
6

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity

Separation

XIAO HU, University of Waterloo, Waterloo, Canada

YUFEI TAO, Chinese University of Hong Kong, Hong Kong, China

We study equi-join computation in the massively parallel computation (MPC) model. Currently, a main open

question under this topic is whether it is possible to design an algorithm that can process any join with

load O (N polylogN /p1/ρ∗) — measured in the number of words communicated per machine — where N is

the total number of tuples in the input relations, ρ∗ is the join’s fractional edge covering number, and p is

the number of machines. We settle the question in the negative for the class of tuple-based algorithms (all

the known MPC join algorithms fall in this class) by proving the existence of a join query with ρ∗ = 2 that

requires a load of Ω(N /p1/3) to evaluate. Our lower bound provides solid evidence that the “AGM bound”

alone is not sufficient for characterizing the hardness of join evaluation in MPC (a phenomenon that does

not exist in RAM). The hard join instance identified in our argument is cyclic, which leaves the question of

whetherO (N polylogN /p1/ρ∗) is still possible for acyclic joins. We answer this question in the affirmative by

showing that any acyclic join can be evaluated with loadO (N /p1/ρ∗), which is asymptotically optimal (there

are no polylogarithmic factors in our bound). The separation between cyclic and acyclic joins is yet another

phenomenon that is absent in RAM. Our algorithm owes to the discovery of a new mathematical structure

— we call “canonical edge cover” — of acyclic hypergraphs, which has numerous non-trivial properties and

makes an elegant addition to database theory.

CCS Concepts: • Theory of computation→Massively parallel algorithms; • Information systems→
Join algorithms;

Additional Key Words and Phrases: Joins, conjunctive queries, massively parallel computation, I/O-efficient,

lower bounds

ACM Reference format:

Xiao Hu and Yufei Tao. 2024. Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation. J. ACM 71,

1, Article 6 (February 2024), 44 pages.

https://doi.org/10.1145/3633512

1 INTRODUCTION

Join evaluation is an important problem at the core of database theory. The past decade has wit-
nessed significant progress towards understanding the problem’s complexity in the random ac-

cess machine (RAM) model. For a join involving a constant number of attributes, Atserials, Grohe,

Preliminary versions of this article appeared in PODS’21 [11] and ICDT’22 [31]. This work was supported in part by GRF

projects 14207820, 14203421, and 14222822 from HKRGC.

Authors’ addresses: X. Hu, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada; Y. Tao, Chinese

University of Hong Kong, Shatin, New Territories, Hong Kong, China.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0004-5411/2024/02-ART6 $15.00

https://doi.org/10.1145/3633512

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

https://orcid.org/0000-0002-7890-665X
https://orcid.org/0000-0003-3883-5452
https://doi.org/10.1145/3633512
mailto:permissions@acm.org
https://doi.org/10.1145/3633512
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3633512&domain=pdf&date_stamp=2024-02-11

6:2 X. Hu and Y. Tao

and Marx proved in their seminal work [6] that the join result can include only O (N ρ∗) tuples,
where N is the number of tuples in the input relations, and ρ∗ is the join’s fractional edge cov-
ering number.1 The bound—commonly known as the AGM bound— is tight in the sense that a
join can indeed return Ω(N ρ∗) tuples in the worst case. An algorithm, therefore, is worst-case opti-

mal if it can process any join in O (N ρ∗) time. Many algorithms whose running time matches this

bound—sometimes up to an Õ (1) factor, where Õ (.) hides a polylogN term—have been discovered
[5, 18, 21–25, 33].

In big-data analysis, the input relations may not fit in one machine’s memory, and therefore,
joins are often processed with multiple machines on a massively parallel system like MapReduce
[9], Spark [35], Hive [32], Dremmel [20], and the like. CPU calculation is no longer the perfor-
mance bottleneck in those environments. The new bottleneck, instead, is network communication,
because of which the design of “massive join” algorithms has focused on the massively parallel

computation (MPC) [8] model (to be formally defined in Section 1.1). Unraveling the worst-case
complexity of join evaluation in MPC, however, has turned out to be an intriguing challenge. On
the one hand, the AGM bound implies [19] a lower bound of Ω(N /p1/ρ∗) on the cost of any MPC
algorithm—measured in the number of words communicated per machine—where p is the number
of machines. On the other hand, despite significant efforts [2, 3, 8, 13, 14, 16, 17, 19, 27, 30], no
known algorithms have been able to match this bound.

In this article, we will disprove the possibility of any MPC algorithm that can ensure cost

Õ (N /p1/ρ∗) for arbitrary joins. We will establish a new, higher, lower bound, thereby revealing
the somewhat surprising fact that the join problem (unlike in RAM) cannot be characterized by
the AGM bound alone in MPC. Furthermore, we will contrast the lower bound by developing an
optimal algorithm with cost O (N /p1/ρ∗) for “acyclic joins”, which form a class of joins with pro-
found importance in database systems [1, 8, 13, 15, 34]. The separation between acyclic and cyclic
joins is another characteristic of the join problem that does not exist in RAM.

1.1 Problem Definitions and Complexity Parameters

Natural Joins. Let att be a set where each element is called an attribute, and dom be another set
where each element is called a value. The concrete choice of dom is unimportant, although each
value in dom should occupy only a constant number of words. We assume a total order on dom

(if necessary, manually impose one by ordering the values arbitrarily). A tuple over a setU ⊆ att is
a function u : U → dom. For each attribute X ∈ U , we refer to u (X) as the value of u on X . Given
a subset U ′ ⊆ U , define u[U ′] as the tuple u ′ over U ′ such that u ′(X) = u (X) for every X ∈ U ′. A
relation is a setR of tuples over the same setU of attributes; we callU the scheme ofR, a fact denoted
as scheme(R) = U . Given a subset U ⊆ scheme(R), the projection of R on U — denoted as πU (R) —
is a relation with schemeU defined as πU (R) = {tuple u over U | ∃ tuplev ∈ R s.t. u[U] = v[U]}.

We represent a join query (henceforth, simply a join or query) as a set Q of relations. Define
attset (Q) =

⋃
R∈Q scheme(R). The query result is the following relation over attset (Q) :

Join(Q) =
{
tuple u over attset (Q) | ∀R ∈ Q, u[scheme(R)] ∈ R}

. (1)

We refer to |Join(Q) | as the output size of Q . If the relations in Q are R1,R2, . . . ,R |Q | , we may also
represent Join(Q) as R1 �� R2 �� · · · �� R |Q | .

The query Q can be characterized by a schema graph G = (V ,E), which is a hypergraph where
each vertex in V is a distinct attribute in attset (Q), and each edge in E is the scheme of a distinct

1A formal definition of ρ∗ will appear in Section 1.1. For our discussion here, it suffices to understand ρ∗ as a value at

least 1.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:3

Fig. 1. An edge tree example.

relation inQ . The set E may contain identical edges because two (or more) relations inQ can have
the same scheme. The term “hyper” suggests that an edge can have more than two attributes.

A queryQ is acyclic if its schema graph is acyclic. Specifically, a hypergraphG = (V ,E) is acyclic
if we can create a tree T where

— every node in T stores—hence, “corresponds to”—a distinct edge in E;
— (the connectedness requirement) for every attributeX ∈ V , the set of nodes whose correspond-

ing edges contain X forms a connected subtree in T .

We will call T an edge tree of G. We say that Q is cyclic if it does not satisfy the above conditions.

Example 1.1. Consider the hypergraphG = (V ,E) whereV = {A, B, . . . , O} and E = {ABC, BD, BO,
EFG, BCE, CEF, CEJ, HI, LM, EHJ, KL, HK, HN}. Figure 1 shows an edge tree T of G (which is therefore
acyclic). To understand the connectedness requirement, observe the connected subtree formed by
the five edges involving E.

We use
N =

∑
R∈Q
|R | (2)

to denote the input size of Q , namely, the total number of tuples in the relations participating in
the join. Our discussion focuses on data complexities, that is, we are interested in the influence of
N on the algorithm performance. For that reason, we assume that the schema graph G of Q has
O (1) vertices, i.e., |attset (Q) | = O (1).

Computation Model. The MPC (massively parallel computation) model [8] has been widely
deployed to design parallel algorithms on large-scaled data [2, 3, 8, 13, 14, 16, 17, 19, 27, 29, 30].
In this model, we have p share-nothing machines that are interconnected in a network. In the
beginning, each machine storesO (N /p) tuples from the relations of a queryQ . An algorithm starts
by having each machine perform some initial computation on its local data and then executes in
rounds, each having two phases:

— in the first phase, the machines exchange messages (every message should have been pre-
pared either in the initial computation or the second phase of the previous round);

— in the second phase, each machine performs local computation.

An algorithm is required to finish in a constant number of rounds, and when it does, every tuple
in Join(Q) is required to have been produced on at least one machine. The load of a round is
the largest number of words received by a machine in that round. The load of an algorithm is
the maximum load of all the rounds. We consider p < N 1−ϵ , where ϵ > 0 can be an arbitrarily
small constant; this is a standard assumption behind all the previous work on MPC. With load N ,
any problem can be solved trivially in one round by simply sending all data to one machine. The

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:4 X. Hu and Y. Tao

crux of designing a load-efficient MPC algorithm is to limit the “intermediate results” that need to
be transmitted across machines.

We will confine our attention to the class of tuple-based algorithms, which treat tuples in the
relations ofQ as “atoms” that must always be transmitted in their entirety. Atoms are allowed to be
copied, but each copy must again be sent in its entirety. To report a result tuple u ∈ Join(Q), a ma-
chine must have received all the atom tuplesu[scheme(R)] for every R ∈ Q . While the tuple-based
class of algorithms does not encompass all possible approaches, it does include the existing MPC
join algorithms that we are aware of, which will be discussed in Section 1.2. Therefore, analyzing
the optimal communication complexity achievable by this class can provide valuable insights into
the problem’s characteristics.

Results are reported by invoking a special zero-cost function emit (.). In particular, the machine,
which has received all the necessary atom tuples for a result tuple u ∈ Join(Q), outputs u by em-
ploying emit (u), with the stipulation thatu can be output only once (across all machines) through-
out the algorithm’s execution. This reporting “style” reflects how join results are usually consumed
in database systems: they could be (i) transmitted to a remote server via the network, (ii) written
to a certain type of persistent storage, or (iii) directly supplied to a downstream process, such as an
aggregate function like counting or a user-defined utility function. From the MPC model’s perspec-
tive, incorporating the emit (.) function effectively absolves the algorithm from the responsibility
of storing the tuples of the join result. Generally, the size of Join(Q) could be polynomial in N (and
exponential in |Q |, which is regarded as a constant in this article), making |Join(Q) |/p potentially
much larger than a machine’s memory capacity. In contrast, an MPC algorithm should utilize far
less than N memory on each machine: ideally, the memory usage on each machine should be at
the same order as the algorithm’s load.

Our lower bounds are combinatorial in nature. We count only how many atom tuples must be
communicated in order to emit all the tuples in the join result, while any other information can
be communicated for free.

Fractional Edge Coverings and Packings. Consider a query Q — which may or may not be acyclic
— with schema graph G = (V ,E). Let W be a function that associates every edge e ∈ E with a
real-valued weightW (e) between 0 and 1. The function is called a fractional edge covering of G if∑

e ∈E :X ∈e
W (e) ≥ 1

holds for every attribute X ∈ V , namely, the total weight of all the edges covering X is at least 1.
Similarly,W is a called a fractional edge packing of G if∑

e ∈E :X ∈e
W (e) ≤ 1

holds for every attribute X ∈ V , namely, the total weight of all the edges covering X is at most 1.
In any case, we refer to

∑
e ∈E W (e) as the total weight ofW .

The fractional edge covering number of G (also of Q) — denoted as ρ∗ — is the minimum total
weight of all possible fractional edge coverings of G. The fractional edge packing number of G
(also of Q)—denoted as τ ∗ —is the maximum total weight of all possible fractional edge packings
of G. A fractional edge covering (respectively, packing) is optimal if its total weight equals ρ∗

(respectively, τ ∗).

1.2 Previous Results

AGM Bound and Join Algorithms in RAM. Consider an arbitrary join queryQ whose schema graph
G = (V ,E) admits a fractional edge coveringW . For each edge e ∈ E, let Re be the (only) relation

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:5

inQ whose scheme corresponds to e . The AGM bound [6] states that Join(Q) can contain no more

than
∏

e ∈E |Re |W (e) tuples. Applying the trivial fact |Re | ≤ N (where N is the input size of Q) and
supplying an optimal fractional edge covering W , we obtain |Join(Q) | ≤ N ρ∗ . This inequality is
asymptotically tight because, for any hypergraph G = (V ,E) where V has a constant size, there
exists a join query Q with schema graph G whose Join(Q) has Ω(N ρ∗) tuples [6].

An algorithm able to answer Q using O (N ρ∗) time in the RAM model is considered worst-case
optimal because when |Join(Q) | = Ω(N ρ∗), we need Θ(N ρ∗) time even just to output Join(Q). Ngo
et al. [23] designed the first algorithm that guarantees a running time of O (N ρ∗) for all queries.2

Since then, the community has discovered more algorithms [5, 18, 21–25, 33] that are all worst-

case optimal (sometimes up to an Õ (1) factor) but differ in their own features. When Q is acyclic,
optimal efficiency can be achieved using a simpler algorithm due to Yannakakis [34].

Join Algorithms in MPC (and the Quest for Load Õ (N/p1/ρ∗)). Via a reduction from the set-
disjointness problem in communication complexity, Hu et al. [14] showed that Ω(N /p) is a lower
bound on the load of join evaluation in MPC.3 Separately, Koutris et al. [19] observed that, the
AGM bound implies another lower bound of Ω(N /p1/ρ∗) on the load. To understand why, suppose
that each machine sees at most L atom tuples (i.e., tuples in the input relations of Q) during the
entire algorithm. By the AGM bound, the machine can produce at most Lρ∗ tuples in the join result.
Thus, when |Join(Q) | = Ω(N ρ∗), we must have p · Lρ∗ = Ω(N ρ∗), which yields L = Ω(N /p1/ρ∗).
For ρ∗ > 1 (the case of ρ∗ = 1 has been captured by the lower bound of [14]), N /p1/ρ∗ � N /p
such that at least Ω(N /p1/ρ∗) of the tuples seen by a machine need to come from other machines,
suggesting that the algorithm’s load must be Ω(N /p1/ρ∗).

The above negative results have motivated considerable research looking for MPC algorithms

whose loads are bounded by Õ (N /p1/ρ∗); such algorithms are worst-case optimal up to an Õ (1)
factor. The goal has been realized only on four query classes. The first consists of all the Cartesian-
product joins where the relations in Q have disjoint schemes; see [3], [7], and [17] for several
optimal algorithms on such queries. The second is the so-called Loomis-Whitney join, where E
consists of all the |V | possible edges of |V | − 1 attributes; see [19] for an optimal algorithm for
such queries. The third class includes every join where each relation has at most two attributes;
see [16], [17], [27], and [30] for optimal algorithms for these queries. The fourth class comprises
all the so-called r-hierarchical joins, which constitute a subset of the acyclic queries considered in
this article; see [13] for an optimal r-hierarchical algorithm.

We refer the reader to (i) [7] and [19] for join algorithms that perform only a single round, and
(ii) [2], [13], and [14] for algorithms whose loads are sensitive to the join size |Join(Q) | and hence
can be even lower than Ω(N /p1/ρ∗) when the join result is small.

1.3 Contributions

New Results. Our first result eliminates the possibility of answering an arbitrary join query with

load Õ (N /p1/ρ∗) in the MPC model. Specifically, we prove (in Theorem 1) the existence of a cyclic
query Q with fractional edge covering number ρ∗ = 2 and fractional edge packing number τ ∗ = 3,
such that any algorithm solving the query must incur a load of Ω(N /p1/3) when p = O (N 1/3). This
offers solid evidence that, unlike in RAM, the AGM bound alone is insufficient to characterize the
performance of join queries in MPC.

2The algorithm proposed in [23] achieves this time complexity by using a preprocessing step that creates perfect-hashing

data structures on the input relations. This step takes O (N) expected time. Without preprocessing, the algorithm has an

expected time complexity of O (N ρ∗) or a worst-case time complexity of O (N ρ∗ log N).
3The lower bound of [14] holds even on algorithms that are not tuple-based.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:6 X. Hu and Y. Tao

Fig. 2. The schema graph of boat joins.

Given this new finding, a natural question is whether cyclicity is the “culprit” for the above,
somewhat bizarre, MPC characteristic. We answer the question in the affirmative. Specifically, we
prove (in Theorem 15) that every acyclic query can be evaluated with load O (N /p1/ρ∗) in MPC,
which is asymptotically optimal (note that the load complexity does not hide any polylogarithmic
factors). This officially separates the class of acyclic queries from the class of cyclic queries in
MPC (recall that no such separation exists in RAM). Our algorithm uses O (N /p1/ρ∗) memory on
every machine.

Our Techniques. The cyclic query behind our lower bound has a schema graph illustrated in
Figure 2 (every letter is a vertex and every ellipse is an edge). A join having this schema graph—
which we will refer to as a boat join —has five relations with schemes ABC, DEF, AD, BE, and CF,
respectively (the reader should take a moment to verify its fractional edge covering number 2 and
fractional edge packing number 3). The crux of our proof is to construct a boat joinQ with a special
property: for L = Ω(N 5/6), any L “atom tuples” from the input relations can produceO (L3/N) tuples
in the join result. To contrast this property with the AGM bound, we note that any L atom tuples
can produce at most L2 result tuples under the AGM bound. Because L3/N = o(L2) for L = o(N),
each machine, if permitted to see only L atom tuples, can actually produce fewer result tuples than
predicted by the AGM bound. This is the rationale behind our stronger lower bound.

Our construction has a deeper implication. The hard join query Q described earlier produces
Θ(N 2) join tuples, asymptotically the largest possible size asserted by the AGM bound. However,
unlike in RAM where (for proving lower bounds) it suffices to look at the size of the global join
result, our techniques suggest that in MPC it is imperative to look at the maximum size of local
joins — namely, how many result tuples can be produced by L � N tuples only. The AGM bound
can be very loose in bounding the local join sizes, which is the core reason why it does not (fully)
characterize the join performance in MPC.

To develop our optimal MPC algorithm for acyclic queries, we present a theory of acyclic hyper-
graphs revolving around a new concept “canonical edge cover”. To pave the way for the concept,
we first prove that any acyclic hypergraph G = (V ,E) admits an integral optimal fractional edge
coveringW , namely,W assigns every edge in E an integer weight: either 0 or 1. This fact allows
us to connect W to edge “covers”: a subset S ⊆ E is an edge cover4 of G if every attribute of V
appears in at least one edge of S . Thus, the fractional edge covering number ρ∗ of G is simply the
minimum size of all edge covers, namely, the smallest number of edges that we must pick to cover
all the attributes.

A hypergraph G can have multiple optimal edge covers (all with size ρ∗), among which we
identify one as “canonical”. In Figure 1, the nine circled nodes constitute a canonical edge cover F
ofG. Let us give an informal explanation on the derivation of F . After rooting the tree in Figure 1
at HN, we add to F all the leaf nodes: BO, ABC, BD, EFG, HI, and LM. Next, we process the non-leaf
nodes bottom up. At BCE, we ask: which attributes will disappear as we ascend further in the tree?
The answer is B, which is thus a “disappearing” attribute of BCE. Then, we ask: does F already

4In case the reader is wondering, the literature uses the words “covering” and “cover” exactly the way they are used in our

article.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:7

cover B? The answer is yes, due to the existence of BO; we therefore do not include BCE in F . We
continue to process CEF and CEJ similarly, but neither of them enters F . At EHJ, the disappearing
attributes are E and J. In general, as long as one disappearing attribute has not been covered by
F , we pick the node; this is why EHJ is in F . The other nodes HK and HN in F are chosen based
on the same reasoning.

We show that a canonical edge cover determined this way has appealing properties, which
eventually lead to a recursive strategy for evaluating any acyclic join optimally in MPC. At a high
level, our algorithm works by simplifying G into several “residual” hypergraphs, each of which
defines a sub-query to be computed recursively. Apart from some trivial modifications (such as
removing the attributes and edges that have become irrelevant), a canonical edge cover ofG remains
canonical on every residual hypergraph. We utilize this crucial property to relate the load of the
original query to the loads of the sub-queries, which yields an unusual recurrence whose solution
proves an overall load of O (N /p1/ρ∗). Canonical edge cover is, we believe, an elegant addition
to database theory and finds further applications. In fact, by adapting our MPC algorithm to the
external memory model [4], we can obtain an I/O-efficient algorithm for evaluating any acyclic

join in O (N ρ∗

M ρ∗−1B
logM/B

N
B

) I/Os, which improves several existing algorithms [12, 19, 26].

Remark. Gottlob et al. [10] proved that detecting whether an acyclic query has an empty result
is LOGCFL-complete, even if the number of relations in the query is not constant. Their result
has important implications, such as the ability to solve the problem in a polylogarithmic number
of steps on an EREW PRAM with a polynomial number of processors. However, our work on
parallel evaluation of acyclic queries focuses on minimizing cross-machine communication, which
is different from the goal of [10] to reduce concurrent computation steps. Thus, our findings are
not directly comparable to theirs.

2 A LOWER BOUND FOR BOAT JOINS

In this section, we will focus on boat joins, which have the schema graph in Figure 2. Our main
result is:

Theorem 1. For any sufficiently large integers of n and p satisfying p ≤ c · n1/3, where c > 0 is a
fixed constant, there is a boat join Q with input size N = Θ(n) (see (2) for the definition of input size)
such that any tuple-based MPC algorithm computing Join(Q) must incur a load of Ω(N /p1/3) when
the number of machines is p.

Recall that a boat join has fractional edge covering number ρ∗ = 2 and fractional edge packing
number τ ∗ = 3. Hence, the theorem indicates that the join’s load can exceedO (N /p1/ρ∗) and reach

Ω(N /p1/τ ∗). The theorem is tight up to an Õ (1) factor because there are algorithms [19, 27] able

to evaluate any boat join with load Õ (N /p1/3).
Given a join Q , (as before) we use the term, atom tuple, to refer to a tuple in the input relations

of Q . The core of our argument is to prove:

Lemma 2. For any sufficiently large integers of n and L satisfying L ≥ c ′ · n5/6, where c ′ > 0 is a
fixed constant, there is a boat join Q with input size N = Θ(n) such that |Join(Q) | = Θ(n2) and any
L atom tuples can produce O (L3/n) result tuples in Join(Q).

Theorem 1 is in fact a corollary of Lemma 2 and the standard counting argument reviewed in
Section 1.2. Consider the boat join Q given in the lemma. Let L be the maximum number of atom
tuples that a machine sees during the entire evaluation of Q . As Join(Q) has Θ(n2) tuples, we
know L = Ω(n/p1/ρ∗) = Ω(n/

√
p) from the argument of [19] (see Section 1.2). To prove Theorem 1,

we consider p ≤ c · n1/3 for a sufficiently large constant c > 0 to satisfy the requirement L2 =

Ω(n2/p) ≥ c ′ · n5/3, where c ′ is the constant stated in Lemma 2. The lemma then tells us that each

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:8 X. Hu and Y. Tao

machine can generate O (L3/n) result tuples. To produce all the Θ(n2) tuples in Join(Q), we need
p ·O (L3/n) = Θ(n2), which gives L = Ω(n/p1/3) = Ω(N /p1/3).

The rest of the section serves as a proof of Lemma 2. Given an integer k ≥ 1, we denote by [k]
the set of integers {1, 2, . . . ,k }. Fix integers n and L satisfying the condition L2 ≥ c ′ · n5/3, where
the constant c ′ will be chosen later in the proof. We consider, w.l.o.g., that n1/3 is an integer. A boat
join, as shown in Figure 2, has attributes A, B, . . . , and F. We design their domains to be

dom(A) = dom(B) = dom(C) = [n1/3]

dom(D) = dom(E) = dom(F) = [n2/3].

Recall that a boat join has five relations: RABC,RDEF,RAD,RBE, and RCF. Henceforth, for each edge
e ∈ {ABC, DEF, AD, BE, CF} in the schema graph, we use Re to denote the relation with scheme e .
Furthermore, for any {X1, . . . ,Xk } ⊆ {A, B, . . . , E} where k ≥ 2, we use dom(X1) × · · · × dom(Xk)
to denote the “Cartesian product” relation that contains

∏k
i=1 |dom(Xi) | tuples such that, for any

(x1, . . . ,xk) ∈ dom(X1)×· · ·×dom(Xk), the relation has a tupleu withu (Xi) = xi for everyk ∈ [i].
We will construct a set — denoted as Qboat — of boat joins. All those joins have precisely the

same RABC,RAD,RBE, and RCF, but differ in RDEF. Specifically, RABC = dom(A) × dom(B) × dom(C),
RAD = dom(A) × dom(D), RBE = dom(B) × dom(E), and RCF = dom(C) × dom(F). Note that these
four relations have exactly n tuples each. It remains to clarify RDEF (the relation that distinguishes
different boat joins). In every boat joinQ ∈ Qboat, the relation RDEF ∈ Q is a subset of the Cartesian-

product relation dom(D) × dom(E) × dom(F). The number of possible subsets is 2n2
, which is

exactly the number of boat joins in Qboat, each using a distinct subset as its RDEF. For every join
Q ∈ Qboat, the result Join(Q) is always RABC × RDEF.

We will show that at least one of the joins in Qboat possesses the properties in Lemma 2. Our
proof will proceed in two steps. First, we will reveal an intrinsic property of the boat joins inQboat

regarding how to select a designated number of tuples to maximize the number of result tuples.
The second step will then utilize the property to find a hard boat join to establish Lemma 2.

2.1 Maximizing the Size of a Local Join

This subsection will concentrate on an arbitrary boat joinQ ∈ Qboat and, therefore, every mention
of “RDEF” refers to the relation RDEF in Q (remember RDEF can be any subset of dom(D) × dom(E) ×
dom(F)). We now define a combinatorial optimization problem crucial to our analysis:

Local-Join Maximiztion. Given a boat join Q ∈ Qboat and an arbitrary integer L ≥ 1,
choose R′e ⊆ Re for each e ∈ {ABC, AD, BE, CF} to maximize the output size of the local join
{R′ABC,R′AD,R′BE,R′CF,RDEF} subject to the constraint that each of the relations R′ABC,R

′
AD,R

′
BE,

and R′CF contains at most L tuples. We will represent the above problem as LJM(L).

Note that the size-L constraint concerns only the edges ABC, AD, BE, and CF, while the entire RDEF

participates in the local join. Define

OPT(Q,L) = the maximum output size of all possible local joins in LJM(L). (3)

Solving the LJM problem exactly is challenging. However, as will become evident in Section 2.2,
it suffices to find a way to approximate OPT(Q,L) within a constant factor. For that purpose, we
can restrict our attention to R′ABC,R

′
AD,R

′
BE, and R′CF that conform to a special form. In general, a

relation R with scheme {X1,X2, . . . ,Xk } (for some k ≥ 1) is said to be in the Cartesian-product
form (CP-form) if R = πX1 (R) × πX2 (R) × · · · × πXk

(R), namely, R is the Cartesian product of its
projections on the k attributes. We now define a variant of the LJM problem:

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:9

Local-Join Maximization with Cartesian Products. Given a boat join Q ∈ Qboat and an
arbitrary integer L ≥ 1, choose R′e ⊆ Re for each e ∈ {ABC, AD, BE, CF} to maximize the
output size of the local join {R′ABC,R′AD,R′BE,R′CF,RDEF} subject to the constraint that each of
the relations R′ABC,R

′
AD,R

′
BE, and R′CF (i) contains at most L tuples, and (ii) is in the CP-form.

We will represent the above problem as LJM-CP(L).

Define

OPTCP (Q,L) = the maximum output size of all possible local joins in LJM-CP(L). (4)

The lemma below, whose proof is deferred to Section 2.3, gives a crucial relationship between
the functions in Equations (3) and (4).

Lemma 3. For any boat join Q ∈ Qboat, OPTCP (Q, 8L) ≥ 1
128 · OPT(Q,L).

2.2 Identifying a Hard Boat Join

In this subsection, we will prove the existence of a boat join Q ∈ Qboat such that

—Q has an input size Θ(n),
— |Join(Q) | = Θ(n2), and
— OPTCP (Q, 8L) = O (L3/n),

as long as n is sufficiently large and L ≥ c ′ · n5/6 for some constant c ′ to be chosen later. It follows
from Lemma 3 that OPT(Q,L) = O (L3/n). By definition of LJM(L) and the meaning of OPT(Q,L)
(see Equation (3)), any L atom tuples of Q can produce O (L3/n) result tuples. This will then com-
plete the proof of Lemma 2.

Recall that all the boat joins inQboat differ only in theirRDEF, which can be any subset of dom(D)×
dom(E) × dom(F). Next, we impose a distribution over Qboat. For this purpose, create RDEF by
including each tuple of dom(D) × dom(E) × dom(F) independently with probability 1/n. The
expected size of RDEF is (n2/3)3 · 1

n
= n. Accordingly, the boat join Q thus obtained—which is

now a random variable—has an expected input size of 5n and an expected output size of n2 (recall
that Join(Q) = RABC × RDEF). Our goal is to prove that, with a positive probability, Q satisfies two
conditions simultaneously:

— C2.2-1: RDEF has at most 2n tuples;
— C2.2-2: OPTCP (Q, 8L) ≤ 2 · (8L)3/n.

The positive probability assures us that a boat join Q fulfilling the two conditions definitely exists.
Condition C.2.2-1 implies that Q has an input size Θ(n) and an output size Θ(n2). It thus follows
that Q has all the properties promised at the beginning of this subsection.

The satisfaction probability of C.2.2-1 is easy to analyze: as each tuple in dom(A) × dom(B) ×
dom(C) belongs to RREF independently with probability 1/n, a simple application of Chernoff
bound (42) in Appendix A (supplying γ = 1) shows that the probability for |RDEF | to be over twice
its expectation E[|RDEF |] = n is at most exp(−Ω(E[|RDEF |])) = exp(−Ω(n)), which is less than 1/4
for sufficiently large n. The following discussion will focus on Condition C.2.2-2.

We refer to {R′ABC,R′AD,R′BE,R′CF} as a legal CP-form selection if, for each e ∈ {ABC, AD, BE, CF}, the
relation R′e (i) is a subset of Re , and (ii) is in the CP-form, and (iii) contains at most 8L tuples. The
next lemma offers a bound on the number of such selections.

Lemma 4. The number of legal CP-form selections cannot exceed 2O (n2/3) , regardless the value of L.

Proof. R′AD, which is in the CP-form, equals πA (R′AD) × πD (R′AD). There are 2n1/3
ways to choose

πA (R′AD) and 2n2/3
ways to choose πD (R′AD), because they are subsets of dom(A) and dom(D), re-

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:10 X. Hu and Y. Tao

spectively. Hence, the number of possible choices for R′AD cannot exceed 2n1/3+n2/3
= 2O (n2/3) . The

same bound also applies to R′BE and R′CF. Regarding R′ABC, the number of choices is 2O (n1/3) because

dom(A), dom(B), and dom(C) all have a size of n1/3. Therefore, the number of legal CP-form

selections is at most (2O (n2/3))3 · 2O (n1/3) = 2O (n2/3) . �

In the LJM-CP(8L) problem defined by a boat joinQ , each local join is formed by a legal CP-form
selection and together with the relation RDEF ∈ Q . The value OPTCP (Q, 8L) is the maximum size of
all those local joins. We thus have:

Pr[OPTCP (Q, 8L) > 2 · (8L)3/n]

(note: the probability is over the distribution of Q)

= Pr[∃ one legal CP-form selection {R′ABC,R′AD,R′BE,R′CF} s.t. |Join({R′ABC,R′AD,R′BE,R′CF,RDEF}) | > 2 · (8L)3/n]

(note: the probability is over the distribution of RDEF)

≤
∑

legal CP-form selection {R′ABC,R
′
AD,R

′
BE,R

′
CF }

Pr[|Join({R′ABC,R′AD,R′BE,R′CF,RDEF}) | > 2 · (8L)3/n] (5)

(note: the probability is over the distribution of RDEF).

The lemma below bounds the probability in (5).

Lemma 5. Pr[|Join({R′ABC,R′AD,R′BE,R′CF,RDEF}) | > 2 · (8L)3/n] ≤ exp(−Ω(L2

n
)), for any legal CP-

form selection {R′ABC,R′AD, R′BE,R′CF}.

Proof. Let us examine the result of R′ABC �� R
′
AD �� R

′
BE �� R

′
CF first. As R′ABC,R

′
AD,R

′
BE, and R′CF

are all in the CP-form, every tuple u ∈ πD (R′AD) × πE (R′BE) × πF (R′CF) corresponds to exactly the
same number — which we denote as λ — of tuples v ∈ R′ABC �� R

′
AD �� R

′
BE �� R

′
CF, where the term

“corresponds to” means u = v[DEF]. To see this, consider another tuple u ′ ∈ πD (R′AD) × πE (R′BE) ×
πF (R′CF). Construct a tuple v ′ such that v ′[ABC] = v[ABC] and v ′[DEF] = u ′. It is rudimentary to
verify thatv ′ must be a result tuple of R′ABC �� R

′
AD �� R

′
BE �� R

′
CF.

Next, we give two crucial inequalities on λ. For this purpose, fix any tupleu ∈ πD (R′AD)×πE (R′BE)×
πF (R′CF), and consider the tuplesv ∈ R′ABC �� R′AD �� R′BE �� R′CF that u corresponds to.

— As any suchv must satisfyv (A) ∈ πA (R′ABC),v (B) ∈ πB (R′ABC), andv (C) ∈ πC (R′ABC), we have:

λ ≤ |πA (R′ABC) | |πB (R′ABC) | |πC (R′ABC) | = |R′ABC | ≤ 8L. (6)

— As such a tuplev must satisfyv (A) ∈ πA (R′AB),v (B) ∈ πB (R′BD), andv (C) ∈ πC (R′CE), the value
λ cannot exceed |πA (R′AD) | |πB (R′BE) | |πC (R′CF) |. Equiped with this fact, we obtain:

λ · |πD (R′AD) × πE (R′BE) × πF (R′CF) | = λ · |πD (R′AD) | |πE (R′BE) | |πF (R′CF) |
≤ |πA (R′AD) | |πB (R′BE) | |πC (R′CF) | |πD (R′AD) | |πE (R′BE) | |πF (R′CF) |
= |R′AD | |R′BE | |R′CF | ≤ (8L)3. (7)

Now, generate RDEF (by including each tuple of dom(D) × dom(E) × dom(F) with proba-
bility 1/n independently) and consider the local join {R′ABC,R′AD,R′BE,R′CF,RDEF}. For each tuple
u ∈ πD (R′AD) × πE (R′BE) × πF (R′CF), if u appears in RDEF, then u corresponds to exactly λ tuples
in Join({R′ABC,R′AD,R′BE,R′CF, RDEF}); otherwise, it corresponds to none. Therefore:

|Join({R′ABC,R′AD,R′BE,R′CF,RDEF}) | =
∑

u ∈πD (R′AD)×πE (R′BE)×πF (R′CF)

λ · 1u ∈RDEF = λ · s, (8)

where

s =
∑

u ∈πD (R′AD)×πE (R′BE)×πF (R′CF)

1u ∈RDEF

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:11

and 1u ∈RDEF is an indicator random variable that equals 1 if u ∈ RDEF or 0, otherwise. All such
indictor variables are mutually independent and Pr[1u ∈RDEF = 1] = 1/n for every u. Thus, E[s] =
|πD (R′AD) × πE (R′BE) × πF (R′CF) |/n, which, together with (7), yields λ · E[s] ≤ (8L)3/n.

From here, we will proceed differently depending on how large E[s] is. Consider first the case
where E[s] ≥ (8L)2/n. Applying Chernoff bound (42) with γ = 1, we know that the probabil-
ity for s to exceed 2 · E[s] is at most exp(−Ω(E[s])) = exp(−Ω(L2/n)). It thus follows from
(8) that Pr[|Join({R′ABC,R′AD,R′BE,R′CF,RDEF}) | > 2 · λ · E[s]] is at most exp(−Ω(L2/n)), and hence,

Pr[|Join({R′ABC,R′AD,R′BE,R′CF,RDEF}) | > 2 · (8L)3/n] ≤ exp(−Ω(L2/n)).

It remains to discuss the case where E[s] < (8L)2/n. Set γ = 2·(8L)2/n
E[s] . Applying Chernoff bound

(43) with this γ , we know that the probability for s to exceed γ · E[s] = 2 · (8L)2/n is exp(−Ω(γ ·
E[s])) = exp(−Ω(L2/n)). It thus follows from (8) that Pr[|Join({R′ABC,R′AD,R′BE,R′CF,RDEF}) | >
λ · 2 · (8L)2/n] is at most exp(−Ω(L2/n)). Since λ ≤ 8L (see (6)), we conclude that
Pr[|Join({R′ABC,R′AD,R′BE,R′CF,RDEF}) | > 2 · (8L)3/n] ≤ exp(−Ω(L2/n)). �

We can now combine (5) with Lemmas 4 and 5 to derive:

Pr[OPTCP (Q, 8L) > (8L)3/n] ≤ 2O (n2/3) · exp(−Ω(L2/n)) = exp(O (n2/3) − Ω(L2/n)), (9)

which is at most 1/4 as long as

L2

n
> c0 · n2/3 ⇔ L >

√
c0 · n5/6

for some sufficiently large constant c0 > 0. We can now fix the constant c ′ in Lemma 2 to
√
c0.

In conclusion, we have shown that, with probability at least 1 − (1/4) − (1/4) = 1/2, a boat join
Q we generated at the beginning of the subsection satisfies both conditions C2.2-1 and C2.2-2.

2.3 Proof of Lemma 3

This subsection is devoted to proving Lemma 3. Recall that, in the context of this lemma, we
concentrate on one (arbitrarily) given boat joinQ ∈ Qboat (in other words, RDEF has been fixed). Let
R∗ABC,R

∗
AD,R

∗
BE, and R∗CF constitute an optimal solution to LJM(L), i.e., OPT(Q,L) equals the output

size of the local join {R∗ABC,R∗AD,R∗BE, R∗CF,RDEF}. We will construct R′ABC,R
′
AD,R

′
BE, and R′CF such that

— all of them are in the CP-form and have at most 8L tuples each;
— the join {R′ABC,R′AD,R′BE,R′CF,RDEF} has size at least 1

128 · OPT(Q,L).

This will then establish Lemma 3.
Our conversion starts by setting R′e = R∗e for each e ∈ {AD, BE, CF, ABC} and proceeds by

converting—in this order—R′AD,R′AD, R′BE, R′CF, and R′ABC to the CP-form incrementally. After turn-
ing each of R′AD, R′BE, R′CF into the CP-form, the output size of the join {R′ABC,R′AD,R′BE,R′CF,RDEF} can
decrease by a factor at most 4, while the size of R′e at most doubles for each e ∈ {ABC, AD, BE, CF}.
The last conversion (on R′ABC) can reduce the join output size by another factor of 2, but will not
increase the size of any relation further.

Conversion of R′
AD

. At this moment, R′e = R∗e for each e ∈ {ABC, AD, BE, CF} and, hence, |R′e | ≤ L.

We will produce two new relations R′′ABC and R′′AD such that

— R′′AD is in the CP-form (but R′′ABC may not);
— each of R′′ABC and R′′AD has at most 2L tuples;
— the output size of the join {R′′ABC,R′′AD,R′BE,R′CF,RDEF} is at least 1/4 of that of the join
{R′ABC,R′AD,R′BE,R′CF,RDEF}.

The conversion will then finish by replacing R′ABC and R′AD with R′′ABC and R′′AD.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:12 X. Hu and Y. Tao

Our strategy for generating R′′ABC and R′′AD involves three steps:

— First, obtain a “good” subset SBC ⊆ dom(B) × dom(C), and a “good” subset SD ⊆ dom(D).
The reader can regard SBC as a relation over {B, C} and SD as a relation over {D}.

— Second, choose a subset SA ⊆ dom(A), which can be regarded as a relation over {A}.
— Third, create R′′ABC = SA × SBC and R′′AD = SA × SD.

Given a value a ∈ A, we denote by {a} the special “singleton” relation that contains only one tuple
with value a on attribute A. Regardless of SBC, SD, and SA, it always holds that����Join

({R′′ABC,R′′AD,R′BE,R′CF,RDEF}
) ����

(namely, output size of the join {R′′ABC,R′′AD,R′BE,R′CF,RDEF})

=
∑
a∈SA

����Join
({{a} × SBC, {a} × SD,R′BE,R′CF,RDEF}

) ����
= |SA | ·

����Join
({{1} × SBC, {1} × SD,R′BE,R′CF,RDEF}

) ���� (10)

where the term “{1}” in (10) refers to the relation {a} with a = 1 ∈ dom(A). The equality in (10)
holds because, once SBC and SD are fixed, the output size of the join {{a}×SBC, {a}×SD,R′BE,R′CF,RDEF}
is identical for any a ∈ dom(A).

Motivated by (10), we consider the following refined variant of LJM:

Local-Join Maximization by Choosing BC and D. Fix an arbitrary integer t ≥ 1. Choose
SBC ⊆ dom(B) × dom(C) and SD ⊆ dom(D) to maximize the size of the local join {{1} ×
SBC, {1} × SD,R

′
BE,R

′
CF,RDEF} subject to the constraint |SBC | + |SD | ≤ t . We will represent

the above problem as LJM-choose-BC-D(t).

Define

Δ(t) = the maximum output size of all possible local joins in the problem LJM-choose-BC-D(t).
(11)

How to compute Δ(t) precisely is of no relevance to us; what matters, instead, is that Δ(t) exists
and is monotonically increasing. Define

t∗ = arg max

t ∈
[

2L

N 1/3 ,2L

] Δ(t)

t
. (12)

Note, importantly, that t∗ is selected from the range [2L
N 1/3 , 2L]. We are now ready to explain how

to generate SBC, SD, and SA for computing R′′ABC and R′′AD:

— Set SBC and SD as in an optimal solution to the LJM-choose-BC-D(t∗) problem, i.e., the join
{{1} × SBC, {1} × SD,R′BE,R′CF,RDEF} has size Δ(t∗);

— Set SA = {1, 2, . . . , �2L/t∗�}.
This ensures

|R′′ABC | + |R′′AD | = |SA | · (|SBC | + |SD |) ≤ �2L/t∗� · t∗ ≤ 2L.

Hence, each of R′′ABC and R′′AD has at most 2L tuples, as desired. Next, we prove that the join
{R′′ABC,R′′AD,R′BE,R′CF,RDEF} has a sufficiently large result.

Lemma 6. The output size of the join {R′′ABC,R′′AD,R′BE,R′CF,RDEF} is at least 1/4 of that of {R′ABC,
R′AD,R

′
BE,R

′
CF,RDEF}.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:13

Proof. For any a ∈ dom(A), denote by R′ABC (a) the set of tuples u ∈ R′ABC with u (A) = a, and
similarly by R′AD (a) the set of tuples u ∈ R′AD with u (A) = a. Define

ta = |R′ABC (a) | + |R′AD (a) |.
It holds that

∑
a∈dom(A) ta ≤ 2L (because R′ABC and R′AD have L tuples each). We say that a is domi-

nated if Δ(ta)/ta ≤ Δ(t∗)/t∗, or undominated otherwise; function Δ(.) and value t∗ are defined in
(11) and (12), respectively. Because t∗ is from the range [2L

N 1/3 , 2L], an undominated value a must

satisfy ta <
2L

N 1/3 .

For any a ∈ dom(A), πBC (R′ABC (a)) and πD (R′AD (a)) are permissible choices for SBC and SD, respec-
tively, under LJM-choose-BC-D(ta). Hence:��Join

({R′ABC (a),R′AD (a),R′BE,R
′
CF,RDEF}

) ��
= ��Join

({{1} × πBC (R′ABC (a)), {1} × πD (R′AD (a)),R′BE,R
′
CF,RDEF}

) ��
≤ Δ(ta).

Therefore:��Join
({R′ABC,R′AD,R′BE,R′CF,RDEF}

) �� = ∑
a∈dom(A)

��Join
({R′ABC (a),R′AD (a),R′BE,R

′
CF,RDEF}

) ��
≤

∑
a∈dom(A)

Δ(ta). (13)

Regarding the dominated values in dom(A), we have:∑
dominated a∈dom(A)

Δ(ta) =
∑

dominated a∈dom(A)

ta ·
Δ(ta)

ta
≤

∑
dominated a∈dom(A)

ta ·
Δ(t∗)

t∗

=
Δ(t∗)

t∗

∑
dominated a∈dom(A)

ta ≤
Δ(t∗)

t∗
· 2L. (14)

Regarding the undominated values in dom(A), we have:∑
undominated a∈dom(A)

Δ(ta) ≤
∑

undominated a∈dom(A)

Δ
(

2L

N 1/3

)

(as Δ(.) is monotonically increasing and ta < 2L/N 1/3)

≤ |dom(A) | · Δ
(

2L

N 1/3

)
= N 1/3 · Δ

(
2L

N 1/3

)

= 2L · Δ(2L/N 1/3)

2L/N 1/3
≤ Δ(t∗)

t∗
· 2L. (15)

It follows from (13), (14), and (15) that the output size of the join {R′ABC,R′AD,R′BE,R′CF,RDEF} is at most
Δ(t ∗)

t ∗ · 4L.
On the other hand, the size of SA selected by our strategy is �2L/t∗� ≥ L/t∗. By (10) and the

definition of t∗, the output size of the join {R′′ABC,R′′AD,R′BE,R′CF,RDEF} is at least Δ(t∗) · L/t∗. This
completes the proof of Lemma 6. �

Conversion of R′
BE

. At this moment, |R′e | ≤ 2L for each e ∈ {ABC, AD, BE, CF}. We aim to produce

two new relations R′′ABC and R′′BE such that (i) R′′BE is in the CP-form (but R′′ABC may not), (ii) each
of R′′ABC and R′′BE has at most 4L tuples, and (iii) the output size of the join {R′′ABC,R′AD,R′′BE,R′CF,RDEF}
is at least 1/4 of that of the join {R′ABC,R′AD,R′BE,R′CF,RDEF}. Due to symmetry, we can achieve the

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:14 X. Hu and Y. Tao

purpose by applying the same argument presented earlier for R′AD and changing L to 2L (it would
help to “rename” A to B and D to E in applying the argument and then restore the names afterwards).
The conversion then finishes by replacing R′ABC and R′BE with R′′ABC and R′′BE. Note that R′AD is not
affected by this conversion and hence remains in the CP-form.

Conversion of R′
CF

. This should have become straightforward from the previous two conversions.

R′AD and R′BE are not affected by this conversion and hence remain in the CP-form.

Conversion of R′
ABC

. At this moment, |R′e | ≤ 8L for each e ∈ {ABC, AD, BE, CF}. Furthermore, R′AD,

R′BE, and R′CF are already in the CP-form. We will produce a new relation R′′ABC such that

— R′′ABC is in the CP-form and has at most 8L tuples;
— the output size of the join {R′′ABC,R′AD,R′BE,R′CF,RDEF} is at least half of that of the join
{R′ABC,R′AD,R′BE,R′CF,RDEF}.

After setting R′ABC to R′′ABC, we will have obtained the join {R′ABC,R′AD,R′BE,R′CF,RDEF} needed to com-
plete the proof of Lemma 3; note that R′AD, R′BE, and R′CF are not affected by this conversion.

Given a tupleu ∈ dom(A)×dom(B)×dom(C), we use {u} to denote the singleton relation with
scheme ABC containing only u. Given also a tuple v ∈ RDEF, we use u ◦v to denote the tuple over
scheme ABCDEF that takes value u (X) for every attribute X ∈ {A, B, C} and value v (X) for every
attribute X ∈ {D, E, F}. The lemma below explains why we want to make sure that R′AD, R′BE, and
R′CF are already in the CP-form.

Lemma 7. Suppose that R′AD, R′BE, and R′CF are in the CP-form. For any distinct tuples u,u ′ ∈
πA (R′AD) × πB (R′BE) × πC (R′CF), the output size of the join {{u},R′AD,R′BE,R′CF,RDEF} is the same as the
output size of the join {{u ′},R′AD,R′BE,R′CF, RDEF}.

Proof. Consider an arbitrary tuple v ∈ RDEF. As R′AD, R′BE, and R′CF are in the CP-form, the
tuple u ◦ v is in the result of the join {{u},R′AD,R′BE,R′CF,RDEF} if and only if v (D) ∈ πD (R′AD),
v (E) ∈ πE (R′BE), and v (F) ∈ πF (R′CF). The same sentence is also true if we replace u with u ′. This
completes the proof. �

We denote by s1 the output size of the join {{u},R′AD,R′BE,R′CF,RDEF} for an arbitraryu ∈ πA (R′AD)×
πB (R′BE) × πC (R′CF). It follows from Lemma 7 that��Join

({R′ABC,R′AD,R′BE,R′CF,RDEF}
) �� = s1 · s2. (16)

where

s2 = |R′ABC ∩ (πA (R′AD) × πB (R′BE) × πC (R′CF) |. (17)

Next, we will construct an R′′ABC ⊆ πA (R′AD)×πB (R′BE)×πC (R′CF) such that R′′ABC is in the CP-form and

s2/2 ≤ |R′′ABC | ≤ 8L. (18)

Since (by Lemma 7) the output size of the join {R′′ABC,R′AD,R′BE,R′CF,RDEF} is s1 · |R′′ABC |, (16) and
(18) together will assure us that the aforementioned join size is at least half of that of the join
{R′ABC,R′AD,R′BE,R′CF,RDEF}.

Henceforth, we consider s2 > 0 (otherwise, simply choose R′′ABC to be an empty solution). Define

S ′A = πA (R′ABC ∩ (πA (R′AD) × πB (R′BE) × πC (R′CF))

S ′B = πB (R′ABC ∩ (πA (R′AD) × πB (R′BE) × πC (R′CF))

S ′C = πC (R′ABC ∩ (πA (R′AD) × πB (R′BE) × πC (R′CF)).

It must hold that |S ′A | |S ′B | |S ′C | ≥ s2 (otherwise, R′ABC∩ (πA (R′AD)×πB (R′BE)×πC (R′CF) would have a size
less than s2, giving a contradiction).

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:15

We will choose subsets SA ⊆ S ′A, SB ⊆ S ′B, SC ⊆ S ′C, and then generate R′′ABC = SA × SB × SC.
Specifically, we first set SA directly to S ′A. LetkB be the greatest integer in [1, |S ′B |] satisfying |S ′A |·kB ≤
8L; note that, if kB < |S ′B |, then we must have |S ′A | ·kB > 4L.5 Now, create SB by including kB arbitrary
values in S ′B. Let kC be the greatest integer in [1, |S ′C |] satisfying |S ′A | · kB · kC ≤ 8L (if kC < |S ′C |, then
|S ′A | · kB · kC > 4L). Create SC by including kC arbitrary values in S ′C.
|R′′ABC | has size |S ′A | ·kB ·kC ≤ 8L. For validating (18), it remains to explain why |R′′ABC | ≥ s2/2. This

is obvious if kB = |S ′B | and kC = |S ′C | (in this case, |R′′ABC | = |S ′A | |S ′B | |S ′C | ≥ s2). Otherwise, |S ′A | · kB · kC
must be greater than 4L, which is at least s2/2 because s2 ≤ |R′ABC | ≤ 8L. This concludes the proof
of Lemma 3.

3 CANONICAL EDGE COVERS FOR ACYCLIC HYPERGRAPHS

Since it is no longer feasible to process all cyclic joins with a load of Õ (N /p1/ρ∗), our focus will
shift to acyclic joins, as defined in Section 1.1. In this section, we will concentrate solely on graph
theory and introduce the concept of “canonical edge cover” for acyclic hypergraphs, along with
several important properties. These properties will then be leveraged in Sections 4 and 5 to design
an MPC algorithm for evaluating any acyclic join with a load of O (N /p1/ρ∗).

Our discussion throughout the section is based on:

— an acyclic hypergraph G = (V ,E) with |E | ≥ 2, and
— an edge tree T of G.

AsG andT both contain “vertices” and “edges”, for better clarity we will obey several conventions
in our presentation. A vertex inG will always be referred to as an attribute, while the term node is
reserved for the vertices inT . Furthermore, to avoid confusion with the edges inG, we will always
refer to an edge in T as a link.

An edge e ∈ E is subsumed inG if it is a subset of another edge e ′ ∈ E, i.e., e ⊆ e ′. If an attribute
X appears in only one edge of E, it is an exclusive attribute; otherwise, X is non-exclusive. Unless
otherwise stated, we allow G to be an arbitrary acyclic hypergraph. This means that E can have
two or more edges containing the same set of attributes (nonetheless, they are still different edges)
and may even have empty edges. We say that G is non-empty if E � ∅ and that G is reduced if E
has no subsumed edges.

By rootingT at an arbitrary leaf, we can regardT as a rooted tree. Make all the links from parent
to child; this way,T becomes a directed acyclic graph. We say that the root ofT is the highest node
in T and, in general, a node is higher (or lower) than any of its proper descendants (or ancestors).
For any non-root node e , we denote its parent node in T as parent (e).

Now that there are two views of T (i.e., undirected and directed), we will be careful with tree
terminology. By default, we will treat T as a directed tree. Accordingly, a leaf of T is a node with
out-degree 0, a path is a sequence of nodes where each node has a link pointing to the next node,
and a subtree rooted at a node e is the directed tree induced by the nodes reachable from e in T .
Sometimes, we may revert back to the undirected view ofT . In that case, we use the term raw leaf
for a leaf in the undirected T (a raw leaf can be a leaf or the root under the directed view).

3.1 Canonical Edge Cover: Formulation and Basic Properties

For each attribute X ∈ V , we define the summit of X as the highest node in T containing X . If
node e is the summit of X , we call X a disappearing attribute in e . By acyclicity’s connectedness

5This is because otherwise |S ′A | · (kB + 1), which is at most |S ′A | · (2kB), would be at most 8L, contradicting the definition

of kB.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:16 X. Hu and Y. Tao

requirement (Section 1.1), X can appear only in the subtree rooted at e and hence “disappears” as
soon as we leave the subtree.

Example 3.1. Let G = (V ,E) be the hypergraph in Example 1.1 whose (rooted) edge tree T is
shown in Figure 1. The summit of C is node CEJ; thus, C is a disappearing attribute of CEJ. Node
EHJ is the summit of E and J; thus, both E and J are disappearing attributes of EHJ.

We say that a subset S ⊆ E covers an attribute X ∈ V if S has an edge containing X . Recall (from
Section 1.3) that an optimal edge cover ofG is the smallest S covering every attribute inV . Optimal
edge covers are not unique; some are of particular importance to us, and we will identify them as
“canonical”. Towards a procedural definition, consider the following algorithm:

edge-cover (T) /* T is rooted */
1. Ftmp ← ∅
2. obtain a reverse topological order e1, e2, . . . , e |E | of the nodes (a.k.a., edges) in T
3. for i ← 1 to |E | do

4. if ei has a disappearing attribute not covered by Ftmp then add ei to Ftmp

5. return Ftmp

As proved shortly, the output of edge-cover is uniquely determined byT , regardless of the reverse
topological order used at Line 2. This permits us to define the canonical edge cover (CEC) of G
induced by T to be the output of edge-cover.

Example 3.2. We now continue the discussion in Example 3.1 (see Figure 1 for the edge tree T).
Consider the reverse topological order of T :

ABC, BD, BO, BCE, EFG, CEF, CEJ, HI, EHJ, LM, KL, HK, HN.

When processing ABC, algorithm edge-cover adds it to Ftmp because ABC has a disappearing attribute
A and yet Ftmp = ∅. When processing BCE, Ftmp = {ABC, BD, BO}. BCE has a disappearing attribute
B, which, however, has been covered by Ftmp. Thus, B is not added to Ftmp. If F is the final Ftmp

returned by the algorithm, then

F = {ABC, BD, BO, EFG, HI, LM, EHJ, HK, HN},
which is the CEC of G induced by T . The edges in F are circled in Figure 1.

The lemma below gives three properties of edge-cover that pave the foundation of all the devel-
opment in the subsequent sections.

Lemma 8. All the following statements are true about the edge-cover algorithm.

(1) Its output—denoted as F —is an edge cover ofG containing ρ∗ edges, where ρ∗ is the fractional
edge covering number of G.

(2) The output is always the same, no matter which reverse topological order is deployed at Line 2.
(3) If G is reduced, F includes all the raw leaves of T .

Proof. It is easy to see that F is an edge cover of G. Each attribute X ∈ V is a disappearing
attribute of some edge e ∈ E. When e is processed at Line 4 of edge-cover, either X is already
covered or e itself will be added to Ftmp (which will then cover X).

Next, we argue that F has exactly ρ∗ edges. Let W be an arbitrary optimal fractional edge
covering of G. As edge-cover runs, we will gradually construct a functionW ′ : E → R such that

— C3.2-1:
∑

e ∈E W
′(e) ≤ ∑

e ∈E W (e);

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:17

— C3.2-2: At the end of edge-cover, for each edge e ∈ E,W ′(e) ≥ 1 if e ∈ F or 0 otherwise.

The two conditions imply that |F | ≤ ∑
e ∈E W

′(e) ≤ ∑
e ∈E W (e) = ρ∗. Conversely, |F | ≥ ρ∗

obviously holds by definition of ρ∗. It will then follow that |F | = ρ∗.
Our modification is carried out as follows. Before running edge-cover, we initializeW ′ by equat-

ing it directly toW . Then, run edge-cover. Whenever Line 4 decides not to add the current edge ei

to Ftmp, we

— (if ei is the root of T) setW ′(ei) to 0;
— (otherwise) increaseW ′(parent (ei)) byW ′(ei) and then setW ′(ei) to 0 (effectively, ei passes

its weight underW ′ to its parent).

The modification clearly satisfies Condition C3.2-1. To explain why it also satisfies C3.2-2, con-
sider what happens when Line 4 decides to include the current edge ei to Ftmp. We argue that
W ′(ei) must be at least 1 at this moment. Let X be any disappearing attribute of ei that had not
been covered by Ftmp prior to executing Line 4 (X must exist because ei has entered Ftmp). Denote
by S the set of edges in E containing X . The entire S must be in the subtree of ei (as X is disappear-
ing at ei). Due to the connectedness requirement, for every node (a.k.a., edge) e ∈ S , the whole
path from ei to e must also be in S . Note also that, before processing ei , Line 4 must have already
processed all the other nodes in S (due to the reverse topological order at Line 2), yet none of them
had been added to Ftmp (otherwise,X would have been covered by Ftmp before Line 4 processed ei).
Under our modification strategy, if a node escapes being included into Ftmp, it passes its weight
under W ′ to its parent. Hence, when Line 4 encountered ei , W

′(ei) must have accumulated the
weightW (e) (NOTE: It isW here, notW ′) of every edge e ∈ S . Thus,W ′(ei) is at least

∑
e ∈S W (e),

which in turn must be at least 1 because the originalW is a fractional edge covering. This proves
that our modification satisfies C3.2-2 and, hence, statement (i).

We now proceed to prove statement (ii). For any node e in T , whether e is added to Ftmp is
determined by which of the proper descendants of e are included into Ftmp. Line 4 processes all
those descendants before e (due to the reverse topological order). The observation gives rise to an
inductive argument. First, if e is a leaf, e enters Ftmp if and only if it has a disappearing attribute
(which must be exclusive), independently of the reverse topological order used. For a non-leaf
node e , inductively, once we have decided whether e ′ should be added to Ftmp for every proper
descendent e ′ of e , whether e will enter Ftmp has also been decided. We thus conclude that the
reverse topological order has no influence on the output.

To prove statement (iii), consider any raw leaf e of T . If e is not the root of T , it must have an
attribute X absent from parent (e) (otherwise, e is subsumed by its parent and G is not reduced).
Similarly, if e is the root of T , it must have an attribute X absent from its child (there is only
one child because e is a raw leaf). In both cases, the attribute X is exclusive at e and will force
edge-cover to add e to Ftmp. �

As a remark, Lemma 8 implies that any acyclic hypergraphG has an integral optimal fractional
edge covering that maps every edge of G to either 0 or 1.

3.2 Signature Paths, Clusterings, k-Groups, Anchor Leaves, and Anchor Attributes

Suppose that we have already computed the CEC F of G = (V ,E) induced by an edge treeT of G.
This subsection will introduce several concepts derived from F that are important to our analysis.

Whenever F includes the root of T , we can define a signature path — denoted as sigpath(f ,T)
— for each node f ∈ F . Specifically, sigpath(f ,T) is a set of nodes obtained as follows.

— If f is the root of T , sigpath(f ,T) = { f }.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:18 X. Hu and Y. Tao

— Otherwise, let f̂ be the lowest node in F that is a proper ancestor of f . Then, sigpath(f ,T)

is the set of nodes on the path from f̂ to f , except f̂ .

Example 3.3. Consider the set F = {ABC, BD, BO, EFG, HI, LM, EHJ, HK, HN} obtained in Example 3.2

(see Figure 1 for the edge tree T). If f = ABC, then f̂ = EHJ; and the signature path of f is

{ABC, BCE, CEJ}. If f = HN, then the signature path of f is {HN} (f̂ is not defined).

The concepts to be defined in the remainder of this subsection apply only ifG is reduced. When
G is reduced, F contains the root and all the leaves of T (Lemma 8). In this case, we define the
T -clustering of G as

C = {sigpath(f ,T) | f ∈ F }. (19)

For each f ∈ F , we will refer to sigpath(f ,T) as a cluster of C. Note that every node of T (or
equivalently, every edge of E) belongs to at least one—but possibly more than one—cluster. If f
is not the root of T , we call sigpath(f ,T) a non-root cluster. Given an integer k ≥ 1, we define a
k-group of C to be a collection of k edges, each taken from a distinct cluster in C .

Example 3.4. In Example 3.2 (see Figure 1 for the edge treeT , where the circled edges constitute
the CEC F), the T -clustering of G is

C = {{BO, BCE, CEJ}, {ABC, BCE, CEJ}, {BD, BCE, CEJ}, {EFG, CEF, CEJ}, {HI}, {EHJ}, {LM, KL}, {HK}, {HN}}.
All the clusters except {HN} in C are non-root clusters. A 3-group example is {ABC, BD, EFG}. In
general, the edges in a k-group do not need to be distinct. For example, {CEJ, CEJ, CEJ} is also a
3-group: the first CEJ is taken from the cluster {ABC, BCE, CEJ}, the second from {BD, BCE, CEJ}, and
the third from {EFG, CEF, CEJ}. For a non-example, {ABC, LM, KL} is not a 3-group.

Let fanc be a leaf node in F , and f̂ be the lowest proper ancestor of fanc in F . We call fanc an
anchor leaf of T if

— f̂ has no non-leaf proper descendant in F , and
— fanc has an attribute Aanc such that

– Aanc � f̂ ;
– Aanc ∈ e for every node e ∈ sigpath(fanc,T).

We call Aanc an anchor attribute of fanc. The above definition does not apply to the case where

f̂ = nil (i.e.,T has only a single node, which is fanc); in that special case, we define the anchor leaf
of T to be fanc and call any attribute in fanc an anchor attribute.

Lemma 9. If G is non-empty and reduced, F always contains an anchor leaf of T .

Proof. We discuss only the case where fanc � nil (the opposite case is trivial). Identify an
arbitrary non-leaf node f ∈ F with the property that no other non-leaf node in F is lower than
f . The existence of f is guaranteed because F includes the root of T . Consider any child node e
of f in T . Since G is reduced, e must have an attribute Aanc that does not appear in f . Let fanc be
any node in F that contains Aanc. By the connectedness requirement of acyclicity, fanc must be
in the subtree of T rooted at e and, therefore, must be a leaf (by definition of f). We argue that
fanc is an anchor leaf of T . The signature path of fanc includes all the nodes on the path from e
to fanc. Because Aanc ∈ e and Aanc ∈ fanc, Aanc must appear in all the nodes on the path (due to
connectedness) and is thus an anchor attribute of fanc. �

Example 3.5. In Example 3.4 (see Figure 1 for the edge treeT , where the circled edges constitute
the CEC F), we have obtained the T -clustering C = {{BO, BCE, CEJ}, {ABC, BCE, CEJ}, {BD, BCE,
CEJ}, {EFG, CEF, CEJ}, {HI}, {EHJ}, {LM, KL}, {HK}, {HN}}. ABC is an anchor leaf of T with an anchor

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:19

Fig. 3. Residual hypergraphs.

attribute C. HI is another anchor leaf with an anchor attribute I. For a non-example, BD is not an
anchor leaf because it does not have an attribute that exists in all the nodes in sigpath(BD,T) = {BD,
BCE, CEJ}. Furthermore, LM is not an anchor leaf because HK, the lowest proper ancestor of LM in
F , has a non-leaf proper descendant in F (i.e., EHJ).

3.3 CEC Properties after Removing an Anchor Attribute

This subsection assumes that the input hypergraph G = (V ,E) is reduced. As before, let T be an
edge tree of G and F be the CEC induced by T . Identify an arbitrary anchor leaf fanc of T and an
arbitrary anchor attributeAanc of fanc. As will be clear in Section 4, in join evaluation, we will need
to simplify G by removing Aanc. CEC has several interesting properties under such simplification
as discussed next.

3.3.1 Residual Hypergraph and Its CEC. Removing Aanc fromG produces a residual hypergraph
G ′ = (V ′,E ′) where

—V ′ = V \ {Aanc}, and
— E ′ is produced by including, for every e ∈ E, an edge map(e) = e \ {Aanc}.

Define map−1 as the inverse function of map, namely, for each e ′ ∈ E ′, map−1 (e ′) is the unique edge
e ∈ E satisfying e ′ = map(e). The functions map and map−1 capture the one-one correspondence
between E and E ′.

Denote by T ′ the edge tree of G ′ obtained by discarding Aanc from every node in T . The next
lemma, whose proof can be found in Appendix B, shows that the CEC of G ′ induced by T ′ can be
derived directly from F .

Lemma 10. If G is reduced, the CEC of G ′ induced by T ′ is

F ′ =
{
F \ { fanc} if map(fanc) is subsumed in G ′{
map(f) | f ∈ F }

otherwise
(20)

Furthermore, if an edge e ′ ∈ E ′ is subsumed, then e ′ � F ′.

Example 3.6. Continuing on Example 3.5 (see Figure 1 for the edge tree T , where the circled
edges constitute F), suppose that we choose fanc = ABC and eliminate Aanc = C from the tree
T . Figure 3(a) illustrates the edge tree T ′ obtained, where the circled nodes constitute the set F ′.
Similarly, if we choose fanc = HI with Aanc = I, then T ′ and F ′ are as illustrated in Figure 3(b).

3.3.2 Cleansing the Residual Graph and Preserving the CEC. Even thoughG is reduced, the resid-
ual hypergraph G ′ may contain subsumed edges. Next, we describe a cleansing procedure which

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:20 X. Hu and Y. Tao

Fig. 4. Two cases of cleansing.

converts G ′ into a reduced hypergraph G∗ = (V ′,E∗) (note that G∗ has the same vertices as G ′)
and converts T ′ into an edge tree T ∗ of G∗.

cleanse (G ′,T ′)
1. if map(fanc) is subsumed in G ′ then

2. G∗ ← the hypergraph obtained by removing edge map(fanc) from G ′,
T ∗ ← the tree obtained by removing the leaf map(fanc) from T ′

3. return G∗ and T ∗

/* the following assumes that map(fanc) not subsumed */
4.G∗ ← G ′,T ∗ ← T ′

5. while G∗ has edges esmall and ebig s.t. esmall ⊆ ebig and they are connected by a link in T ∗ do

6. remove esmall from G∗ and T ∗ /* by Lemma 10, esmall cannot belong to F ′ */
7. if ebig was the parent of esmall in T ∗ then

8. make ebig the new parent for all the child nodes of esmall; see Figure 4(a)
else

9. make ebig the new parent for the child nodes of esmall, and
make ebig a child of the (original) parent of esmall in T ∗; see Figure 4(b)

10. return G∗ and T ∗

At the end of cleansing, we always set F ∗ = F ′ directly. An important property of cleansing is
that it does not affect the CEC, as formally stated below.

Lemma 11. After cleansing, F ∗ is the CEC of G∗ induced by T ∗.

The proof of the lemma can be found in Appendix C.

Example 3.7. In Example 3.6, the residual hypergraphG ′ in Figure 3(a) has two subsumed edges
EJ and EF, each removed by an iteration of cleanse. Suppose that the first iteration sets esmall = EJ
and ebig = EHJ (this is a case of Figure 4(a)). Figure 5(a) illustrates the T ∗ after removing EJ. The
next iteration sets esmall = EF and ebig = EFG (a case of Figure 4(b)). Figure 5(b) illustrates the T ∗

after removing EF. In both Figures 5(a) and 5(b), the circled nodes constitute the CEC F ∗ of G∗

induced by T ∗.

3.3.3 Preserving k-Groups. The next property concerns the hypergraph G∗ = (V ′,E∗) after
cleansing the original hypergraph G = (V ,E). Recall that T ∗ and T are edge trees of G∗ and G,
respectively. Before proceeding, the reader should recall that every edge e∗ ∈ E∗ corresponds to a
distinct edge map−1 (e∗) ∈ E.

Lemma 12. For any k ∈ [|F ∗ |], if {e∗1 , . . . , e∗k } is a k-group of the T ∗-clustering C∗ of G∗, then

{map−1 (e∗1), . . . ,map−1 (e∗
k

)} must be a k-group of the T -clustering C of G.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:21

Fig. 5. Changes to T ∗ during cleansing.

By definition of k-group (see Section 3.2), e∗1 , . . . , e
∗
k

originate from k distinct clusters in C∗. The
lemma essentially promises k different clusters in C, each of which contains a distinct edge in
{map−1 (e∗1), . . . ,map−1 (e∗

k
)}.

Example 3.8. Consider the T ∗ and F ∗ illustrated in Figure 5(b). TheT ∗-clustering of G∗ is C∗ =
{{BO, BE}, {AB, BE}, {BD, BE}, {EFG}, {EHJ}, {HI}, {LM, KL}, {HK}, {HN}}. Because {BE, EFG, KL} is a 3-
group of C∗, Lemma 12 asserts that {map−1 (BE), map−1 (EFG), map−1 (KL)} = {BCE, EFG, KL} must
be a 3-group of the T -clustering of G in Example 3.4 (see Figure 1 for the edge tree T , where the
circled edges constitute F).

3.4 CEC Properties after Removing a Signature Path

This subsection will discuss another simplification needed in join evaluation. As before, we have
a hypergraph G = (V ,E), and denote by T an edge tree of G and by F the CEC of G induced by
T . Identify an arbitrary anchor leaf fanc of T and an arbitrary anchor attribute Aanc of fanc. The
simplification deletes all the edges in the signature path sigpath(fanc,T) from G. Next, we discuss
the properties of CEC under such simplification.

3.4.1 Residual Hypergraphs and Their CECs. Removing sigpath(fanc,T) decomposesG into mul-
tiple components. To explain, define

Z = {node z in T | z � sigpath(fanc,T) and parent (z) ∈ sigpath(fanc,T)}. (21)

For each z ∈ Z , define a rooted tree T ∗z as follows:

— The root of T ∗z is the parent of z in T ;
— The root of T ∗z has only one child in T ∗z , which is z;
— The subtree rooted at z in T ∗z is the same as the subtree rooted at z in T .

Separately, define T ∗ as the rooted tree obtained by removing from T the subtree rooted at the
highest node in sigpath(fanc,T).

From each T ∗z , generate a residual hypergraph G∗z = (V ∗z ,E
∗
z) where:

— E∗z includes all and only the nodes (a.k.a., edges of G) in T ∗z ;
—V ∗z is the set of attributes appearing in at least one edge in E∗z .

Likewise, from T ∗, generate a residual hypergraph G∗ = (V ∗,E∗) where

— E∗ includes all and only the nodes in T ∗;

—V ∗ is the set of attributes appearing in at least one edge in E∗.

Because G is reduced, so must be all the residual hypergraphs. For each z ∈ Z , T ∗z is an edge tree

of G∗z ; similarly, T ∗ is an edge tree of G∗.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:22 X. Hu and Y. Tao

Fig. 6. Residual hypergraphs after removing a signature path.

Example 3.9. In Example 3.5 (see Figure 1 for the edge treeT , where the circled edges constitute
F), suppose that we choose fanc = ABC, whose signature path is sigpath(fanc,T) = {ABC, BCE, CEJ};
see Figure 6(a). Then, Z = {BO, BD, CEF}. Figures 6(b), 6(c), and 6(d) illustrate T ∗z for z = CEF, BO,

and BD, respectively, while Figure 6(e) gives T ∗.

Recall that F is the CEC ofG induced byT . The next lemma shows that the CECs of the residual
hypergraphs can be derived from F effortlessly.

Lemma 13. For each node z ∈ Z , the CEC of G∗z induced by T ∗z is

F ∗z = {parent of z} ∪ (F ∩ E∗z). (22)

The CEC of G∗ induced by T ∗ is

F ∗ = F ∩ E∗. (23)

The proof can be found in Appendix E.

Example 3.10. Continuing on Example 3.6, we have circled the nodes of F ∗z in Figures 6(b), 6(c),
and 6(d) for z = CEF, BO, and BD, respectively. Similarly, the circled nodes in Figure 6(e) constitute

F ∗.

3.4.2 Preserving k-Groups. We close the section with a property resembling Lemma 12. Define
a super-k-group to be a set of edges K = {e1, e2, . . . , ek } satisfying:

— each ei , i ∈ [k], is taken from either a cluster of theT ∗-clustering ofG∗ or a non-root cluster6

of the T ∗z -clustering of G∗z for some z ∈ Z ;
— no two edges in K are taken from the same cluster.

Then, we have:

Lemma 14. Any super-k-group {e1, e2, . . . , ek } must also be a k-group of the T -clustering of G.

The proof can be found in Appendix F.

Example 3.11. In Figure 6, the T ∗z -clusterings of G∗z for z = CEF, BO, and BD are C∗CEF =
{{EFG, CEF}, {CEJ}}, C∗BO = {{BO}, {BCE}}, and C∗BD = {{BD}, {BCE}}, respectively, while the T ∗-

clustering of G∗ is C∗ = {{HI}, {EHJ}, {HK}, {HN}, {LM, KL}}. A super-3-group example is {CEF, BO,
KL}. Lemma 14 assures us that {CEF, BO, KL} must be a 3-group in the T -clustering of G given in

6Namely, ei cannot be the root of T ∗z .

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:23

Fig. 7. Overview of our MPC Algorithm in Section 4.

Example 3.4 (see Figure 1 for the edge tree T , where the circled edges constitute F). As non-
examples, {CEJ, BO, KL} is not a super-3-group because CEJ does not come from a non-root cluster
of C∗CEF, and neither is {EFG, CEF, KL} because EFG and CEF must come from the same cluster of C∗CEF.

4 AN MPC ALGORITHM FOR ACYCLIC QUERIES

The following sections will apply the theory of CECs to solve acyclic joins in the MPC model.
Specifically, we will describe a new algorithm in this section and present its analysis in Section 5.
Figure 7 provides an overview of our algorithm.

4.1 Fundamental Definitions

In this subsection, we will introduce several basic definitions applicable to general acyclic queries.
Consider an acyclic query Q whose schema graph is G = (V ,E). Fix an arbitrary edge tree T of G
and use the edge-cover algorithm (in Section 3.1) to compute the CEC F ofG induced byT . Let C
be the T -clustering of G in (19).

Recall that a k-group of C is a collection of k edges, each taken from a distinct cluster in C. Given
a k-group K of C, we define

Q-product of K =
∏
e ∈K

|Re | (24)

where Re is the (only) relation in Q with scheme e; the Q-product of K is simply the Cartesian-
product size of all the input relations corresponding to the edges in K . Given an integer k ∈ [|F |],
we define the max-(k,Q)-product of C as the largest Q-product of all k-groups K , or formally:

Pk (Q,C) = max
k-group K of C

Q-product of K . (25)

As the Q-product of any k-group is at most N k where N is the input size of Q , we always have
Pk (Q,C) ≤ N k . Finally, define

Q-induced load of C = |C |
max
k=1

(
Pk (Q,C)

p

)1/k

(26)

where |C| is the number of clusters in C.
As Pk (Q,C) ≤ N k for any k ∈ [|C|], the Q-induced load of C is at most N /p1/ |C | . Another

useful fact is P1 (Q,C) = Θ(N) (which holds because Q has a constant number of relations). This
means that the Q-induced load of C is Ω(N /p).

Example 4.1. For an illustration, let us revisit Example 3.4 (see Figure 1 for the edge treeT , where
the circled edges constitute F). In that example, we obtained theT -clustering C = {{BO, BCE, CEJ},
{ABC, BCE, CEJ}, {BD, BCE, CEJ}, {EFG, CEF, CEJ}, {HI}, {EHJ}, {LM, KL}, {HK}, {HN}}. For the 3-group

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:24 X. Hu and Y. Tao

{ABC, BD, EFG}, its Q-product is |RABC | · |RBD | · |REFG |. As Pk (Q,C) ≤ N k for any k ≤ |C| = 9, the
Q-induced load of C is at most N /p1/9.

4.2 Configurations

Henceforth, we fix Q to be the acyclic query to be answered. Denote by G = (V ,E) the schema
graph of Q . We assumeG to be reduced; otherwise, Q can be converted in load O (N /p) to a query
that has the same result but with a reduced schema graph [14, 17]. We will also assume that Q has
at least two relations; otherwise, the query is trivial and requires no communication.

Choose an arbitrary edge tree T of G and compute the CEC F of G induced by T . Define C
as the T -clustering of G given in (19). Choose an arbitrary anchor leaf fanc of T and an arbitrary
anchor attribute Aanc of fanc; remember that Aanc appears in all the edges of sigpath(fanc,T).

For each edge e ∈ E, let Re represent the relation in Q whose scheme is e . Fix a value x ∈ dom.
Given an edge e ∈ sigpath(fanc,T), we define the Aanc-frequency of x in Re as the number of tuples
u ∈ Re such that u (Aanc) = x . Moreover, define the signature-path Aanc-frequency of x as the sum
of its Aanc-frequencies in the Re of all e ∈ sigpath(fanc,T).

Example 4.2. Continuing on Example 4.1 (see Figure 1 for the edge tree T , where the circled
edges constitute F), let us choose the anchor leaf fanc to be ABC, which has an anchor attribute
Aanc = C and the signature path sigpath(ABC,T) = {ABC, BCE, CEJ}. Fix a value c ∈ dom. The C-
frequency of c in relation RABC is the number of tuples u ∈ RABC satisfying u (C) = c . The signature-
path C-frequency of c is the total number of tuples u in RABC,RBCE,RCEJ satisfying u (C) = c .

We will use L to represent the Q-induced load of C defined in (26). Given a value x ∈ dom, we
say that x is

— heavy, if its signature-path Aanc-frequency is at least L;
— light, otherwise.

Divide dom into disjoint intervals such that either the entire dom is one interval or the light
values in each interval have a total signature-path Aanc-frequency of Θ(L). We will refer to those
intervals as the light intervals of Aanc.

A configurationη is either a heavy value or a light interval ofAanc. The number of configurations,
which is the total number of heavy values and light intervals, is at most

∑
η

1 =
∑

e ∈sigpath(fanc,T)

O

(
1 +
|Re |
L

)

= O

(
1 + max

e ∈sigpath(fanc,T)

|Re |
L

)
= O

(
1 +

max-(1,Q)-product of C
L

)
= O (p) (27)

where the second equality used the fact that sigpath(fanc,T) hasO (1) edges and the third equality
applied the definition of the max-(k,Q)-product of C in (25) and the definition of L, i.e., the Q-
induced load of C in (26).

For each edge e ∈ E, define a relation R (e,η) as follows:

— if η is a heavy value, R (e,η) includes all and only the tuples u ∈ Re satisfying u (Aanc) = η;
— if η is a light interval, R (e,η) includes all and only the tuples u ∈ Re where u (Aanc) is a light

value in η.

Note that R (e,η) = Re if Aanc � e . We associate the configuration with a query

Qη = {R (e,η) | e ∈ E}.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:25

Our objective is to compute Join(Qη) for all η in parallel. The final result Join(Q) is simply⋃
η Join(Qη).
Note that Qη has the same schema graphG as Q . Recall that C is theT -clustering ofG. The rest

of the section will explain how to solve Join(Qη) for an arbitrary η using

pη = Θ

(
1 +

|C |
max
k=1

Pk (Qη ,C)

Lk

)
(28)

machines, where Pk (Qη ,C) is the max-(k,Qη)-product of C. As will be proved in Section 5, we can
adjust the constants in (28) to make sure

∑
η pη ≤ p.

Example 4.3. To illustrate the above steps, we continue the discussion in Example 4.2. Recall
that in this context the schema graph of the query Q has the edge set E = {ABC, BD, BO, EFG, BCE,
CEF, CEJ, HI, LM, EHJ, KL, HK, HN}. The edge tree T is shown in Figure 1, where the circled edges
constitute F . We have chosen the anchor leaf fanc = ABC and the anchor attribute Aanc = C.

Suppose that dom is the integer domain. Let h1,h2, . . . ,hx be the heavy values of attribute C,
and let l1, l2, . . . , ly — in ascending order — be the light values of C that appear in at least one input
relation of Q . The set {h1,h2, . . . ,hx , l1, l2, . . . , ly } is sometimes called the “active domain” of C.

There are multiple approaches to create the desired light intervals. In the following, we describe
one such approach. The (disjoint) intervals we are creating will all have the form (cleft , cright] and
will be generated in ascending order of cleft (hence, also in ascending order of cright). To create the
first interval, we set cleft = −∞ and scan l1, l2, . . . , ly until reaching the largest i satisfying the condi-
tion that the total signature-path C-frequency of l1, . . . , li does not exceed 2L. If i = y, we set cright =

∞, in which case the interval covers the entire dom. Otherwise, set cright = li , i.e., the first interval
is (−∞, li], in which case the total signature-path C-frequency of l1, . . . , li must be at least L.

Iteratively, suppose that we have just obtained an interval ending at li for some i ∈ [1,y − 1].
To create the next interval, we set its cleft = li and scan li+1, li+2, . . . , ly until reaching the largest
j satisfying the condition that the total signature-path C-frequency of li+1, . . . , lj does not exceed
2L. If j = y, we set cright = ∞, in which case no more intervals will be created. Otherwise, set
cright = lj , i.e., the new interval is (li , lj], in which case the total signature-path C-frequency of
li+1, . . . , lj must be at least L.

There is a small issue with the above strategy: we may create more than one interval, but the
last interval could have a total signature-path C-frequency less than L. The issue can be easily
fixed by simply merging the last two intervals into one; the total signature-path C-frequency of
the merged interval is at most 4L. It is rudimentary to implement the above strategy under the
MPC model in O (1) rounds with load O (N /p), which the reader can verify to be O (L).

A configuration η is either a heavy value of attribute C or a light interval obtained earlier. To
illustrateQη , consider first that η takes a heavy value hi for some i ∈ [x]. For the edge e = ABC, the
relation R (e,η) — namely, R (ABC,hi) — is the set of tuples u ∈ RABC with u (C) = hi . The relations
R (BCE,hi), R (CEJ,hi), and R (CEF,hi) are defined similarly. For any edge e ∈ {BD, BO, EFG, HI, LM,
EHJ, KL, HK, HN}, the relation R (e,hi) is identical to Re because C � e . The query Qη involves all the
relations R (e,η) thus defined for all e ∈ E. Now, consider that η takes a light interval I . For the
edge e = ABC, the relation R (e,η) — namely, R (ABC, I) — is the set of tuples u ∈ RABC satisfying
u (C) ∈ I . The relations R (BCE, I), R (CEJ, I), and R (CEF, I) are defined similarly. Again, for any
edge e ∈ {BD, BO, EFG, HI, LM, EHJ, KL, HK, HN}, the relation R (e, I) is identical to Re . The query Qη

involves all the relations R (e,η) thus defined for all e ∈ E.

4.3 Solving Qη When η is a Heavy Value

Remove Aanc from G, and define the residual hypergraph G ′ = (V ′,E ′), as well as the functions
map(.) and map−1 (.), in the way explained in Section 3.3. We compute Join(Qη) in five steps.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:26 X. Hu and Y. Tao

Step 1. Send the tuples of R (e,η), for all e ∈ E, to the pη allocated machines such that each

machine receives Θ(1
pη

∑
e ∈E |R (e,η) |) tuples.

Step 2. For each e ∈ E, convert R (e,η) to R∗ (e ′,η) where e ′ = map(e) = e \ {Aanc}. Specifically,
R∗ (e ′,η) is a copy of R (e,η) but with Aanc discarded, or formally:

R∗ (e ′,η) = {u[e ′] | tuple u ∈ R (e,η)}. (29)

Note that if Aanc � e , then R∗ (e ′,η) = R (e,η). No communication occurs as each machine simply
discards Aanc from every tuple u ∈ R (e,η) in the local storage.

Step 3. Cleanse G ′ into G∗ = (V ′,E∗) by calling the cleanse algorithm in Section 3.3.1. Every
time cleanse performs an iteration in Lines 5-9 with edges esmall and ebig, we perform a semi-join
between R∗ (esmall,η) and R∗ (ebig,η). The semi-join removes every tupleu from R∗ (ebig,η) with the
property that u[esmall] is absent from R∗ (esmall,η). R∗ (esmall,η) is discarded after the semi-join.

Step 4. Define a sub-query:
Q∗η = {R∗ (e∗,η) | e∗ ∈ E∗}

Note thatQ∗η involves one less attribute thanQ (because Aanc no longer exists). Compute Join(Q∗η)
using pη machines recursively.

Step 5. Output Join(Qη) by augmenting each tuple u ∈ Join(Q∗η) with u (Aanc) = η. No commu-
nication is needed.

Example 4.4. We will illustrate the above steps by continuing Example 4.2. Suppose that the
configuration η is a heavy value h of attribute C. In Example 4.2, we have explained how to obtain
relation R (e,η) — namely, R (e,h) — for each e ∈ E (the content of E is listed at the beginning
of Example 4.2). In Step 1, the relations {R (e,h) | e ∈ E} are sent to the pη machines allocated
exclusively to η such that each machine receives roughly the same number of tuples.

In Step 2, each of the pη machines examines the tuples in its local storage. If a tupleu ∈ R (e,h) is
found, where e ∈ {ABC, BCE, CEJ, CEF}, the machine removes the C-value of u to create a new tuple
v = u[e ′], where e ′ = e \ {C}. Generating all such v effectively creates the relation R∗ (e ′,h). For
any e ∈ {BD, BO, EFG, HI, LM, EHJ, KL, HK, HN}, we have e ′ = e \ {C} = e , and R∗ (e ′,h) is simply R (e,h).

Recall that the edge tree T of the query Q is illustrated in Figure 1. After discarding attribute C,
the edge treeT ′ is transformed into the one depicted in Figure 3(a). In Step 3, the cleanse procedure
first removes edge EJ from T ′, as shown in Figure 5(a), and then edge EF, as shown in Figure 5(b).
As a result, Step 3 performs a semi-join between R∗ (EJ,h) and R∗ (EHJ,h), after which R∗ (EHJ,h)
can only shrink and R∗ (EJ,h) is discarded. This is followed by another semi-join between R∗ (EF,h)
and R∗ (EFG,h), after which R∗ (EFG,h) can only shrink and R∗ (EF,h) is discarded.

The sub-query Q∗η — that is, Q∗
h

— now contains only relations R∗ (AB,h), R∗ (BE,h), R∗ (BO,h),
R∗ (BD,h), R∗ (EHJ,h), R∗ (EFG,h), R∗ (HI,h), R∗ (LM,h), R∗ (KL,h), R∗ (HK,h), and R∗ (HN,h). Step 4
computes Q∗

h
using the pη allocated machines recursively. Finally, in Step 5, each tuple in the

result of Q∗
h

is then augmented with the C-value h to produce a result tuple for Qη .

Tuple-Based Implementation. For the benefit of reader comprehension, we have deliberately pre-
sented our algorithm in a way that aligns conceptually with the discussion in Section 3.3. However,
this approach may inadvertently lead to the misconception that our algorithm does not handle each
tuple in the original relations of Q as atoms, as mandated by the class of tuple-based algorithms
outlined in Section 1.1. Specifically, the confusion lies in removing the attribute Aanc in Step 2 and
“concatenating” it back in Step 5.

Nevertheless, once the reader has grasped the underlying rationale, it is rudimentary to resolve
the issue by electing for a tuple-based implementation. First, it is important to remember that η is
the sole value under attributeAanc for the sub-queryQη we are processing. As mentioned, for each
edge e ∈ E containing Aanc, Step 2 removes Aanc from relation R (e,η) by generating the relation

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:27

R∗ (e ′,η) of (29), where e ′ = e \ {Aanc}. Specifically, for each tuple u ∈ R (e,η), Step 2 adds the tuple
v = u[e ′] to R∗ (e ′,η), effectively retaining all values of u except u (Aanc) = η. This gives rise to
a sub-query devoid of attribute Aanc. Steps 3-4 evaluate this sub-query by moving tuples like v

among the pη allocated machines. Each result tuple of the sub-query needs to be augmented with
the value η on attribute Aanc before being returned (Step 5). To allow each machine to perform
such augmentation locally, we can broadcast η to all the pη allocated machines (this increases the
load by only one). This way, whenever v is communicated between two machines, we are in fact
transmitting a pair (v,η), which is equivalent to sending the tuple u itself as an atom. This, thus,
yields a tuple-based implementation of our algorithm.

4.4 Solving Qη When η is a Light Interval

Remove sigpath(fanc,T) from G, and define Z , G∗z andT ∗z for each z ∈ Z , G∗, andT ∗ all in the way
described in Section 3.4. We compute Join(Qη) in four steps.

Step 1. Same as Step 1 of the algorithm in Section 4.3.
Step 2. For each e ∈ sigpath(fanc,T), broadcast R (e,η) to all pη machines. By definition of light

interval, the size of every such R (e,η) is at most L.
Step 3. For each z ∈ Z , define for G∗z = (V ∗z ,E

∗
z):

C∗z = the T ∗z -clustering of G∗z
Q∗η,z = the join {R (e,η) | e ∈ E∗z }.

Similarly, define for G∗ = (V ∗,E∗):

C∗ = the T ∗-clustering of G∗

Q∗η = the join {R (e,η) | e ∈ E∗}.

Note that Q∗η and the Q∗η,z of each z ∈ Z have at least one less relation than Q due to the disap-
pearance of fanc.

Next, we compute the Cartesian product(
×z∈Z Join(Q∗η,z)

)
× Join(Q∗η) (30)

using pη machines. For that purpose, define for each z ∈ Z

pη,z = Θ

(
1 +

|C∗z |
max
k=1

Pk (Q∗η,z ,C∗z)

Lk

)
(31)

where Pk (Q∗η,z ,C∗z) is the max-(k,Q∗η,z)-product of the clustering C∗z . Similarly, define

pη = Θ ��1 +
|C∗ |

max
k=1

Pk (Q∗η ,C∗)
Lk

�� (32)

where Pk (Q∗η ,C∗) is the max-(k,Q∗η)-product of the clustering C∗. We will prove later that

Join(Q∗η,z) of each z ∈ Z can be evaluated with loadO (L) using pη,z machines, and Join(Q∗η) can be

evaluated with loadO (L) using pη machines. Therefore, applying the Cartesian product algorithm
given in Lemma 4 of [17], we can compute (30) with load O (L) using

pη ·
∏
z∈Z

pη,z (33)

machines. As proved in Section 5, we can adjust the constants in (31) and (32) to make sure that
(33) is at most the value pη given in (28).

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:28 X. Hu and Y. Tao

Step 4. We combine the Cartesian product in (30) with the tuples broadcast in Step 2 to derive
Join(Qη) with no more communication. Specifically, for each tuple u in the Cartesian product, the

machine where u resides outputs {u} ��
(
��e ∈sigpath(fanc,T) R (e,η)

)
. It is easy to verify that all the

tuples of Join(Qη) will be produced this way.

Example 4.5. Next, we illustrate the above steps by continuing Example 4.2. Suppose that the
configuration η is a light interval I of attribute C. In Example 4.2, we have explained how to obtain
relation R (e,η) — namely, R (e, I) — for each e ∈ E. In Step 1, the relations {R (e,h) | e ∈ E} are
sent to the pη machines allocated exclusively to η such that each machine receives roughly the
same number of tuples. In Step 2, all the tuples in relations R (ABC, I), R (BCE, I) and R (CEJ, I) are
broadcast to all the pη machines.

Recall that the edge tree T of the query Q is illustrated in Figure 1. After discarding edges ABC,
BCE, and CEJ, we haveZ = {CEF, BO, BD}. For each edge z ∈ Z , we create a sub-queryQ∗η,z as follows:

— For z = CEF, the residual hypergraph G∗CEF has an edge tree T ∗CEF depicted in Figure 6(b).
Accordingly,Q∗η,z — or more specifically,Q∗I,CEF — involves relations R (CEJ, I), R (CEF, I), and

R (EFG, I).
— For z = BO, the residual hypergraphG∗BO has an edge treeT ∗BO depicted in Figure 6(c). Accord-

ingly, Q∗I,BO involves relations R (BO, I) and R (BCE, I).
— For z = BD, the residual hypergraphG∗BD has an edge treeT ∗BD depicted in Figure 6(d). Accord-

ingly, Q∗I,BD involves relations R (BD, I) and R (BCE, I).

In addition, the elimination of edges ABC, BCE, and CEJ also yields a residual hypergraph G∗ with

an edge tree T ∗ depicted in Figure 6(e). Accordingly, we create another sub-query Q∗η — or more

specifically, Q∗
I

— which has relations R (HI, I), R (LM, I) R (EHJ, I), R (KL, I), R (HK, I), and R (HN, I).

We now have four sub-queries: Q∗I,CEF, Q∗I,BO, Q∗I,BD, and Q∗
I
. Step 3 computes the Cartesian prod-

uct of their results using an algorithm developed by Kestman et al. [17]. They showed that if the
following conditions hold:

— Join(Q∗I,CEF) can be computed with load O (L) using pI,CEF machines;

— Join(Q∗I,BO) can be computed with load O (L) using pI,BO machines;

— Join(Q∗I,BD) can be computed with load O (L) using pI,BD machines;

— Join(Q∗
I
) can be computed with load O (L) using pI machines.

then the Cartesian product can be computed with loadO (L) using pI,CEF ·pI,BO ·pI,BD ·pI machines.
The values of pI,CEF, pI,BO, and pI,BD are computed using (31), while pI is computed using (32). We
will prove in the next section that pI,CEF · pI,BO · pI,BD · pI is at most pη , i.e., the total number of

machines allocated to configuration η. Each of the sub-queries Q∗I,CEF, Q∗I,BO, Q∗I,BD, and Q∗
I

can be

processed recursively to satisfy the four conditions mentioned earlier.
In Step 4, every time a machine computes a tuple u in the Cartesian product from Step 3, it

outputs {u} �� R (ABC, I) �� R (BCE, I) �� R (CEJ, I) locally. Note thatR (ABC, I),R (BCE, I), andR (CEJ, I)
have been broadcast to all thepη machines. By combining the outputs of thepη machines, we obtain
the result of Qη .

5 ANALYSIS OF THE ALGORITHM

This section will establish another main result of the article:

Theorem 15. Any acyclic join queryQ as defined in Section 1.1 can be solved with loadO (N /p1/ρ∗),
where N is the input size of Q , ρ∗ is the fractional edge covering number of Q , and p is the number of
machines.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:29

We will actually prove a stronger claim:

Lemma 16. Consider an acyclic join query Q whose schema graph G is reduced. Let T be any edge
tree of G and C be the T -clustering of G defined in (19). Our algorithm in Section 4 answers Q with
load O (L), where L is the Q-induced load of C defined in (26).

Before proving the lemma, let us first clarify how it leads to Theorem 15. First, ifG is not reduced,
we can convert Q into another query with the same result whose schema graph is reduced, which
can be done with load O (N /p) using algorithms from [14] and [17]. If, on the other hand, G is
reduced, the Q-induced load L of C is at most N /p1/ |C | (as discussed in Section 4.1). As can be
seen from (19), |C| equals the size of F , which by Lemma 8 is ρ∗. Therefore, L = O (N /p1/ρ∗) and
Theorem 15 follows.

The rest of the section serves as a proof of Lemma 16. All the notations below follow those in
Section 4. Our proof is via induction on the number of participating attributes (i.e., |V |) and the
number of participating relations (i.e., |Q |). If |Q | = 1, the lemma trivially holds. If |V | = 1, Q
has only one relation (because Q is reduced) and the lemma again holds trivially. Next, assuming
that the lemma holds on any query with either strictly less participating attributes or strictly less
participating relations than Q , we will prove the lemma’s correctness on Q . Our analysis will
answer three questions:

(1) Why do we have enough machines to handle all configurations in parallel? In particular, we
must show that

∑
η pη ≤ p, where pη is the number of machines allocated to η, as is given in

(28).
(2) Why does each step in Section 4.3 and 4.4 entail a load of O (L)?
(3) Why do we have pη ·

∏
z∈Z pη,z ≤ pη in Step 3 of Section 4.4?

Settling these questions will complete the proof of Lemma 16.

Remark on Memory Usage. As a corollary of Theorem 15, our algorithm utilizesO (N /p1/ρ∗) words
of memory on each machine. More specifically, each machine receives in total O (N /p1/ρ∗) “atom
tuples” from the relations of Q , a.k.a., a subset of each relation in Q . Then, the machine locally
computes the join induced by those subsets. Such computation can be done with no extra memory
asymptotically7 — recall that the join result is output by emission, rather than physically stored.

5.1 Total Number of Machines for All Configurations

It suffices to prove
∑

η pη = O (p) because adjusting the hidden constants will then ensure
∑

η pη ≤
p. For every k ∈ [|C|], we will show

1

Lk

∑
η

Pk (Qη ,C) = O (p), (34)

where Pk (Qη ,C) is the max-(k , Q)-product of the T -clustering C, as defined in (25). It will then
follow that∑

η

pη =
∑

η

O

(
1 +

|C |
max
k=1

Pk (Qη ,C)

Lk

)
(by definition of pη in (28))

=
∑

η

O �	�1 +

|C |∑
k=1

Pk (Qη ,C)

Lk

�
� (because |C| = O (1))

7As CPU time is for free in our model, one can compute the join on those subsets using a nested loop. For better practical

efficiency, one can apply any of the join algorithms [5, 18, 21–25, 33] in RAM, which all require memory at the same order

as the input size.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:30 X. Hu and Y. Tao

= O (p) +
|C |∑
k=1

O �	�
∑

η

Pk (Qη ,C)

Lk

�
� (because
∑

η

1 = O (p), as shown in (27))

= O (p) (by (34)).

Now, fix k to an arbitrary integer in [|C|]. For any configuration η, the schema graph of Qη is
alwaysG (i.e., same as the schema graph of Q). Consider an arbitrary k-group K of C (the concept
of k-group was defined in Section 3.2). The Qη-product of K , defined in (24), is

∏
e ∈K |R (e,η) |.

Given any K , we will prove

1

Lk

∑
η

∏
e ∈K

|R (e,η) | = O (p). (35)

The above will then yield

∑
η

Pk (Qη ,C)

Lk
=

∑
η

1

Lk
max

K

∏
e ∈K

|R (e,η) |

(by definition of Pk (Qη ,C) in (25), applying also (24))

= O �	�
∑

η

1

Lk

∑
K

∏
e ∈K

|R (e,η) |�
�
(as C has only a constant number of k-groups K)

= O �	�
∑

K

1

Lk

∑
η

∏
e ∈K

|R (e,η) |�
� =
∑

K

O (p) (using (35))

= O (p)

as claimed in (34).
It remains to prove (35). Let us first consider the case where K ∩ sigpath(fanc,T) � ∅, namely, K

has an edge e0 picked from the cluster sigpath(fanc,T). In this case, we have:

∑
η

∏
e ∈K

|R (e,η) | =
∑

η

�	�|R (e0,η) | ·
∏

e ∈K\{e0 }
|R (e,η) |�
� (36)

For each e ∈ K \ {e0}, obviously |R (e,η) | ≤ |Re |. Regarding e0, because Aanc must be an attribute
of e0, the relations R (e0,η) of all the configurations η form a partition of R (e0).8 Hence:

(36) ≤ �	�
∏

e ∈K\{e0 }
|Re |�
�

�	�
∑

η

|R (e0,η) |�
� =
�	�

∏
e ∈K\{e0 }

|Re |�
� · |R (e0) | =
∏
e ∈K

|Re |

≤ max-(k,Q)-product of C.

Therefore, the left-hand side of (35) is bounded by
(
1/Lk

)
· max-(k,Q)-product of C, which is at

most p by definition of L (recall that L is the Q-induced load of C, defined in (26)).

Example 5.1. To illustrate the analysis, let us revisit Example 4.2 (refer to Figure 1 for the edge
tree T , where the circled edges form the CEC). We have chosen the anchor leaf fanc = ABC and

8The R (e0, η) of all η are mutually disjoint and their union equals R (e0).

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:31

the anchor attribute Aanc = C, resulting in the signature path sigpath(ABC,T) = {ABC, BCE, CEJ}.
Consider K = {ABC, EHJ, HI}, which has an edge ABC in sigpath(ABC,T) (i.e., e0 = ABC). In this case,

1

L3
·
∑

η

|R (ABC,η) | · |R (EHJ,η) | · |R (HI,η) | = 1

L3
· |REHJ | · |RHI | ·

∑
η

|R (ABC,η) |

≤ |REHJ | · |RHI | · |RABC |
L3

≤ max-(3,Q)-product of C
L3

= O (p).

Next, we considerK∩sigpath(fanc,T) = ∅. In this case, we must have k = |K | ≤ |F |−1, because
the edges in K need to come from distinct clusters of C, and C has |F | clusters (one of them is
sigpath(fanc,T), which now must be excluded). We can derive:

1

Lk

∑
η

∏
e ∈K

|R (e,η) | ≤ 1

Lk

∑
η

∏
e ∈K

|Re | (applying the trivial fact |R (e,η) | ≤ |Re |)

= O �	�
1

Lk

∏
e ∈K

|Re | ·
∑

η

1
�
� = O

��
1

Lk

∏
e ∈K

|Re | · max
e ′ ∈sigpath(fanc,T)

|Re ′ |
L

��
(because

∑
η

1 = O
(

max
e ′ ∈sigpath(fanc,T)

|Re ′ |
L

)
, as shown in (27))

= O

(
max-(k + 1,Q)-product of C

Lk+1

)

notice that
∏
e ∈K

|Re | · max
e ′ ∈sigpath(fanc,T)

|Re ′ |

is the Q-product of a (k + 1)-group

which is at most p. This completes the proof of
∑

η pη = O (p).

Example 5.2. We again use the context of Example 4.2 to illustrate the analysis (see Figure 1 for
the edge treeT , where the circled edges constitute the CEC). Recall that we have chosen the anchor
leaf fanc = ABC and the anchor attributeAanc = C, resulting in the signature path sigpath(ABC,T) =
{ABC, BCE, CEJ}. Consider K = {BO, EHJ, HI}. In this case,

1

L3
·
∑

η

|R (BO,η) | · |R (EHJ,η) | · |R (HI,η) |

≤ 1

L3
· |RBO | · |REHJ | · |RHI | ·

∑
η

1

=
1

L3
· |RBO | · |REHJ | · |RHI | ·O

(
max{|RABC |, |RBCE |, |RCEJ |}

L

)

≤ max-(4,Q)-product of C

L4
= O (p).

5.2 Heavy Qη

This subsection will prove that the algorithm in Section 4.3 has load O (L). Steps 2 and 5 demand
no communication. The following discussion focuses on the other steps.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:32 X. Hu and Y. Tao

Let us start with a technical lemma that will be useful later. Recall that G is the schema graph
of query Q (and Qη), T is an edge tree of G, and C is the T -clustering of G. For any k ∈ [|C|],
Pk (Qη ,C) is the max-(k,Q)-product of C, defined in (25). Our technical lemma is:

Lemma 17. For any k ∈ [|C|], it holds that (Pk (Qη ,C)/pη)1/k = O (L).

Proof. Define

k ′ = arg max
k ∈[|C |]

(
Pk (Qη ,C)

pη

)1/k

To prove the lemma, it suffices to show that (Pk ′ (Qη ,C)/pη)1/k ′ = O (L). Define

k ′′ = arg max
k ∈[|C |]

Pk (Qη ,C)

Lk
.

From (28), we know that pη is either Θ(
Pk′′ (Qη,C)

Lk′′) or Θ(1). In the former case, because
Pk′′ (Qη,C)

Lk′′ ≥
Pk′ (Qη,C)

Lk′ , we have pη = Θ(
Pk′′ (Qη,C)

Lk′′) = Ω(
Pk′ (Qη,C)

Lk′) and hence

(
Pk ′ (Qη ,C)

pη

)1/k ′

= O ��
(

Pk ′ (Qη ,C)

Pk ′ (Qη ,C)/Lk ′

)1/k ′�� = O (L).

In the latter case (i.e., pη = Θ(1)), (28) implies Pk ′ (Qη ,C) = O (Lk ′) and hence

(
Pk ′ (Qη ,C)

pη

)1/k ′

=

(
O (Lk ′)

Θ(1)

)1/k ′

= O (L).

We thus complete the proof. �

We now continue the analysis of the algorithm in Section 4.3. The loads of Steps 1 and 3 are
both bounded9 by

O ��
1

pη

∑
e ∈E

|R (e,η) |�� = O
(

1

pη
max
e ∈E
|R (e,η) |

)
= O

(
P1 (Qη ,C)

pη

)
= O (L).

where the second equality applied the definition of P1 (Qη ,C) in (25) — note that the Qη-product
of a 1-group K is merely the maximum size of the relations R (e,η) of all e ∈ K — and the third
inequality applied Lemma 17.

For analyzing Step 4, let us first recall that, after removing the anchor attributeAanc, we convert
G into residual hypergraph G ′ and T into an edge tree T ′ of G ′. Then, Step 3 cleanses G ′ into a
reduced hypergraph G∗ and, accordingly, converts T ′ into an edge tree T ∗ of G∗. Let C∗ be the
T ∗-clustering of G∗. The discussion in Section 3.3 tells us |C∗ | ≤ |C|, where as mentioned before
C is the T -clustering of G. By the definition in (26), the Q∗η-induced load of C∗ is

L∗η =
|C∗ |

max
k=1

(
Pk (Q∗η ,C∗)

pη

)1/k

(37)

where Pk (Q∗η ,C∗) is the max-(k,Q∗η)-product of C∗ (defined in (25)). By our inductive assumption

(that Lemma 16 holds on Q∗η), Step 4 incurs load O (L∗η). Next, we will argue that O (L∗η) = O (L).

Lemma 18. For each k ∈ [|C∗ |], it holds that Pk (Q∗η ,C∗) ≤ Pk (Qη ,C).

9Step 3 requires O (1) semi-joins, each of which can be performed by sorting. For sorting in the MPC model, see Section

2.2.1 of [14]. The stated bound for Steps 1 and 3 requires the assumption p ≤ N 1−ϵ introduced in Section 1.1.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:33

Proof. Recall that every edge e∗ of G∗ corresponds to an edge map−1 (e∗) in G, where the func-
tion map−1 (.) was defined in Section 3.3.1. We must have

|R∗ (e∗,η) | ≤ |R (map−1 (e∗),η) |.

To see why, note that this is true when |R∗ (e∗,η) | is created in Step 2, whereas R∗ (e∗,η) can only
shrink in Steps 3-5.

To prove the lemma, consider any k-group K∗ of C∗. By Lemma 12, K = {map−1 (e∗) | e∗ ∈
K∗} must be a k-group of C. Since |R∗ (e∗,η) | ≤ |R (map−1 (e∗),η) | for any e∗ ∈ K∗, we have∏

e∗ ∈K ∗ |R∗ (e∗,η) | ≤ ∏
e ∈K |R (e,η) | ≤ Pk (Qη ,C). Therefore:

Pk (Q∗η ,C∗) = max
K ∗

∏
e∗ ∈K ∗

|R∗ (e∗,η) | ≤ Pk (Qη ,C)

as needed. �

Applying the above lemma to (37), we now have L∗η ≤ max |C
∗ |

k=1
(

Pk (Qη,C)

pη
)1/k , which is O (L) by

Lemma 17.

Example 5.3. To illustrate the core of the above analysis, we will re-examine the scenario in
Example 4.4. The schema graphG of the query Q has an edge treeT shown in Figure 1, where the
circled nodes constitute the CEC. The T -clustering of G is

C = {{BO, BCE, CEJ}, {ABC, BCE, CEJ}, {BD, BCE, CEJ}, {EFG, CEF, CEJ}, {HI}, {EHJ}, {LM, KL}, {HK}, {HN}}.

We have chosen the anchor leaf fanc = ABC and the anchor attribute Aanc = C, resulting in the
signature path sigpath(ABC,T) = {ABC, BCE, CEJ}. In Example 4.4, the configuration η is a heavy
value h of C. The sub-query we need to process — Q∗η , or specifically, Q∗

h
— has a schema graph

G∗, for which Figure 5(b) shows its edge tree T ∗, where the circled nodes constitute the CEC. The
T ∗-clustering of G∗ is

C∗ = {{BO, BE}, {AB, BE}, {BD, BE}, {EFG}, {HI}, {EHJ}, {LM, KL}, {HK}, {HN}}.

From our inductive assumption, our algorithm processes Q∗
h

with load O (L∗η), where L∗η — or

specifically, L∗
h

— is given in (38). Suppose, w.l.o.g., that (i) expression (38) is maximized at k = 3
and (ii) P3 (Q∗

h
,C∗) is theQ∗

h
-product of the 3-groupK∗ = {AB, BO, EHJ} of C∗, meaning Pk (Q∗

h
,C∗) =

|R∗ (AB,h) | · |R∗ (BO,h) | · |R∗ (EHJ,h) |. The reader should take a moment to recall the meanings of
|R∗ (AB,h) |, |R∗ (BO,h) |, and |R∗ (EHJ,h) from Example 4.4.

Recall that every edge e∗ in G∗ corresponds to an edge e in G, as is captured by e = map−1 (e∗).
Here, edges AB, BD, and EHJ ofG∗ correspond to edges ABC, BD, and EHJ ofG, respectively. Crucially,
Lemma 12 guarantees that the set K = {ABC, BO, EHJ} must be a 3-group of C. It follows that

P3 (Q∗h ,C
∗) = |R∗ (AB,h) | · |R∗ (BO,h) | · |R∗ (EHJ,h) |
≤ |R (ABC,h) | · |R (BO,h) | · |R (EHJ,h) |

(see Example 4.3 for the meanings of R (ABC,h), R (BO,h), and R (EHJ,h))

≤ P3 (Qh ,C).

As L∗
h
= O (P3 (Q∗

h
,C∗)/pη)1/3), we can now apply Lemma 17 to conclude that L∗

h
= O (L).

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:34 X. Hu and Y. Tao

5.3 Light Qη

This subsection will concentrate on the algorithm of Section 4.4.

Load. Step 1 incurs load O (L) (same analysis as in Section 4.3). Step 2 also requires a load of O (L)
because every broadcast relation has a size of at most L. Step 4 needs no communication.

For analyzing Step 3, let us recall that, at this moment, we have removed all the edges in the
signature path sigpath(fanc,T) from the schema graph G of Q . This yields set Z , defined in (21).
For each edge z ∈ Z , we have obtained a sub-queryQ∗η,z , whose schema graphG∗z has an edge tree
T ∗z , which defines a T ∗z -clustering C∗z of G∗z . In addition, we have also obtained another sub-query

Q∗η , whose schema graph G∗ has an edge tree T ∗, which defines a T ∗-clustering C∗ of G∗.

Let us first consider Q∗η . The Q∗η-induced load of C∗ is

L∗η =
|C∗ |

max
k=1

��
Pk (Q∗η ,C∗)

pη

��
1/k

where Pk (Q∗η ,C∗) is the max-(k,Q∗η)-product of C∗ (see the definition in (25)). Regarding the join
Q∗η,z for each z ∈ Z , the Q∗η,z -induced load of C∗z is

L∗η,z =
|C∗z |

max
k=1

(
Pk (Q∗η,z ,C∗z)

pη,z

)1/k

(38)

where Pk (Q∗η,z ,C∗z) is the max-(k,Q∗η,z)-product of C∗z . By our inductive assumption—namely,

Lemma 16 holds on Q∗η and the Q∗η,z of each z ∈ Z —we know:

— evaluating Q∗η with pη machines requires load O (L∗η), which is O (L) given the pη in (32),
following an argument similar to that used to prove (37) is O (L);

— evaluating Q∗η,z of any z ∈ Z with pη,z machines requires load O (L∗η,z), which is O (L) given

the pη,z in (31), again following an argument similar to that used to prove (37) is O (L).

Thus, the Cartesian product at Step 3 can be computed with loadO (L), as explained in Section 4.4.

Number of Machines in Step 3. To establish Lemma 16, it remains to prove that pη ·
∏

z∈Z pη,z ≤ pη

always holds in Step 3. It suffices to show pη ·
∏

z∈Z pη,z = O (pη) because we can then adjust the
constants to ensure pη ·

∏
z∈Z pη,z ≤ pη .

Fix an arbitrary z ∈ Z . The root ofT ∗z — denoted as eroot — must belong to sigpath(fanc,T). Recall
that a k-group K of C∗z takes edges from distinct clusters in C∗z . Call K a

— non-root k-group of C∗z if eroot � K , or
— a root k-group of C∗z , otherwise.

A non-root k-group K must have a size |K | ≤ |C∗z | − 1 because eroot makes a cluster in C∗z .
For each k ∈ [|C∗z |], define

Pnon
k (Q∗η,z ,C∗z) =

⎧⎪⎪⎨⎪⎪⎩
1 if k = 0

max-(k,Q∗η,z)-product of all the non-root k-groups of C∗z if 1 ≤ k ≤ |C∗z | − 1

−∞ if k = |C∗z |

We observe:

Lemma 19. For any z ∈ Z and any k ∈ [|C∗z |], it holds that

Pk (Q∗η,z ,C∗z) ≤ max
{
Pnon

k (Q∗η,z ,C∗z),L · Pnon
k−1 (Q∗η,z ,C∗z)

}
(39)

where Pk (Q∗η,z ,C∗z) is the max-(k,Q∗η,z)-product of C∗z (see definition in (25)).

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:35

Proof. Define K as the k-group of C∗z whose Q∗η,z -product (see definition in (24)) is the great-

est among all the k-groups of C∗z . In other words, the Q∗η,z -product of K is Pk (Q∗η,z ,C∗z). If K
is a non-root k-group of C∗z , (39) obviously holds. Consider, instead, that K is a root k-group
of C∗z . Since eroot ∈ sigpath(fanc,T), we know |R (eroot ,η) | ≤ L and hence

∏
e ∈K |R (e,η) | ≤

L ·∏e ∈K\{eroot } |R (e,η) |. As K \ {eroot } is a non-root (k − 1)-group, Pk (Q∗η,z ,C∗z) ≤ L · Pnon
k−1

(Q∗η,z ,C∗z)
holds. �

Equipped with (39), we can now derive from (31):

pη,z = O

(
1 +

|C∗z |
max
k=1

max{Pnon
k

(Q∗η,z ,C∗z),L · Pnon
k−1

(Q∗η,z ,C∗z)}
Lk

)

= O

(
1 +

|C∗z |−1
max
k=1

Pnon
k

(Q∗η,z ,C∗z)

Lk

)
(40)

where the second equality used the fact that Pnon
k

(Q∗η,z ,C∗z) = −∞ for k = |C∗z |.
We are now ready to prove pη ·

∏
z∈Z pη,z = O (pη). For each z ∈ Z , the value pη,z in (40) is either

Θ(max
|C∗z |−1

k=1

P non
k

(Q∗η,z,C∗z)

Lk) or Θ(1). Depending on which case it is, we define integer kz and a set

Kz of edges differently, as explained next:

— If pη,z = Θ(
P non

k
(Q∗η,z,C∗z)

Lk) for some k ∈ [|C∗z | − 1], then

kz = k

Kz = the non-root k-group of C∗z whose Q∗η,z -product equals Pnon
k (Q∗η,z ,C∗z)

— Otherwise (namely, pη,z = Θ(1)), then

kz = 0

Kz = ∅

In this case, define the Q∗η,z -product of Kz to be 1.

The above definitions of kz and Kz guarantee pη,z = Θ(
Q ∗η,z -product of Kz

Lkz
) in all cases.

In the same fashion, concerning the value pη in (32), we define integer k and a set K of edges as
follows:

— If pη = Θ(
Pk (Q∗η,C∗)

Lk) for some k ∈ [|C∗ |], then

k = k

K = the k-group of C∗ whose Q∗η-product equals Pk (Q∗η ,C∗).

— Otherwise (namely, pη = Θ(1)), then

k = 0

K = ∅

In this case, define the Q∗η-product of K to be 1.

The above definitions of k and K guarantee pη = Θ(
Q ∗η -product of K

Lk
) in all cases.

Now, we can define

Ksuper = K ∪ ��
⋃
z∈Z

Kz
�� .

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:36 X. Hu and Y. Tao

If Ksuper = ∅, then pη,z = Θ(1) for all z ∈ Z and pη = Θ(1), which leads to

pη ·
∏
z∈Z

pη,z = O (1) = O (pη).

If Ksuper � ∅, then Ksuper is a super-|Ksuper |-group (see Section 3.4 for the definition of “super-k-
group”). By Lemma 14, Ksuper is a |Ksuper |-group of T . We thus have:

pη ·
∏
z∈Z

pη,z = Θ ��
Q∗η-product of K

Lk

�� ·
∏
z∈Z

Θ

(
Q∗η,z -product of Kz

Lkz

)

= Θ

(∏
e ∈Ksuper

|Re |
L |Ksuper |

)

= O

(
max-(|Ksuper |,Qη)-product of C

L |Ksuper |

)

= O (pη)

where the last equality used the definition of pη in (28).
We have shown that pη ·

∏
z∈Z pη,z = O (pη) holds in all cases. This completes the whole proof

of Lemma 16.

Example 5.4. To illustrate the core of the above analysis, we will re-visit the scenario in
Example 4.5. The schema graph G of Q has an edge tree T shown in Figure 1, where the circled
nodes constitute the CEC. We repeat the T -clustering of G here for the reader’s convenience:

C = {{BO, BCE, CEJ}, {ABC, BCE, CEJ}, {BD, BCE, CEJ}, {EFG, CEF, CEJ}, {HI}, {EHJ}, {LM, KL}, {HK}, {HN}}.

The anchor leaf is fanc = ABC, resulting in the signature path sigpath(ABC,T) = {ABC, BCE, CEJ}.
The configuration η is a light interval I of C. As explained in Example 4.4, to show that Qη — or
specifically, QI — can be processed with load O (L), we need to prove:

— Join(Q∗I,CEF) can be computed with load O (L) using pI,CEF machines,

— Join(Q∗I,BO) can be computed with load O (L) using pI,BO machines,

— Join(Q∗I,BD) can be computed with load O (L) using pI,BD machines,

— Join(Q∗
I
) can be computed with load O (L) using pI machines, and

— pI,CEF · pI,BO · pI,BD · pI ≤ pη

where the values of pI,CEF, pI,BO, and pI,BD are computed using (31), pI is computed using (32), and
pη — or specifically, pI — is computed using (28). The first four statements can be established
following an argument similar to that used to prove (37) is O (L). Next, we will illustrate our proof
for pI,CEF · pI,BO · pI,BD · pI ≤ pη .

Recall that

— For Q∗I,CEF, its schema graph of G∗CEF has an edge tree T ∗CEF shown in Figure 6(b), and the

T ∗CEF-clustering of G∗CEF is C∗CEF = {{EFG, CEF}, {CEJ}}.
— For Q∗I,BO, its schema graph of G∗BO has an edge tree T ∗BO shown in Figure 6(c), and the T ∗BO-

clustering of G∗BO is C∗BO = {{BO}, {BCE}}.
— For Q∗I,BD, its schema graph of G∗BD has an edge tree T ∗BD shown in Figure 6(d), and the T ∗BD-

clustering of G∗BD is C∗BD = {{BD}, {BCE}}.
— ForQ∗

I
, its schema graph ofG∗ has an edge treeT ∗ shown in Figure 6(e), and theT ∗-clustering

of G∗ is C∗ = {{HI}, {EHJ}, {HK}, {HN}, {LM, KL}}.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:37

As shown in (31), pI,CEF is determined by the maximum of three terms, which are 1,
P1 (Q∗I,CEF,C

∗
CEF)/L, and P2 (Q∗I,CEF,C

∗
CEF)/L2. Similar choices exist for pI,BO, pI,BD, and pI . In our il-

lustration, we will focus on the following choices:

— pI,CEF = Θ(P2 (Q∗I,CEF,C
∗
CEF)/L2). Furthermore, suppose that P2 (Q∗I,CEF,C

∗
CEF) equals the Q∗I,CEF-

product of the 2-group K1 = {CEF, CEJ}, i.e., P2 (Q∗I,CEF,C
∗
CEF) = |R (CEF, I) | · |R (CEJ, I) |.

— pI,BO = Θ(P2 (Q∗I,BO,C
∗
CEF)/L2). In this case, P2 (Q∗I,BO) must be theQ∗I,BO-product of the 2-group

K2 = {BO, BCE}, i.e., P2 (Q∗I,BO,C
∗
BO) = |R (BO, I) | · |R (BCE, I) |

— pI,BD = Θ(P1 (Q∗I,BD,C
∗
CEF)/L). Furthermore, suppose that P1 (Q∗I,BD) equalsQ∗I,BD-product of the

1-group K3 = {BD}, i.e., P1 (Q∗I,BD) = |R (BD, I) |.
— pI = Θ(P3 (Q∗,C∗)/L3). Furthermore, suppose that P3 (Q∗,C∗) equals the Q∗-product of the

3-group K4 = {HI, KL, HK}, i.e., P3 (Q∗,C∗) = |R (HI, I) | · |R (KL, I) | · |R (HK, I) |.
The ideas demonstrated below extend to the other choice combinations in a straightforward
manner.

The 2-groups K1 and K2 are root 2-groups, while K3 is a non-root 1-group (the concept of
root/non-root k-group does not apply to K4). In general, every root k-group must contain an
edge e ∈ sigpath(ABC,T) such that R (e, I) has a size bounded by L. Indeed, for K1, we have
|R (CEJ, I) | ≤ L, while for K2, we have |R (BCE, I) | ≤ L.

Putting together all the above facts, we have:

pI,CEF · pI,BO · pI,BD · pI

= O

(
|R (CEF, I) | · |R (CEJ, I) |

L2
· |R (BO, I) | · |R (BCE, I) |

L2
· |R (BD, I) |

L
· |R (HI, I) | · |R (KL, I) | · |R (HK, I) |

L3

)

= O

(
|R (CEF, I) |

L
· |R (BO, I) |

L
· |R (BD, I) |

L
· |R (HI, I) | · |R (KL, I) | · |R (HK, I) |

L3

)
(41)

The set K = {CEF, BO, BD, HI, KL, HK} is a super-6-group. By Lemma 14, K must be a 6-group of the
T -clustering of G. Therefore:

(41) = O

(
QI -product of K

L6

)
= O

(
Pk (QI ,C)

L6

)
= O (pI)

where the last equality used the definition of pI in (28). Adjusting the hidden constants in the
big-O gives pI,CEF · pI,BO · pI,BD · pI ≤ pI .

6 CONCLUDING REMARKS

In this article, we have disproved the existence of any tuple-based algorithm that can evaluate

an arbitrary join query in the MPC model with load Õ (N /p1/ρ∗), where N is the query’s input
size, ρ∗ is the query’s fractional edge covering number, and p is the number of machines. Specifi-
cally, we have established a new load lower bound of Ω(N /p1/τ ∗) for an instance of boat joins (see
Figure 2 for the schema graph of such joins), where τ ∗ = 3 is the fractional edge packing number

for such joins, and their ρ∗ value equals 2. We can actually make the gap between Õ (N /p1/ρ∗) and
Ω(N /p1/τ ∗) arbitrarily large, by adapting our argument to a class of “generalized boat joins” (de-
fined as follows. Fix any constant integer k ≥ 3. The schema graphG of a generalized boat join has
2k attributes X1,X2, . . . ,Xk and Y1,Y2, . . . ,Yk , and 2k + 2 edges: {X1,X2, . . . ,Xk }, {Y1,Y2, . . . ,Yk },
and {Xi ,Yi } for every i ∈ [k]. G has a fractional edge covering number ρ∗ = 2 and yet a fractional
edge packing number τ ∗ = k . It is not difficult to modify our argument to prove that, for every k ,
Ω(N /p1/τ ∗) = Ω(N /p1/k) is a load lower bound on at least one instance of generalized boat joins.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:38 X. Hu and Y. Tao

Boat joins, as well as their generalized counterparts, have cyclic schema graphs. We have shown

that cyclicity is indeed what prevents us from guaranteeing a load of Õ (N /p1/ρ∗). For that purpose,
we have presented an algorithm that can evaluate any acyclic join with load O (N /p1/ρ∗) — with-
out any polylogarithmic factor—which matches the well-known lower bound of Ω(N /p1/ρ∗) and is
therefore asymptotically optimal. Our algorithm is made possible by canonical edge cover, a new
mathematical structure of acyclic hypergraphs that we discover in this article. Every acyclic hyper-
graph has a canonical edge cover, which constitutes an integral optimal fractional edge covering
and has many interesting properties useful for algorithm design.

An intriguing open problem left behind by this article is whether (cyclic) join evaluation in MPC
can be fully characterized by putting together the fractional edge covering number ρ∗ and fractional
edge packing number τ ∗ of a join. Our lower bound argument does not rule out an algorithm with

load Õ (N /p1/χ ∗), where χ ∗ = max{ρ∗,τ ∗}. In fact, all the generalized boat joins can be evaluated

with load Õ (N /p1/τ ∗) using algorithms from [19] and [27]. Unfortunately, the algorithms in [19]

and [27] fail to achieve load Õ (N /p1/χ ∗) for arbitrary joins.

APPENDICES

A CHERNOFF BOUNDS

Let X1,X2, . . . ,Xt be t ≥ 1 independent Bernoulli random variables such that Pr[Xi = 1] is the
same for all i ∈ [1, t] (hence, so is Pr[Xi = 0]). Let X =

∑t
i=1 and μ = E[X]. For any 0 < γ ≤ 1, it

holds that

Pr[|X − μ | ≥ γ · μ] ≤ 2 exp

(
−γ

2 · μ
3

)
. (42)

For any γ ≥ 2, it holds that

Pr[X ≥ γ · μ) ≤ exp
(
−γ · μ

6

)
. (43)

Inequalities (42) and (43) are commonly known as “Chernoff bounds” (see [28] for the proofs).

B PROOF OF LEMMA 10

We will first prove that F ′ is the CEC of G ′ induced by T ′ by discussing in Section B.1 the sce-
nario where map(fanc) = fanc \ {Aanc} is a subsumed edge in G ′ and in Section B.2 the scenario
where map(fanc) is not subsumed inG ′. Then, Section B.3 will explain why F ′ cannot contain any
subsumed edge of G ′.

B.1 F ′ is the CEC of G ′: the Scenario Where map(fanc) Is Subsumed

Let ê be the parent of fanc in T . As map(fanc) is subsumed in G ′, map(fanc) must be a subset of
map(ê). This implies Aanc � ê (otherwise, fanc ⊆ ê and G is not reduced). Because Aanc needs to
appear in all the nodes of sigpath(fanc,T), Aanc � ê indicates that ê � sigpath(fanc,T) and thus
sigpath(fanc,T) has only a single node fanc. It thus follows that ê ∈ F and Aanc is an exclusive
attribute in fanc.

To show that F ′ = F \ { fanc} is the CEC of G ′ induced by T ′, it suffices to prove that F ′ is
the output of edge-cover(T ′) on an arbitrary reverse topological order ofT ′ (Lemma 8 tells us that
the output is not sensitive to the reverse topological order). For this purpose, consider σ0 as any
reverse topological order of T where ê succeeds fanc (i.e., ê is the immediate successor of fanc in
σ0). Let σ1 be the sequence obtained by removing fanc from σ0; σ1 must be a reverse topological
order ofT ′. Let ebefore be the node preceding fanc in σ0 (i.e., ebefore is the immediate predecessor of
fanc in σ0) and hence preceding ê in σ1; define ebefore = nil if fanc is the first in σ0.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:39

Let us compare the execution of edge-cover(T) on σ0 to that of edge-cover(T ′) on σ1. The two
executions are identical till the moment right after ebefore has been processed (by Line 4 of edge-

cover). By the fact that edge-cover(T) adds ê to Ftmp (we have proved earlier ê ∈ F), ê has a
disappearing attribute not covered by Ftmp when it is processed. Hence, when ê is processed by
edge-cover(T ′), it must also have a disappearing attribute not covered by Ftmp and thus is added
to Ftmp. The rest execution of edge-cover(T) is the same as that of edge-cover(T ′) because every
non-exclusive attribute of fanc is in ê . Therefore, the output of edge-cover(T ′) is the same as that
of edge-cover(T), except that the former does not include fanc.

B.2 F ′ is the CEC of G ′: The Scenario Where map(fanc) is Not Subsumed in G ′

Let σ0 = (e1, e2, . . . , e |E |) be an arbitrary reverse topological order of T . Define e ′i = map(ei) =
ei \ {Aanc} for i ∈ [|E |]. The sequence σ1 = (e ′1, e

′
2, . . . , e

′
|E |) is a reverse topological order ofT ′. We

will compare the execution of edge-cover(T) on σ0 to that of edge-cover(T ′) on σ1. Define F0 (ei)
(respectively, F1 (e ′i)) as the content of Ftmp after edge-cover(T) (respectively, edge-cover(T ′)) has
processed ei (respectively, e ′i).

Claim 1. For any leaf e of T , edge-cover(T ′) must add e ′ = map(e) to Ftmp.

To prove the claim, first note that, because e is a leaf of T and G is reduced, e must have an
exclusive attribute X . If edge-cover(T ′) does not add e ′ to Ftmp, e ′ has no exclusive attributes in
T ′. This implies X = Aanc, which further implies fanc = e (otherwise, Aanc appears in two distinct
nodes and thus cannot be exclusive). However, in that case, e ′ must contain an exclusive attribute
in T ′ (because e ′ = map(fanc) is not subsumed in G ′), thus giving a contradiction.

Claim 2. For each i , ei ∈ F0 (ei) if and only if e ′i ∈ F1 (e ′i).

We prove the claim by induction on i . Because e1 is a leaf of T , Lemma 8 and Claim 1 guarantee
e1 ∈ F0 (e1) and e ′1 ∈ F1 (e ′1), respectively. Thus, Claim 2 holds for i = 1.

Next, we prove the correctness on i > 1, assuming that it holds on ei−1 and e ′i−1. The inductive
assumption implies that F0 (ei−1) covers an attribute X � Aanc if and only if F1 (e ′i−1) covers X . If
ei � F0 (ei), every disappearing attribute of ei must be covered by F0 (ei−1). Hence, F1 (e ′i−1) must
cover all the disappearing attributes of e ′i and thus e ′i � F1 (e ′i).

The rest of the proof assumes ei ∈ F0 (ei), i.e., ei has a disappearing attribute X not covered by
F0 (ei−1). IfX � Aanc,X is a disappearing attribute in e ′i not covered by F1 (e ′i−1) and thus e ′i ∈ F1 (e ′i).
It remains to discuss the scenario X = Aanc. As Aanc is disappearing at ei , Aanc cannot exist in any
proper ancestor of ei . Thus, fanc must be a descendant of ei . We can assert that fanc = ei ; otherwise,
the leaf fanc is processed before ei and must exist in F0 (ei−1) (Lemma 8), contradicting the fact that
Aanc is not covered by F0 (ei−1). Then, e ′i ∈ F1 (e ′i) follows from Claim 1.

We can now conclude that F ′ is always the CEC of G ′ induced by T ′.

B.3 F ′ Cannot Contain Subsumed Edges

Consider any subsumed edge e ′ in E ′. Define e = map−1 (e ′); we know that e must contain Aanc

(otherwise, e is subsumed in E and G is not reduced). Hence, e = e ′ ∪ {Aanc}. If e = fanc, then
map(fanc) = map(e) = e ′ is subsumed in G ′, in which case e ′ � F ′ holds due to the explicit
exclusion of fanc from F ′ as shown in (20).

Next, we consider e � fanc. To prove e � F ′, by the way F ′ is computed in (20), it suffices
to show e � F , where F is the CEC of G induced by T . Assume, on the contrary, that e ∈ F .

Let f̂ be the lowest proper ancestor of fanc in F (here, “ancestor” is defined with respect to T).

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:40 X. Hu and Y. Tao

The definition of Aanc assures us Aanc � f̂ . Because Aanc ∈ fanc and Aanc ∈ e , e must be a proper

descendant of f̂ inT (connectedness of acyclicity). By definition of fanc, f̂ cannot have any non-leaf
proper descendant in F . Hence, e must be a leaf of T .

Because Aanc appears in two distinct leaves of T (i.e., fanc and e), connectedness of acyclicity
demands that Aanc should also exist in the parent ê of e . As G is reduced, e must have an attribute
X that does not appear in ê and thus must be exclusive. It follows that X � Aanc. However, in that
case, e ′ = e \ {Aanc} contains X and thus cannot be subsumed in G ′ (X remains exclusive in G ′),
giving a contradiction.

C PROOF OF LEMMA 11

We discuss only the scenario where map(fanc) is not subsumed inG ′ (the opposite case is easy and
omitted). Our proof will establish a stronger claim:

Claim. F ∗ = F ′ is the CEC of G∗ induced by T ∗ every time Line 5 of cleanse is executed.

G∗ = G ′ and T ∗ = T ′ at Line 1. F ∗ = F ′ is the CEC of G∗ induced by T ∗ at this moment
(Lemma 10). Hence, the claim holds on the first execution of Line 5.

Inductively, assuming that the claim holds currently, we will show that it still does after cleanse

deletes the next esmall from G∗. Let G∗0 and T ∗0 (respectively, G∗1 and T ∗1) be the G∗ and T ∗ before
(respectively, after) the deletion of esmall, . The fact esmall being subsumed inG∗ suggests esmall being
subsumed in G ′. By Lemma 10, esmall � F ′ = F ∗.

Case 1: ebig parents esmall. Let σ0 be a reverse topological order of T ∗0 where ebig succeeds esmall.
As F ∗ is the CEC of G∗0 induced by T ∗0 , edge-cover(T ∗0) produces F ∗ if executed on σ0 (Lemma 8).

Let σ1 be a copy of σ0 but with esmall removed; σ1 is a reverse topological order of T ∗1 . Every
node inT ∗1 retains the same disappearing attributes as inT ∗0 (see Figure 4(a)), whereas esmall has no
disappearing attributes. It is easy to verify that running edge-cover(T ∗1) on σ1 has the same output
F ∗ as running edge-cover(T ∗0) on σ0.

Case 2: esmall parents ebig. Let σ0 be a reverse topological order of T ∗0 where esmall succeeds ebig.
Let σ1 be a copy of σ0 but with esmall removed; σ1 is a reverse topological order ofT ∗1 . We will argue
that running edge-cover(T ∗1) on σ1 also returns F ∗.

The reader should note several facts about disappearing attributes. If an attribute has esmall as
the summit in T ∗0 , the attribute’s summit in T ∗1 becomes ebig (see Figure 4(b)). If an attribute has
e � esmall as the summit inT ∗0 , its summit inT ∗1 is still e . Hence, every node inT ∗1 except ebig retains
the same disappearing attributes as inT ∗0 , whereas the disappearing attributes of ebig inT ∗1 contain
those of ebig and esmall in T ∗0 .

For each node e in σ0 (respectively, σ1), denote by F0 (e) (respectively, F1 (e)) the content of Ftmp

after edge-cover(T ∗0) (respectively, edge-cover(T ∗1)) has processed e . Let ebefore be the node before

ebig in σ0.10 It is easy to see that edge-cover(T ∗0) and edge-cover(T ∗1) behave the same way until
finishing with ebefore, which gives F0 (ebefore) = F1 (ebefore). It must hold that esmall � F0 (esmall)
(otherwise, esmall would be a subsumed edge in F ∗, contradicting Lemma 10). Two possibilities
apply to ebig:

(1) ebig ∈ F0 (ebig). Hence, ebig has a disappearing attribute in T ∗0 not covered by F0 (ebefore). This
means that ebig also has a disappearing attribute inT ∗1 not covered by F1 (ebefore) = F0 (ebefore).
It follows that ebig ∈ F1 (ebig), meaning F1 (ebig) = F0 (ebig) = F0 (esmall).

10In the special case where ebig is the first in σ0, define ebefore = nil with F0 (ebefore) = F1 (ebefore) = ∅.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:41

(2) ebig � F0 (ebig). All the disappearing attributes of ebig and esmall inT ∗0 are covered by F0 (ebefore).
Hence, the disappearing attributes of ebig inT ∗1 are covered by F1 (ebefore) = F0 (ebefore). There-
fore, ebig � F1 (ebig), meaning F0 (esmall) = F0 (ebefore) = F1 (ebefore) = F1 (ebig).

We now conclude that F1 (ebig) = F0 (esmall) always holds. Every remaining node in σ0 and σ1 has
the same disappearing attributes inT ∗0 andT ∗1 . The rest execution of edge-cover(T ∗0) is identical to
that of edge-cover(T ∗1).

D PROOF OF LEMMA 12

We will discuss only the scenario where map(fanc) is not subsumed (the opposite scenario is easy
and omitted).

Departing from acyclic queries, let us consider a more general problem on a rooted tree T where
(i) every node is colored black or white, and (ii) the root and all the leaves are black. Denote by B
the set of black nodes. Each black node b ∈ B is associated with a signature path:

— If b is the root of T , its signature path contains just b itself.

— Otherwise, let b̂ be the lowest ancestor of b among all the nodes in B; the signature path of

b is the set of nodes on the path from b̂ to b, except b̂.

Fig. 8. Four types of contraction.

We define four types of contractions:

— Type 1: We are given two white nodes v1 and v2 such that v1 parents v2. The contraction
removesv2 from T and makesv1 the new parent for all the child nodes ofv2. See Figure 8(a).

— Type 2: We are given two white nodes v1 and v2 such that v1 parents v2. The contraction
removes v1 from T , makes v2 the new parent for all the child nodes of v1, and makes v2 a
child of the original parent of v1. See Figure 8(b).

— Type 3: Same as Type 1, except that v1 is black and v2 is white. See Figure 8(c).
— Type 4: Same as Type 2, except that v1 is white and v2 is black. See Figure 8(d).

The facts below are evident:

— The number of black nodes remains the same after a contraction.
— After a contraction, each signature path either remains the same or shrinks.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:42 X. Hu and Y. Tao

We now draw correspondence between a contraction and an edge deletion in cleanse. T corre-
sponds to the current edge treeT ∗ in cleanse. The set B of black nodes equals F ∗ = F ′ for the en-
tire execution of cleanse. The set {v1,v2} corresponds to {esmall, ebig}. As shown in Lemma 10, esmall

cannot exist in F ∗ and thus cannot correspond to a black node. If we denote by C (respectively,
C∗) the set of signature paths at the beginning (respectively, end) of cleanse, each signature path
in C∗ is obtained by continuously shrinking a distinct signature path in C. This implies Lemma 12,
noticing that C = {sigpath(f ,T) | f ∈ F } and C∗ = {sigpath(f ∗,T ∗) | f ∗ ∈ F ∗}.

E PROOF OF LEMMA 13

We will first prove that, for any z ∈ Z , F ∗z is the CEC ofG∗z induced byT ∗z . Let ẑ be the parent of z.
Recall that F is the CEC ofG induced byT . Consider a reverse topological order σz ofT satisfying
the following condition: a prefix of σz is a permutation of the nodes in the subtree of T rooted at
z. In other words, in σz , every node in the aforementioned subtree must rank before every node
outside the subtree. Define σ ∗z to be the sequence obtained by deleting from σz all the nodes e such
that e � ẑ and e is outside the subtree of T rooted at z. It is clear that σ ∗z is a reverse topological
order of T ∗z .

Let us compare the execution of edge-cover(T) on σ to that of edge-cover(T ∗z) on σ ∗z . They are
exactly the same until z has been processed. Hence, every node in the Ftmp of edge-cover(T) at
this moment must have been added to Ftmp by edge-cover(T ∗z). This means that all the nodes in
F ∗z , except ẑ, must appear in the final Ftmp output by edge-cover(T ∗z). Finally, the final Ftmp must
also contain ẑ as well due to Lemma 8 (notice that ẑ is a raw leaf ofT ∗z). This shows that F ∗z is the
CEC of G∗z induced by T ∗z .

Next, we prove that F ∗ is the CEC of G∗ induced by T ∗. Let e be the highest node in
sigpath(fanc,T). Consider a reverse topological order σ of T satisfying the following condition:

a prefix of σ is a permutation of the nodes in the subtree of T rooted at e . Define σ ∗ to be the

sequence obtained by deleting that prefix from σ . It is clear that σ ∗ is a reverse topological order

of T ∗. Define ê to be the parent of e in T . Note that ê must belong to F due to the definitions of e
and sigpath(fanc,T)

We will compare the execution of edge-cover(T) on σ to that of edge-cover(T ∗) on σ ∗. For each
e in σ , define F0 (e) as the content of Ftmp after edge-cover(T) has finished processing e . Similarly,

for each e in σ ∗, define F1 (e) as the content of Ftmp after edge-cover(T ∗) has finished processing e .
Divide σ into three segments: (i) σ1, which includes the prefix of σ ending at (and including) e , (ii)

σ2, which starts right after σ1 and ends at (and includes) ê , and (iii) σ3, which is the rest of σ . Note

that σ ∗ is the concatenation of σ2 and σ3.

Claim 1. For any e in σ2, e ∈ F0 (e) if and only if e ∈ F1 (e).

We prove the claim by induction. As the base case, consider e as the first element in σ2. InT ∗, e

must be a leaf and, by Lemma 8, must be in F1 (e). In T , e is either a leaf or ê . In the former case,

Lemma 8 assures us e ∈ F0 (e). In the latter case, e is also in F0 (e) because ê ∈ F .
Next, we prove the claim on every other node e in σ2, assuming the claim’s correctness on the

node ebefore preceding e in σ2. This inductive assumption implies F1 (ebefore) ⊆ F0 (ebefore). If e ∈
F0 (e), then e has a disappearing attribute X not covered by F0 (ebefore). As F1 (ebefore) ⊆ F0 (ebefore),

F1 (ebefore) does not cover X , either. Hence, edge-cover(T ∗) adds e to Ftmp, namely, e ∈ F1 (e).

Let us now focus on the case where e ∈ F1 (e). If e = ê , the fact ê ∈ F indicates e ∈ F0 (e).

Next, we consider e � ê , meaning that e is a proper descendant of ê . The fact e ∈ F1 (e) suggests

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation 6:43

that e has a disappearing attribute X not covered by F1 (ebefore). If e � F0 (e), F0 (ebefore) must have
a node e ′ containing X . Node e ′ must come from σ1 (the inductive assumption prohibits e ′ from
appearing in σ2) and hence must be a descendant of e . By acyclicity’s connectedness requirement,

X appearing in both e and e ′ means that X must belong to ê . But this contradicts X disappearing
at e . We thus conclude that e ∈ F0 (e).

Claim 2. For any e in σ3, e ∈ F0 (e) if and only if e ∈ F1 (e).

Claim 1 assures us that F1 (ê) ⊆ F0 (ê). Note also that ê belongs to F0 (ê) (as explained before, ê ∈
F) and hence also to F1 (ê) (Claim 1). Any node e ′ ∈ F0 (ê) \F1 (ê) must appear in the subtree rooted

at ê in T , whereas any node e in σ3 must be outside that subtree. By acyclicity’s connectedness

requirement, if e ′ contains an attribute X in e , then X ∈ ê for sure. This means that F1 (ê) covers a

disappearing attribute of e if and only if F0 (ê) does so. Therefore, edge-cover(T ∗) processes each
node of σ3 in the same way as edge-cover(T). This proves the correctness of Claim 2.

By putting Claims 1 and 2 together, we conclude that edge-cover(T ∗) returns all and only the at-

tributes inσ2∪σ3 output by edge-cover(T). Therefore, the output of edge-cover(T ∗) is F ∩E∗ = F ∗.

F PROOF OF LEMMA 14

For any f ∗ ∈ F ∗z and any z ∈ Z that is not the root of T ∗z , it holds that sigpath(f ∗,T ∗z) ⊆
sigpath(f ∗,T). Similarly, for any f ∗ ∈ F ∗, it holds that sigpath(f ∗,T ∗) ⊆ sigpath(f ∗,T). To prove
the lemma, it suffices to show that, given a super-k-group K = {e1, . . . , ek }, we can always assign
each ei , i ∈ [k], to a distinct cluster in {sigpath(f ,T) | f ∈ F }. This is easy: if ei is picked from
sigpath(f ∗,T ∗z) for some z ∈ F and f ∗ ∈ F ∗z , assign ei to sigpath(f ∗,T); if ei is picked from

sigpath(f ∗,T ∗) for some f ∗ ∈ F ∗, assign ei to sigpath(f ∗,T).

REFERENCES

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.

[2] Foto N. Afrati, Manas R. Joglekar, Christopher Ré, Semih Salihoglu, and Jeffrey D. Ullman. 2017. GYM: A multiround

distributed join algorithm. In Proceedings of the International Conference on Database Theory (ICDT’17). 4:1–4:18.

[3] Foto N. Afrati and Jeffrey D. Ullman. 2011. Optimizing multiway joins in a map-reduce environment. IEEE Transactions

on Knowledge and Data Engineering (TKDE) 23, 9 (2011), 1282–1298.

[4] Alok Aggarwal and Jeffrey Scott Vitter. 1988. The input/output complexity of sorting and related problems. Commu-

nications of the ACM (CACM) 31, 9 (1988), 1116–1127.

[5] Kaleb Alway, Eric Blais, and Semih Salihoglu. 2021. Box covers and domain orderings for beyond worst-case join

processing. In Proceedings of the International Conference on Database Theory (ICDT’21). 3:1–3:23.

[6] Albert Atserias, Martin Grohe, and Daniel Marx. 2013. Size bounds and query plans for relational joins. SIAM J.

Comput. 42, 4 (2013), 1737–1767.

[7] Paul Beame, Paraschos Koutris, and Dan Suciu. 2017. Communication steps for parallel query processing. Journal of

the ACM (JACM) 64, 6 (2017), 40:1–40:58.

[8] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. 2017. Answering conjunctive queries under updates. In

Proceedings of the ACM Symposium on Principles of Database Systems (PODS’17). 303–318.

[9] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified data processing on large clusters. In Proceedings of

the USENIX Symposium on Operating Systems Design and Implementation (OSDI’04). 137–150.

[10] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2001. The complexity of acyclic conjunctive queries. Journal of

the ACM (JACM) 48, 3 (2001), 431–498.

[11] Xiao Hu. 2021. Cover or pack: New upper and lower bounds for massively parallel joins. In Proceedings of the ACM

Symposium on Principles of Database Systems (PODS’21). 181–198.

[12] Xiao Hu and Ke Yi. 2016. Towards a worst-case I/O-Optimal algorithm for acyclic joins. In Proceedings of the ACM

Symposium on Principles of Database Systems (PODS’16). 135–150.

[13] Xiao Hu and Ke Yi. 2019. Instance and output optimal parallel algorithms for acyclic joins. In Proceedings of the ACM

Symposium on Principles of Database Systems (PODS’19). 450–463.

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

6:44 X. Hu and Y. Tao

[14] Xiao Hu, Ke Yi, and Yufei Tao. 2019. Output-optimal massively parallel algorithms for similarity joins. ACM Transac-

tions on Database Systems (TODS) 44, 2 (2019), 6:1–6:36.

[15] Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. 2017. The dynamic yannakakis algorithm: Compact

and efficient query processing under updates. In Proceedings of the ACM Management of Data (SIGMOD’17). ACM,

1259–1274.

[16] Bas Ketsman and Dan Suciu. 2017. A worst-case optimal multi-round algorithm for parallel computation of conjunc-

tive queries. In Proceedings of the ACM Symposium on Principles of Database Systems (PODS’17). 417–428.

[17] Bas Ketsman, Dan Suciu, and Yufei Tao. 2022. A near-optimal parallel algorithm for joining binary relations. Log.

Methods Comput. Sci. 18, 2 (2022).

[18] Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Re, and Atri Rudra. 2016. Joins via geometric resolutions: Worst

case and beyond. ACM Transactions on Database Systems (TODS) 41, 4 (2016), 22:1–22:45.

[19] Paraschos Koutris, Paul Beame, and Dan Suciu. 2016. Worst-case optimal algorithms for parallel query processing. In

Proceedings of the International Conference on Database Theory (ICDT’16). 8:1–8:18.

[20] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, and Theo Vassilakis.

2010. Dremel: Interactive analysis of web-scale datasets. Proceedings of the VLDB Endowment (PVLDB) 3, 1 (2010),

330–339.

[21] Gonzalo Navarro, Juan L. Reutter, and Javiel Rojas-Ledesma. 2020. Optimal joins using compact data structures. In

Proceedings of the International Conference on Database Theory (ICDT’20), Vol. 155. 21:1–21:21.

[22] Hung Q. Ngo, Dung T. Nguyen, Christopher Re, and Atri Rudra. 2014. Beyond worst-case analysis for joins with

minesweeper. In Proceedings of the ACM Symposium on Principles of Database Systems (PODS’14). 234–245.

[23] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2012. Worst-Case optimal join algorithms: [Extended Ab-

stract]. In Proceedings of the ACM Symposium on Principles of Database Systems (PODS’12). 37–48.

[24] Hung Q. Ngo, Ely Porat, Christopher Re, and Atri Rudra. 2018. Worst-case optimal join algorithms. Journal of the

ACM (JACM) 65, 3 (2018), 16:1–16:40.

[25] Hung Q. Ngo, Christopher Re, and Atri Rudra. 2013. Skew strikes back: New developments in the theory of join

algorithms. SIGMOD Rec. 42, 4 (2013), 5–16.

[26] Anna Pagh and Rasmus Pagh. 2006. Scalable computation of acyclic joins. In Proceedings of the ACM Symposium on

Principles of Database Systems (PODS’06). 225–232.

[27] Miao Qiao and Yufei Tao. 2021. Two-attribute skew free, isolated CP theorem, and massively parallel joins. In Proceed-

ings of the ACM Symposium on Principles of Database Systems (PODS’21). 166–180.

[28] Cheng Sheng, Yufei Tao, and Jianzhong Li. 2012. Exact and approximate algorithms for the most connected vertex

problem. ACM Transactions on Database Systems (TODS) 37, 2 (2012), 12:1–12:39.

[29] Yufei Tao. 2018. Massively parallel entity matching with linear classification in low dimensional space. In Proceedings

of the International Conference on Database Theory (ICDT’18), Vol. 98. 20:1–20:19.

[30] Yufei Tao. 2020. A simple parallel algorithm for natural joins on binary relations. In Proceedings of the International

Conference on Database Theory (ICDT’20). 25:1–25:18.

[31] Yufei Tao. 2022. Parallel acyclic joins with canonical edge covers. In Proceedings of the International Conference on

Database Theory (ICDT’22). 9:1–9:19.

[32] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning Zhang, Suresh Anthony, Hao Liu,

and Raghotham Murthy. 2010. HIVE - a petabyte scale data warehouse using Hadoop. In Proceedings of the Interna-

tional Conference on Data Engineering (ICDE’10). 996–1005.

[33] Todd L. Veldhuizen. 2014. Triejoin: A simple, worst-case optimal join algorithm. In Proceedings of the International

Conference on Database Theory (ICDT’14). 96–106.

[34] Mihalis Yannakakis. 1981. Algorithms for acyclic database schemes. In Proceedings of the 7th International Conference

on Very Large Data Bases (September 9–11, 1981, Cannes, France). 82–94.

[35] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin,

Scott Shenker, and Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing. In Proceedings of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI’12).

15–28.

Received 15 August 2022; revised 8 November 2023; accepted 10 November 2023

Journal of the ACM, Vol. 71, No. 1, Article 6. Publication date: February 2024.

