thus, it is

unclear how continuous-query indexes can be used for similarity

join.

1.3 Our results
We present several dynamic indexes for answering similarity joins

under ℓ1, ℓ2 and ℓ∞ with 𝑟 > 0. We begin with results assuming

that 𝑟 is known in advance and that 𝑑 is constant; we then lift these

assumptions later.

Exact minimal index for ℓ1, and ℓ∞; fixed 𝑟 . Our first result
(Section 4) is a minimal index for similarity join under the ℓ1 and

ℓ∞ metrics, i.e., it has 𝑂 (𝑛) size, 𝑂 (1) update time, and 𝑂 (1) delay
bound. It uses a range tree [11, 25], an index for range searching, but

several new ideas are needed to overcome the challenges mentioned

above. First, we propose (in Section 3) a general framework for

building an index for similarity join and then describe how to



implement it efficiently. There are two main ingredients. First, we

store the similarity join pairs implicitly so that on one hand, they can
be enumerated without probing using every input tuple, and on the

other hand, the representation can be updated quickly whenever 𝐴

or 𝐵 is updated. Second, we show how to ensure𝑂 (1) delay during

enumeration.

Exact and approximate index for ℓ2; fixed 𝑟 . Next (in Sec-

tion 5) we extend these ideas to construct an index for similarity

join under the ℓ2 metric using an index for ball range searching.

However, the update time and delay bound are 𝑂 (𝑛1−1/𝑑 ). The
known lower bounds on ball range searching [1, 22] imply that

there is no index for this case with 𝑂 (1) update time and delay

bound. We therefore shift our attention to 𝜀-approximate similarity

join and describe an index of 𝑂 (𝑛) size with 𝑂 (𝜀2−4𝑑 ) amortized

update time and𝑂 (𝜀1−𝑑 ) delay bound. Our main idea is that a ball of

radius 𝑟 can be approximated by a collection of𝑂 (𝜀1−𝑑 ) hypercubes
of size 𝜀𝑟 and use a variant of quadtrees to build the index.

Approximate index for any ℓ𝑝 ; variable 𝑟 . The above two

sets of results assume the similarity threshold 𝑟 to be known in

advance and thus exploit the geometry of the shape of the ball.

But in many applications a user may wish to perform enumeration

queries with different thresholds. Addressing this issue, our third

result (Section 6) is an index for 𝜀-approximate similarity join that

works for any ℓ𝑝 metric, and the similarity threshold 𝑟 can be

specified as part of the query. The size of the index is 𝑂 (𝑛). The
update time is 𝑂 (1), and the delay bound is 𝑂 (1) under a mild

assumption that the spread (ratio of the farthest to the closest

distance) of 𝐴∪𝐵 is polynomially bounded. Our index relies on the

well-separated pair decomposition (WSPD) of input points, a concept

that has been useful to a wide range of applications.

Approximate index for ℓ1, ℓ2, Hamming metric in high di-
mensions. The complexities of these indexes increase exponen-

tially with dimension 𝑑 , so they are not effective in high dimensions.

Our final results (Section 7) are indexes for higher values of 𝑑 us-

ing locality sensitive hashing (LSH) [30]. Since LSH is designed for

capturing similar join results as much as possible, two challeng-

ing questions remain: (1) the delay is not guaranteed; (2) there are

many duplicated results. We start with the uniform assumption that

points are chosen from the universe space randomly, and points

to be deleted are chosen from existing ones randomly. Under this

assumption, we propose an index of size 𝑂 (𝑛𝑑) that can be con-

structed in𝑂 (𝑛𝑑) time and updated in𝑂 (𝑑) time, while supporting

𝑂 (𝑑)-delay enumeration for similarity join under any ℓ𝑝 norm, with

probability at least 1 − 1/𝑛.
In general, without uniform assumption, we achieve the follow-

ing result under the Hamming metric, which can be extended to

ℓ1, ℓ2 metrics with the same complexity. Let 𝜀 > 0 be the approxima-

tion ratio and 𝜌 ≤ 1

1+𝜀 be the quality of the LSH family in Hamming

space. An index of𝑂 (𝑛𝑑 +𝑛1+𝜌 ) size can be built in𝑂 (𝑑𝑛1+𝜌 ) time

and updated in𝑂 (𝑑𝑛𝜌 ) amortized time, while with high probability

supporting (1 + 2𝜀)-approximate enumeration with 𝑂 (𝑛𝜌 ) delay.
We note that our framework can benefit automatically from any

improvement over the LSH and it works for other metrics, such as ℓ1
and ℓ2 metrics for which efficient LSH methods exist. Furthermore,

our index works even in the case where the similarity threshold 𝑟 is

T

u1

u2

u3

Figure 1: An illustration of range tree T in R3.

part of the query. Finally we can show some lower bound by relat-

ing similarity join to the approximate nearest neighbor (ANN) query.
Due to lack of space, we omit the extensions from this version.

2 PRELIMINARIES
In this section, we introduce a few useful tools including indexes

for range searching and known techniques for transforming a static

data structure to a dynamic one.

2.1 Range search indexes
Range tree.A range tree [11] on a set 𝑃 of points in R is a balanced

binary search tree of 𝑂 (log𝑛) height. The points are stored in the

leaves of the tree while each internal node 𝑣 stores the smallest and

the largest value, 𝑥−𝑣 , 𝑥
+
𝑣 , respectively contained in its subtree. The

node 𝑣 is associated with an interval 𝐼𝑣 = [𝑥−𝑣 , 𝑥+𝑣 ] and the subset

𝑃𝑣 = 𝐼𝑣 ∩ 𝑃 . The intervals associated with 𝑣 are called canonical
intervals. A 𝑑-dimensional range tree T on a set 𝑃 of points in R𝑑

is a recursively defined 𝑑-level balanced binary search tree. Each

level of the tree is a binary search tree on one of the 𝑑 dimensions.

More precisely, the top level of the T is a 1D range tree on the

𝑥𝑑 -coordinates of points in 𝑃 . Each node 𝑣 of this tree recursively

stores a (𝑑 − 1)-dimensional range tree on 𝑃∗𝑣 , the 𝑥𝑑 -projection of

points in 𝑃𝑣 on the hyperplane 𝑥𝑑 = 0. See [25] for details.

For each level𝑢 of the𝑑-th level (bottom level) of T , we associate
a 𝑑-tuple of T 𝜋 (𝑢) = ⟨𝑢1, 𝑢2, . . . , 𝑢𝑑 = 𝑢⟩, where 𝑢𝑖 is the node at
the 𝑖-th level of T to which the level-𝑑 subtree of T containing 𝑢𝑖
is connected, see Figure1. Recall that each node𝑤 of T at any level

is associated with an interval 𝐼𝑤 . We associate the rectangle □𝑢 =∏𝑑
𝑗=1

𝐼𝑢 𝑗
with the node 𝑢. For a given rectangle 𝑏 =

∏𝑑
𝑖=1
[𝑏−
𝑖
, 𝑏+

𝑖
],

a 𝑑-level node is called a canonical node if for 𝑖 = 1, . . . , 𝑑 , 𝐼𝑢𝑖 ⊆
[𝑏−
𝑖
, 𝑏+

𝑖
] and 𝐼𝑝 (𝑢𝑖 ) ⊈ [𝑏−𝑖 , 𝑏

+
𝑖
], where 𝜋 (𝑢) = ⟨𝑢1, . . . , 𝑢𝑑 = 𝑢⟩ and

𝑝 (𝑢𝑖 ) is the parent of node 𝑢𝑖 in the level-𝑖 tree rooted at 𝑢𝑖−1.

Let ℓ (𝑏) denote the set of canonical nodes of the rectangle 𝑏. The
characterization of canonical nodes will be critical for our index.
A key property of range trees is that for any rectangle 𝑏, there

are 𝑂 (log
𝑑 𝑛) canonical nodes in T , and they can be computed in

𝑂 (log
𝑑 𝑛) time. Furthermore 𝑃 ∩ 𝑏 =

⋃
𝑢∈ℓ (𝑏) 𝑃 ∩□𝑢 .

Range trees use 𝑂 (𝑛) space, can be constructed in 𝑂 (𝑛) time,

and support𝑂 (𝑘 + 1)-time range-reporting queries [25], where 𝑘 is

the size of the output, and ranges are boxes.

Quadtree. A 𝑑-dimensional quadtree [32, 51] over a point set 𝑃 is a

tree data structure in which each node𝑢 is associated with a box□𝑢

in R𝑑 and each internal node has exactly 2
𝑑
children. It recursively

subdivide the space into 2
𝑑
equal size boxes until a box contains at

most one point from 𝑃 . If S =
max𝑥,𝑦∈𝑃 ∥𝑥−𝑦 ∥2
min𝑥,𝑦∈𝑃 ∥𝑥−𝑦 ∥2 is the spread of point

set 𝑃 , T can be constructed in 𝑂 (𝑛 logS) time, it has 𝑂 (𝑛 logS)



space, and𝑂 (logS) height. See [32] for details on quadtrees. Given

a sphere B, the quadtree can be used to find𝑂 (logS + 𝜀𝑑−1) nodes
such that the union of their regions completely covers B ∩ 𝑃 and

might cover some parts of (1 + 𝜀)B.
Partition tree.Apartition tree on a set 𝑃 of points inR𝑑 [18, 42, 57]

is a tree data structure formed by recursively partitioning a set into

subsets. Each point is stored in exactly one leaf and each leaf usually

contains a constant number of points. Each node 𝑢 of the tree is

associated with a simplexΔ𝑢 and the subset 𝑃𝑢 = 𝑃∩Δ𝑢 ; the subtree
rooted at 𝑢 is a partition tree of 𝑃𝑢 . We assume that the simplices

associated with the children of a node 𝑢 are pairwise disjoint and

lie inside Δ𝑢 , as in [18]. In general, the degree of a node is allowed

to be non-constant. Given a query simplex Δ, a partition tree finds

a set of 𝑂 (𝑛1−1/𝑑 ) canonical nodes whose cells contain the points

of 𝑃 ∩ Δ. Roughly speaking, a node 𝑢 is a canonical node for Δ
if Δ𝑢 ⊂ Δ and Δ𝑝 (𝑢) ⊈ Δ. A simplex counting (resp. reporting)

query can be answered in 𝑂 (𝑛1−1/𝑑 ) (resp. 𝑂 (𝑛1−1/𝑑 + 𝑘)) time

using a partition tree. Chan [18] proposed a randomized algorithm

for constructing a linear size partition tree with constant degree,

that runs in 𝑂 (𝑛 log𝑛) time and it has 𝑂 (𝑛1−1/𝑑 ) query time with

high probability.

2.2 Dynamization techniques
The following is the standard technique proposed by Bentley and

Saxe [13] (see also [27]) for transforming a static index to a dynamic

one, for any decomposable query. In this work, we apply it to several

indexes for range searching, including range tree, partition tree,

and a variation of the quadtree.

Suppose we wish to build an index on a set 𝑋 of 𝑛 objects that

can be updated efficiently under insertion/deletion. The idea is to

partition 𝑋 into 𝑚 =
⌈
log

2
𝑛
⌉
groups 𝐿0, . . . , 𝐿𝑚−1, such that (1)

𝐿𝑖 ⊆ 𝑋 ; (2) 𝐿𝑖 ∩ 𝐿𝑗 = ∅; (3) ⋃𝑖=1,...,𝑚−1
𝐿𝑖 = 𝑃 ; (4) |𝐿𝑖 | = 0 or

|𝐿𝑖 | = 2
𝑖
. A static index T𝑖 is built for each group 𝐿𝑖 . In order to

answer a query over the new index we visit each non-empty group

𝐿𝑖 and we run the query procedure of the static index T𝑖 . In the end

we get the overall result of the query by combining the results. The

total query time is

∑𝑙−1

𝑖=0
𝑇 (2𝑖 ) < 𝑚 ·𝑇 (𝑛) = 𝑂 (𝑇 (𝑛) log𝑛).

When a new object 𝑥 is inserted, let 𝑖 be the smallest index such

that 𝐿𝑖 = ∅. Set 𝐿𝑖 = {𝑥} ∪
⋃

𝑗<𝑖 𝐿𝑗 . We delete all previous static

indexes in 𝐿0, . . . , 𝐿𝑖−1, and construct a new static index T𝑖 for 𝐿𝑖 . A
key observation is that each object will take part in the construction

of log𝑛 indexes. By charging

∑log𝑛

𝑖=0
𝑃 (2𝑖 )/2𝑖 time to each insertion,

we see that the amortized time is 𝑂 ( 𝑃 (𝑛)𝑛 log𝑛).
When an object is deleted, we perform weak deletions: delete it

from the static index T𝑖 containing it, without changing the struc-
ture of T𝑖 . We only require that the cost of a query after the weak

deletion is no higher than the cost of a query before it. When

more than half number of objects are deleted, we just rebuild ev-

erything from scratch. Hence, the amortized cost of a deletion is

𝑂 (𝑃 (𝑛)/𝑛 + 𝐷 (𝑛)).
Using the lazy rebuilding technique [48], one can also obtain a

new index with the same guarantees in the worst case.

Lemma 2.1 ([13]). Let 𝑋 be a set of 𝑛 objects. For a decomposable
query, if there is an static index T for𝑋 which uses 𝑆 (𝑛) space, can be
built in 𝑃 (𝑛) time, and answers the query in𝑇 (𝑛) time, then there is a
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Figure 2: An example of equi-join 𝑅1 (𝑋,𝐶) Z 𝑅2 (𝐶,𝑌 ).

new index which uses𝑂 (𝑆 (𝑛)) space, can be built in𝑂 (𝑃 (𝑛)) time, can
be updated in𝑂 ( 𝑃 (𝑛)𝑛 log𝑛) time for an insertion and𝑂 ( 𝑃 (𝑛)𝑛 +𝐷 (𝑛))
for an deletion where 𝐷 (𝑛) is the weak deletion time, and answers the
query in 𝑂 (𝑇 (𝑛) log𝑛) time.

3 FRAMEWORK
All our algorithms for solving similarity join in different settings are

based on a common framework. Intuitively, we model the similarity

join as a bipartite graph 𝐺 ′ = (𝐴 ∪ 𝐵, 𝐸), where an edge (𝑎, 𝑏) ∈ 𝐸
exists if and only if 𝑎 can be joined with 𝑏, i.e., 𝜙 (𝑎, 𝑏) ≤ 𝑟 . To

obtain a data structure for poly-logarithmic delay enumeration,

it suffices to find a compact representation of 𝐺 ′ with a set F =

{(𝐴1, 𝐵1), (𝐴2, 𝐵2), . . . , (𝐴𝑢 , 𝐵𝑢 )} of edge-disjoint bi-cliques such
that (i) 𝐴𝑖 ⊆ 𝐴, 𝐵𝑖 ⊆ 𝐵 for any 𝑖 , (ii) 𝐸 =

⋃𝑢
𝑖=1

𝐴𝑖 × 𝐵𝑖 , and (iii)

(𝐴𝑖 × 𝐵𝑖 ) ∩ (𝐴 𝑗 × 𝐵 𝑗 ) = ∅ for any 𝑖 ≠ 𝑗 . It remains to store and

maintain these bi-cliques efficiently under update.

Take equi-join as an example. After representing input tuples as

sets of vertices 𝐴 and 𝐵, there is an edge between 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵
if and only if 𝑎 and 𝑏 have the same join attribute value. In this

way, the bipartite graph itself is a set of edge-disjoint bi-cliques.

However, this bipartite representation is not resilient to update,

i.e., an insertion or deletion of any tuple may incur Ω(𝑛) changes
in the worst case. A simple idea of getting around this problem is

to introduce a middle layer of vertices as 𝐶 , each representing a

distinct join attribute value and there is an edge between 𝑎 ∈ 𝐴

(resp. 𝑏 ∈ 𝐵) and 𝑐 ∈ 𝐶 if and only if the join attribute value of 𝑎

(resp. 𝑏) is equal to 𝑐 . An example is illustrated in Figure 2.

Let 𝐴𝑐 ⊆ 𝐴, 𝐵𝑐 ⊆ 𝐵 be the set of vertices in 𝐴, 𝐵 with join

attribute value 𝑐 . In our construction, 𝐴𝑐 , 𝐵𝑐 are exactly the list of

vertices which share an edge with 𝑐 , thus the biclique 𝐴𝑐 × 𝐵𝑐 ⊆ 𝐸

is implicitly represented by the cross product of two neighbor lists

of 𝑐 . To achieve constant-delay enumeration, we need to maintain

a list of active values in 𝐶 , i.e., 𝑐 ∈ 𝐶 is active if and only if 𝑐 is

connected to at least one value in 𝐴 and one value in 𝐵. Obviously,

we only visit active values in 𝐶 , each emitting at least one result.

This improves the original representation in the following way: (1)

it decreases the space complexity as well as the pre-processing time

complexity from 𝑂 (𝑛 + 𝑘) to 𝑂 (𝑛), where 𝑘 is the output size; (2)

the update time is decreased from 𝑂 (𝑛) to 𝑂 (1).
We extend this simple example to general similarity joins with

𝑟 > 0. A formal description of the framework is defined as follows.

Definition 3.1 (Tripartite Graph Representation). A tripartite graph

𝐺 = (𝐴∪𝐶 ∪𝐵, 𝐸1 ∪𝐸2) where 𝐸1 ⊆ 𝐴×𝐶 and 𝐸2 ⊆ 𝐶 ×𝐵 is a rep-

resentation of the similarity join over 𝐴, 𝐵 under 𝜙 (·) metric with

threshold 𝑟 if for each pair of points (𝑎, 𝑏) ∈ 𝐴×𝐵 with 𝜙 (𝑎, 𝑏) ≤ 𝑟 ,

there exists unique 𝑐 ∈ 𝐶 such that (𝑎, 𝑐) ∈ 𝐸1, (𝑐, 𝑏) ∈ 𝐸2.



It should be noted that 𝐺 is only conceptual, instead of being

stored explicitly. The only extra information we will maintain for

𝐺 is the status of vertices in 𝐶 . Let 𝐴𝑐 , 𝐵𝑐 be the set of vertices in

𝐴, 𝐵 connected to 𝑐 ∈ 𝐶 , respectively. To support constant-delay

enumeration, we define a vertex 𝑐 ∈ 𝐶 as active if it witnesses at
least one result, i.e., 𝐴𝑐 ≠ ∅ and 𝐵𝑐 ≠ ∅, and inactive otherwise. All
active vertices are maintained in C ⊆ 𝐶 .

Lemma 3.2 (𝛿-delay Enumeration). In𝐺 = (𝐴∪𝐶 ∪𝐵, 𝐸1 ∪𝐸2)
with a set of active vertices in 𝐶 as C, if for any 𝑐 ∈ 𝐶 , vertices in 𝐴𝑐

(resp. 𝐵𝑐 ) can be enumerated with 𝛿 delay, then all join results can be
enumerated with 𝛿 delay.

The proof of Lemma 3.2 directly follows the algorithm: We visit

each vertex 𝑐 ∈ C, and enumerate every pair (𝑎, 𝑏) ∈ 𝐴𝑐 × 𝐵𝑐
by a nested-loop over 𝐴𝑐 , 𝐵𝑐 . It remains to show how to compute

and update the active/inactive status of vertices 𝐶 . The proof of

Lemma 3.3 is given in Appendix A.1.

Lemma 3.3 (Status Maintenance). In𝐺 = (𝐴∪𝐶 ∪𝐵, 𝐸1 ∪ 𝐸2)
with |𝐶 | = 𝑂 (𝜂), if (1) for any 𝑐 ∈ 𝐶 , whether 𝐴𝑐 = ∅ and 𝐵𝑐 = ∅
can be decided in 𝛿 time; (2) for any 𝑐 ∈ 𝐶 , 𝐴𝑐 and 𝐵𝑐 can be counted
in 𝜁 time; (3) for any 𝑎 ∈ 𝐴 (reps. 𝑏 ∈ 𝐵), 𝐶𝑎 (or 𝐶𝑏 ) can be reported
in 𝜆 time, then we have two possible options for C as below:
• C can be computed in𝑂 (𝜂𝛿) time and updated in𝑂 (𝜆𝛿) time;
• C can be computed in 𝑂 (𝜂𝜁 ) time and updated in 𝑂 (𝜆) time.

In the remaining of this paper, we will see different instantiations

of this framework. The details might be slightly different from

what have been described here, due to the inherent difficulties of

similarity joins in different settings.

4 SIMILARITY JOIN IN ℓ1/ℓ∞ METRICS
In this section, we study similarity joins under the ℓ1/ℓ∞ metric,

which is captured by a more general problem, namely the rectangle-
containment problem. Here we are given a set of points as 𝐴 and

a set of orthogonal rectangles as 𝐵, with |𝐴| + |𝐵 | = 𝑛. The join

result is the set of all pairs (𝑎, 𝑏) ∈ 𝐴 × 𝐵 such that 𝑎 ∈ 𝑏. Note

that a similarity join with ℓ∞ metric is equivalent to a rectangle-

containment problem where each side of the rectangles has length

2𝑟 . We first present our results for the ℓ∞ metric in R𝑑 for constant

𝑑 . Then we show that similarity join under ℓ1 metric in R𝑑 can be

reduced to similarity join under the ℓ∞ metric in R𝑑+1. For the ease
of understanding we illustrate the main idea by an one-dimensional

example, which reduces to the interval-containment problem.

4.1 Index
We build a 𝑑-dimensional dynamic range tree T𝐴 on the points in

𝐴. Figure 3 illustrates a range tree built in 1D. Each rectangle 𝑏 =∏𝑑
𝑖=1
[𝑏−
𝑖
, 𝑏+

𝑖
] defines a point ¯𝑏 = (𝑏−

1
, 𝑏+

1
, . . . , 𝑏−

𝑑
, 𝑏+

𝑑
) in R2𝑑

.
1
Let

𝐵 = { ¯𝑏 | 𝑏 ∈ 𝐵}. We also build a 2𝑑-dimensional dynamic range tree

T𝐵 on 𝐵. The dynamic property of T𝐴 is maintained by applying the

transformation described in Section 2.2. In particular, we partition

the points in 𝐴 into 𝑚 = log |𝐴| groups 𝐴(1) , 𝐴(2) , . . . , 𝐴(𝑚) and
construct log |𝐴| static range trees T (𝑖) , for each 𝑖 = 1, 2, . . . ,𝑚. The

construction of T𝐵 resorts to the standard techniques in [19, 59],

1
For our similarity join query we have squares of equal side lengths instead of general

rectangles. In this case, each square defines a point in R𝑑 .
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Figure 3: An example of interval-containment query with
𝐴 = {𝑎1, 𝑎2, · · · , 𝑎8} and 𝐵 = {𝑏1, 𝑏2, · · · , 𝑏7}. The range tree T𝐴
built on 𝐴 has only one level because 𝑑 = 1, as a balanced bi-
nary search tree, where each leaf node stores an input point
𝑎 ∈ 𝐴, and each internal node 𝑢 stores an interval [𝑎𝑖 , 𝑎 𝑗 ]
such that 𝑎𝑖 , 𝑎 𝑗 are the smallest and largest points stored in
the subtree rooted at𝑢. Interval𝑏1, covering all points except
𝑎8, has three canonical nodes, [𝑎1, 𝑎4], [𝑎5, 𝑎6] and [𝑎7, 𝑎7].
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Figure 4: The bipartite (left) and tripartite (right) graph rep-
resentation of the interval-containment query, where inac-
tive vertices in 𝐶 are omitted.

which supports 𝑂 (1) amortized update time. These two indexes

use 𝑂 (𝑛) space and can be built in 𝑂 (𝑛) time.

Tripartite graph representation. Next, we show how to define

the tripartite graph representation 𝐺 = (𝐴 ∪𝐶 ∪ 𝐵, 𝐸1 ∪ 𝐸2). Let 𝐶
be the set of all nodes in the 𝑑-th level of T𝐴 . Each node 𝑢 ∈ 𝐶 is

associated with a rectangle□𝑢 .For any point 𝑎 ∈ 𝐴, edge (𝑎,𝑢) ∈ 𝐸1

exists if and only if𝑎 ∈ □𝑢 . For any rectangle𝑏 ∈ 𝐵, edge (𝑏,𝑢) ∈ 𝐸2

exists if and only if 𝑢 is a canonical node of 𝑏 in T𝐴 (see Section 2

for the definition of canonical nodes).

Figure 4 illustrates the tripartite graph 𝐺 built for the interval-

containment query in Figure 3. It can be easily checked that 𝐺 is a

valid tripartite graph representation, with proof in Appendix A.2.

Preprocessing. It should be reminded that the only information

stored for𝐺 is the set of active nodes in𝐶 , denoted as C. To help de-

fine the active/inactive status of nodes in𝐶 , we store two additional

values 𝜇𝐴 (𝑢) = |𝐴𝑢 | and 𝜇𝐵 (𝑢) = |𝐵𝑢 | for each 𝑢 ∈ 𝐶 .



To find points in 𝐴𝑢 efficiently, the range tree stores and main-

tains the corresponding points in every node 𝑢, so all points can

be reported with 𝑂 (1) delay or counted in 𝑂 (1) time. To report

rectangles in 𝐵𝑢 , we issue a range query to T𝐵 with a rectangle □′𝑢
2
and report all rectangles 𝑏 of 𝐵 for which 𝑢 is a canonical node of

𝑏. Finally, we define a node𝑢 ∈ 𝐶 active if 𝜇𝐴 (𝑢) > 0 and 𝜇𝐵 (𝑢) > 0,

and inactive otherwise.
Implied by the property of range tree, each query takes 𝑂 (1)

time, which is also summarized in Lemma 4.1.

Lemma 4.1. For any node 𝑢 in the 𝑑-th level range tree of T𝐴 , the
next hold: (1) it takes𝑂 (1) time to compute |𝐴𝑢 |; (2) points in 𝐴𝑢 can
be enumerated with 𝑂 (1) delay; (3) it takes 𝑂 (1) time to compute
|𝐵𝑢 |; and (4) points in 𝐵𝑢 can be enumerated with 𝑂 (1) delay.

4.2 Update and Enumeration
There are two cases of updates. In the first case when an update

happens for rectangles in 𝐵, say 𝑏, we first insert/delete ¯𝑏 to/from

T𝐵 in 𝑂 (1) time [19, 59]. Then, we visit each group 𝑖 with 𝐴(𝑖) ≠ ∅
and perform the following operations.

Let 𝐶𝑏 ⊆ 𝐶 be the set of canonical nodes of rectangle 𝑏. Note

that |𝐶𝑏 | = 𝑂 (log
𝑑 𝑛). Moreover, all nodes in 𝐶𝑏 can be found

in 𝑂 (log
𝑑 𝑛) time, by issuing a range query 𝑏 to the range tree

T (𝑖) [25]. The high-level idea is to update the active/inactive status
for each canonical node 𝑢 ∈ 𝐶𝑏 . In particular when a rectangle 𝑏

is inserted we visit each node 𝑢 ∈ 𝐶𝑏 and increase 𝜇𝐵 (𝑢) by 1. If

𝑢 ∉ C and 𝜇𝐴 (𝑢) > 0, we add 𝑢 to C. When a rectangle 𝑏 is deleted

we visit each node 𝑢 ∈ 𝐶𝑏 , and decrease 𝜇𝐵 (𝑢) by 1. If 𝑢 ∈ C and

𝜇𝐵 (𝑢) = 0 after the deletion of 𝑏, we remove 𝑢 from C.

In the second case when a update happens for points in 𝐴, say

𝑎, we resort to the standard techniques in [13, 27]. Let 𝐶𝑎 ⊆ 𝐶

be the set of canonical nodes containing 𝑎. Note that |𝐶𝑎 | = 𝑂 (1).
Moreover, all nodes in 𝐶𝑎 can be found in 𝑂 (1) time, by issuing a

query point 𝑎 to the range tree T (𝑖) , and for each leaf containing

𝑎, taking all nodes up to the root of the 𝑑-th level tree of T (𝑖) . We

then proceed as follows depending on the type of the update.

Insertion of 𝑎. Let 𝑖 be the smallest index of groups such that

𝐴(𝑖) = ∅. Set 𝐴(𝑖) = {𝑎} ∪ (⋃𝑗<𝑖 𝐴
( 𝑗) ). We first delete the range

tree built for 𝐴( 𝑗) for any 𝑗 < 𝑖 . Then we build a new range tree

for points in 𝐴(𝑖) . It takes 𝑂 (2𝑖 ) time to construct T (𝑖) , and for

each node 𝑢 in T (𝑖) , we need 𝑂 (1) time to decide whether 𝐵𝑢 = ∅.
Following the results in [13, 27] and our discussion in Section 2,

the amortized update time for an insertion is 𝑂 (1).

Deletion of 𝑎. Assume 𝑎 ∈ 𝐴(𝑖) . We only delete point 𝑎 from

all 𝑑-level nodes of T (𝑖) lying on the path from root to the leaf

containing 𝑎. Then, we visit each node 𝑢 ∈ 𝐶𝑎 and decrease 𝜇𝐴 (𝑢)
by 1. If 𝑢 ∈ C and 𝜇𝐴 (𝑢) = 0 we remove 𝑢 from C. In total, this

step takes 𝑂 (1) time. When the number of deleted points in 𝐴 is

2
The condition in Section 2 of finding if node𝑢 is a canonical node of a rectangle𝑏 can

be rewritten as a set of inequalities: for each 𝑖 ∈ {1, · · · , 𝑑 }, if 𝑥−𝑢𝑖 = 𝑥−
𝑝 (𝑢𝑖 )

, then

𝑏−𝑖 ≤ 𝑥−𝑢𝑖 and 𝑥+𝑢𝑖 ≤ 𝑏+𝑖 < 𝑥+
𝑝 (𝑢𝑖 )

; and if 𝑥+𝑢𝑖 = 𝑥+
𝑝 (𝑢𝑖 )

, then 𝑥−
𝑝 (𝑢𝑖 )

< 𝑏−𝑖 ≤ 𝑥−𝑢𝑖
and 𝑥+𝑢𝑖 ≤ 𝑏+

1
, which together define an open rectangle □′𝑢 in R2𝑑

. For example

assume that 𝑥−𝑢𝑖 = 𝑥−
𝑝 (𝑢𝑖 )

for any 𝑖 ∈ {1, · · · , 𝑑 }. Observe that 𝑢 is a canonical node

for 𝑏 if and only if point
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Figure 5: An illustration of ℓ1 ball in R3. It is decomposed to
2
𝑑 = 8 types of simplices.

more than the number of the remaining points in 𝐴, we just stop

updating the existing index and build the set of𝑂 (
⌈
log

2
|𝐴|

⌉
) static

range trees from scratch. Note that this index can be constructed

in 𝑂 ( |𝐴|) time, so the amortized time for deletion is 𝑂 (1).

Enumeration.We visit each group 𝑖 with 𝐴(𝑖) ≠ ∅ and apply the

enumeration procedure in Section 3 for each group. More specifi-

cally, for each node 𝑢 ∈ C, we just enumerate pair (𝑎, 𝑏) for each
𝑎 ∈ 𝐴𝑢 and 𝑏 ∈ 𝐵𝑢 . By Lemma 4.1, this step has 𝑂 (1) delay. By
Lemma A.1, all join results will be enumerated without duplication.

Theorem 4.2. Let 𝐴 be a set of points and 𝐵 be a set of rectangles
in R𝑑 with |𝐴| + |𝐵 | = 𝑛. For constant 𝑑 , an index of𝑂 (𝑛) size can be
constructed in 𝑂 (𝑛) time and updated in 𝑂 (1) amortized time, while
supporting 𝑂 (1)-delay enumeration of rectangle-containment query.

4.3 Extension to ℓ1 metric
Given an arbitrary instance of similarity join under the ℓ1 metric

in R𝑑 , we show how to reduce it to an instance of similarity join

under ℓ∞ metric in R𝑑+1.
In the ℓ1 metric, 𝑏 can be mapped to an ℓ1 ball with radius 𝑟

defined as,

∑𝑑
𝑗=1
|𝑏 𝑗 − 𝑥 𝑗 | ≤ 𝑟 (please see Figure 5). Hence, we need

to report a pair (𝑎, 𝑏) ∈ 𝐴 × 𝐵 if and only if

∑𝑑
𝑗=1
|𝑏 𝑗 − 𝑎 𝑗 | ≤ 𝑟 . Let

𝐸 be the set of all vectors in R𝑑 with coordinates either 1 or −1. We

have |𝐸 | = 2
𝑑
. For each vector 𝑒𝑖 ∈ 𝐸, we construct an instance of

our problem. For each 𝑒𝑖 ∈ 𝐸, we map each point 𝑎 = (𝑎1, . . . , 𝑎𝑑 ) ∈
𝐴 to a point 𝑎𝑖 = (𝑎1, . . . , 𝑎𝑑 ,

∑𝑑
𝑗=1

𝑒𝑖 𝑗𝑎 𝑗 ) ∈ R𝑑+1. Let𝐴𝑖 = {𝑎𝑖 | 𝑎 ∈
𝐴}. In addition, for each point𝑏 = (𝑏1, 𝑏2, . . . , 𝑏𝑑 ) ∈ 𝐵, we construct
the axis-align rectangle inR𝑑+1, ¯𝑏𝑖 which is defined as the Cartesian

product of the intervals[𝑏 𝑗 ,∞) if 𝑒𝑖 𝑗 = 1 and (−∞, 𝑏 𝑗 ] if 𝑒𝑖 𝑗 = −1

for each 𝑗 = 1, . . . , 𝑑 , and (−∞, 𝑟 +∑𝑑
𝑗=1

𝑒𝑖 𝑗𝑏 𝑗 ]. Let 𝐵𝑖 = { ¯𝑏𝑖 | 𝑏 ∈ 𝐵}.
For each 𝑒𝑖 ∈ 𝐸, we construct the index for the ℓ∞ metric by taking

𝐴𝑖 as the set of points and 𝐵𝑖 as the set of rectangles. Equivalently, if

𝑏 is the ℓ1 ball of radius 𝑟 then it can be decomposed to 2
𝑑
simplices

(Figure 5). Each vector 𝑒𝑖 ∈ 𝐸 corresponds to a type of simplex of

these balls. Each type of simplex has a fixed orientation and can be

processed independently by orthogonal range searching in R𝑑+1.
Let (𝑎, 𝑏) ∈ 𝐴 × 𝐵 be an arbitrary pair of points such that ∥𝑎 −

𝑏∥1 ≤ 1. Then we show that there is a unique vector in 𝑒𝑖 ∈ 𝐸 such

that 𝑎𝑖 ∈ ¯𝑏𝑖 . Let 𝑒𝑖 be the vector such that ∥𝑎 −𝑏∥1 =
∑𝑑

𝑗=1
𝑒𝑖 𝑗 (𝑎 𝑗 −

𝑏 𝑗 ). Notice that the first 𝑑 coordinates of 𝑎𝑖 lie inside the first 𝑑

intervals defining
¯𝑏𝑖 : (1) If 𝑒𝑖 𝑗 = 1, then 𝑎 𝑗 ≥ 𝑏 𝑗 , i.e., 𝑎 𝑗 ∈ [𝑏 𝑗 , +∞);

(2) If 𝑒𝑖 𝑗 = −1, then 𝑎 𝑗 ≤ 𝑏 𝑗 , i.e., 𝑎 𝑗 ∈ [−∞, 𝑏 𝑗 ). Observe that∑𝑑
𝑗=1

𝑒𝑖 𝑗 (𝑎 𝑗 −𝑏 𝑗 ) ≤ 𝑟 can be equivalently rewritten as
∑𝑑

𝑗=1
𝑒𝑖 𝑗𝑎 𝑗 ≤



𝑟 + ∑𝑑
𝑗=1

𝑒𝑖 𝑗𝑏 𝑗 , or
∑𝑑

𝑗=1
𝑒𝑖 𝑗𝑎 𝑗 ∈ (−∞, 𝑟 +

∑𝑑
𝑗=1

𝑒𝑖 𝑗𝑏 𝑗 ]. It is easy to

see that for any other vector 𝑒𝑖′ ≠ 𝑒𝑖 , at least one of the constraints

above does not hold. With the same argument, we can show that if

∥𝑎 − 𝑏∥1 > 𝑟 , then there is no vector 𝑒𝑖 ∈ 𝐸 such that 𝑎𝑖 ∈ ¯𝑏𝑖 .

Overall, we build𝑂 (2𝑑 ) = 𝑂 (1) indexes for the reduced instance.
Plugging to Theorem 4.2, we conclude to the following result.

Theorem 4.3. Let 𝐴 be a set of points and 𝐵 be a set of ℓ1 balls in
R𝑑 , with |𝐴| + |𝐵 | = 𝑛. For constant 𝑑 , an index of 𝑂 (𝑛) size can be
constructed in 𝑂 (𝑛) time and updated in 𝑂 (1) amortized time, while
supporting𝑂 (1)-delay enumeration of the ℓ1-ball-containment query.

5 SIMILARITY JOIN UNDER ℓ2 METRIC
In this section, we consider the similarity join between two point

sets 𝐴 and 𝐵 in R𝑑 under the ℓ2 metric. Given a threshold 𝑟 , this is

exactly the sphere-containment problem. Consider any two points

𝑎 = (𝑎1, · · · , 𝑎𝑑 ) ∈ 𝐴 and 𝑏 = (𝑏1, · · · , 𝑏𝑑 ) ∈ 𝐵. The two points join
under the ℓ2 distance if (𝑎1 − 𝑏1)2 + · · · + (𝑎𝑑 − 𝑏𝑑 )2 ≤ 𝑟2

, or, 𝑎

lies in the sphere centered at 𝑏 with radius 𝑟 . We first present an

index for exact sphere-containment join problem and prove a lower

bound. Next, we present a more efficient index for approximate

sphere-containment join.

5.1 Exact Sphere-Containment

Reduction to halfspace containment. We use the lifting trans-
formation [25] to convert an instance of the sphere-containment

join problem to the halfspace-containment problem in R𝑑+1. The
join condition above can be rewritten as

𝑎2

1
+ 𝑏2

1
+ · · · + 𝑎2

𝑑
+ 𝑏2

𝑑
− 2𝑎1𝑏1 − · · · − 2𝑎𝑑𝑏𝑑 − 𝑟2 ≥ 0.

We map the point 𝑎 to a point 𝑎′ = (𝑎1, . . . , 𝑎𝑑 , 𝑎
2

1
+ · · · + 𝑎2

𝑑
) in

R𝑑+1 and the point 𝑏 to a halfspace 𝑏 ′ in R𝑑+1 defined as

−2𝑏1𝑧1 − · · · − 2𝑏𝑑𝑧𝑑 + 𝑧𝑑+1 + 𝑏2

1
+ · · · + 𝑏2

𝑑
− 𝑟2 ≥ 0.

Note that 𝑎, 𝑏 join if and only if 𝑎′ ∈ 𝑏 ′. Thus, in the following, we

study the halfspace-containment problem. Set 𝐴′ = {𝑎′ | 𝑎 ∈ 𝐴}
and 𝐵′ = {𝑏 ′ | 𝑏 ∈ 𝐵}.
Index. For simplicity, with slight abuse of notation, let 𝐴 be a set

of points in R𝑑 and 𝐵 a set of halfspaces in R𝑑 each lying below the

hyperplane bounding it, and our goal is to build a dynamic index

for halfspace-containment join on 𝐴, 𝐵. The overall structure of

the index is the same as for rectangle containment described in

Section 4, so we simply highlight the difference.

Instead of constructing a range tree, we construct a dynamic

partition tree T𝐴 for 𝐴 so that the points of 𝐴 lying in a halfspace

can be represented as the union of 𝑂 (𝑛1−1/𝑑 ) canonical subsets.
For a halfplane bounding a halfspace 𝑏 ∈ 𝐵, let ¯𝑏 denote its dual

point in R𝑑 (see [25] for the definition of duality transform). Note

that a point 𝑎 lies in 𝑏 if and only if the dual point
¯𝑏 lies in the

halfspace lying below the hyperplane dual to 𝑎. Set 𝐵 = { ¯𝑏 | 𝑏 ∈ 𝐵}.
We construct a multi-level dynamic partition tree on 𝐵, so that for

a pair of simplices Δ1 and Δ2, it returns the number of halfspaces

of 𝐵 that satisfy the following two conditions: (i) Δ1 ⊆ 𝑏 and (ii)

Δ2 ∩ 𝜕𝑏 ≠ ∅, where 𝜕𝑏 is the hyperplane boundary defined by the

halfspace 𝑏. This index uses𝑂 (𝑛) space, can be constructed in𝑂 (𝑛)
time, and answers a query in 𝑂 (𝑛1−1/𝑑 ) time.

For each node 𝑢 ∈ T𝐴 , we issue a counting query to T𝐵 and

get the number of halfspaces in 𝐵 that have 𝑢 as a canonical node.

Hence, T𝐴 can be built in 𝑂 (𝑛2−1/𝑑 ) time. For a node 𝑢, 𝜇𝐴 (𝑢) can
be computed in 𝑂 (1) time by storing 𝐴𝑢 at each node 𝑢 ∈ T𝐴 .
Recall that 𝜇𝐵 (𝑢) is the number of halfspaces 𝑏 of 𝐵 for which 𝑢 is a

canonical node, i.e., Δ𝑢 ⊆ 𝑏 and Δ𝑝 (𝑢) ∩ 𝜕𝑏 ≠ ∅, where 𝑝 (𝑢) is the
parent of 𝑢. Using T𝐵 , 𝜇𝐵 (𝑢) can be computed in 𝑂 (𝑛1−1/𝑑 ) time.

Update andEnumeration.The update procedure is the samewith

the update procedure of Section 4, however the query time now on

T𝐵 or T𝐴 is𝑂 (𝑛1− 1

𝑑 ) so the amortized update time is𝑂 (𝑛1− 1

𝑑 ). The
enumeration query is also the same as in Section 4 but a report-

ing query in T𝐵 takes 𝑂 (𝑛1− 1

𝑑 + 𝑘) time (and it has delay at most

𝑂 (𝑛1− 1

𝑑 )), so the overall delay is 𝑂 (𝑛1− 1

𝑑 ).
Theorem 5.1. Let 𝐴 be a set of points and 𝐵 be a set of half-

spaces in R𝑑 with |𝐴| + |𝐵 | = 𝑛. An index of 𝑂 (𝑛) size can be built
in 𝑂 (𝑛2− 1

𝑑 ) time and updated in 𝑂 (𝑛1− 1

𝑑 ) amortized time while
supporting 𝑂 (𝑛1− 1

𝑑 )-delay enumeration of halfspace-containment
query.

Using Theorem 5.1 and the lifting transformation described at

the beginning of this section we have the following corollary for

the similarity join under the ℓ2 metric.

Corollary 5.2. Let 𝐴, 𝐵 be two sets of points in R𝑑 with |𝐴| +
|𝐵 | = 𝑛. An index of 𝑂 (𝑛) size can be constructed in 𝑂 (𝑛2− 1

𝑑+1 ) time,
and updated in 𝑂 (𝑛1− 1

𝑑+1 ) amortized time, while supporting exact
enumeration of similarity join under ℓ2 metric with 𝑂 (𝑛1− 1

𝑑+1 ) delay.

Lower bound.We show a lower bound based on the hardness of

sphere reporting problem. Let 𝑃 be a set of 𝑛 points in R𝑑 for 𝑑 > 3

and a parameter 𝑟 . The sphere reporting problem asks for an index

on the points in 𝑃 , such that given any sphere 𝑏 report all points of

𝑃 ∩ 𝑏. If the space is limited to 𝑂 (𝑛), there is no known index for

answering a sphere reporting query in 𝑂 (𝑘 + 1) time, where 𝑘 is

the output size, under the pointer machine model for 𝑑 ≥ 4 [22].

For any instance of sphere reporting problem, we construct an

instance of similarity join over two sets, with 𝐴 = ∅ and 𝐵 = 𝑃 .

Given a query sphere B(𝑞, 𝑟 ), we insert point 𝑞 to 𝐴 and issue an

enumeration query with threshold 𝑟 , and then remove 𝑞 from𝐴. All

results enumerated if exist are the results of the sphere reporting

problem. If there exists an index for enumerating similarity join

under ℓ2 metric using 𝑂 (𝑛) space, with 𝑂 (1) update time and 𝑂 (1)
delay, we would break the barrier.

Theorem 5.3. Let 𝐴, 𝐵 be two sets of points in R𝑑 for 𝑑 > 3, with
|𝐴| + |𝐵 | = 𝑛. If only using 𝑂 (𝑛) space, there exists no index that can
be updated in 𝑂 (1) time, while supporting 𝑂 (1)-delay enumeration
for the sphere-containment query.

5.2 Approximate Sphere-Containment
The lower bound on the range reporting query rules out the pos-

sibility of obtaining an index with the same complexity as in the

ℓ1/ℓ∞ metric. However, if the accuracy of join results could be

sacrificed slightly, we can break the current barrier and achieve a

minimal index. In this case, we consider the 𝜀-approximate sphere-

containment problem, where all pairs of (𝑎, 𝑏) where 𝑎 lies in the



sphere centered at 𝑏 with radius 𝑟 must be reported, together with

some pairs of (𝑎′, 𝑏) where 𝑎′ lies in the sphere centered at 𝑏 with

radius (1 + 𝜀)𝑟 . For simplicity, we assume all spheres have radius 1,

by scaling all coordinates with 𝑟 . We present an index with linear

space 𝑂 (𝑛), without any dependency on 𝜀, 𝑑 , fast update time and

small enumeration delay.

Due to lack of space, we only describe the high level idea of our

index here and the details can be found in Appendix A.3. Let 𝐶 be

a grid in R𝑑 , where the size of each grid cell is 𝜀/
√
𝑑 . We choose

the size of the grid cells to be small enough so that the distance

between two points in a grid cell is small, and big enough so that

we can bound the number of cells intersected by a unit ball. A grid

cell □𝑐 ∈ 𝐶 is active if and only if 𝐴 ∩□ ≠ ∅ and there exists 𝑏 ∈ 𝐵
such that 𝜙 (𝑏,□𝑐 ) ≤ 1 + 𝜀. Let C ⊆ 𝐶 be the set of active grid cells.

Intuitively, a cell is active if it contains at least one point from 𝐴

that is “close" to some points in 𝐵.

Note that we need to handle the following query efficiently:

Given a ball B(𝑥, 𝑡) ∈ R𝑑 centered at a point 𝑥 with radius 𝑡 , find

all grid cells in 𝐶 that intersect the ball. For these queries we use

the BBD tree which is a variation of the quadtree we described in

Section 2. A BBD tree has 𝑂 (𝑛) size and can answer such queries

in 𝑂 (𝜀1−𝑑 + 𝑘) time, where 𝑘 is the output size. In particular, it

returns all cells within distance 𝑡 from 𝑥 and might return cells

with distance at most (1 + 𝜀)𝑡 .
We construct a dynamic BBD tree T𝐴 for the points in 𝐴 (imple-

mented by constructing 𝑂 (log |𝐴|) static BBD trees as explained

in Section 2.2) and a dynamic BBD tree T𝐵 for points in 𝐵 [26, 45].

When a new point in 𝑎 ∈ 𝐴 is inserted/deleted we find the cell 𝑐 ∈ 𝐶
such that 𝑎 ∈ 𝐴 ∩ □𝑐 and we check, if needed, if 𝑐 is still active.

When a new point 𝑏 ∈ 𝐵 is inserted/deleted we run a query in T𝐴
and find all grid cells of 𝐶 that intersect the ball B(𝑏, (1 + 𝜀)2) and
change the status of the cells as needed. For the enumeration proce-

dure, we visit every active cell 𝑐 ∈ C and for each point 𝑎 ∈ 𝐴 ∩□𝑐

we report all points in 𝐵 within distance (1 + 𝜀)3 from 𝑎, using the

BBD tree. We note that we use different exponents of (1 + 𝜀) on the

threshold distances to ensure that the search procedure of the BBD

tree will report all the necessary grid cells or points, due to its error

𝜀. We can ensure 𝜀 ′-approximate enumeration by setting 𝜀 ′ = 𝜀/6.

Theorem 5.4. Let𝐴, 𝐵 be two sets of points in R𝑑 , with |𝐴| + |𝐵 | =
𝑛. Let 𝜀 > 1

𝑛 be a small parameter. An index of 𝑂 (𝑛) space can be
constructed in 𝑂 (𝑛𝜀1−𝑑 ) time and updated in 𝑂 (𝜀2−4𝑑 ) amortized
time, while supporting 𝜀-approximate enumeration of similarity join
under ℓ2 metric with 𝑂 (𝜀1−𝑑 ) delay.

6 SIMILARITY JOIN WITH UNKNOWN
THRESHOLD

The previous solutions assumed the threshold 𝑟 to be fixed in ad-

vance. However, after receiving join results of multiple queries,

users may wish to vary the similarity threshold 𝑟 . A more chal-

lenging question is, whether we can design an index oblivious to

𝑟 that supports efficient updates and that answers enumeration

queries for a given threshold 𝑟 . All previous data structures fail

in this setting, since they are designed to capture the geometry of

similarity join with 𝑟 . In the worst case, one has to build a new

index from scratch for every incoming query.

Xi

Yi

≤ εL

≤ εL

L

Figure 6: An illustration of well-separated pair in theWSPD.

In this section, we give a unified data structure to solve the ap-

proximate similarity join with varying 𝑟 . For simplicity, we focus on

the ℓ2 metric; the algorithm extends to any ℓ𝑝 norm in an obvious

manner. We first introduce the concept of well separated pair de-

composition (WSPD) [16, 32, 34], which will be crucial for our index.

The high-level idea ofWSPD is to divide input points into a few clus-

ters such that for each pair of clusters, one can determine if there is

anything joinable under given 𝑟 by simply checking their bounding

boxes. Indexing these pairs of point sets by distance of boxes allows

these candidate pairs to be joined efficiently. In addition, we make

a mild assumption on the input tuples: the spread is bounded by a

polynomial in terms of 𝑛, i.e,
max𝑥,𝑦∈𝐴∪𝐵 ∥𝑥−𝑦 ∥2
min𝑥,𝑦∈𝐴∪𝐵 ∥𝑥−𝑦 ∥2 = 𝑂 (poly(𝑛)).

6.1 Well-Separated Pair Decomposition
WSPD can be built on a quadtree (that we defined in Section 2) for

storing input points. Recall that if the spread of points 𝑃 is bounded

by a polynomial with respect to 𝑛 the height of the quadtree is

𝑂 (log𝑛). For a set of points 𝑃 , let diam(𝑃) = max𝑥,𝑦∈𝑃 ∥𝑥 − 𝑦∥2.
For two sets of points 𝑃1, 𝑃2, let 𝜙 (𝑃1, 𝑃2) = min𝑥 ∈𝑃1,𝑦∈𝑃2

∥𝑥 − 𝑦∥2.

Definition 6.1 (Well-separated Pair Decomposition). Given a set

𝑃 of 𝑛 points in R𝑑 and a parameter 0 < 𝜀 < 1

2
, a set of 𝑠 pairs

𝑊 = {(𝑋1, 𝑌1), (𝑋2, 𝑌2), · · · , (𝑋𝑠 , 𝑌𝑠 )} is a 𝜀-WSPD if the following

hold: (1) for any 𝑖 ∈ {1, 2, · · · , 𝑠}, 𝑋𝑖 , 𝑌𝑖 ⊆ 𝑃 and 𝑋𝑖 ∩ 𝑌𝑖 = ∅; (2) for
each pair of points 𝑥,𝑦 ∈ 𝑃 , there exists a unique pair (𝑋 𝑗 , 𝑌𝑗 ) ∈𝑊
such that 𝑥 ∈ 𝑋 𝑗 and 𝑦 ∈ 𝑌𝑗 ; (3) 𝑠 = 𝑂 ( 𝑛

𝜀𝑑
) and (4) for any 𝑖 ∈

{1, 2, · · · , 𝑠}, max{diam(𝑋𝑖 ), diam(𝑌𝑖 )} ≤ 𝜀 · 𝜙 (𝑋𝑖 , 𝑌𝑖 ).

Each pair (𝑋𝑖 , 𝑌𝑖 ) is well-separated in the sense that any two

points across 𝑋𝑖 , 𝑌𝑖 have their distance being at least
1

𝜀 -factor of

the largest distance between points inside 𝑋𝑖 or 𝑌𝑖 ; see Figure 6.

In [32, 34], a compressed quadtree (quadtree for bounded spread as

in our case) is used to construct an 𝜀-WSPD efficiently. In particular,

a 𝜀-WSPD𝑊 can be constructed in 𝑂 (𝑛 log𝑛 + 𝜀−𝑑𝑛) time such

that each pair (𝑋𝑖 , 𝑌𝑖 ) ∈ 𝑊 is a pair of nodes in a quadtree over

the points set of points 𝑃 . The sets of points corresponding to

𝑋𝑖 , 𝑌𝑖 are denoted as 𝑃 ∩ □𝑋𝑖
, 𝑃 ∩ □𝑌𝑖 respectively. Beyond the

points in 𝑃 , some stronger properties indeed hold on each pair of

nodes in T , which corresponds to a pair in𝑊 . More specifically, for

each pair (𝑋𝑖 , 𝑌𝑖 ) ∈𝑊 , the following hold: (1) □𝑋𝑖
∩□𝑌𝑖 = ∅; (2)

max{diam(□𝑋𝑖
), diam(□𝑌𝑖 )} ≤ 𝜀𝜙 (□𝑋𝑖

,□𝑌𝑖 ). Another important

property that will be frequently used on𝑊 and T is stated as below.

Lemma 6.2 ([32]). Given a set 𝑃 of𝑛 points with𝑂 (poly(𝑛)) spread,
and its WSPD𝑊 built on a quadtree T , T has height 𝑂 (log𝑛) and
every node in T participates in 𝑂 (1) pairs of𝑊 .

It is known that the 𝜀-WSPD can be maintained under inser-

tion/deletion of points in 𝑂 (1) time [15, 29]. In the following, we



assume that 𝜀 is a small constant, so the complexity dependency

on 𝜀 is hidden in the big-Oh notation.

6.2 Index, Update and Enumeration

Index. First we construct two dynamic range trees T𝐴,T𝐵 for the

points in 𝐴, 𝐵 respectively, following [19, 59]. We also construct a

quadtree T on all input points in 𝐴 ∪ 𝐵 for a
𝜀
2
-WSPD, denoted as

𝑊 = {(𝑋1, 𝑌1), . . . , (𝑋𝑠 , 𝑌𝑠 )}.
Tripartite graph representation. The tripartite graph 𝐺 = (𝐴 ∪
𝐶∪𝐵, 𝐸1∪𝐸2) is defined as follows. Set𝐶 =𝑊 . Consider an arbitrary

pair 𝑐 = (𝑋𝑖 , 𝑌𝑖 ) ∈𝑊 . For a point 𝑎 ∈ 𝐴, an edge (𝑎, 𝑐) ∈ 𝐸1 exists

if 𝑎 ∈ 𝑋𝑖 ∪ 𝑌𝑖 . Similar definition applies for points in 𝐵.

Preprocessing. Without knowing the value of 𝑟 in advance, there

is no way to determine whether there is any join result witnessed

by one specific pair in𝑊 . Below, we slightly relax the notion of

active/inactive pair.
For any pair (𝑋𝑖 , 𝑌𝑖 ) ∈ 𝑊 , if 𝑋𝑖 ∪ 𝑌𝑖 only contain points from

the same relation, no join results will be enumerated from (𝑋𝑖 , 𝑌𝑖 ).
A pair (𝑋𝑖 , 𝑌𝑖 ) ∈𝑊 is active for join result if (𝑋𝑖 ∪ 𝑌𝑖 ) ∩𝐴 ≠ ∅ and
(𝑋𝑖 ∪𝑌𝑖 ) ∩𝐵 ≠ ∅, and inactive otherwise. Obviously, no join results

will be enumerated from an inactive pair. Note that whether a pair

(𝑋𝑖 , 𝑌𝑖 ) is active can be decided
3
in 𝑂 (1) time. Moreover, for each

active pair (𝑋𝑖 , 𝑌𝑖 ), we store the distance 𝜙 (□𝑋𝑖
,□𝑌𝑖 ).4 All active

pairs are maintained in C as a balanced search tree, in increasing

order of 𝜙 (□𝑋𝑖
,□𝑌𝑖 ). Overall, this step takes 𝑂 (𝑛) time.

Update. After inserting or deleting an input point, the quadtree

T and 𝑊 can be updated in 𝑂 (1) time, following the standard

techniques in [15, 29]. The range trees T𝐴,T𝐵 can also be updated in

𝑂 (1) time [19, 59]. Next, we will explain how to update C. Without

loss of generality, assume the update is from 𝐴, say 𝑎.

Let𝑊1,𝑊2 be the set of pairs deleted from and inserted to𝑊

respectively. For each pair (𝑋𝑖 , 𝑌𝑖 ) ∈𝑊1, if (𝑋𝑖 , 𝑌𝑖 ) ∈ C, we remove

it from C. For each pair (𝑋𝑖 , 𝑌𝑖 ) ∈𝑊2, we first check whether it is

active. If yes, we compute 𝜙 (□𝑋𝑖
,□𝑌𝑖 ) and insert this pair to C.

It remains to check whether an old pair of𝑊 should be added to

or removed from C, after the update of 𝑎. Without loss of generality,

assume 𝑎 is inserted (the deletion can be handled symmetrically).

Let 𝑢 ∈ 𝑇 be the new leaf node containing 𝑎. Consider an arbitrary

node 𝑣 lying on the path from root to 𝑢. For each pair including 𝑣 in

𝑊 , say (𝑣, 𝑡), if (𝑣, 𝑡) ∉ C, we check whether (𝑣, 𝑡) turns active after
inserting 𝑎. If yes, we compute the value of 𝜙 (□𝑣,□𝑡 ) and insert

it in C. We prove that C can be updated in 𝑂 (1) time; the detailed

proof is given in Appendix A.4.

Enumeration.We start an in-order traversal of the balanced search

tree for C. Consider an arbitrary pair (𝑋𝑖 , 𝑌𝑖 ) ∈ C visited. We check

whether𝜙 (□𝑋𝑖
,□𝑌𝑖 ) ≤ 𝑟 ; if yes, we enumerate all pairs (𝑎, 𝑏) in the

cross product (𝐴∩□𝑋𝑖
)× (𝐵∩□𝑌𝑖 ) as well as (𝐴∩□𝑌𝑖 )× (𝐵∩□𝑋𝑖

).
If 𝜙 (□𝑋𝑖

,□𝑌𝑖 ) > 𝑟 , we stop the enumeration procedure.

Note that points in 𝐴 ∩ □𝑋𝑖
can be enumerated by issuing a

range query □𝑋𝑖
to the range tree T𝐴 , with𝑂 (1) delay. The similar

3
We check if𝐴 ∩□𝑋𝑖

≠ ∅ (by issuing a range query□𝑋𝑖
to T𝐴) and 𝐵 ∩□𝑌𝑖

≠ ∅
(by issuing a range query□𝑌𝑖

to T𝐵 ), or𝐴 ∩□𝑌𝑖
≠ ∅ and 𝐵 ∩□𝑋𝑖

≠ ∅.
4
The value of 𝜙 (□𝑋𝑖

,□𝑌𝑖
) can be computed in time that depends only on dimension

𝑑 by computing the distance between every pair of corners and faces of two cubes

□𝑋𝑖
,□𝑌𝑖

. This is still a constant as long as 𝑑 is a constant.

argument applies for 𝐵 ∩ □𝑌𝑖 , 𝐴 ∩ □𝑌𝑖 and 𝐵 ∩ □𝑋𝑖
. Moreover,

observe that |C | ≤ |𝑊 | = 𝑂 (𝜀−𝑑𝑛) = 𝑂 (𝑛), as long as 𝜀 is a constant.
The in-order traversal of the balanced binary search tree has a delay

𝑂 (log |C |) = 𝑂 (1). Overall, this enumeration has 𝑂 (1) delay.
Moreover, all pairs of points enumerated from this index form

an (1+𝜀)-approximation of the join result. The proof of correctness

is provided in the Appendix A.4.

Theorem 6.3. Let𝐴, 𝐵 be two sets of points inR𝑑 for some constant
𝑑 , with𝑂 (poly(𝑛)) spread and |𝐴| + |𝐵 | = 𝑛. Let 0 < 𝜀 < 1 be a small
constant. An index of𝑂 (𝑛) space can be constructed in𝑂 (𝑛) time and
updated in 𝑂 (1) time, while supporting 𝜀-approximate enumeration
for similarity join under any ℓ𝑝 metric with𝑂 (1) delay, for any query
similarity threshold 𝑟 .

7 SIMILARITY JOIN IN HIGH DIMENSIONS
So far, we have treated the dimension 𝑑 as a constant. In this section

we describe an index for approximate similarity join using the

locality sensitive hashing (LSH) technique so that the dependency

on dimension is a small polynomial in 𝑑 , by removing the exponent

dependency on 𝑑 from the hidden poly-log factor. For simplicity,

we describe our index assuming that 𝑟 is fixed, and in the end we

extend it to the case where 𝑟 is also part of the similarity join query.

For 𝜀 > 0, 1 ≥ 𝑝1 > 𝑝2 > 0, recall that a family 𝐻 of hash

functions is (𝑟, (1+𝜀)𝑟, 𝑝1, 𝑝2)-sensitive, if for any uniformly chosen

hash functionℎ ∈ 𝐻 , and any two points 𝑥 ,𝑦, we have (1) Pr[ℎ(𝑥) =
ℎ(𝑦)] ≥ 𝑝1 if 𝜙 (𝑥,𝑦) ≤ 𝑟 ; and (2) Pr[ℎ(𝑥) = ℎ(𝑦)] ≤ 𝑝2 if 𝜙 (𝑥,𝑦) ≥
(1 + 𝜀)𝑟 . The quality of a hash function family is measured by

𝜌 =
ln𝑝1

ln𝑝2

< 1, which is bounded by a constant that depends only

on 𝜀, but not the dimensionality; and 𝜌 = 1

1+𝜀 for many common

distance functions [7, 24, 30, 33]. In a standard hash family 𝐻 , by

concatenating multiple hash functions independently chosen from

𝐻 , we can make 𝑝1 and 𝑝2 arbitrarily small, whereas 𝜌 is kept fixed.

The essence of LSH is to hash “similar" points in 𝑃 into the same

buckets with high probability. To use LSH for similarity join, the

standard way is to (1) hash input tuples into buckets; (2) probe

each bucket and check, for each pair of points falling into the same

bucket, whether their distance is smaller than 𝑟 ; and (3) report every

pair of tuples within distance 𝑟 found in (2). However, two chal-

lenges arise here in answering enumeration query under worst-case

delay guarantee. Firstly, without any knowledge of false positive

results inside each bucket, there can be a huge delays in checking

every pair of points before finding a true result. One may wonder

whether this can be resolved by building additional data structure

inside each bucket. But, hash functions only decrease the number

of points inside each bucket, instead of dimensionality, which does

not help solve our original problem. Secondly, one pair of points

within distance 𝑟 may collide under multiple hash functions, so an

additional deduplication step is necessary in the enumeration.

We start with a strong uniform assumption that points to be

inserted or deleted are randomly chosen; this randomness help

resolve above challenges. Then, we present our main result for the

general case without any assumption on input tuples.

For simplicity, we consider the Hamming space H𝑑 , and our

techniques can be extended to other metrics. The LSH family 𝐻

consists of all hash functions ℎ𝑖 , which samples the 𝑖-th bit of the



input point. Hence, we have 𝑝1 = 1 − 𝑟/𝑑 and 𝑝2 = 1 − 𝑟 (1 + 𝜀)/𝑑
[32, 36]. We sample 𝑘 hash functions randomly with replacement,

and concatenate them as a new composite hash function 𝑔. This

new hash family 𝐻 ′ is (𝑟, (1 + 𝜖)𝑟, 𝑝𝑘
1
, 𝑝𝑘

2
)-sensitive, with fixed 𝜌 .

7.1 With Uniform Assumption
Under this strong assumption, LSH technique can be used with a

slight modification.

Index. Set 𝑘 = 𝑂 (log𝑛). We just choose 𝜏 = 3

𝑝𝑘
1

ln𝑛 hash functions

randomly and independently from 𝐻 ′, denoted as 𝑔1, 𝑔2, · · · , 𝑔𝜏 .
Tripartite graph representation. Next, we define the tripartite
graph representation 𝐺 = (𝐴 ∪ 𝐶 ∪ 𝐵, 𝐸1 ∪ 𝐸2). Let 𝐶 be the set

of all buckets over all 𝜏 hash functions. There is an edge between

tuple 𝑎 ∈ 𝐴 and bucket □ ∈ 𝐶 from hash function 𝑔𝑖 if 𝑔𝑖 (𝑎) = □,

which can be decided in 𝑂 (log𝑛) time. Let 𝐴□, 𝐵□ be the set of

points from𝐴, 𝐵 falling into bucket□, respectively. A nice property

on 𝐴□ and 𝐵□ is stated in the following lemma, which is directly

followed by the balls-into-bins result.

Lemma 7.1. If input points are randomly and uniformly chosen
from the domain universe, by choosing 𝑘 = 𝑂 (log𝑛), with probability
at least 1 − 1

𝑛 , every bucket receives 𝑂 (log𝑛/log log𝑛) points.

As the number of points colliding in each bucket can be bounded

by 𝑂 (log𝑛), it is affordable to check all pairs of points inside one

bucket in𝑂 (log
2 𝑛) time, thus resolving the challenge (1). Moreover,

we introduce a variable □out for each bucket □ ∈ 𝐶 indicating the

number of the pair of tuples within distance 𝑟 colliding inside □.

Obviously, a bucket □ is active if □out > 0, and inactive otherwise.
All active buckets are maintained in C ⊆ 𝐶 , in increasing order of

the index of the hash function it comes from.

Update.Assume one point𝑎 ∈ 𝐴 is inserted. For each hash function

𝑔𝑖 where 𝑖 ∈ {1, 2, · · · , 𝜏}, we first compute 𝑔𝑖 (𝑎) and insert it into

the bucket □ ∈ 𝐶 if 𝑔𝑖 (𝑎) = □. Then, we count the number of pair

of points (𝑎, 𝑏 ∈ □ ∩ 𝐵) with 𝜙 (𝑎, 𝑏) ≤ 𝑟 , and add this quantity to

□out. The case of deletion can be handled similarly.

Enumeration. Note that we need an an additional de-duplication

step in enumerating pairs of points. We visit each bucket in C

sequentially. Consider the bucket □ from the hash function 𝑔𝑖 . For

each pair of points (𝑎 ∈ □∩𝐴,𝑏 ∈ □∩𝐵) with𝜙 (𝑎, 𝑏) ≤ 𝑟 , we check

whether 𝑎, 𝑏 have ever collided into any bucket previously. If there

exists no index 𝑗 < 𝑖 such that 𝑔 𝑗 (𝑎) = 𝑔 𝑗 (𝑏), we report it. Then, we
need to notify every bucket which also witnesses (𝑎, 𝑏) but comes

after□. More specifically, for every 𝑗 > 𝑖 , if 𝑔 𝑗 (𝑎) = 𝑔 𝑗 (𝑏) in bucket

□′, we decrease □′
out

by 1, and remove □′ from C if □′
out

becomes

0. The pseudocode is given in Appendix A.6.

Theorem 7.2. Let𝐴, 𝐵 be two sets of points in R𝑑 , with |𝐴| + |𝐵 | =
𝑛, and 𝜀, 𝑟 be positive parameters. Under uniform assumption, an index
of 𝑂 (𝑛𝑑) size can be constructed in 𝑂 (𝑛𝑑) time and updated in 𝑂 (𝑑)
time, while with probability 1 − 2/𝑛 supporting exact enumeration of
similarity join with 𝑂 (𝑑) delay.

7.2 Without Uniform Assumption
In general, without this uniform assumption, we need to explore

more properties of the LSH family for an efficient index. Our key

insight is that after checking some pairs of points in one bucket

(the specific numbers of pairs will be determined later), we can

safely skip the bucket, since with high probability any join result

missed in this bucket will be found in another one. In this way,

we avoid spending too much time in one bucket before finding

any join result. Recall that the LSH uses 𝜏 random hash functions

of the family 𝐻 ′. The new hash family of LSH [32, 36] is (𝑟, (1 +
𝜀)𝑟, 1− (1−𝑝𝑘

1
)𝜏 , 1− (1−𝑝𝑘

1
)𝜏 )-sensitive. From [32, 36] by choosing

𝑘 = 𝑂 (log
1/𝑝𝑘

2

𝑛) and 𝜏 = 4

⌈
1/𝑝𝑘

1

⌉
we have 𝜏 = 𝑂 (𝑛1/𝜌 ) and

𝑘 = 𝑂 (log𝑛) for 𝜌 = 1

1+𝜀 and some nice properties are proved for

answering ANN query, which will be the starting point of our index.

The first part of the next lemma follows from [36]. We prove the

second part in Appendix A.5.

Lemma 7.3. For a set 𝑃 of 𝑛 points in hamming space H𝑑 and a
distance threshold 𝑟 , by choosing 𝑘 = 𝑂 (log𝑛) and 𝜏 = 𝑂 (𝑛𝜌 ), the
following two properties hold for a point 𝑝 ∈ 𝑃 :
• Let 𝑞 be a point such that 𝜙 (𝑝, 𝑞) ≤ 𝑟 . With probability at
least 3/4, the point 𝑝 will collide in some bucket with point 𝑞;
• For any 𝑥 ∈ H𝑑 and 𝑡 > 0, let B(𝑥, 𝑡) = H𝑑 \ B(𝑥, 𝑡).With
probability at least 3/4, the number of points in 𝑃 ∩ B(𝑝, (1 +
𝜀)𝑟 ) colliding in any bucket with 𝑝 is at most𝑀 = 𝑂 (log𝑛).

7.2.1 Index
Recall that 𝜌 = 1

1+𝜀 , 𝜏 = 𝑂 (𝑛𝜌 ),𝑘 = 𝑂 (log𝑛), and𝑀 = 𝑂 (log𝑛). We

construct𝑚 = 3

log(4/3) log𝑛 copies of the index as I1, I2, · · · , I𝑚 . An

important property on this set of indexes is stated by the following

lemma. All proofs in this section are given in Appendix A.5.

Lemma 7.4. With probability at least 1−1/𝑛, for any pair of points
(𝑎, 𝑏) ∈ 𝐴 × 𝐵 with 𝜙 (𝑎, 𝑏) ≤ 𝑟 , there exists an index I𝑗 such that
• 𝑎, 𝑏 will collide in some bucket of I𝑗 ;
• The number of points in𝐴∩B(𝑎, (1+𝜖)𝑟 ) and𝐵∩B(𝑎, (1+𝜖)𝑟 )
colliding with 𝑎 in any bucket of I𝑗 is at most𝑀 ;
• The number of points in𝐴∩B(𝑏, (1+𝜖)𝑟 ) and𝐵∩B(𝑏, (1+𝜖)𝑟 )
colliding with 𝑏 in any bucket of I𝑗 is at most𝑀 ;

Lemma 7.4 implies that for each join result (𝑎, 𝑏), there exists at
least one bucket such that 𝑎, 𝑏 collides, and the number of “noisy”

points (with distance more than (1 + 𝜖)𝑟 from 𝑎 or 𝑏) inside this

bucket is also bounded by𝑀 = 𝑂 (log𝑛). We denote such a bucket

as proxy bucket for (𝑎, 𝑏). Later, we will see that our enumeration

phase only reports each join result in one of its proxy buckets. This

guarantees the completeness of query results, but de-duplication is

still necessary if a pair of points has more than one proxy buckets.

The tripartite graph 𝐺 = (𝐴 ∪ 𝐶 ∪ 𝐵, 𝐸1 ∪ 𝐸2) can be defined

similarly as the previous case with uniform assumption. The only

difference comes from the definition of active/inactive bucket.

Preprocessing.We pick arbitrary𝑀 points from 𝐴□, 𝐵□ respec-

tively and denote them as 𝐴⊠, 𝐵⊠. If |𝐴□ | ≤ 𝑀 , then 𝐴⊠ = 𝐴□.

The similar applies for 𝐵⊠. A bucket □ is active if there exists a
pair of points (𝑎, 𝑏) ∈ 𝐴⊠ × 𝐵⊠ within distance 2(1 + 𝜀)𝑟 , and
inactive otherwise. Note that each active bucket is stored with a

pair of points within distance 2(1 + 𝜀)𝑟 , as its representative. All
active buckets are maintained in the list C ⊆ 𝐶 . Later we will see

that join results are only enumerated from buckets in C.



Lemma 7.5. For any bucket □ and 𝑎 ∈ 𝐴□, if there are more than
𝑀 points in 𝐵□ with distance larger than 2(1 + 𝜀)𝑟 from 𝑎, □ is not
a proxy bucket for any pair of points (𝑎, 𝑏 ∈ 𝐵□) within distance 𝑟 .

Lemma 7.6. For any bucket□, if there exist𝑀 points from𝐴 as𝐴⊠
and𝑀 points from 𝐵 as 𝐵⊠, such that all pairs of points in 𝐴⊠ × 𝐵⊠
have their distances larger than 2(1+𝜀)𝑟 , then□ is not a proxy bucket
for every pair of points (𝑎′, 𝑏 ′) ∈ 𝐴□ × 𝐵□ within distance 𝑟 .

7.2.2 Update
We handle insertion and deletion separately. Without loss of gen-

erality, assume the update comes from 𝐴, say 𝑎. All details are

illustrated with pseudocodes in Appendix A.6.

Insertion of 𝑎. We compute 𝑔(𝑎) for each chosen hash function 𝑔.

Assume □ is the bucket with hash value 𝑔(𝑎). We first insert 𝑎 to

𝐴□. If□ is inactive, we check the distances between 𝑎 and arbitrary

𝑀 points in 𝐵□. Note that if there are fewer than𝑀 points in 𝐵□,

then we need to compute distances between 𝑎 and all points in 𝐵□.

If a point 𝑏 is found with 𝜙 (𝑎, 𝑏) ≤ 2(1 + 𝜖)𝑟 , we add □ to C and

store (𝑎, 𝑏) as its representative.
Deletion of 𝑎. Similarly, we compute 𝑔(𝑎) for each chosen hash

function 𝑔. Assume □ is the bucket with hash value 𝑔(𝑎). We first

remove 𝑎 from □𝐴 . If □ is active and 𝑎 participates in the represen-

tative pair of □, we check whether □ is active or inactive after the

deletion of 𝑎, and update its representative if necessary.

When there are 𝑛/2 updates, we just reconstruct the entire index

from scratch.

7.2.3 Enumeration
The high-level idea is to enumerate the representative pair of points

for each bucket in C. Moreover, results are enumerated in groups

of value 𝑎. Assume a representative pair (𝑎, 𝑏) is found in a bucket

□ ∈ C. Now, it is going to enumerate all results associated with 𝑎.

Initially, all buckets containing 𝑎 are maintained in C (𝑎) ⊆ C.

Algorithm 1 visits every bucket □ ∈ C (𝑎) and starts to check the

distances between 𝑎 and points in 𝐵□. Each time when a pair (𝑎, 𝑏)
within distance 2(1 + 𝜀)𝑟 is found, it just reports this pair and

calls the procedure Deduplicate on (𝑎, 𝑏) (details will be given
later). If there are more than 𝑀 points far away from 𝑎, we just

stop enumerating results with point 𝑎 in this bucket, which is safe

by Lemma 7.5, and remove the bucket
5 □ from C (𝑎). Once the

enumeration is finished on 𝑎, i.e., when C (𝑎) becomes empty, it can

be easily checked that 𝑎 has been removed from all buckets.

Next, we explain more details on the de-duplication step pre-

sented as Algorithm 2. Once a pair of points (𝑎, 𝑏) within distance

2(1 + 𝜀)𝑟 is reported, Algorithm 2 goes over all buckets witnessing

the collision of 𝑎, 𝑏, and marks 𝑏 with 𝑋 (□, 𝑎) to avoid repeated

enumeration (line 2). Moreover, for any bucket □ with 𝑎 ∈ 𝐴□ and

𝑏 ∈ 𝐵□, if (𝑎, 𝑏) is also its representative pair, Algorithm 2 performs

more update for □. Algorithm 2 first needs to decide whether □
is still an active bucket for 𝑎 by checking the distances between 𝑎

and𝑀 points unmarked by 𝑎 in 𝐵□. If such a pair within distance

2(1 + 𝜀)𝑟 is found, it will set this pair as new representative for

□ (line 5-7). Otherwise, it is safe to skip all results with point 𝑎

5
In the enumeration phase, the “remove” always means conceptually marked, instead

of changing the index itself.

in this bucket (line 9-10), implied by Lemma 7.5. In this case, it

needs to further update a new representative pair for□ (line 11-15).

Moreover, if no representative pair can be found (line 16-18), it is

safe to skip all results with bucket □, implied by Lemma 7.6.

Algorithm 1: EnumerateLSH

1 while C ≠ ∅ do
2 (𝑎, 𝑏) ← the representative pair of any bucket in C;

3 C (𝑎) ← {□ ∈ C : 𝑎 ∈ 𝐴□};
4 while C (𝑎) ≠ ∅ do
5 Pick one bucket □ ∈ C (𝑎); 𝑖 ← 0;

6 foreach 𝑏 ∈ 𝐵□ − 𝑋 (□, 𝑎) do
7 if 𝜙 (𝑎, 𝑏) ≤ 2(1 + 𝜀)𝑟 then
8 Emit(𝑎, 𝑏);
9 Deduplicate(𝑎, 𝑏);

10 else
11 𝑖 ← 𝑖 + 1;

12 if 𝑖 > 𝑀 then break;
13 𝐴□ ← 𝐴□ − {𝑎};
14 C (𝑎) ← C (𝑎) − {□};

Algorithm 2: Deduplicate(𝑎, 𝑏)
1 foreach □ ∈ 𝐶 with 𝑎 ∈ 𝐴□ and 𝑏 ∈ 𝐵□ do
2 𝑋 (□, 𝑎) ← 𝑋 (□, 𝑎) ∪ {𝑏};
3 if (𝑎, 𝑏) is the representative pair of □ then
4 𝐵⊠ ← 𝑀 arbitrary points in 𝐵□ − 𝑋 (□, 𝑎);
5 if there is 𝑏 ′ ∈ 𝐵⊠ with 𝜙 (𝑎, 𝑏 ′) ≤ 2(1 + 𝜀)𝑟 then
6 Set (𝑎, 𝑏 ′) as new representative of □;

7 else
8 C (𝑎) ← C (𝑎) − {□};
9 𝐴□ ← 𝐴□ − {𝑎};

10 𝐴⊠, 𝐵⊠ ← 𝑀 arbitrary points in 𝐴□, 𝐵□;

11 if there is a pair (𝑎′, 𝑏 ′) ∈ 𝐴⊠ × 𝐵⊠ with
𝜙 (𝑎′, 𝑏 ′) ≤ 2(1 + 𝜀)𝑟 then

12 Set (𝑎′, 𝑏 ′) as new representative of □;

13 else
14 C ← C − {□};

For any bucket□, we canmaintain the points in𝐴□, 𝐵□, 𝑋 (□, 𝑎)
in balanced binary search trees, so that points in any set can be

listed or moved to a different set with 𝑂 (log𝑛) delay. Moreover, to

avoid conflicts with the markers made by different enumeration

queries, we generate them randomly and delete old values by lazy

updates [27, 47, 48] after finding new pairs to report.

In Appendix A.5 we show that our index supports (1 + 2𝜀)-
approximate enumeration. We next analyze the complexity of in-

dex. The size of the index is 𝑂 (𝑑𝑛 + 𝑛𝑘𝜏) = 𝑂 (𝑑𝑛 + 𝑛1+𝜌 ). The
insertion time is 𝑂 (𝑑𝜏𝑀) = 𝑂 (𝑑𝑛𝜌 ). Using that, we can bound the

construction time of this index as 𝑂 (𝑑𝑛1+𝜌 ). The deletion time is

𝑂 (𝑑𝜏𝑀2) = 𝑂 (𝑑𝑛𝜌 ). The delay is bounded by 𝑂 (𝑑𝜏𝑀2) = 𝑂 (𝑑𝑛𝜌 )
since after reporting a pair (𝑎, 𝑏), we may visit 𝑂 (𝜏) buckets and
spend 𝑂 (𝑀2) time for each in updating the representative pair.

Putting everything together, we conclude to the next theorem.



Theorem 7.7. Let 𝐴 and 𝐵 be two sets of points in H𝑑 , where
|𝐴| + 𝐵 | = 𝑛 and let 𝜀, 𝑟 be positive parameters. For 𝜌 = 1

1+𝜀 , an index
of𝑂 (𝑑𝑛+𝑛1+𝜌 ) size can be constructed in𝑂 (𝑑𝑛1+𝜌 ) time, and updated
in 𝑂 (𝑑𝑛𝜌 ) amortized time, while supporting (1 + 2𝜀)-approximate
similarity join enumeration over 𝐴, 𝐵 with 𝑂 (𝑑𝑛𝜌 ) delay.

Due to lack of space, in Appendix A.7 we extend our index to

work when 𝑟 is part of the query. Furthermore, we discuss how

our index extends to the ℓ1, ℓ2 metric and we give a lower bound

reducing the ANN problem to our query.
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A APPENDIX
A.1 Missing proofs in Section 3

Proof of Lemma 3.2. By the definition of tripartite graph repre-

sentation, the union of𝐴𝑐×𝐵𝑐 ’s is exactly the result of the similarity

join over 𝐴, 𝐵. Then, it suffices to enumerate the cross product of

𝐴𝑐 × 𝐵𝑐 for each 𝑐 ∈ C. The enumeration algorithm is straightfor-

ward. We visit vertices in C sequentially; and for each 𝑐 ∈ C, we
just perform a simple nested-loop over 𝐴𝑐 , 𝐵𝑐 to emit every pair

(𝑎, 𝑏) ∈ 𝐴𝑐 × 𝐵𝑐 with 𝛿 delay. □

Proof of Lemma 3.3. We will mention two different ways of

computing and maintaining C.

Firstly, we use the properties (1) and (3). For each vertex 𝑐 ∈ 𝐶 ,
we check whether 𝐴𝑐 ≠ ∅ and 𝐵𝑐 ≠ ∅; if not, add 𝑐 to C. When an

update occurs, say a point 𝑎 is inserted to 𝐴 (the case of deletion is

similar), the high-level idea is to check if some vertex in 𝐶𝑎 turns

active after the insertion of 𝑎. We first find𝐶𝑎 by a reporting query.

For each 𝑐 ∈ 𝐶𝑎 , if 𝑐 ∉ C, we check whether 𝐵𝑐 ≠ ∅; if yes, add
𝑐 to C. This option computes C in 𝑂 ( |𝐶 | · 𝛿) = 𝑂 (𝜂 · 𝛿) time and

updates C in 𝑂 ( |𝐶𝑎 | · 𝛿) = 𝑂 (𝜆 · 𝛿) time.

Secondly, we use the properties (2) and (3). For each vertex 𝑐 ∈ 𝐶 ,
we spend 2 · 𝜆 time to compute |𝐴𝑐 | and |𝐵𝑐 | and store them as

𝜇𝐴 (𝑐), 𝜇𝐵 (𝑐) respectively. If |𝐴𝑐 | > 0 and |𝐵𝑐 | > 0, we add 𝑐 to C.

The total time is 𝑂 ( |𝐶 | · 𝜆) = 𝑂 (𝜂 · 𝜁 ). When an update occurs,

say a point 𝑎 is inserted to 𝐴 (the case of deletion is similar), the

high-level idea is to check if some vertex in𝐶𝑎 turns active after the

insertion of 𝑎. We first find𝐶𝑎 by a reporting query. For each 𝑐 ∈ 𝐶𝑎 ,
we increase 𝜇𝐴 (𝑐) by 1. If 𝑐 ∈ C, we check whether 𝜇𝐵 (𝑐) > 0; if

yes, add 𝑐 to C. The update takes 𝑂 ( |𝐶𝑎 |) = 𝑂 (𝜆) time. □

A.2 Missing Proofs in Section 4
Lemma A.1. 𝐺 is a valid tripartite graph representation.

Proof. We need to show that for each pair 𝑎, 𝑏 ∈ 𝐴 × 𝐵 such

that 𝑎 lies inside the rectangle 𝑏 then there is a unique 𝑐 ∈ 𝐶 such

that (𝑎, 𝑐) ∈ 𝐸1 and (𝑐, 𝑏) ∈ 𝐸2. The canonical nodes of a rectangle

in a range tree form a partition of points in𝑂 (log
𝑑 𝑛) groups. From

the definition of the set of canonical nodes in T𝐴 for rectangle 𝑏,

there exists a unique 𝑑-dimensional node 𝑢 of T𝐴 such that 𝑢 is a

canonical node of 𝑏 and 𝑎 ∈ □𝑢 . □

A.3 Approximate Similarity Join under ℓ2
metric

In this section, we use the BBD tree to derive our new index. We

start by introducing BBD trees.

BBD tree.A balanced box decomposition (or BBD for short) tree [8,

9] is a variant of the quadtree [32, 51]. A BBD tree T on a set

𝑃 of 𝑛 points in R𝑑 , is a balanced binary tree of size 𝑂 (𝑛) and
height 𝑂 (log𝑛) with 𝑛 leaves. It can be constructed in 𝑂 (𝑛 log𝑛)
time. Every box has a bounded aspect ratio and every 2𝑑 levels

of descent in the tree, the size of the associated cells decreased

by at least a factor of 1/2, where the size of a cell is defined as

the length of its longest side. Each node is associated with a box

in R𝑑 or the set theoretic difference of two nested boxes □𝑂
𝑣 ,□

𝐼
𝑣

(rectangular annulus) with □𝐼
𝑣 possibly being empty. Hence each

box 𝑣 is associated with an annular region □𝑣 = □𝑂
𝑣 \□𝐼

𝑣 .

Given a sphere 𝐵 of radius 1, the BBD tree in [8, 9] returns

𝑂 (log𝑛+𝜀𝑑−1) nodes such that the union of their regions completely

covers 𝐵 ∩ 𝑃 and might cover some parts of (1 + 𝜀)𝐵. Given 𝑥 ∈
R𝑑 , 𝑟 ≥ 0, 𝜀 > 0, the BBD tree T can be

• all points of 𝑃 within distance 𝑟 from 𝑥 will be returned;

• no point of 𝑃 farther than (1 + 𝜖)𝑟 from 𝑥 will be returned;

Points that are at distance from 𝑥 between 𝑟 and (1 + 𝜀)𝑟 from 𝑥

may or may not be reported. The time complexity of such a query

is 𝑂 (log𝑛 + 𝜀1−𝑑 + 𝑘), where 𝑘 is the output size.

In [26, 45], the dynamic version of BBD tree was proposed, with

𝑂 (1) time for maintenance under per update.

IndexWe build two dynamic BBD trees for points in𝐴, 𝐵 as T𝐴,T𝐵
separately. The dynamic property ofT𝐴 will be maintained by apply-

ing the transformation described in Section 2. In particular, we par-

tition the points in 𝐴 into𝑚 = log |𝐴| groups 𝐴(1) , 𝐴(2) , . . . , 𝐴(𝑚)
and construct log |𝐴| static BBD trees T (𝑖) , for each 𝑖 = 1, 2, . . . ,𝑚.

The construction of T𝐵 will use the standard techniques in [26, 45],

which supports 𝑂 (1) amortized update time. These two indexes

uses 𝑂 (𝑛) space and can be built in 𝑂 (𝑛) time.

Tripartite graph representation. Next, we will show how to

define a tripartite graph representation 𝐺 = (𝐴 ∪𝐶 ∪ 𝐵, 𝐸1 ∪ 𝐸2).
For a node 𝑢 in T𝐴 , let 𝑝 (𝑢) be the parent of 𝑢, □𝑢 be the box

associated with 𝑢 and size(□𝑢 ) be the largest side of the box □𝑢 .

Define

𝐶 = {𝑢 ∈ T𝐴 | size(□𝑢 ) ≤ 𝜀/
√
𝑑 < size(□𝑝 (𝑢) )},

i.e., the set of nodes that have size smaller than 𝜀/
√
𝑑 but their

parents have size strictly greater than 𝜀/
√
𝑑 . Notice that 𝐶 defines

a grid on the point set 𝐴 with small enough cells. The BBD tree is

actually used in our case to efficiently derive the cells of 𝐶 that are

contained in a query ball.

The high-level idea why we choose these nodes from T𝐴 as 𝐶

can be explained as follows. When a new ball is inserted or deleted

from 𝐵, we need to find all nodes in 𝐶 whose union cover the ball

(because of the error 𝜀 of the BBD tree, their union can also contain

areas out of the ball). The size of nodes in 𝐶 is small enough so

that the area out of the ball covered will be bounded, and also big

enough so that for any unit ball 𝑏 ∈ 𝐵, the number of nodes in𝐶 to

cover 𝑏 is bounded.

Consider an arbitrary node 𝑢 ∈ 𝐶 . For any point 𝑎 ∈ 𝐴, edge

(𝑎,𝑢) ∈ 𝐸1 exists if 𝑎 ∈ □𝑢 . However, for any point 𝑏 ∈ 𝐵, edge

(𝑏,𝑢) is not constructed in a deterministic way; instead, it obeys the

following rules due to the approximation nature of range queries

over BBD tree: if ∥𝑥 −𝑏∥2 ≤ (1+ 𝜀)2 for some corner 𝑥 of□𝑢 , (𝑏,𝑢)
exists; if ∥𝑥 − 𝑏∥2 > (1 + 𝜀)3, (𝑏,𝑢) does not exist; otherwise, (𝑏,𝑢)
may or may not exist.

Preprocessing. Let Q𝜀 (𝑥, 1+ 𝜀) be an approximate range query on

a BBD tree, where the query range is a ball of center 𝑥 and radius

1 + 𝜀, and the error parameter is 𝜀. We assume that Q𝜀 (𝑥, 1 + 𝜀)
returns the set of nodes of the BBD tree whose union cover the ball

B(𝑥, 1 + 𝜀).
We define the inactive/active status of nodes in𝐶 . Node 𝑢 ∈ 𝐶 is

active if □𝑢 ∩ 𝐴 ≠ ∅, and there exists a corner 𝑥 of □𝑢 such that

running the query Q𝜀 (𝑥, 1 + 𝜀) in T𝐵 it returns at least one point

from 𝐵, and inactive otherwise. Notice that if a node 𝑢 ∈ 𝐶 is active



then □𝑢 contains at least a point in 𝐴 and there exists at least one

corner 𝑥 of □𝑢 and a point 𝑏 ∈ 𝐵 with ∥𝑥 − 𝑏∥2 ≤ (1 + 𝜀)2. All
active nodes are maintained in C.

Lemma A.2. For any node 𝑢 ∈ 𝐶 , if 𝑢 is active, for any point
𝑎 ∈ 𝐴∩□𝑢 , there exists a point 𝑏 ∈ 𝐵 such that ∥𝑎−𝑏∥2 ≤ (1+𝜀)2+𝜀;
otherwise, there exists no pair of points (𝑎 ∈ □𝑣 ∩𝐴,𝑏 ∈ 𝐵) such that
∥𝑎 − 𝑏∥2 ≤ 1.

Proof. If 𝑣 is active, there exists a corner 𝑥 of □𝑣 such that

Q𝜀 (𝑥, 1+𝜀) ≠ ∅. Let𝑏 ∈ Q𝜀 (𝑥, 1+𝜀) be an arbitrary point. Moreover,

∥𝑥 − 𝑏∥2 ≤ (1 + 𝜀)2. As size(□𝑣) ≤ 𝜀/
√
𝑑 , the distance between

any pair of points inside □𝑣 is at most 𝜖 . Then, for any point 𝑎 ∈
□𝑣 ∩𝐴(𝑖) , ∥𝑎 − 𝑏∥2 ≤ ∥𝑥 − 𝑏∥2 + ∥𝑥 − 𝑎∥2 ≤ (1 + 𝜀)2 + 𝜀.

If 𝑣 is inactive, assume there is a pair of points 𝑎 ∈ □𝑣 ∩𝐴𝑖 , 𝑏 ∈ 𝐵
with ∥𝑎 − 𝑏∥2 ≤ 1. As size(□𝑣) ≤ 𝜀/

√
𝑑 , any pair of points in □𝑣

has its distance bounded by 𝜖 . Let 𝑥 be an arbitrary corner of □𝑣 .

We will have ∥𝑥 − 𝑏∥2 ≤ ∥𝑎 − 𝑏∥2 + ∥𝑥 − 𝑎∥2 ≤ 1 + 𝜀, contradicting
the fact that 𝑣 is inactive, i.e., no corner of □𝑣 has a near neighbor

in 𝐵 within distance 1 + 𝜀. □

Note that the status of 𝑢 can be decided in 𝑂 (𝜀1−𝑑
log𝑛) time,

so this step takes 𝑂 (𝑛𝜀1−𝑑
log𝑛) time in total.

A.3.1 Update
Note that the dynamic BBD tree T𝐵 can be updated in𝑂 (log𝑛) time,

following the standard techniques in [26, 45]. Next, we focus on

the update on T and 𝐺 .

In the first case when an update happens for points in 𝐴, say 𝑎,

we follow the standard techniques in [13, 27].

Insertion of 𝑎. Let 𝑖 be the smallest index such that 𝐴(𝑖) = ∅. We

delete all BBD trees for every group 𝑗 ≤ 𝑖 and create a new BBD

tree T (𝑖) on points in {𝑎} ∪ (⋃𝑗≤𝑖 𝐴 𝑗 ). Following the observations
in [13, 27], the amortized cost is 𝑂 (𝜀1−𝑑

log𝑛).
Deletion of 𝑎. Assume 𝑎 ∈ 𝐴(𝑖) . Let 𝑢 be the leaf node in T (𝑖)
containing 𝑎. We just remove 𝑎 from 𝑢. Let 𝑣 ∈ 𝐶 be the node lying

on the path from root to 𝑢. If 𝑣 is active and □𝑣 ∩ 𝐴(𝑖) = ∅, i.e.,
there is no other point lying inside □𝑢 except 𝑎, we remove 𝑣 from

C. Note that T (𝑖) is static, so no operations are performed on the

tree structure.

When the number of deleted points in𝐴 is more than the number

of the remaining points in 𝐴, we just stop updating the existing

index and build the set of𝑂 (⌈log |𝐴|⌉) static BBD trees from scratch.

Note that this index can be constructed in 𝑂 (𝑛 · 𝜀1−𝑑
log𝑛) time,

the amortized cost is 𝑂 (𝜀1−𝑑
log𝑛).

In the second case when an update comes from 𝐵, say 𝑏, we

perform the following procedure for each group 𝐴(𝑖) if 𝐴(𝑖) ≠ ∅.
The high-level idea is to find all nodes in 𝐶 whose status would

be changed by 𝑏, and update them if necessary. Let 𝑈 be the set

of nodes returned by issuing a range query Q𝜀 (𝑏, (1 + 𝜀)2) to T (𝑖) .
The following Lemma states that every node in𝑈 is located “above”

the nodes in 𝐶 .

Lemma A.3. For each 𝑢 ∈ 𝑈 , 𝑠𝑖𝑧𝑒 (□𝑝 (𝑢) ) ≥ 𝜀/
√
𝑑 .

Proof. Let 𝑣 ∈ 𝐶 be a node visited by the search procedure

Q𝜀 (𝑏, (1 + 𝜀)2) in T (𝑖) . We argue that the search algorithm will

not continue searching at the children of 𝑣 . The search procedure

in [8, 9] first checks if □𝑣 ⊂ B(𝑏, (1 + 𝜀)3). If that is true then the

search procedure does not consider the children of 𝑣 and 𝑣 ∈ 𝑈 . If

□𝑣 ⊄ B(𝑏, (1 + 𝜀)3) then it checks if □𝑣 ∩ B(𝑏, (1 + 𝜀)2) = ∅. If it
is true then it does not consider the children of 𝑣 and 𝑣 ∉ 𝑈 . Hence,

the only remaining case to consider is when □𝑣 ⊄ B(𝑏, (1 + 𝜀)3)
and □𝑣 ∩ B(𝑏, (1 + 𝜀)2) ≠ ∅. However, this case will not happen
because size(□𝑣) ≤ 𝜀/

√
𝑑 : if□𝑣 ⊄ B(𝑏, (1+𝜀)3) then□𝑣 is so small

that it does not intersect B(𝑏, (1 + 𝜀)2). In particular, any pair of

points in□𝑣 has distance at most 𝜀 and the distance ofB(𝑏, (1+𝜀)2)
and B(𝑏, (1 + 𝜀)3) is more than 𝜀, so if □𝑣 ⊄ B(𝑏, (1 + 𝜀)3) then
□𝑣 ∩ B(𝑏, (1 + 𝜀)2) = ∅. □

For each𝑢 ∈ 𝑈 , we find all nodes in𝐶 which reside in the subtree

of T (𝑖) rooted at𝑢, denoted as𝑉𝑢 . Note that we will check the status
for each node 𝑣 ∈ ⋃𝑢∈𝑈 𝑉𝑢 . To see why this procedure is correct, it

suffices to show that every node of 𝐶 whose status will be changed

by the update of 𝑏 must be included by

⋃
𝑢∈𝑈 𝑉𝑢 . In particular, it

suffices to show that when a point 𝑏 is deleted from 𝐵, we will

visit all nodes 𝑢 ∈ 𝐶 such that there exists some corner 𝑥 of □𝑢

with ∥𝑥 − 𝑏∥2 ≤ (1 + 𝜀)2. Let 𝑢 be such a node in 𝐶 . Notice that

□𝑢 ∩ B(𝑏, (1 + 𝜀)2) ≠ ∅. As size(□𝑢 ) ≤ 𝜀/
√
𝑑 , we observe that

□𝑢 ⊂ B(𝑏, (1 + 𝜀)3). Hence the search procedure for the query

range Q𝜀 (𝑏, (1 + 𝜀)2) in T (𝑖) will always find a node𝑤 that lies in

the path from the root to 𝑢 such that □𝑤 ⊆ B(𝑏, (1 + 𝜀)3). Notice
that □𝑢 ⊆ □𝑤 . Hence, the search procedure always visits node 𝑢.

Insertion of 𝑏. If □𝑣 ∩𝐴(𝑖) ≠ ∅ and 𝑣 is inactive, we compute the

distances between all corners of □𝑣 with 𝑏. If any one of them has

distance smaller than 1 + 𝜀 from 𝑏, we add 𝑣 to C.

Deletion of 𝑏. If 𝑣 is active and □𝑣 ∩ 𝐴(𝑖) ≠ ∅, we issue a range
query Q𝜀 (𝑥, 1+ 𝜀) to T𝐵 for every corner 𝑥 of□𝑣 . If all queries have

empty results, we remove 𝑣 from C.

We next analyze the complexity of this update procedure with

𝑏. A first observation on the number of nodes we have checked is

stated in Lemma A.4.

Lemma A.4. |⋃𝑢∈𝑈 𝑉𝑢 | = 𝑂

(
𝜀−2𝑑 (log 2

𝑖 + 𝜀1−𝑑 )
)
.

Proof. From [8, 9], |𝑈 | = 𝑂 (log 2
𝑖 + 𝜀1−𝑑 ). From each node

𝑢 ∈ 𝑈 we need to bound |𝑉𝑢 |. Notice that 𝑠𝑖𝑧𝑒 (□𝑢 ) ≤ 2(1 + 𝜀)3.
Recall, that every 2𝑑 levels of the BBD tree T (𝑖) the size of the cells
are decreased by at least a factor of 1/2. Hence, 2𝑑 log( 2(1+𝜀)

3

√
𝑑

𝜀 )
levels below the level of 𝑢 the size of the cells will be at most 𝜀/

√
𝑑 .

So, |𝑉𝑢 | = 𝑂

(
2

2𝑑 log( 2(1+𝜀 )3
√
𝑑

𝜀
)
)
= 𝑂

(
( 2(1+𝜀)

3

√
𝑑

𝜀 )2𝑑
)
. □

The range query over T (𝑖) takes 𝑂 (log 2
𝑖 + 𝜀1−𝑑 ) time, follow-

ing [8, 9]. Over all groups, it takes𝑂 (log𝑛(log𝑛 + 𝜀1−𝑑 )) to find all
nodes in𝑈 . From LemmaA.4 the insertion time is𝑂 (𝜀−2𝑑

log𝑛(log𝑛+
𝜀1−𝑑 )). Moreover, each range query over T𝐵 takes 𝑂 (𝜀1−𝑑

log𝑛)
time. Implied by the LemmaA.4wewill execute𝑂 (𝜀−2𝑑

log𝑛(log𝑛+
𝜀1−𝑑 )) such queries when we delete a point in 𝐵 so the overall up-

date time for deleting a point is 𝑂 (𝜀1−3𝑑
log

2 𝑛(log𝑛 + 𝜀1−𝑑 )).



A.3.2 Enumeration
We visit each group𝐴(𝑖) if𝐴(𝑖) ≠ ∅. For any node𝑢 ∈ C, we invoke
the following procedure. For each point 𝑎 ∈ 𝐴(𝑖) ∩□𝑢 , let 𝐵𝑎 be the

result of issuing a ball query Q𝜀 (𝑎, (1 + 𝜀)3) to T𝐵 . We just report

(𝑎, 𝑏) for all 𝑏 in 𝐵𝑎 .

Each range reporting query over T𝐵 takes 𝑂 (𝜀1−𝑑
log𝑛) time

first, and then all results can be reported with𝑂 (1) delay. The delay
of this enumeration phase is 𝑂 (𝜀1−𝑑

log𝑛).

Lemma A.5. The index supports (4𝜀 + 6𝜀2 + 4𝜀3 + 𝜀4)-approximate
enumeration.

Proof. It suffices to show that all pairs of points within distance

𝑟 must be reported, and any pair of points within distance strictly

larger than (1 + 𝜀)4 will not be reported.

Consider an arbitrary pair of points (𝑎, 𝑏) ∈ 𝐴×𝐵 with ∥𝑎−𝑏∥2 ≤
1. Let 𝑢 ∈ 𝐶𝑖

𝜀 be the unique node such that 𝑎 ∈ □𝑢 . Observe that

there exists a corner 𝑥 of □𝑢 such that ∥𝑥 − 𝑏∥2 ≤ ∥𝑎 − 𝑏∥2 + ∥𝑥 −
𝑎∥2 ≤ 1+𝜀, thus𝑢 is active. So the enumeration query will visit node

𝑢 and we will run a query Q𝜀 (𝑎, (1 + 𝜀)3) in T𝐵 finding the point 𝑏.

When𝑢 is active, for a node𝑢 ∈ 𝐶 thenwewill always return at least

a pair (𝑎 ∈ □𝑢 , 𝑏 ∈ 𝐵) since there exists 𝑏 with ∥𝑥 − 𝑏∥2 ≤ (1 + 𝜀)2,
where 𝑥 is a corner of □𝑢 and ∥𝑎 − 𝑏∥2 ≤ (1 + 𝜀)2 + 𝜀 < (1 + 𝜀)3.

Finally, from the definition, a reporting query Q𝜀 (𝑎, (1 + 𝜀)3) in
T𝐵 will never return a point 𝑏 with ∥𝑎 − 𝑏∥2 > (1 + 𝜀)4. □

A.4 Missing proofs in Section 6
Lemma A.6. C can be updated in 𝑂 (1) time.

Proof of Lemma A.6. It has been shown in [15, 29]that |𝑊1 | +
|𝑊2 | = 𝑂 (polylog𝑛). The update for𝑊1,𝑊2 takes𝑂 (polylog𝑛) time

in total, since removing a pair from the balanced search tree of𝑊 ′

takes 𝑂 (log |𝑊 ′ |) = 𝑂 (log𝑛) time, and checking whether a pair

is active or not takes 𝑂 (polylog𝑛) time. From Lemma 6.2, each

node 𝑢 ∈ T participates in 𝑂 (log𝑛) pairs in𝑊 , and each point

is included by 𝑂 (log𝑛) nodes in T . In this way, there are at most

𝑂 (log
2 𝑛) pairs to be checked in an addition step (no matter for

insertion and deletion), and each check takes 𝑂 (polylog𝑛) time.

Overall, the total time for updating𝑊 ′ is 𝑂 (1). □

Proof of correctness of the enumeration algorithm in Sec-
tion 6. It suffices to show that every pair of points within distance

𝑟 must be reported, while any pair of points with distance larger

than (1 + 𝜀)𝑟 will not be reported.
Let (𝑎, 𝑏) ∈ 𝐴 × 𝐵 be a pair with ∥𝑎 − 𝑏∥2 ≤ 𝑟 . Implied by

Definition 6.1, there exists a unique pair (𝑋𝑖 , 𝑌𝑖 ) such that 𝑎 ∈ 𝑋𝑖
and 𝑏 ∈ 𝑌𝑖 or 𝑎 ∈ 𝑌𝑖 and 𝑏 ∈ 𝑋𝑖 , so (𝑋𝑖 , 𝑌𝑖 ) ∈ 𝑊 ′. Moreover,

𝜙 (□𝑋𝑖
,□𝑌𝑖 ) ≤ ∥𝑎 − 𝑏∥2 ≤ 𝑟 . Thus, all join results across 𝑋𝑖 , 𝑌𝑖 will

be reported, including (𝑎, 𝑏).
Next, let (𝑋𝑖 , 𝑌𝑖 ) be a pair that is found by the enumeration

procedure in𝑊 ′, with 𝜙 (□𝑋𝑖
,□𝑌𝑖 ) ≤ 𝑟 . For any pair of points

𝑥 ∈ □𝑋𝑖
, 𝑦 ∈ □𝑌𝑖 , their distance can be bounded as

∥𝑥 − 𝑦∥2 ≤𝜙 (□𝑋𝑖
,□𝑌𝑖 ) + diam(□𝑋 𝑗

) + diam(□𝑌𝑗
)

≤(1 + 2 · 𝜀
2

) · 𝜙 (□𝑋𝑖
,□𝑌𝑖 ) ≤ (1 + 𝜀)𝑟,

thus any pair of points with distance strictly larger than (1 + 𝜀)𝑟
will not be reported.

A.5 Missing Proofs in Section 7
Proof of Theorem 7.2. We first prove the correctness of the

algorithm. It can be easily checked that any pair of points with

their distance larger than 𝑟 will not be emitted. Consider any pair

of points (𝑎, 𝑏) within distance 𝑟 . Let 𝑖 be the smallest index such

that 𝑔𝑖 (𝑎) = 𝑔𝑖 (𝑏) in bucket □. In the algorithm, (𝑎, 𝑏) will be
reported by □ and not by any bucket later. Thus, each join result

will be enumerated at most once without duplication.

In the case of hamming distance, we have 𝑘 = log
2
𝑛 and 𝑝𝑘

1
=

(1 − 𝑟
𝑑
)log𝑛 ∈ [1/𝑒, 1] since 𝑑/𝑟 > log𝑛 by padding some zeros at

the end of all points
6
, thus 𝜏 = 3 · 1/𝑝𝑘

1
· ln𝑛 = 𝑂 (1).

We next analyze the complexity of our index. It can be built in

𝑂 (𝑛𝑘𝜏) time with𝑂 (𝑛𝑘𝜏) space, since there are 𝑛 vertices in 𝐴 ∪ 𝐵,
at most 𝑂 (𝑛𝜏) non-empty buckets in 𝐶 , and each tuple in 𝐴 ∪ 𝐵 is

incident to exactly 𝑙 buckets in𝐶 . With the same argument, it takes

𝑂 (𝑛𝑘𝑙) time for construct the tripartite graph representation. More-

over, it takes 𝑂 (∑□ |𝐴□ | · |𝐵□ |) time for computing the quantity

□out for all buckets, which can be further bounded by∑
□

|𝐴□ | · |𝐵□ | < 𝑛 ·max

□
( |𝐴□ | + |𝐵□ |) = 𝑂 (𝑛 log𝑛)

implied by Lemma 7.1.

Consider any bucket □ from hash function 𝑔 𝑗 . If the algorithm

visits it during the enumeration, at least one pair of points within

distance 𝑟 will be emitted, which has not been emitted by any

bucket from hash function ℎ𝑖 for 𝑖 < 𝑗 . Checking all pairs of points

inside any bucket takes at most 𝑂 ((𝑑 + 𝑘𝑙) · max□ |𝐴□ | · |𝐵□ |)
time, where it takes 𝑂 (𝑑) time to compute the distance between

any pair of points and 𝑘𝑙 time for checking whether this pair has

been emitted before or marking buckets which also witnesses this

pair later. Thus, the delay between any two consecutive pairs of

results is bounded by𝑂 ((𝑑 +𝑘𝑙) ·max□ |𝐴□ | · |𝐵□ |), which is𝑂 (𝑑)
under the uniform assumption.

Moreover, for each such pair of tuples within distance 𝑟 , it will

be reported by any hash function with probability at least 𝑝𝑘
1
. The

probability that they do not collide on any one of hash function

is at most (1 − 𝑝𝑘
1
)3·1/𝑝𝑘1 ·ln𝑛 ≤ 1/𝑛3

. As there are at most 𝑛2
such

pairs of tuples, the probability that any one of them is not reported

by our index is at most 1/𝑛.
By a union bound, the probability that either uniform assumption

fails or one join result is not reported is at most
1

𝑛 +
1

𝑛 = 2

𝑛 . Thus,

the result holds with probability at least 1 − 2

𝑛 . □

Proof of Lemma 7.3. The first part of the lemma follows from [36].

Next we focus on the second part. Let ℎ be one of the 𝜏 hash

functions and let 𝑞 ∈ 𝑃 ∩ B(𝑝, (1 + 𝜀)𝑟 ). From [36] we have that

Pr[ℎ(𝑝) = ℎ(𝑞)] ≤ 1/𝑛. Let 𝑋 (𝑞) be a random variable which is 1 if

ℎ(𝑝) = ℎ(𝑞), and 0, otherwise. Let 𝑋 =
∑
𝑞∈𝑃∩B(𝑝,(1+𝜀)𝑟 ) 𝑋 (𝑞).

We have 𝜇 = E[𝑋 ] ≤ 1. We have Pr[𝑋 ≥ 2 log(4𝜏) + 1] ≤
Pr[𝑋 ≥ (1+ 2 log(4𝜏)

𝜇 )𝜇]. FromChernoff inequality
7
we have Pr[𝑋 ≥

(1 + 2 log(4𝜏)
𝜇 )𝜇] ≤ 𝑒

− 2
2

log
2 (4𝜏 )/𝜇

2+2 log(4𝜏 )/𝜇
. Notice that 2 + 2 log(4𝜏)/𝜇 ≤

6
Similar assumption was made in the original paper [30] of nearest neighbor search

in Hamming distance.

7
We use the version of Chernoff inequality where Pr[𝑋 ≥ (1 + 𝛿)𝜇 ] ≤ 𝑒−𝛿

2𝜇/(2+𝛿 )
,

for 𝛿 ≥ 0



4 log(4𝜏)/𝜇, so Pr[𝑋 ≥ 2 log(4𝜏) + 1] ≤ 𝑒
− log

2 (4𝜏 )/𝜇
log(4𝜏 )/𝜇 = 𝑒− log(4𝜏) =

1

4𝜏 .

Let𝐺𝑖 be the event which is true if point 𝑝 has at most 2 log(4𝜏)+
1 conflicts with points in 𝑃 ∩ B(𝑝, (1 + 𝜀)𝑟 ) at hash function ℎ𝑖 .

Pr[∩𝜏
𝑖=1

𝐺𝑖 ] = 1 − Pr[⋃𝜏
𝑖=1

𝐺𝑖 ] ≥ 1 − 𝜏
4𝜏 = 3/4. □

Proof of Lemma 7.4. Consider any pair of points (𝑎 ∈ 𝐴,𝑏 ∈ 𝐵)
within distance 𝑟 and an arbitrary index constructed as described

above. From Lemma 7.3, with probability at least 1/4 there exists

a bucket in the index that contains both 𝑎, 𝑏 and the number of

collisions of both 𝑎 and 𝑏 (with the rest of the points in 𝐴 ∪ 𝐵) is
bounded by𝑀 .

Let 𝐹 𝑗 be the event that is true if there is a bucket in I𝑗 that
witnesses the collision of 𝑎, 𝑏 and the number of collisions of both

𝑎, 𝑏 is bounded by𝑀 . Since 𝐹𝑖 , 𝐹 𝑗 are independent for 𝑖 ≠ 𝑗 , we have

Pr[𝐹1 ∩ . . . ∩ 𝐹𝐶 ] = Pr[𝐹1] · . . . · Pr[𝐹𝐶 ] ≤ (3/4)
3

log(4/3) log𝑛 ≤ 1/𝑛3
.

Let 𝑍 be the number of pairs with distance at most 𝑟 . We have

𝑍 ≤ 𝑛2
. Let 𝐺𝑖 be the event which is true if for the 𝑗-th pair of

points 𝑎′, 𝑏 ′ with distance at most 𝑟 , there is at least a copy of

the index such that there exists a bucket that contains both 𝑎′, 𝑏 ′

and the number of collisions of both 𝑎, 𝑏 is bounded by 𝑀 . Then

Pr[𝐺1∩. . .∩𝐺𝑍 ] = 1−Pr[𝐺1∪. . .∪𝐺𝑍 ] ≥ 1−Pr[𝐺1]−. . .−Pr[𝐺𝑍 ] ≥
1 − 𝑛2/𝑛3 ≥ 1 − 1/𝑛. Hence, with high probability, for any pair

𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 with distance at most 𝑟 there will be at least one bucket

in the index such that, both 𝑎, 𝑏 are contained in the bucket and

the number of collisions of both 𝑎, 𝑏 in the bucket is bounded by

𝑀 . □

Proof of Lemma 7.6. Consider a bucket □ in which all pairs

of points in 𝐴⊠ × 𝐵⊠ have their distances larger than 2(1 + 𝜀)𝑟 .
From Lemma 7.5 follows that □ is not a proxy bucket for any pair

(𝑎 ∈ 𝐴⊠, 𝑏 ∈ 𝐵□) and (𝑎 ∈ 𝐴□, 𝑏 ∈ 𝐵⊠). It remains to check the

pairs 𝑎′ ∈ 𝐴□ \ 𝐴⊠, 𝑏 ′ ∈ 𝐵□ and 𝑎′ ∈ 𝐴□, 𝑏 ′ ∈ 𝐵□ \ 𝐵⊠. Let

(𝑎′, 𝑏 ′) be such a pair within 𝑟 . W.l.o.g., assume 𝑎′ ∈ 𝐴□ \𝐴⊠ and

𝑏 ′ ∈ 𝐵□ (the case with 𝑎′ ∈ 𝐴□ and 𝑏 ′ ∈ 𝐵□ \ 𝐵⊠ is similar).

The case for 𝑏 ′ ∈ 𝐵⊠ is directly implied by Lemma 7.5. It remains

to consider the case that𝑏 ′ ∈ 𝐵□\𝐵⊠. If all points in 𝐵⊠ are at least

(1 + 𝜀)𝑟 away from 𝑎′, or all points in 𝐴⊠ are at least (1 + 𝜀)𝑟 away
from 𝑎′, then □ is not a proxy bucket for (𝑎′, 𝑏 ′) by Lemma 7.4.

Otherwise, there must exist at least one point 𝑎′′ ∈ 𝐴⊠ as well as

𝑏 ′′ ∈ 𝐵⊠ such that 𝜙 (𝑎′, 𝑎′′) ≤ (1 + 𝜀)𝑟 and 𝜙 (𝑎′, 𝑏 ′′) ≤ (1 + 𝜀)𝑟 .
By triangle inequality,

𝜙 (𝑎′′, 𝑏 ′′) ≤ 𝜙 (𝑎′, 𝑎′′) + 𝜙 (𝑎′, 𝑏 ′′) ≤ 2(1 + 𝜀)𝑟
Thus, (𝑎′′, 𝑏 ′′) ∈ 𝐴⊠ × 𝐵⊠ is such a pair within distance 2(1 + 𝜀)𝑟 ,
coming to a contradiction. □

Lemma A.7. The index supports (1+2𝜀)-approximate enumeration.

Proof of Lemma A.7. It can be easily checked that any pair of

points with distance far more than 2(1+𝜀)𝑟 will not be enumerated.

Also, each result is reported at most once by Algorithm 2. Next,

we will show that with high probability, all pairs of points within

distance 𝑟 are reported. Consider any pair of points (𝑎, 𝑏) within
distance 𝑟 . Implied by Lemma 7.4, there must exist a proxy bucket

□ for (𝑎, 𝑏). Observe that there exists no subset of𝑀 points from

𝐴□ as𝐴⊠ and subset of𝑀 points from 𝐵□ as 𝐵⊠, where all pairs of

points in𝐴⊠×𝐵⊠ have their distances larger than 2(1+𝜀)𝑟 , implied

by Lemma 7.6, so □ is active. Moreover, there exists no subset of𝑀

points from 𝐵□ as 𝐵⊠, where all pairs of points (𝑎, 𝑏 ′ ∈ 𝐵⊠) have
their distances larger than 2(1 + 𝜀)𝑟 , implied by Lemma 7.5, so □ is

an active bucket for 𝑎. In Algorithm 1, when visiting□ by line 7-18,

(𝑎, 𝑏) must be reported by □ or have been reported previously. □

A.6 Pseudocodes in Section 7

Algorithm 3: UniEnumLSH

1 All buckets in C are sorted by the index of hash functions;

2 foreach □ ∈ C do
3 foreach (𝑎, 𝑏) ∈ □𝐴 ×□𝐵 do
4 if 𝜙 (𝑎, 𝑏) ≤ 𝑟 then
5 flag = true;

6 foreach 𝑗 ∈ {1, 2, · · · , 𝑖 − 1} do
7 if 𝑔 𝑗 (𝑎) = 𝑔 𝑗 (𝑏) then
8 flag = false;

9 if flag = true then
10 Emit (𝑎, 𝑏);
11 foreach 𝑗 ∈ {𝑖 + 1, 𝑖 + 2, · · · , 𝜏} do
12 if 𝑔 𝑗 (𝑎) = 𝑔 𝑗 (𝑏) in □ then
13 □out ← □out − 1;

14 if □out = 0 then
15 C ← C − {□};

Algorithm 4: Insert(𝑎 ∈ 𝐴)
1 foreach hash function 𝑔 in the index do
2 □← the bucket with hash value 𝑔(𝑎);
3 insert 𝑎 into 𝐴□;

4 if □ ∈ 𝐶 − C then
5 Choose𝑀 arbitrary points from 𝐵□ as 𝐵⊠;

6 if there is 𝑏 ∈ 𝐵⊠ with 𝜙 (𝑎, 𝑏) ≤ 2(1 + 𝜀) then
7 C ← C ∪ {□};
8 Store (𝑎, 𝑏) as the representative of □;

Algorithm 5: Delete(𝑎 ∈ 𝐴)
1 foreach hash function 𝑔 in the index do
2 □← the bucket with hash value 𝑔(𝑎);
3 Delete 𝑎 from □𝐴;

4 if □ ∈ C and 𝑎 is in the representative pair of □ then
5 Choose𝑀 arbitrary points from 𝐴□ as 𝐴⊠;

6 Choose𝑀 arbitrary points from 𝐵□ as 𝐵⊠;

7 if there exists a pair (𝑎′, 𝑏 ′) ∈ 𝐴⊠ × 𝐵⊠ with
𝜙 (𝑎′, 𝑏 ′) ≤ 2(1 + 𝜀)𝑟 then

8 Store (𝑎′, 𝑏 ′) as representative of □;

9 else
10 C ← C − {□};



A.7 Extensions of Section 7
There are three extensions from our results for the LSH:

Remark 1. Similar to the LSH [36] used for ANN query, we can ex-

tend our current index to the case where 𝑟 is also part of the query.

In H𝑑 , 1 ≤ 𝑟 ≤ 𝑑 . Hence, we build 𝑍 = 𝑂 (log
1+𝜀 𝑑) = 𝑂 (𝜀−1

log𝑑)
indexes as described above, each of them corresponding to a sim-

ilarity threshold 𝑟𝑖 = (1 + 𝜀)𝑖 for 𝑖 = 1, . . . , 𝑍 . Given a query with

threshold 𝑟 , we first run a binary search and find 𝑟 𝑗 such that

𝑟 ≤ 𝑟 𝑗 ≤ (1 + 𝜀)𝑟 . Then, we use the 𝑗-th index to answer the

similarity join query. Overall, the index has 𝑂 (𝑑𝑛 + 𝜀−1𝑛1+𝜌
log𝑑)

size can be constructed in 𝑂 (𝜀−1𝑑𝑛1+𝜌
log𝑑) time, and updated

in 𝑂 (𝜀−1𝑑𝑛𝜌 log𝑑) amortized time. After finding the value 𝑟 𝑗 in

𝑂 (log(𝜀−1
log𝑑)) time, the delay guarantee remains 𝑂 (𝑑𝑛𝜌 ).

Remark 2. This framework of query enumeration in Hamming

distance can be extended to ℓ2 or ℓ1 metric, by resorting the LSH

family constructed in [24] and [32] (Section 20.2), obtaining an

index with exactly the same complexity.

Currently, the best LSH family constructed for the ANN problem

under ℓ2 metric is presented in [7], with 𝜌 ≤ 1

(1+𝜀)2 + 𝑜 (1). Our

framework can benefit automatically from any improvement over

the construction of LSH family. On the other hand, it is shown

in [44] that 𝜌 ≥ 0.462/(1 + 𝜀) for Hamming space and ℓ1 metric,

and 𝜌 ≥ 0.462/(1 + 𝜀)2 for the ℓ2 metric, which also implies some

limitations of our approach.

Remark 3. It is known that the algorithm for similarity join can

be used to answer the ANN query. Let 𝑃 be a set of points in R𝑑 ,
where 𝑑 is a large number, and 𝜀, 𝑟 be parameters. The ANN query

asks that (1) if there exists a point within distance 𝑟 from 𝑞, any

one of them should be returned with high probability; (2) if there is

no point within distance (1 + 𝜀)𝑟 from 𝑞, it returns “no”with high

probability. For any instance of ANN query, we can construct an

instance of similarity join by setting 𝐴 = 𝑃 and 𝐵 = ∅. Whenever a

query point 𝑞 is issued for ANN problem, we insert 𝑞 into 𝐵, invoke

the enumeration query until the first result is returned (if there is

any), and then remove 𝑞 from 𝐵. Our index of𝑂 (𝑑𝑛+𝑛1+𝜌 ) size can
answer (1 + 2𝜀)-approximate ANN query in 𝑂 (𝑑𝑛𝜌 ) time, which is

not worse from the best index for answering 𝜀-approximate ANN

query.
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