
Aggregated Deletion Propagation for Counting Conjunctive Query

Answers

Xiao Hu, Shouzhuo Sun, Shweta Patwa, Debmalya Panigrahi, and Sudeepa Roy
Duke University, Durham, NC, USA

{xh102, ss1060, sjpatwa, debmalya, sudeea}@cs.duke.edu

Abstract

We investigate the computational complexity of minimizing the source side-effect in order to remove
a given number of tuples from the output of a conjunctive query. This is a variant of the well-studied
deletion propagation problem, the difference being that we are interested in removing the smallest subset
of input tuples to remove a given number of output tuples while deletion propagation focuses on removing
a specific output tuple. We call this the Aggregated Deletion Propagation problem. We completely
characterize the poly-time solvability of this problem for arbitrary conjunctive queries without self-joins.
This includes a poly-time algorithm to decide solvability, as well as an exact structural characterization
of NP-hard instances. We also provide a practical algorithm for this problem (a heuristic for NP-hard
instances) and evaluate its experimental performance on real and synthetic datasets.

1 Introduction

The problem of view update (e.g., [2, 10]) – how to change the input to achieve desired changes to the
query output or view – is a well-studied problem in the database literature. View update problems enable
users to tune the output in order to meet their prior expectation, satisfy external constraints, or examine
and compare multiple options. A particularly well-studied class of view update problems is what is known
as deletion propagation problems (see Buneman, Khanna, and Tan [3]; for follow up literature, see related
work). In these problems, the goal is to remove a specific tuple from the output of a query by removing
input tuples. In this paper, we study a natural variant of this problem where we seek to remove at least a
given number of output tuples rather than any specific output tuple. We call this the Aggregated Deletion
Propagation problem.

Formally, in the Aggregated Deletion Propagation (ADP), we are given a query Q, a database D, and a
target integer k. The goal is to remove at least k tuples from Q(D) by removing the minimum number of
input tuples from D (this objective is called source side-effect in the literature). Our main motivation for the
ADP problem comes from two generic application settings. First, ADP can be used to obtain a desired change
in the output size with minimum intervention on the input. As we will describe below, in many practical
situations, the goal is to create a sufficiently large impact on the output by removing a given number of
output tuples rather than removing any specific tuple. Our problem applies to these situations. Second, ADP
can be used to analyze the robustness of the output with respect to possible disruptions in the input. In
other words, if there are inadvertent changes to the input that are not within our control, how badly can it
effect the output of a query? We give examples of these two applications below.

Example 1. Suppose a university wants to plan ahead in terms of managing waitlists for its classes. This
can be achieved via the following query:

QWL(S,C) : −Major(S,M), Req(M,C), NoSeat(C)

The first query QWL says that a student S is on the waitlist for a class C if the following happen: (1) S
intends to major in M (we assume students can have multiple majors), (2) major M requires class C, and
(3) there are no seats available in C. The university may try to figure out the easiest alternative for reducing
the size of the waitlist to some target, which amounts to reducing the size of the output of query QWL by the

1

same amount. The waitlist entries can be removed by steering students away from the major (or creating an
entry condition), relaxing the requirements for the major, or by increasing the number of seats in the class;
all of these options correspond to removing tuples from the input relations of QWL.

Example 2. We consider the same context as in the previous example, but suppose the new task is to
estimate what classes can be reliably offered in a future semester. This can be done using the following query

QPossible(C) : −Teaches(P,C), NotOnLeave(P).

This query lists the possible courses that can be offered in a semester. A course C can be offered if there is a
professor P who is able to teach C and is not on leave. If all professors who are able to teach C go to leave
(removal of entries from NotOnLeave) or do not want to teach C (removal of entries from Teaches), C
cannot be offered. While approving the leave requests and asking for teaching preferences, the university may
want to study the robustness of QPossible with respect to these changes: e.g., what is the minimum changes
in the input that would lead to more than 10% of the courses not being able to be offered in that semester.
If this size is small, i.e., many courses are critically dependent on a few professors, the university would be
able to decide whether all can be on leave or change teaching preferences appropriately. Alternatively, this
information might also inform the decision to hire faculty in a particular area.

Example 3. We now turn to a third example from the area of robustness of networks. Consider a query

Q3−path(A,B,C,D) : −R1(A,B), R2(B,C), R3(C,D)

that stores all possible paths between two end vertices that go through two layers of intermediate vertices
in a communication or transportation network. If it were possible to disrupt (say) 80% of the paths by only
removing (say) 1% of links, then the network is clearly not robust. On the other hand, if this would require
removing (say) 80% of the links, that’s a much more robust network. This is precisely the information the
ADP can provide us on this query. Therefore, ADP can estimate the inherent robustness of a network to either
malicious attacks or even just random failures.

Our contributions. In this paper, we propose the ADP problem and study its complexity in depth for
the class of conjunctive queries without self-joins (CQ). Here, the results can be an arbitrary projection of
the natural join of the relations appearing on the body of the query (as illustrated in QWL, QPossible, and
Q3−path above). Our contributions can be summarized as follows:

• Algorithmic Dichotomy: We give an algorithm that only takes the query Q as input, and decides
in time that is polynomial in the size of the query, whether ADP can be efficiently solved (in polynomial
time data complexity [26]) on Q for all instances D and all values of k. The algorithm uses a few
simplification steps that preserve the complexity of the problem. At the end, the query is NP-hard if
the simplification steps reduce it to a small number of ‘core’ hard queries; otherwise, it is poly-time
solvable. (Section 4)

• Structural Dichotomy: To complement our algorithmic characterization of the complexity of the ADP
problem, we also provide a structural characterization of the complexity by identifying three simple
structures – triad-like, non-hierarchical head join, and strand – whose presence exactly captures all
queries where ADP in NP-hard. (Section 5)

• Approximation: We study the approximation for the ADP problem when it is NP-hard. We show
that greedy and prime-dual achieve approximation factors of O(log k) and p respectively for full CQs,
where p is the number of relations in the input query. Meanwhile, we present some inapproximability
result when projection exists, such that obtaining even sub-polynomial approximations for the ADP

problem on general CQs is unlikely. (Section 6)

• Efficient unified algorithm: We give a poly-time (in data complexity) algorithm for solving ADP

for all CQs without self-joins. It returns the optimal solution for queries on which ADP is poly-time
solvable, and provides a poly-time heuristic for queries on which ADP is NP-hard. We also extend the
algorithm to support selection operations. (Section 7)

• Experimental evaluations: We provide experimental evaluation of our algorithms on synthetic
and real datasets in terms of efficiency, quality, scalability, various classes of queries as well as data
distribution. (Section 8)

2

2 Related Work

The classical view update problem, of which deletion propagation is an instantiation, has been studied
extensively over the last four decades (e.g., [2, 10]). The deletion propagation problem has been popular more
recently, starting with the seminal work by Buneman, Khanna, and Tan [3]. They studied the complexity
of both the source side-effect (objective is to delete the minimum number of input tuples) and the view
side-effect (objective is to delete the minimum number of other output tuples) versions, in order to delete a
particular output tuple. For source side-effect and select-project-join-union (SPJU) operators, they showed
that for PJ or JU queries, finding the optimal solution is NP-hard, while for others (e.g., SPU or SJ)
it is poly-time solvable. This work was extended to multi-tuple deletion propagation by Cong, Fan, and
Geerts [8]. They showed that for single tuple deletion propagation, a property called key preservation makes
the problem tractable for SPJ views; however, if multiple tuples are to be deleted, the problem becomes
intractable for SJ, PJ, and SPJ views. Kimelfeld, Vondrak, and Williams [15, 14, 16] extensively studied
the complexity of deletion propagation for the view side-effect version and provided structural dichotomy
and trichotomy (poly-time, APX-hard/constant approximation, and inapproximable) for single and multiple
output tuple deletions.

Beyond the context of deletion propagation, several dichotomy results have been obtained for problems
motivated by data management, e.g., in the context of probabilistic databases [9], responsibility [21], or
database repair [19]. Another problem related to ADP is reverse data management and how-to queries
[22, 23]. Given some desired changes in the output (e.g., modifying aggregate values, creating or removing
tuples), the goal is to obtain a feasible modification of the input that satisfies a given set of constraints and
optimizes on some criteria. In this line of research, the focus has been on developing an end-to-end system
using provenance and mixed integer programming, and not on the complexity of the problem. ADP is also
related to explanations by intervention [28, 25, 24], where the goal is to find a set of input tuples captured
by a predicate whose deletion changes one or more aggregate answers to the maximum extent. ADP differs in
that the aim is to make a desired change in the output by removing the minimum number of input tuples.

Finally, closely related to the ADP is the resilience problem, originally studied by Freire et al. for the
class of CQs without self-joins and functional dependencies [11] (see also [12] for an extension to a class of
queries with self-joins). The input to the resilience problem is a Boolean CQ and a database D such that
Q(D) is true, and the goal is to remove a minimum set of tuples from D to make Q false on D. Observe that
the resilience problem is identical to ADP with k = |Q(D)|. [11] gave a “structural dichotomy” characterizing
whether a given query is poly-time solvable or NP-hard using a core hard structure called “triad”. The
generalization to arbitrary values of k leads to interesting consequences, e.g., queries that are poly-time
solvable for resilience become hard for ADP), whereas the presence of arbitrary projections in the output
makes ADP even more NP-hard for ADP. Nevertheless, we use the characterization for resilience from [11] as
a special case of our algorithmic and structural characterization for ADP and discuss the resilience problem
further in subsequent sections.

3 Preliminaries

In this section, we start with some basic definitions in relational databases. Then, we formally define the
ADP problem and discuss some special cases that will motivate our general technique.

3.1 Background

We consider the standard setting of multi-relational data-bases and conjunctive queries. Let R be a database
schema that contains p tables R1, · · · , Rp. Let A be the set of all attributes in the database R. Each relation
Ri is defined on a subset of attributes attr(Ri) ⊆ A. A relation Ri is vacuum if attr(Ri) = ∅, and non-
vacuum otherwise. We use A,B,C,A1, A2, · · · etc. to denote the attributes in A and a, b, c, · · · etc. to
denote their values. For each attribute A ∈ A, rels(A) denotes the set of relations that A appears, i.e.,
rels(A) = {Ri : A ∈ attr(Ri)}.

Given the database schema R, let D be a given instance of R, and the corresponding instances of
R1, · · · , Rp be RD1 , · · · , RDp . Where D is clear from the context, we will drop the superscript and use
R1, · · · , Rp for both the schema and instances. Any tuple t ∈ Ri is defined on attr(Ri). For any attribute

3

R1

A B

a1 b1
a2 b2
a3 b3

R2

B C

b1 c1
b2 c2
b2 c3
b3 c3

R3

C E

c1 e1
c2 e3
c3 e3

Q1(D)
A B C E

a1 b1 c1 e1
a2 b2 c2 e3
a2 b2 c3 e3
a3 b3 c3 e3

Q2(D)
A E

a1 e1
a2 e3
a3 e3

Figure 1: An example of database schema R = {R1, R2, R3} with A = {A,B,C,E}, attr(R1) = {A,B},
attr(R2) = {B,C}, and attr(R3) = {C,E}. An instance D with 10 tuples is also shown. The results for
Q1(A,B,C,E) : −R1(A,B), R2(B,C), R3(C,E) and Q2(A,E) : −R1(A,B), R2(B,C), R3(C,E) are Q1(D)
and Q2(D).

A
B

C

I

E

F K

H

J

attributes

R1

R2

R3

R4

R5

R6

relations

Figure 2: Hypergraph (left) and graph (right) representation for an example CQ Q(A,C, F,K) : −
R1(A,B,C), R2(A,H), R3(B,E, F), R4(E,K), R5(K, I), R6(C, I, J).

A ∈ attr(Ri), πAt ∈ dom(A) denotes the value of attribute A in tuple t. Similarly, for a set of attributes
B ⊆ attr(Ri), πBt denotes the values of attributes in B for t with an implicit ordering on the attributes. It
should be noted that for a vacuum relation Ri, either Ri = {∅} or Ri = ∅ (respectively interpreted as “true”
and “false”).

We consider the class of conjunctive queries without self-joins, formally defined as

Q(A) : −R1(A1), R2(A2), · · · , Rp(Ap)

where A ⊆ A denotes the output attributes and A−A the non-output attributes (also called the existential
variables). Note that we do not have any projection in the body. Each Ri in Q is distinct, i.e., the CQ does
not have a self-join. If A = A, such a CQ query is known as full CQ which represents the natural join among
the given relations. If A = ∅, such a CQ is boolean which indicates whether the result of natural join among
the given relations is empty or not; otherwise, it is non-boolean.

Extending the notation, we use rels(Q) to denote all the relations that appear in the body of Q, attr(Q)
to denote all the attributes that appear in the body of Q, and head(Q) ⊆ attr(Q) to denote all the attributes
that appear in the head of Q (so, head(Q) = A in the previous paragraph). When a full CQ query Q is
evaluated on an instance D, if Ri = ∅ for some vacuum relation Ri ∈ rels(Q), then Q(D) is also empty;
otherwise, the result Q(D) is evaluated on non-vacuum relations. When a CQ query Q is evaluated on an
instance D, the result is exactly the projection of the full join result on attributes in head(Q) (after removing
duplicates). We give an example in Figure 1.

A classical representation of a CQ Q is to model it as a hypergraph, where each attribute in attr(Q)
is a vertex and each relation in rels(Q) is a hyperedge. In this work, we use a simpler representation for
capturing the connectivity of queries and model it as a graph GQ, where each relation is a vertex and there
is an edge between Ri, Rj ∈ rels(Q) if attr(Ri) ∩ attr(Rj) 6= ∅. This graph is denoted GQ. A CQ Q is
connected if GQ is connected, and disconnected otherwise. An example is illustrated in Figure 2.

3.2 Problem Definition

Below, we formally define the ADP problem in terms of the count of output tuples of a CQ:

4

Definition 1. Given a CQ Q on R, an instance D, and a positive integer k ≥ 1, the aggregated deletion
propagation (ADP) problem aims to remove at least k results from Q(D) by removing the minimum number
of input tuples from D.

Given Q, k, and D, we denote the above problem by ADP(Q,D, k). Note that an implicit constraint on
the input parameter k is 1 ≤ k ≤ |Q(D)|. For instance, in Figure 1, ADP(Q1, D, 2) will return a single tuple
R3(c3, e3) since removing it would remove the last two output tuples in Q1(D). In this paper, we study the
data complexity [26] of the ADP problem, i.e., the size of the query and schema are fixed, and the complexity
is in terms of the size of the database D. More precisely, we say that ADP(Q,D, k) is polynomial-time solvable
for a query Q if, for an arbitrary instance D and integer k, the solution of ADP(Q,D, k) can be computed in
polynomial time in the size of D; otherwise, it is NP-hard.

For simplicity, we assume that all relations have distinct set of attributes in an input CQ Q, i.e.,
attr(Ri) 6= attr(Rj) for every pair of relations Ri, Rj ∈ rels(Q). The rationale is that removing du-
plicated relations won’t change the poly-time solvability of the original CQ.

3.3 Special Cases

Before we discuss the complexity of the ADP problem in general, we note the following special cases:

ADP on boolean CQ. The ADP problem on boolean CQ is also known as the resilience problem, i.e., removing
the minimum number of input tuples to make the true query become false. The next theorem in [11] gives
a decidability result of the ADP problem on boolean CQ.

Theorem 1 ([11]). On a boolean CQ Q, the poly-time solvability (in data complexity) of the ADP(Q,D, 1)
problem can be decided in polynomial time (in query complexity).

ADP on CQ with vacuum relations. The ADP problem becomes easy when Q contains a vacuum relation.
Consider an arbitrary input instance D for Q and integer k. If every vacuum relation in Q has instance
{∅}, we can remove query results in Q(D) by removing the tuple {∅} in any one vacuum relation; otherwise,
Q(D) = ∅ by definition, and there is no need to remove anything. Therefore:

Lemma 1. For a CQ Q, if there exists some vacuum relation, the ADP(Q,D, k) problem is poly-time solvable
(in data complexity).

ADP with different choices of k: When k = |Q(D)| or k = 1, the ADP problem is equivalent to the resilience
problem, which implies that ADP(Q,D, k) is NP-hard even for a constant k for general CQs. In contrast, ADP
can be shown to be poly-time solvable (in data complexity) for any fixed k if the query Q is a full CQ.

For full CQs, it is indeed the case that ADP(Q,D, k) is polynomial-time solvable for constant k. Enumerate

all
(|Q(D)|

k

)
ways of selecting the output tuples to be removed, which is polynomial in |D| = n assuming data

complexity. So, the problem reduces to finding a minimum set of input tuples whose removal results in a
fixed set of k output tuples being removed. Let us fix such a set of k output tuples. Now partition the n
input tuples into 2k subsets depending on which subset of these k output tuples they remove – since the
CQ is full, each input tuple will remove zero or more output tuples from the k chosen output tuples. All
input tuples in any subset of this partition behave identically with respect to the k output tuples we chose
to delete; hence, we can only keep any one of these input tuples. That leaves us with 2k input tuples and the

input size becomes constant for fixed k. So, by any brute force method (e.g., trivially enumerating all 22
k

subsets of these 2k input tuples), the problem can be solved in O(22
k

) for the fixed set of k output tuples.

Overall, the running time becomes O(|Q(D)|k · 22k) time, which is polynomial for fixed k.

4 Poly-time Decidability

In this section, we give an algorithm that can decide poly-time solvability of the ADP problem on general
CQs.

Theorem 2. On a CQ Q, IsPtime(Q) can decide poly-time solvability of the ADP(Q,D, k) problem, which
runs in polynomial time.

5

Algorithm 1: IsPtime(Q)

1 Remove all universal attributes from each relation in Q;
2 if head(Q) = ∅ then
3 if there is no triad structure in Q then
4 return true

5 else
6 if there exists a relation Ri with attr(Ri) = ∅ then
7 return true

8 else
9 if Q is disconnected then

10 Let Q1, Q2, · · · , Qs be its connected components;
11 return ∩si=1IsPtime(Qi);

12 return false

Remove all

Boolean
Non-boolean

vacuum relation: true Disconnected: Others: false

universal attributes

(Lemma 4.3)

(Lemma 4.4)

(Theorem 3.2)

(Lemma 4.5)(Lemma 3.3)

There exists a

Q

IsPtime(Q) =
∧

i IsPtime(Qi)

Figure 3: Procedure IsPtime(Q).

The procedure IsPtime(Q) is illustrated in Figure 3. Note that when IsPtime(Q) returns true, the
ADP(Q,D, k) problem is poly-time solvable, and NP-hard otherwise. The algorithmic description of IsPtime
is given in Algorithm 1. IsPtime(Q) runs in polynomial time in the query size.

The high-level idea is to alternately apply two simplifications steps on the input query, until a “base case”
is arrived at. The first simplification step is that of removing all universal attributes in the input query. An
attribute is universal if it is an output attribute appearing in all relations. After applying this step, if Q
becomes boolean or contains a vacuum relation (two of the base cases), it is decidable in polynomial time
by Theorem 1 and Lemma 1.

Next, we check whether Q is connected or not. For a disconnected query Q, we can decompose it into
multiple connected subqueries as follows: apply breadth-first search or depth-first search algorithm on the
graph GQ, and find all connected components for GQ. The set of relations corresponding to the set of
vertices in one connected component of GQ form a connected subquery of Q. In this case, we perform the
second simplification step of decomposing Q into multiple connected subqueries, followed by calling IsPtime
recursively on each connected subquery. More specifically, let Q1, Q2, · · · , Qs be the connected subqueries
of Q; then, IsPtime(Q) will return

∧s
i=1 IsPtime(Qi). Otherwise, Q ends up in “Others” (the third base

case). In this case, Q is connected, non-boolean, and does not contain either a vacuum relation or a universal
attribute. For all queries in “Others”, IsPtime returns false.

Example 4. Consider an example CQ Q(A,F,G,H) : −R1(A,B),
R2(F,G), R3(B,C), R4(C), R5(G,H). Observe that Q is non-boolean without any universal attribute and
vacuum relations. The simplification step applied to Q is to decompose it into two connected subqueries,
Q1 (with R1, R3, R4) and Q2 (with R2, R5). For Q2, after removing the universal attribute G, it becomes
disconnected. On applying the simplification step again to Q2, it decomposes into two connected subqueries,

6

Q21 (with R2) and Q22 (with R5). After removing the universal attribute F in Q21, relation R2 becomes
vacuum and IsPtime(Q21) returns true. Similarly, IsPtime(Q22) returns true. However, Q1 is non-
boolean and contains no vacuum relation. Both simplifications fail on Q1, so IsPtime(Q1) returns false.
Therefore, IsPtime(Q) returns false and ADP(Q,D, k) is NP-hard.

The essence of IsPtime is in the two simplifications steps: removing universal attributes and decomposing
a disconnected query. Both these steps preserve the complexity of the problem as formally stated in Lemma 2
and Lemma 3. Intuitively, for any universal attribute, we can partition the query results by the value of
the universal attribute, and interpret each class in the partition as the result of the same query over a
distinct sub-instance. Moreover, the deletion of any input tuple t can only affect a single sub-instance that
shares the value of the universal attribute with t. The original ADP instance now degenerates to finding an
optimal combination of solutions to the ADP problem defined over each of the sub-instances, after removing
the universal attribute. Similarly, if the query is disconnected, the results of all connected subqueries will
join by cross product. Then, the original ADP instance also degenerates to finding an optimal combination
of solutions to the ADP problem defined for each connected subqueries. Finding the optimal combination is
polynomial-time solvable since the size of the query as well as the query result is polynomial. Thus, the
complexity of the original query can be deduced from that of the simplified queries.

Our proof of Theorem 2 also follows the logical diagram of IsPtime(Q), which is divided into two parts.
First, we show that these two simplification steps preserve the complexity of the problem, as described above.
Then, we deal with the base cases. Note that the correctness for boolean queries and vacuum relations are
implied by Theorem 1 and Lemma 1. Therefore, it suffices to show the NP-hardness of the ADP problem on
Q, when Q is non-boolean, connected, and contains no universal attribute or vacuum relation; we show this
in Lemma 4. Putting everything together, the correctness for Theorem 2 then follows from induction over
the size of the query.

4.1 Hardness Preservation in Simplifications

In the first part, we show that when the simplifications are applied to the input query, the complexity of the
ADP problem is preserved.

Lemma 2. Let A be a universal attribute in Q. Then, ADP(Q,D, k) is NP-hard if and only if ADP(Q−A, D, k)
is NP-hard, where Q−A is the residual query after removing attribute A from all relations in Q.

Lemma 3. Let Q1, Q2, · · · , Qs be the connected subqueries of Q for s ≥ 2. The ADP(Q,D, k) problem is
NP-hard if and only if there exists some Qi for which the ADP(Qi, D, k) problem is NP-hard.

The proofs of these lemmas are similar in spirit. Namely, we have two parts corresponding to the “if”
and “only if” directions. To prove the “if” direction, we show that if ADP is NP-hard for Q−A (resp., there
exists some Qi for which ADP is NP-hard), then the ADP problem on Q is also NP-hard. To prove the
“only-if” direction, we show that if ADP is poly-time solvable for Q−A (resp., ADP is poly-time solvable for
each connected subquery Qi), then ADP is also poly-time solvable for Q as well. More specifically, given a
poly-time algorithm for solving ADP on Q−A (resp., given poly-time algorithms for solving ADP on each Qi),
we design a poly-time algorithm for solving ADP problem on Q.

Proof of Lemma 2. The “if” direction. Given any instance D′ for Q−A, we construct another instance
D for Q as follows. Consider any relation R′i ∈ rels(Q−A). For each tuple t′ ∈ R′i, we create a new tuple
t ∈ Ri such that πAt = ∗ (a fixed value for all tuples and all relations in attribute A), and πBt = πBt

′ for
every other attribute B ∈ attr(Ri)−A.

Hence there is a one-to-one correspondence between the output tuples in Q(D) and Q−A(D′), and
also in the input D and D′. Therefore, a solution to ADP(Q,D, k) of size c corresponds to a solution to
ADP(Q−A, k,D

′) of size c, and vice versa. The proof follows.
The “only-if” direction. Assume there is a poly-time algorithm A for computing ADP(Q−A, D, k) for

any instance D and integer k. We design a poly-time algorithm A′ for ADP(Q,D, k) as follows:
Consider any input instance D for Q and integer k. We first partition D into D1, D2, · · · , Dg corre-

sponding to a1, a2, · · · , ag, which are all the possible values in the domain of attribute A. In Di, each

7

tuple t has πAt = ai. Note that the query result Q(D) is a disjoint union of the subquery results
Q(D1), Q(D2), · · · , Q(Di).

Now, we run a dynamic program to compute the optimal solution with cost Opt. Let Opt[i][s] denote
the minimum number of input tuples that have to be removed in order to remove at least s output tuples from
Q(D), under the constraint that the input tuples can only be chosen from D1 to Di. Using this notation,
we can now write the following dynamic program:

Opt[i][s] =
s

min
m=0

{
Opt[i− 1][s−m] + ci,m

}
. (1)

Here, m denotes the number of output tuples being removed from the subproblem on Di. And, ci,m is the
cost of the solution for subproblem ADP(Q,Di,m), i.e., the minimum number of input tuples in Di whose
removal would remove at least m output tuples from Q(Di). Note that ci,0 = 0 for every i.

Note that each tuple in Di has the same value ai in attribute A. Hence, computing ADP(Q,Di,m) is
equivalent to computing ADP(Q−A, Di,m), which can be solved in poly-time by algorithm A. Recall that
there are g distinct values in attribute A, thus g ≤ |D|. Moreover, k is bounded by the size of query results,
i.e. k ≤ |Q(D)|. The number of cells in Opt is g · k = O(|D| · |Q(D)|), which is polynomial in terms of |D|.
Thus, algorithm A runs in polynomial time in data complexity.

Proof of Lemma 3. The “if” direction. W.l.o.g., assume the ADP problem on Q1 is NP-hard. Given an
instance D′ for Q1, we construct another instance D for Q as follows. All relations in Q1 have the same
tuples as in D′. Set L = |Q1(D′)| · |D′|. Recall that |Q1(D′)| denotes the number of results in query Q1 over
instance D′. Each relation Rj ∈ rels(Q`) for ` ≥ 2 contains L tuples, where each tuple is given a unique
label that appears as the value of every attribute in that tuple. (Note that the size of D is polynomial in the
size of D′.) This ensures that for any connected subquery Q`, there are exactly L output tuples in Q`(D)
corresponding to the L unique labels given to the tuples in every relation. Then, the number of output tuples
in Q(D) is |Q1(D′)| · Ls−1, since the join across the disconnected components results in a cross product.

We argue that ADP(Q1, D
′, k′) has a solution of size ≤ c if and only if ADP(Q,D, k′ · Ls−1) has a solution

of size ≤ c.
In one direction, if we can remove k′ results from Q1(D′) by removing at most c tuples from D′, removing

these tuples from D removes k′ · Ls−1 results from Q(D), which is also a solution for ADP(Q,D, k′ · Ls−1).
In the other direction, suppose we are given a solution for ADP(Q,D, k′ ·Ls−1) of size at most c. Observe

that c ≤ |D′|; otherwise, there is always a better solution for ADP(Q,D, k) by removing all input tuples from
relations in Q1. Let xi be the number of input tuples removed from relations in Qi, and yi be the number of
output tuples removed from Qi(D). A key observation is that there exists a solution for ADP(Q,D, k′ ·Ls−1)
of size ≤ c such that (i) yi = xi for any i ≥ 2; (ii) xi 6= 0 for at most one i ≥ 2; and (iii) y1 ≥ k′. We will
prove these one by one.

For (i), we can always remove xi output tuples from Qi(D) by removing xi tuples from one specific
relation in Qi. Thus, the total number of results removed can be written as:

f(x1, x2, · · · , xs) = |Q1(D′)| · Ls−1 − (|Q1(D′)| − y1) ·
s∏

i≥2

(L− xi) ≥ k.

For (ii), suppose s ≥ 3 and x2, x3 6= 0 without loss of generality. We can construct another solution for
ADP(Q,D, k′ ·Ls−1) with x′i = xi for i /∈ {2, 3}, x′2 = x2 +x3, and x′3 = 0, which is no worse. This is because:

f(x1, x2 + x3, 0, x4, · · · , xs) ≥ f(x1, x2, · · · , xs).

After applying this argument repeatedly, we can obtain a solution for ADP(Q,D, k′ · Ls−1) that removes x1
tuples from relations in Q1 and x2 tuples from relations in Q2, where x1 + x2 ≤ c, with ≥ k results removed
from Q(D).

For (iii), suppose y1 < k′. As x1 + x2 ≤ c, there comes

f(x1, c− x1, 0, · · · , 0) ≥ f(x1, x2, 0, · · · , 0) ≥ k

Expanding f(x1, c− x1, 0, · · · , 0) and k, we get:

|Q1(D′)| · Ls−1 − (|Q1(D′)| − y1)(L− c+ x1) · Ls−2 ≥ k′ · Ls−1

8

Remove all

vacuum relation No vacuum

non-output attributes

(Case 1)

Connected
(Case 3)

Disonnected
(Case 2)

relation

There is a

Q

Figure 4: Proof plan of Lemma 4.

Rearranging this inequality, we will get

(|Q1(D′)| − k′) · L ≥(|Q1(D′)| − y1)(L− c+ x1) ≥ (|Q1(D′)| − y1)(L− |D′|)

where the last inequality is implied by the fact that c ≤ |D′|. We can further rewrite the inequality above as

(|Q1(D′)| − y1) · |D′| ≥ (k′ − y1) · L > L (since y1 < k′).

This contradicts: (|Q1(D′)| − y1) · |D′| ≤ |Q1(D′)| · |D′| = L.
Thus, there exists a solution for ADP(Q,D, k′ · Ls−1) of size ≤ c such that y1 ≥ k′. Removing those x1

tuples from relations in Q1 is a solution for ADP(Q1, D
′, k′) of size ≤ c.

The “only-if” direction. Assume that for each Qi, there is a poly-time algorithm Ai for comput-
ing ADP(Qi, D, k) for any instance D and integer k. We next present another poly-time algorithm A for
ADP(Q,D, k). Consider an arbitrary input instance D and integer k. Let |Qi(D)| = mi. Note that if remov-
ing ki output tuples from Qi(D), there are mi − ki remaining output tuples in Qi(D), which together form∏s
i=1(mi − ki) output results overall. In other words,

∏s
i=1mi −

∏s
i=1(mi − ki) output tuples are removed

from Q(D) in total. Therefore, the overall optimal solution is given by:

ADP(Q,D, k) = min
(k1,k2,··· ,ks)∈K

s∑
i=1

ADP(Qi, D, ki) (2)

where K = {(k1, k2, · · · , ks) :
∏s
i=1mi −

∏s
i=1(mi − ki) ≥ k, ki ∈ Z+,∀i ∈ {1, 2, · · · , s}}. Note that the

ADP(Qi, D, ki) is solved in polynomial time by algorithm Ai. Note that there are at most ks = O(|Q(D)|s)
different combinations of k1, k2, · · · , ks, which is still polynomial in terms of data complexity. Overall, the
running time of A, which simply enumerates all these options and chooses the best one, is polynomial.

4.2 NP-Hardness for “Others”

In this part, we prove the hardness of the class of queries characterized by “others” bracket in Figure 3, as
stated in Lemma 4.

Lemma 4. For a CQ Q, if IsPtime(Q) goes to “others” in Figure 3, i.e., if (1) Q contains no univer-
sal attributes; (2) Q is non-boolean; (3) Q contains no vacuum relations; and (4) Q is connected, then
ADP(Q,D, k) is NP-hard.

We start by identifying three simple but NP-hard queries for the ADP problem that will be at the core
of showing the above lemma. Then we present a general framework of proving the hardness for a given CQ
by mapping it to another query on which the ADP problem is known (or has been proven) to be NP-hard.
Finally, we classify all queries in Lemma 4 into three groups using the flowchart in Figure 4, and give a
mapping from queries ending up in each leaf of the flowchart to a core query identified at the beginning.

4.2.1 Core Queries

The three queries we focus on are the following:

9

Qcover(A,B) : −R1(A), R2(A,B), R3(B).

Qswing(A) : −R2(A,B), R3(B).

Qseesaw(A) : −R1(A), R2(A,B), R3(B).

Careful inspection reveals that these queries have a common property: w.l.o.g., we can assume that an
optimal solution of ADP(Q,D, k) won’t remove any tuples from relation R2(A,B). The effect of the removal
of any tuple (a, b) ∈ R2 can also be achieved by removing tuple (a) ∈ R1 or (b) ∈ R3. (The formal proof is
in Appendix A.) Therefore, an optimal solution for ADP on any one of these three queries could be restricted
to removing tuples only from R1(A) and R3(B). In this way, the ADP problem on these queries can be
interpreted as optimization problems on bipartite graphs, which turn out to be NP-hard (Lemma 5).

Lemma 5. Given an undirected bipartite graph G(A∪B,E) where E is the set of edges between two sets of
vertices A and B, and an integer k, each of the following problems is NP-hard:

(1) Remove the minimum number of vertices in A ∪B such that at least k edges in E are removed.1

(2) Remove the minimum number of vertices in B such that at least k vertices in A are removed;

(3) Remove the minimum number of vertices in A ∪B such that at least k vertices in A are removed;

Problem (1) is exactly partial vertex cover for bipartite graphs, which is known to be NP-hard [4]. The
NP-hardness proofs for (2) and (3) are deferred to Appendix B.

4.2.2 Hardness Preserving Mapping

The high-level idea of relating an arbitrary query Q characterized by Lemma 4 to the core queries is to
divide the attributes in attr(Q) into two groups, one mapped to A and the other mapped to B. In this way,
each relation in Q plays the role of R1(A), R2(A,B) or R3(B) in the core queries. The notion of “query
mapping” is formally defined below:

Definition 2 (Query Mapping). Suppose we are given a function f : attr(Q1)→ attr(Q2) ∪ {∗}. Let

g(Ri) = {Y ∈ attr(Q2) : ∃X ∈ attr(Ri) s.t. f(X) = Y }.

f is said to be a query mapping if the following properties hold: (i) for every relation Ri ∈ rels(Q1), there
is a (unique) relation Rj ∈ rels(Q2) such that g(Ri) = attr(Rj). (ii) for every relation Rj ∈ rels(Q2),
there exists at least one relation Ri ∈ rels(Q1) such that g(Ri) = attr(Rj).

In the definition above, if g(Ri) = attr(Rj) for relations Ri ∈ rels(Q1) and Rj ∈ rels(Q2), then
Ri ∈ rels(Q1) is said to be mapped to relation Rj ∈ rels(Q2). The next lemma shows that query mappings
preserve hardness of the ADP problem.

Lemma 6. If there is a mapping from a CQ Q1 to another CQ Q2, and ADP(Q2, D, k) is NP-hard, then
ADP(Q1, D, k) is also NP-hard.

Proof. Assume Q1 is mapped to Q2 under the mapping function f . Given any instance D2 for Q2, we
construct an instance D1 for Q1 as follows. Consider an arbitrary relation Ri ∈ rels(Q1) that is mapped
to relation Rj ∈ rels(Q2) under f . If there is a tuple t′ ∈ Rj , we create a tuple t ∈ Ri such that for any
X ∈ attr(Ri), πXt = πf(X)t

′ if f(X) ∈ attr(Rj), and πXt = ∗ otherwise. Overloading notation, we will
say that t is also mapped to t′. Note that there is a one-to-one correspondence between the output tuples
in Q1(D1) and Q2(D2).

We next show that the problem ADP(Q1, D1, k) has a solution of size ≤ c if and only if ADP(Q2, D2, k)
has a solution of size ≤ c.

The “only-if” direction. Suppose we are given a solution S1 for ADP(Q1, D1, k) has of size ≤ c. We
next construct a solution S2 for ADP(Q2, D2, k) as follows. For any relation Ri ∈ rels(Q1), if tuple t ∈ Ri is
removed by S1, then tuple t′ ∈ Rj is removed by S2, where Ri ∈ rels(Q1) is mapped to Rj ∈ rels(Q2) and

1A remove procedure on a graph is defined as: (1) when a vertex is removed, all the incident edges are also removed; (2)
when all the incident edges on a vertex are removed, this vertex is also removed.

10

t is mapped to t′. Since multiple tuples from different relations in D1 could be mapped to t′, |S2| ≤ |S1| ≤ c.
As a result, if an output tuple from Q1(D1) is removed, its corresponding tuple from Q2(D2) will also be
removed. Thus, S2 removes at least k results from Q2(D2), with size ≤ c.

The “if” direction. Suppose we are given a solution S2 for ADP(Q2, D2, k) of size ≤ c. We next
construct a solution S1 for ADP(Q1, D1, k) as follows. Consider any relation Rj ∈ rels(Q2) with some tuples
removed by S2. Let Ri ∈ rels(Q1) be any one relation mapped to Rj under f . If t′ ∈ Rj is removed, remove
the tuple tin S1 that is mapped to t′. Clearly, |S1| = |S2| ≤ c. As a result, if an output tuple from Q2(D2)
is removed, its corresponding tuple from Q1(D1) will also be removed. Thus, S1 removes at least k results
from Q1(D1), with size ≤ c.

4.2.3 Mapping to the core

To prove the NP-hardness of the ADP problem on a query Q, it suffices to show a mapping to any core
query, implied by Lemma 6. The high-level idea is that for any query characterized by Lemma 4, we find
a partition of attributes in Q as (I, J, attr(Q) − I − J) where I ∩ J = ∅ and define the mapping function
f : X → {A,B, ∗} as follows:

f(X) =

 A if X ∈ I
B if X ∈ J
∗ otherwise

Then it remains to show that f is a mapping from Q to one of the three core queries. As mentioned, we
distinguish Q into three cases in Figure 4, and identify the mapping for each case separately.

Note that any query in Lemma 4 is connected and does not have any universal attribute or vacuum
relation. For simplicity, head join is defined as the residual query after removing all non-output attributes
from all relations in Q, denoted as Qhead. In a CQ Q, a path between a pair of attributes A,B ∈ attr(Q), is
a sequence of relations starting with some Ri ∈ rels(A) and Rj ∈ rels(B) such that each consecutive pair
of relations share a common attribute.

Case 1: Head join has at least one vacuum relation. In this case, observe that there must exist some
relation Ri ∈ rels(Q) such that attr(Ri) ⊆ attr(Q) − head(Q). Let I = head(Q) and J = attr(Q) −
head(Q). We next show that f is a valid mapping from Q to Qswing if there exists some relation Rj ∈ rels(Q)
such that attr(Rj) ⊆ head(Q), and to Qseesaw otherwise.

Note that every relation Ri ∈ rels(Q) is mapped to R1(A), R2(A,B), or R3(B). Crucially, there is at
least one relation that is mapped to R3(B), e.g., Ri. Moreover, there is at least one relation that is mapped
to R2(A,B); otherwise attributes in I and J are not connected, contradicting the fact that Q is connected.
(Note that Q is connected irrespective of whether the head join is connected or not.) If there exists some
relation Rj ∈ rels(Q) such that attr(Rj) ⊆ head(Q), then Rj will be mapped to R1(A); and f is a valid
mapping from Q to Qseesaw. Otherwise, f is a valid mapping from Q to Qswing.

Case 2: Head join is disconnected (and no vacuum relation). In this case, we can always identify
a pair of attributes X,Z ∈ head(Q) such that there is no path between X,Z in Qhead. As Q is connected,
every path between X,Z in Q uses at least one attribute in attr(Q)− head(Q). In other words, removing
attr(Q)− head(Q) decomposes Q into multiple connected subqueries, where X,Z are in different ones. Let
I be the set of attributes appearing in the connected subquery containing X. Note that head(Q) − I 6= ∅
since X,Z are in different connected subqueries.

Observe that there must exist a relation R` ∈ rels(Q) such that attr(R`) ∩ I 6= ∅ and attr(R`) ∩
(attr(Q)−head(Q)) 6= ∅; otherwise, there is no path between X and any non-output attribute, contradicting
the fact that Q is connected. Applying a similar argument to the connected subquery that doesn’t contain X,
there must exist a relation Rh ∈ rels(Q) such that attr(Rh)∩(head(Q)−I) 6= ∅ and attr(Rh)∩(attr(Q)−
head(Q)) 6= ∅. Depending on whether there exists some relation Ri ∈ rels(Q) such that attr(Ri) ⊆ I and
some relation Rj ∈ rels(Q) such that attr(Rj) ⊆ head(Q)− I, we have two different cases.

Case 2.1: Both relations Ri and Rj as described above exist. Set J = attr(Q)− I. On one hand, each
relation in Q is mapped to any one of R1(A), R2(A,B) or R3(B). On the other hand, relations Ri, R`, Rj
are mapped to R1, R2, R3 respectively. Thus, f is a valid mapping from Q to Qpath.

Case 2.2: At least one of Ri, Rj doesn’t exist, say Rj . Set J = attr(Q) − head(Q). In this mapping,
no relation has all of its attributes mapped to ∗; otherwise, Rj exists, which is a contradiction. So, each

11

relation in Q is mapped to any one of R1(A), R2(A,B) or R3(B). On the other hand, relations R`, Rh are
mapped to R2, R3 respectively. If Ri exists, it will be mapped to R1(A) and f is a valid mapping from Q to
Qseesaw. Otherwise, f is a valid mapping from Q to Qswing.

Case 3: Head join is connected (and no vacuum relation). In this case, the head join is connected
but has no vacuum relation. We further distinguish Q into two cases: (3.1) there exists a pair of relations
Ri, Rj ∈ rels(Q) such that attr(Ri) ∩ attr(Rj) ∩ head(Q) = ∅; (3.2) for each pair of relations Ri, Rj ∈
rels(Q), we have attr(Ri) ∩ attr(Rj) ∩ head(Q) 6= ∅.

Case 3.1. Set I = attr(Ri)∩head(Q) and J = head(Q)−attr(Ri). In this mapping, no relation has its
all attributes mapped to ∗; otherwise, there is a vacuum relation in the head join, which is a contradiction.
So, each relation in Q is mapped to any one of R1(A), R2(A,B) or R3(B). Moreover, Ri, Rj are mapped to
R1(A), R3(B) respectively. Note that there must also exist some relation mapped to R2(A,B); otherwise,
Ri is a single connected subquery of the head join, contradicting the fact that the head join is connected.
Thus, f is a valid mapping from Q to Qpath.

Case 3.2. In this case, we first observe that |attr(Ri) ∩ head(Q)| ≥ 2 for any relation Ri ∈ rels(Q).
Suppose not, say attr(Ri)∩head(Q) = {C}. Since attr(Ri)∩attr(Rj)∩head(Q) 6= ∅ for any Rj ∈ rels(Q),
then C is a universal attribute of Q, which is a contradiction. For simplicity, assume no pair of relations
in the head join have exactly the same attributes; otherwise, we just keep one of them in the mapping
construction.

We label all relations in an increasing order of the number of output attributes, as R1, R2, · · · , Rp,
breaking ties arbitrarily. For simplicity, denote attr(Ri)∩ attr(Rj)∩ head(Q) as Aij with ordering (i, j) if
i < j, and Aji with ordering (j, i) otherwise. Let Ri, Rj be the pair of relations whose intersection contains
smallest number of output attributes. Without loss of generality, assume i < j. If there are multiple pairs
with the same number of attributes in their intersection, we just break ties by their lexicographical order.
We further distinguish the mappings into two cases as follows.

Case 3.2.1: i > 1. We observe that A1i − A1j 6= ∅ and A1j − A1i 6= ∅. Suppose not, say A1i − A1j = ∅.
This implies A1i ⊆ A1j ⊆ Aij , contradicting the fact that Aij has smaller number of attributes than A1i.
(Note that (1, i) is lexicographically earlier than (i, j) in the case of a tie.) Similarly, we can also show that
A1j − A1i 6= ∅. Moreover, there exists no relation R` ∈ rels(Q) such that attr(R`) ∩ head(Q) ⊆ Aij . This
is because of the fact that no pair of relations have exactly the same attributes, which in combination with
attr(R`)∩ head(Q) ⊆ Aij would imply that attr(R`)∩ head(Q) (Ri ∩ head(Q). This would in turn imply
` < i, and consequently, that A`i has smaller number of attributes than Aij (or is lexicographically earlier
in the case of a tie), which is a contradiction.

Set I = (attr(Ri)∩head(Q))−attr(Rj) and J = head(Q)−attr(Ri). In this mapping, no relation gets
all attributes mapped to ∗, since there is no relation R` such that attr(R`) ∩ head(Q) ⊆ Aij as discussed
above. So, each relation in Q is mapped to any one of R1(A), R2(A,B) or R3(B). Moreover, relations
Ri, R1, Rj are mapped to R1, R2, R3 respectively. Thus, f is a valid mapping from Q to Qpath.

Case 3.2.2: i = 1. For any attribute C ∈ A1j , there must exist a relation R` such that C /∈ attr(R`);
otherwise, C is an universal attribute, which is a contradiction. W.l.o.g., assume ` < j. We claim that
A`j − attr(R1) 6= ∅; otherwise, A`j ⊆ A1j . Since C ∈ A1j − A`j , |A`j | < |A1j |, contradicting the fact that
R1, Rj share the smallest number of output attributes among all pair of relations. Moreover, there exists
no relation Rh ∈ rels(Q) such that attr(Rh) ∩ head(Q) ⊆ A1`. Otherwise, either attr(Rh) ∩ head(Q) (
attr(R1) ∩ head(Q) which contradicts the fact that h > 1, or attr(Rh) ∩ head(Q) = attr(R1) ∩ head(Q)
which contradicts the fact that no pair of relations have exactly the same output attributes.

Set I = (attr(R1) ∩ head(Q)) − attr(R`) and J = head(Q) − attr(R1). In this mapping, no relation
gets all attributes mapped to ∗, since there exists no relation Rh such that attr(Rh) ∩ head(Q) ⊆ A1` as
discussed above. So, each relation in Q is mapped to any one of R1(A), R2(A,B) or R3(B). Moreover,
R1, Rj , R` are mapped to R1, R2, R3 respectively. Thus, f is a valid mapping from Q to Qpath.

We show examples for each case in Figure 4 separately.

Example 5. Consider an example query Q1(A,C, F) : −R1(A,C), R2(B), R3(B,C), R4(C,E, F), with a
vacuum relation R2 in head join Q′1(A,C, F) : −R1(A,C), R2(), R3(C), R4(C,F). In this example, we map
attributes A,C, F to A and B,C to B, yielding a new query Q′′1(A) : −R1(A), R2(B), R3(B), R4(A,B), i.e.,
the Qseesaw query. If R1(A,C) does not appears in Q1, the same mapping yields another query Q′′′1 (A) :
−R2(B), R3(B), R4(A,B), i.e., the Qswing query.

12

Example 6. Consider an example query Q2(A,B) : −R1(A), R2(A,C), R3(C,B), R4(B), where the head
join Q′2(A,B) : −R1(A), R2(A), R3(B), R4(B) is disconnected. For one connected subquery containing A,
we can identify relation R2 such that A ∈ attr(R2) and attr(R2) ∩ (attr(Q) − head(Q)) 6= ∅. Similarity,
for the other connected subquery containing B, we can identify relation R3 such that B ∈ attr(R3) and
attr(R3) ∩ (attr(Q) − head(Q)) 6= ∅. In this case, we map attributes B,C to B, yielding a new query
Q′2(A,B) : −R1(A), R2(A,B), R3(B), i.e., the Qpath query. If R4(B) does not appear in Q2, we map B to ∗,
yielding a new query Q′′2(A) : −R1(A), R2(A,C), R3(C), i.e., the Qseesaw query. If both R1(A), R4(B) does
not appear in Q2, we map B to ∗, yielding a new query Q′′′2 (A) : −R2(A,C), R3(C), i.e., the Qswing query.

Example 7. We show two examples for (3.1) and (3.2) separately. In (3.1), there is a pair of relations
Ri, Rj ∈ rels(Q) such that attr(Ri)∩attr(Rj) = ∅. Consider a full CQ Q3(A,B,C,E) : −R1(A,C), R2(C,E),
R3(E,B). There is a pair of relations R1, R3 such that attr(R1) ∩ attr(R3) 6= ∅. We map attributes A,C
to attribute A and B,E to attribute B, yielding a new query Q′3(A,B) : −R1(A), R2(A,B), R3(B), i.e., the
Qpath query. In (3.2), for every pair of relations Ri, Rj ∈ rels(Q), attr(Ri)∩attr(Rj)∩head(Q) 6= ∅. Con-
sider an example full CQ Q4(A,B,C,E, F) : −R1(A,B,C,E, F), R2(B,C,E), R3(A,C). We map attributes
C,E, F to ∗ and obtain a new query Q′4(A,B) : −R1(A,B), R2(B), R3(A), i.e., the Qpath query.

5 Structural Characterization

In the last section, we provided a simple poly-time algorithm IsPtime to decide the poly-time solvability
of the ADP problem for CQs without self-join. However, this algorithm does not provide structural insight
into what makes the ADP problem NP-hard or poly-time solvable for individual queries. Namely, it does not
provide a structural characterization for solvability of the ADP problem, such as the one shown for the special
case of the resilience problem in [11]. To rectify this shortcoming and complement the procedural dichotomy
established in the last section, we provide, in this section, a structural dichotomy of the ADP problem for CQs.
Interestingly, it turns out that the procedural and structural dichotomies do not have a one-one mapping;
namely, distinct cases of the IsPtime procedure map to same case in the structural characterization, and
vice-versa. Our main theorem in this section is the following:

Theorem 3. For a CQ Q, ADP(Q, k,D) is NP-hard if and only if one of the following happens:

• Q contains a “triad-like” structure,

• Q contains a “strand” structure, or

• the head join of non-dominated relations is non-hierarchical.

In the rest of this section, we explain the the three “hard structures” in Theorem 3 and give some intuition
for why they make the ADP problem NP-hard. The proof of Theorem 3 is given in Appendix D.

5.1 Boolean CQ Revisited

As mentioned earlier, a complete characterization of boolean CQs for the ADP problem is known from previous
work:

Theorem 4 ([11]). On a boolean CQ Q without self-joins, the problem ADP(Q,D, 1) is poly-time solvable if
there is no triad structure, and NP-hard otherwise.

To explain this result, we introduce some new terminology. In a CQ Q, a relation Rj ∈ rels(Q)
is exogenous if there exists another relation Ri 6= Rj ∈ rels(Q) such that attr(Ri) (attr(Rj), and
endogenous otherwise. If there is more than one relation defined on the same set of attributes, we just
consider any one of them as endogenous and the remaining ones as exogenous. For example, in the boolean
CQ Q : −R1(A), R2(A,B), R3(B,C), R4(B,C), R5(B,C), there are two endogenous relations: R1 and any
one of R3, R4, R5. Next, we define a path between a pair of relations Ri, Rj ∈ rels(Q) as a path between
any pair of attributes A,B for A ∈ attr(Ri) and B ∈ attr(Rj). This brings us to the definition of the triad
structure:

13

A

B

C F

E

H

(R1) (R2) (R4)

(R3) B

C F

E

H

(R1) (R2) (R4)

(R3)

(R1) (R2)

(R4)

C

H

(R3)F

(R1) (R2)

Figure 5: An example of hierarchical join Q(A,B,C,E, F,H) : −R1(A,B,C), R2(A,B, F), R3(A,E),
R4(A,E,H), and an illustration of applying procedure IsPtime on it.

Definition 3 (triad). A triad is a triple of endogenous relations R1, R2, R3 such that for each pair of
relations, say R1, R2, there is a path from R1 to R2 only using any attributes in attr(Q)− attr(R3).

Two examples of boolean CQs containing a triad structure are Q4 : −R1(A,B), R2(B,C), R3(C,A) and
QT : −R1(A,B,C), R2(A), R3(B), R4(C), on which the ADP problem is NP-hard.

5.2 Hard Structures for General CQs

A natural question for general CQs is how the existence of output attributes changes the hardness of ADP

problem. We will explore this question starting with three hard structures.

5.2.1 Triad-like

We observe that adding output attributes to a hard boolean CQ maintains the NP-hardness of the ADP prob-
lem. For example, the CQ Q(E,F,G) : −R1(A,B,E), R2(B,C, F), R3(C,A,G) is NP-hard (since IsPtime
returns false), which contains the Q4. We extend the notion of triad to capture this class of hard queries:

Definition 4 (triad-like). A triad-like structure is a triple of endogenous relations R1, R2, R3 such that for
each pair of relations, say R1, R2, there is a path from R1 to R2 only using attributes in attr(Q)−(head(Q)∪
attr(R3)).

This takes care of our first case: if there is a triad-like structure (in the non-output attributes), the CQ
is NP-hard.

5.2.2 Non-hierarchical Join

The situation becomes more complicated when we add output attributes to a poly-time solvable boolean
CQ. For example, on a boolean CQ Q : −R1(C,E), R2(E,F), R3(F,H), adding a universal attribute A leads
to a poly-time solvable query Q(A) : −R1(A,C,E), R2(A,E, F), R3(A,F,H), but adding attributes A,B
selectively to some of the relations (e.g., Q(A,B) : −R1(A,C,E), R2(A,B,E, F), R3(B,F,H)) can result
in an NP-hard query. So, our goal is to understand how the addition of output attributes changes the
complexity of the ADP problem. For simplicity, the head join for a CQ Q denotes the residual query after
removing all non-output attributes from all relations in Q. We start with the class of full CQs, i.e., without
non-output attributes. A nice connection between hierarchical join and our previously defined procedure
IsPtime can be observed.

Definition 5 (Hierarchical Join). A full CQ Q is hierarchical if for each pair of attributes A,B ∈ attr(Q),
rels(A) ⊆ rels(B), rels(B) ⊆ rels(A), or rels(A) ∩ rels(B) = ∅, and non-hierarchical otherwise.

Note that a hierarchical CQ can be organized into a tree structure, where each relation is a root-
to-node path. An example is given in Figure 5. Moreover, each relation ends up vacuum by alter-
nately applying the two simplification steps in IsPtime on this tree. In this way, if Q is hierarchical,
IsPtime(Q) always returns true. However, the converse is not necessarily true. For example, Q(A,B,E) :

14

−R1(A,E), R2(A,B,E), R3(B,E), R4(E) is non-hierarchical but IsPtime(Q) returns true (after removing
the universal attribute E, relation R4 becomes vacuum). We focus on non-hierarchical CQs in the rest of
this discussion.

The previous result on boolean CQs only considers endogenous relations. Unfortunately, this is insuffi-
cient for a full CQ in general; for example, removing the exogenous relation R2 would make Qpath(A,B) :
−R1(A), R2(A,B), R3(B) poly-time solvable. So, we need a more fine-grained notion than exogenous/endogenous
relations in characterizing the complexity of non-boolean CQs.

Definition 6 (Dominated Relation in Full CQs). In a full CQ Q, relation Rj is dominated by relation Ri if
(1) attr(Ri) ⊆ attr(Rj); and (2) for any relation Rk with attr(Ri)−attr(Rk) 6= ∅, attr(Rj)∩attr(Rk) ⊆
attr(Ri).

We say that a relation is dominated if it is dominated by any other relation, and non-dominated otherwise.
Note that a dominated relation must be exogenous, but all exogenous relations may not be dominated. A
structural dichotomy for full CQs based on dominated relations is given by:

Lemma 7. For a full CQ Q, the ADP(Q,D, k) problem is NP-hard if and only if the non-dominated relations
are non-hierarchical.

Note that full CQs do not have any non-output attributes. But, fortunately, the above hardness continues
to hold even on adding output attributes. To make this formal, we need to extend the notion of dominated
relations to general CQs.

Definition 7 (Dominated Relation in CQs). In a CQ Q, relation Rj is dominated by relation Ri if (1)
attr(Ri) ⊆ attr(Rj); (2) for any relation Rk with attr(Ri) − attr(Rk) 6= ∅, attr(Rj) ∩ attr(Rk) ⊆
attr(Ri) ∩ head(Q); (3) attr(Ri) ⊆ head(Q) or head(Q) ⊆ attr(Ri).

If there is more than one relation defined on the same attributes, i.e., attr(Ri) = attr(Rj), then we
just consider any one of them as non-dominated and the remaining ones as dominated. We can now use
this extended definition to claim our second hard case: if the head join of non-dominated relations is non-
hierarchical, then the CQ is NP-hard. Note that these definitions of “domination” are different from [11],
as we need a more fine-grained characterization of exogenous relations for ADP. Moreover, Lemma 1 can be
easily interpreted as follows: If there is a vacuum relation Ri in a CQ Q, then every remaining relation must
be dominated by Ri, therefore ADP(Q,D, k) is poly-time solvable by Theorem 3.

5.2.3 Strand

The remaining case is one where on the output attributes, the non-dominated relations are hierarchical
and on the non-output attributes, there is no triad-like structure. These two conditions guarantee poly-time
solvability for full and boolean CQs respectively. But, interestingly, when appearing together in a general CQ,
they no longer guarantee poly-time solvability. For example, the CQ Q(A,B,C) : − R1(A,B,E), R2(A,C,E)
is NP-hard while both Q(A,B,C) : − R1(A,B), R2(A,C) and Q() : −R1(E), R2(E) are poly-time solvable.
To characterize this class of queries, we introduce our third hard structure that we call a strand:

Definition 8 (strand). A strand is a pair of non-dominated relations Ri, Rj ∈ rels(Q) such that (1)
head(Q) ∩ attr(Ri) 6= head(Q) ∩ attr(Rj); (2) (attr(Ri) ∩ attr(Rj))− head(Q) 6= ∅.

The reason why the strand structure makes the ADP problem hard can be explained by the procedure
IsPtime. Consider any CQ with such a strand structure with Ri, Rj . After applying two simplification steps,
Ri, Rj will be in the same connected subquery Q0, since attributes in (attr(Ri)∩ attr(Rj))− head(Q) are
not universal and therefore couldn’t have been removed by IsPtime. Moreover, Q0 is non-boolean, since
attr(Ri)∩head(Q) 6= attr(Rj)∩head(Q) and therefore, there is at least one non-universal output attribute.
Next, we prove that there is no vacuum relation in Q0. Suppose R` becomes vacuum in Q0. Observe that
attr(R`) ⊆ head(Q) and attr(R`) ⊆ attr(Rh) for every relation Rh ∈ attr(Q0). Since Ri is not dominated
by R`, there must exist another relation Rk ∈ rels(Q)− {Ri, Rj} such that attr(R`)− attr(Rk) 6= ∅ and
(attr(Ri) ∩ attr(Rk)) − attr(R`) 6= ∅. Note that Rk is not in Q0; otherwise, attr(R`) − attr(Rk) = ∅.
In this case, (attr(Ri) ∩ attr(Rk)) − attr(R`) = ∅, coming to a contradiction. Therefore, the IsPtime
algorithm will go to “others”, and return false for Q0, as well as for Q. This allows us to claim our third
hard case: if a strand exists, then CQ is NP-hard.

15

Strand

head join of non-
dominated relations

Non-hierarchical

Mapping Hard Structure

Qpath

Qswing

Qseesaw

Case 1

Case 2

Case 3

Figure 6: Correspondence between the three cases of CQs on which IsPtime falling into “other” bucket in
Figure 4, the core query it maps to (the left) and the hard structure it contains (the right).

5.3 Sketch of Proof of Theorem 3

So far, we have defined three hard structures for general CQs, any one of which makes the ADP problem
NP-hard. We now sketch the main ideas in the proof of Theorem 3; the detailed proof is in Appendix.
This proof uses Theorem 2 by mapping each of the NP-hard cases in Theorem 2 to the existence of a hard
structure as defined by Theorem 3, and vice-versa. But, interestingly, this mapping is not one-one in the
sense that multiple cases in the procedural dichotomy established by Theorem 2 map to same case in the
structural dichotomy of Theorem 3, and vice-versa. This lends further credence to our assertion that the
procedural dichotomy of the previous section is not sufficient by itself to explain the structural reasons behind
the NP-hardness or poly-time solvability of the ADP problem for individual CQs.

We first point out that the two simplification steps in the IsPtime procedure preserve the existence of
hard structures.

Lemma 8. Let A be a universal attribute in Q. Then, there is a hard structure in Q if and only if there is
a hard structure in Q−A.

Lemma 9. Let Q1, Q2, · · · , Qs be the connected subqueries of Q. Then, there is a hard structure in Q if
and only if there is a hard structure in Qi for some i ∈ {1, 2, · · · , s}.

When neither of the simplification steps can be applied, IsPtime(Q) ends up with three cases. If there
is a vacuum relation in Q, say Ri, IsPtime(Q) returns true. In this case, Q does not contain any hard
structure as Ri is the only endogenous and non-dominated relation. If Q is boolean, IsPtime(Q) returns
false if and only if it contains a triad. Then, we are left with the case when IsPtime(Q) goes into the
“Others” bucket. Each core query shown in Section 4.2.1 contains hard structure; more specifically, the head
join of non-dominated relations in Qpath is non-hierarchical, and both Qswing and Qseesaw contain a strand.
In general, we can show the existence of hard structures for Q falling into one of the three cases in Figure 4.
The correspondence between different cases of the procedural and structural characterizations are shown in
Figure 6.

6 Approximations

In this section, we discuss approximations for the ADP(Q,D, k) problem when it is NP-hard.

6.1 Full CQs

We first consider full CQs, on which ADP problem can be related to the Partial Set Cover problem (PSC).

Definition 9. Given a set of elements U , a family of subsets S ⊆ 2U , and a positive integer k′, the goal of
the Partial Set Cover problem is to pick a minimum collection of sets from S that covers at least k′ elements
in U .

Observe that ADP(Q,D, k), where the goal is to pick the smallest number of input tuples that intervene
on at least k output tuples, can be modeled as a PSC problem as follows. Sets correspond to input tuples
from relations in the body of Q and elements to output tuples in Q(D). The set corresponding to an input
tuple comprises all elements corresponding to output tuples that are deleted on the deletion of the input

16

tuple. Also, k′ = k. Additionally, if there are p relations in Q, then every element belongs to at most p sets.
It is known that the PSC problem admits greedy and primal-dual algorithms with approximation factors of
O(log k) and p respectively [13]. Hence, we get the same results for the ADP problem.

Theorem 5. For a full CQ Q with p relations, any instance D and integer k, ADP(Q, k,D) admits O(log k)
and p-approximations.

Proof. We prove that the reduction preserves the approximation guarantee in two steps: 1) given an instance
of ADP(Q, k,D), how to construct an instance of k′-PSC, and 2) given a solution to k′-PSC, how to recover
a solution to ADP(Q, k,D).

Given the full CQ Q containing p relations in its body, namely R1, R2, · · · , Rp, we create a set per
input tuple in the p relations, and an element per output tuple in Q(D). Each set contains elements that
correspond to the output tuples resulting from the join between the associated input tuple and tuples from
other relations in Q. It is well-known that the natural join on R1, R2, · · · , Rp can be computed in poly-time.
Moreover, exactly one tuple in each of the p relations participates in the join operation that produces a
particular output tuple. Therefore, each element in the k′-PSC instance belongs to exactly p sets. As a
result, the size of the k′-PSC instance that we create is polynomial in the data complexity of ADP(Q, k,D).
Moreover, there is a one-on-one correspondence between instances of the two problems.

Lastly, given a p-approximate solution to k′-PSC, we recover a solution to ADP(Q,D, k) by picking the
tuples associated with the sets in the solution, say I. Observe that the sets in I cover k′ = k elements in U .
Thus, removing the corresponding input tuples from ADP(Q,D, k) will intervene on at least k output tuples.

Note that this implies that if the query has constant size, i.e., p is a constant, full CQs admit a constant-
factor approximation for the ADP problem.

This implies that if the query has constant size, i.e., p is a constant, full CQs admit a constant-factor
approximation for the ADP problem.

6.2 Inapproximability of General CQs

The situation, however, is quite different for general CQs. We first observe that obtaining even sub-
polynomial approximations for the ADP problem in general is unlikely. In particular, on Qswing(A) : R2(A,B),
R3(B), which is the core hard query in Section 4.2.1, we show the following hardness:

Lemma 10. Under some mild cryptographic assumptions, the ADP(Qswing, D, k) problem with |D| = n is
hard to approximate within Ω(nε) factor for some constant ε > 0.

Recall that we established NP-hardness of ADP(Qswing, D, k) via a reduction from the k-minimum coverage
(KMC) problem. As shown in Appendix B, his reduction is also approximation-preserving, which implies the
above lemma via known hardness results for the KMC problem [1, 7, 6]. While this rules out the possibility
of approximation algorithms in general for the ADP problem, there are several query classes on which we
had shown NP-hardness of the problem but their approximability is still open. This includes simple CQs
such as Qseesaw(A) : R1(A), R2(A,B), R3(B). We leave the precise classification of query classes according
to approximability of the ADP problem as an interesting direction for future work.

7 Algorithms and Optimizations

The framework of our poly-time algorithm, which returns the exact solution for “easy” queries and a heuristic
for hard queries, is described as ComputeADP in Algorithm 2. It builds upon the algorithm for the
Resilience problem [11], which is a special case of the ADP problem. Our algorithm recursively calls itself
through Universal and Decompose procedures. For poly-time solvable CQs, it only uses the first four
cases: this follows the proof of Theorem 2 by applying the two simplifications repeatedly until it becomes
a boolean query or contains a vacuum relation. Our first optimization is to include a new base case that
we call singleton. If the conditions of this case (we describe them below) are satisfied, then a simple
algorithm Singleton is directly applied instead of continuing to apply the two simplification steps. In
addition to computing the optimal solution for poly-time solvable CQs, Algorithm 2 also generates a feasible

17

Algorithm 2: ComputeADP(Q,D, k)

1 If Q is Boolean return Boolean(Q,D, k);

2 ElseIf Q is a singleton return Singleton(Q,D, k);

3 ElseIf Q has universal attribute then Universe(Q,D, k);

4 ElseIf Q is disconnected then Decompose(Q,D, k);

5 Else return GreedyForCQ(Q,D, k);

solution for NP-hard CQs. In this case, it alternately applies these two simplification steps until it becomes
boolean or goes to the “others” category in Figure 3. We eventually invoke an approximate procedure
GreedyForCQ on the non-boolean CQ when neither simplification step can be applied any more. Our
second optimization is a smarter way of solving the recurrent formula for these two simplification steps,
as shown in Universe(Q,D, k) and Decompose(Q,D, k). Note that the simplification steps involve large
dynamic programs; so, this optimization provides significant scalability in practice. Both poly-time solvable
and NP-hard queries benefit from the improvement of two simplification steps.

In the recursion tree of ComputeADP, each leaf node (Boolean, Singleton and GreedyForCQ)
can be computed in poly-time and internal node (Universe and Decompose) can be built upon its children
in poly-time. Also, there are O(1) nodes in this recursion tree, since the query size (in terms of number of
attributes and relations) is constant and each recursive call decreases the query by at least one relation or
attribute. Hence, we get an poly-time algorithm overall.

7.1 Boolean

In [11], a poly-time algorithm was proposed for boolean CQs without a triad structure. A boolean query is
linear if its relations may be arranged in linear order such that each attribute occurs in a contiguous sequence
of atoms. It is proved that every boolean query without a triad structure can be transformed into a query
of equivalent complexity that is linear. Thus, we only provide the algorithm for computing the ADP problem
on an arbitrary linear query.

Boolean(Q,D, k). We first label relations in linear ordering R1, R2, · · · , Rp and then build a network
construct a network G as follows. Note that G is an (p+ 1)-partite graph consists of vertices V = {x}∪V1 ∪
V2 ∪ · · · ∪ Vp−1 ∪ {y}, where Vi = attr(Ri) ∩ attr(Ri+1). There is an edge e = (u, v) for u ∈ Vi, v ∈ Vi+1 if
there exists a tuple t ∈ Ri+1 with πVit = u and πVi+1t = v. Moreover, there is an edge between every vertex
in V1 and x, and every vertex in Vp−1 and y. Each edge has weight 1.

A minimum cut of G is exactly the solution for ADP(Q,D, k), which can be computed using the standard
Edmonds–Karp algorithm with time complexity O(|D|3).

7.2 Singleton

We first lay out the conditions of this new base case for a poly-time solvable CQ:

Definition 10 (Singleton). A CQ Q is singleton, if there exists a relation Ri ∈ rels(Q) such that (1)
attr(Ri) ⊆ attr(Rj) holds for every other relation Rj ∈ rels(Q); and (2) either attr(Ri) ⊆ head(Q) or
head(Q) ⊆ attr(Ri).

Note that the execution of IsPtime can also be modeled as recursion tree, where each leaf node is either
a Boolean query or contains vacuum relation, and each internal node corresponds to one simplification step.
On this recursion tree, we point out an important property for singleton structure, as stated in Lemma 11.

Lemma 11. For a CQ Q on which IsPtime(Q) returns true, each leaf (not root) node containing a vacuum
relation must have an ancestor that is a singleton query.

18

Proof. Note that each node v in the recursive tree is associated with a query Qv. Let v be a leaf node in
the recursion tree containing a vacuum relation Ri. Let u be the parent node of v. Observe that u doesn’t
contain a vacuum relation; otherwise, u itself is a leaf. If u generates v by decomposing a disconnected, then
Ri is also a vacuum relation in Qu, coming to a contradiction. If u generates v by removing an universal
attribute A, attr(Ri) = {A} in query Qv. As A is an universal attribute in Qu, Qu is a singleton by
Definition 10.

So, it suffices to replace the vacuum relation base case with the singleton.

Algorithm 3: Singleton(Q, k,D)

1 Ri ← arg minRj∈rels(Q) |attr(Rj)|;
2 if attr(Ri) ⊆ head(Q) then
3 foreach tuple t ∈ Ri do
4 pt ← πattr(Ri)=tQ(D);
5 Sort all pt’s in decreasing order as p1, p2, · · · , pm;

6 Find index i such that
∑i−1
j=1 pj < k ≤

∑i
j=1 pj ;

7 return i;

8 else
9 Remove all dangling tuples in Ri;

10 foreach t ∈ Q(D) do
11 ct ← |πhead(Q)=tRi|;
12 Sort all ct’s in increasing order as c1, c2, · · · , cm;

13 return
∑k
j=1 cj ;

Singleton(Q,D, k). Let Ri be the relation with the minimum number of attributes. By definition, either
head(Q) ⊆ attr(Ri) or attr(Ri) ⊆ head(Q).

Case 1: attr(Ri) ⊆ head(Q). We compute the number of output tuples that inherent attribute values
from a tuple t ∈ Ri and call it the “profit” of t, denoted as pt. Then, we sort the tuples by their profits and
choose greedily in decreasing order until their sum exceeds k. These chosen tuples form an optimal solution.

Case 2: head(Q) ⊆ attr(Ri). We first remove all dangling tuples2 in Ri, i.e., those don’t participate in
the full join result of the body of Q. Then we count for each output tuple t ∈ Q(D), the number of tuples
in Ri whose projection on attributes head(Q) is equivalent to t, and call it the “cost” of t, denoted by ct.
Finally, we sort the output tuples by cost and choose in increasing order the first k tuples. The optimal
solution is now obtained as the set of input tuples in Ri whose removal deletes k output tuples.

This algorithm takes O(|D||Q|) time since computing full join results dominates the complexity.

7.3 Universe and Decompose

We show some optimization for Decompose and Universe procedures respectively.

Decompose(Q,D, k). Assume Q has s connected subqueries, Q1, Q2, · · · , Qs. The divide-and-conquer
strategy will first compute ADP(Qi, D, ki) for each subquery Qi over ki, and then find an optimal combination
of k1, k2, · · · , ks by enumeration over Θ(ks) solutions, which becomes expensive for large s. We give an
optimized algorithm.

Let Opt[i][j] denote the minimum number of input tuples to remove at least j output tuples from
subquery ×ij=1Qj(D). Opt[i][j] can be computed using the following dynamic program:

Opt[i][j] = min
k1,k2∈K(i,j)

Opt[i− 1][k1] + ComputeADP(Qi, D, k2)

where K(i, j) = {k1, k2 : k1|Qi(D)| + k2
∏i−1
`=1 |Q`(D)| − k1k2 ≥ j, k1, k2 ∈ Z+} and Algorithm 2 is invoked

for solving ADP(Qi, D, k2). To remove at least j output tuples from ×ij=1Qj(D), we remove k1 output

2A tuple is dangling if it doesn’t participate in any full join result, and non-dangling otherwise. For Rj ∈ rels(Q), its
non-dangling tuples can be obtained by projecting full join results on attr(Ri). This can be done in poly-time.

19

Algorithm 4: Universe(Q,D, k)

1 A← head(Q) ∩
(⋂

R∈rels(Q) attr(R)
)

;

2 Label all possible combinations over A as {a1, a2, · · · , ag};
3 foreach i ∈ {1, 2, · · · , g} do
4 Di ← {σπAt=aiRi : ∀Ri ∈ rels(Q)};
5 foreach j ∈ {1, 2, · · · , k} do
6 Opt[1][j]← ComputeADP(Q,D1, j);
7 foreach i ∈ {2, · · · , g} do
8 foreach j ∈ {1, 2, · · · , k} do
9 Opt[i][j]← Opt[i− 1][j];

10 for m = 1 to j − 1 do
11 ci,m ← ComputeADP(Q,Di,m);
12 if Opt[i][j] > Opt[i− 1][j −m] + ci,m then
13 Opt[i][j]← Opt[i− 1][j −m] + ci,m;

14 return Opt[g][k];

Algorithm 5: Decompose(Q,D, k)

1 Let Q1, Q2, · · · , Qs be the connected subquery of Q;
2 Qα ← Q1;
3 foreach j ∈ {1, 2, · · · , k} do
4 Opt[1][j]← ComputeADP(Q,D1, j);
5 foreach i ∈ {2, 3, · · · , s} do

6 m1 ←
∏i−1
`=1 |Q`(D)|, m2 ← |Qi(D)|;

7 foreach j ∈ {1, 2, · · · , k} do
8 Opt[i][j]← +∞;
9 foreach (k1, k2) ∈ {0, 1, · · · , j} × {0, 1, · · · , j} do

10 if k1m2 + k2m1 − k1k2 ≥ j then
11 ci,k2 ← ComputeADP(Qi, D, k2);
12 if Opt[i][j] > Opt[i− 1][k1] + ci,k2 then
13 Opt[i][j]← Opt[i− 1][k1] + ci,k2 ;

14 Qα ← Qα ×Qi;
15 return Opt[s][k];

tuples from first i − 1 queries and k2 output tuples from Qi(D), the total number of results removed is

k1|Qi(D)| + k2
∏i−1
`=1 |Q`(D)| − k1k2 since results across subqueries are joined by Cartesian product. Thus,

after recursively computing the solution to ADP(Qi, D, k2) for each subquery Qi over all values of k2, the
recurrence formula can be solved in O(s · k3) = O(|Q| · k3) time since there are O(sk) cells in the two-
dimensional data structure Opt[i][j] and each can be computed in O(k2) time.

Universe(Q,D, k). Let A be an universal attribute in Q. The input instance D is partitioned into
D1, D2, · · · , Dg corresponding to possible combinations of values a1, a2, · · · , ag over A. In Di, each tuple t has
πAt = ai. Note that the query resultQ(D) is a disjoint union of the subquery resultsQ(D1), Q(D2), · · · , Q(Di).

Let Opt[i][s] denote the minimum number of input tuples that have to be removed in order to remove
at least s output tuples from Q(D), under the constraint that the input tuples can only be chosen from D1

to Di. Using this notation, we can now write the following dynamic program:

Opt[i][s] =
s

min
m=0

{
Opt[i− 1][s−m] + ComputeADP(Q,Di,m)

}
.

where Algorithm 2 is revoked for solving the ADP(Q,Di,m) over 1 ≤ i ≤ g and 0 ≤ m ≤ s.
When there are more than one universal attributes, they should be removed as one “combined” attribute,

instead of one by one. Let A1, A2, · · · , Ah be the universal attributes in Q. Assume all subproblems

20

ADP(Q,Di, j) over 1 ≤ i ≤ g and 1 ≤ j ≤ k have been computed. Then, removing A1, A2, · · · , Ah one
by one takes O(k · |πA1,A2,··· ,AhQ(D)|) time while removing them as whole (say in index ordering) takes

O(k ·
∑h
`=1 |πA1,··· ,A`Q(D)|) time. Our experiments show this difference in practice.

7.4 Greedy Heuristics

Clearly, we cannot hope for a poly-time algorithm on NP-hard CQs for all input instances D and integers
k. We provide the following greedy heuristics for computing a feasible solution to ADP(Q,D, k) when it is
NP-hard.

GreedyForCQ(Q,D, k): For many simple queries, the ADP problem is NP-hard, and is even hard to ap-
proximate implied by the results in Section 6. The prime-dual approximation algorithm [13] for full CQs
mentioned in Section 6.1 is not scalable since the size of linear programming would become very large, and
not applicable to CQs with projections. So, we give a greedy heuristic for handling all NP-hard CQs when
neither simplification steps can be applied.It greedily chooses a tuple which removes the maximum number
of output tuples among the remaining ones in every step (like the approximation algorithm for the set cover
problem). Moreover, we can narrow our scope to tuples in endogenous relations in the greedy algorithm. Note
that GreedyForCQ achieves O(log k)-approximation for full CQs, but there is no theoretical guarantees
on the approximation ratio when projection exists.

Algorithm 6: GreedyForCQ(Q,D, k)

1 S ← ∅;
2 while k > 0 do
3 t′ ← null, p(t′)← 0;
4 foreach tuple t from an endogenous relation do
5 p(t) = |Q(D − S)| − |Q(D − S − t)|;
6 if p(t) ≥ p(t′) then
7 t′ ← t, p(t′)← p(t);

8 S ← S ∪ {t′}, k ← k − p(t′);
9 return S;

DrasticGreedyForFullCQ(Q,D, k): In the heuristic above, however, computing the “profit” for all input
tuples from endogenous relations after every one input tuple is removed is expensive in practice. For full CQs,
we propose a more ‘drastic’ greedy solution where we remove input tuples only from one endogenous relation
(goes over all endogenous relations and picks the one giving smallest cost). This significantly improves the
efficiency in our experiments, since the profits are computed for all input tuples only once (since different
tuples in the same relation remove disjoint full join results), but theoretically the approximation ratio is no
longer guaranteed. Moreover, this strategy fails on CQs with projection. The reason is that input tuples
from the same relation do not necessarily remove distinct query results, thus adding their individual profits
together is not equivalent to the profit of their union.

Algorithm 7: DrasticGreedyForFullCQ(Q,D, k)

1 S ← ∅;
2 foreach endogenous relation R(e) do
3 foreach t ∈ R(e) do
4 p(t) = |Q(D)| − |Q(D − t)|;
5 Sort R(e) by p(t) decreasingly, as t1, t2, · · · , t|R(e)|;

6 Find the smallest i such that
∑i
j=1 p(tj) ≥ k;

7 if i ≤ |S| then
8 S ← {tj ∈ R(e) : j ≤ i};
9 return S;

21

7.5 Supporting Selection Operator

So far, we focused on the class of CQs only with project and join operators. In fact, our algorithm also
supports a larger class of CQs involving selection operator (when the domain of some of the attributes is
restricted to be constant). The class of conjunctive queries with selections can be described as

Q(A) : −σθ1R1(A1), σθ2R2(A2), · · · , σθpRp(Ap)

where θi is a set of predicates each in form of A = a for some attribute A ∈ A and value a. The result of
σθiRi(Ai) is the set of tuples in Ri satisfying all predicates in θi. Note that we do not have any selection in
the head, since any selection in the head can be pushed down to relations in the query body. An attribute is
selected if it appears in any selection; and unselected otherwise. Let Aθ ⊆ A be the set of selected attributes
in Q. Here, we also don’t include any self-joins, i.e., each Ri in Q is distinct.

Interestingly, for the ADP problem, the polynomial solvability of a CQ with selections is equivalent to that
of the residual query on the unselected attributes. This is formally stated in Lemma 12.

Lemma 12. For a CQ Q with selection predicates θ, the ADP(Q,D, k) is NP-hard if and only if ADP(Q−Aθ , D, k)
is NP-hard, where Q−Aθ is the residual query after removing selected attributes Aθ from Q.

Proof. We will first show that if ADP(Q−Aθ , D, k) is NP-hard, then ADP(Q,D, k) is also NP-hard. For an
arbitrary instance Dθ for Q−Aθ , we construct another instance D for Q by setting a single value ∗ in the
domain of every attribute A ∈ Aθ and the related predicate as A = ∗. It can be easily checked that any
solution for ADP(Q,D, k) with selections is also a solution for ADP(Q−Aθ , D, k). If there is an poly-time
algorithm for ADP(Q,D, k), ADP(Q−Aθ , D, k) is also poly-time solvable, coming to a contradiction. Thus, the
problem ADP(Q,D, k) is NP-hard.

Next we show that if there is a poly-time algorithm A for ADP(Q−Aθ , D, k) over all instances D and
integer k, then there is also an poly-time algorithm Aθ for ADP(Q,D, k). Consider an arbitrary instance D
for query Q. Let D′ be the residual instance of applying predicates to D. Observe that the solution for
ADP(Q,D′, k) is exactly that for ADP(Q,D, k) since tuples in D violating any predicate will not be removed.
Moreover, tuples in D′ have the same value on every attribute A ∈ Aθ. Let D′′ be the instance of removing
attributes Aθ from D′. The solution for ADP(Q−Aθ , D

′′, k) is also the solution for ADP(Q,D′, k), and can be
computed in poly-time. Thus, ADP(Q,D, k) is also poly-time solvable for any instance D and integer k.

8 Experiments

In this section, we evaluate the running time, scalability, and quality of ComputeADP algorithm, and
compare it with other baselines.

Algorithms: In our plots, we call the exact algorithm using ComputeADP for easy (poly-time) queries
as “Exact”. For hard queries, and also for easy queries for scalability, we have implemented two versions of
ComputeADP embedded with GreedyForCQ and DrasticGreedyForFullCQ separately, shorted as
“Greedy” and “Drastic”. We also implemented a baseline brute-force algorithm called “BruteForce”,
which enumerates all subsets of input tuples, computes the number of query results that can be removed by
each subset (by invoking a SQL query), and finds the minimum one among which removes at least k results.

Reporting vs. counting versions: Wherever applicable and feasible, we report the running time
for both counting version, when the goal is to only count the minimum number of input tuples to remove
to achieve the desired effect, and the reporting version, which reports the actual input tuples in one such
solution. Note that for some of our motivating examples, e.g., for understanding robustness, the counting
version suffices.

Setup: We implemented our algorithms in JavaSE-1.8 with the database stored in PostgreSQL 10.12.
The experiments were performed on MacOS, with 16GB of RAM and Intel Core i7 2.9 GHz processor. We
run the experiment 10 times and present the average results (metric) of the 10 runs.

22

103 104 105 106 107

Input size

101

102

103

104

105

106

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Reporting, =10%
Reporting, =25%
Reporting, =50%
Reporting, =75%

Counting, =10%
Counting, =25%
Counting, =50%
Counting, =75%

Figure 7: Running Time: σθQ1

(easy) exactly (count/report).

103 104 105 106 107

Input size

102

103

104

105

106

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Exact, =10%
Exact, =25%
Exact, =50%
Exact, =75%

Figure 8: Running Time: report-
ing σθQ1 (easy) by heuristics.

103 104 105 106 107

Input size

102

103

104

105

106

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic and exact, =10%
Drastic and exact, =25%
Drastic and exact, =50%
Drastic and exact, =75%

Figure 9: Quality: σθQ1 (easy)
by heuristics.

103 104 105 106 107

Input size

101

102

103

104

105

106

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 10: Running Time: re-
porting Q1 (hard) by heuristics.

103 104 105 106 107

Input size

101

102

103

104

105

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 11: Quality: Q1 (hard) by
heuristics.

100 200 300 400 500
Input size

101

102

103

104

105

106

Ru
nn

in
g

tim
e

(m
s)

Remove at least 10% ratio output results
BruteForce
Greedy
Drastic

Figure 12: Running Time: brute-
force v.s. heuristics for Q1 (hard).

100 200 300 400 500
Input size

100

2 × 100

3 × 100

Nu
m

be
r o

f t
up

le
s r

em
ov

ed

Remove at least 10% ratio output results
BruteForce
Greedy
Drastic

Figure 13: Quality: brute-force
v.s. heuristics for Q1 (hard).

0.2 0.4 0.6 0.8
Ratio

102

103

104

105

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Greedy, Q2
Greedy, Q3
Greedy, Q4
Greedy, Q5
Drastic, Q2
Drastic, Q3

Figure 14: Running Time: Q2, Q3,
Q4, Q5 (hard) by heuristics.

0.2 0.4 0.6 0.8
Ratio

100

101

102

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Greedy, Q2
Greedy, Q3
Greedy, Q4
Greedy, Q5
Drastic, Q2
Drastic, Q3

Figure 15: Quality: Q2, Q3, Q4,
Q5 (hard) by heuristics.

23

8.1 Datasets and Queries

TPC-H dataset and queries: The TPC-H dataset has three relations: Supplier(S:NK, SK), Part-
Supp(PS:SK, PK), LineItem(L:OK, SK, PK). Consider the following two queries: (1) Remove least number
of orders or suppliers so that at least ρ% trading records can be restricted. (2) The same query but for the
specific PartKey = 13370. They can be characterized by two problems ADP(Q1, D, k) and ADP(σθQ1, D, kθ)
respectively, where

• Q1(NK, SK, PK, OK):-Supplier(S: NK, SK), PartSupp(PS: SK, PK), LineItem(L: OK, PK), θ : PK =
13370, kθ = ρ · |σθQ(D)| and k = ρ · |Q(D)|, where ρ fraction of outputs are removed.

As shown in Lemma 12, the ADP(σθQ1, D, k) is poly-time solvable with exact optimal solution returned,
while the ADP(Q1, D, k) is NP-hard with only heuristic solution returned, by ComputeADP.

SNAP dataset and queries: We use the common ego-networks from SNAP (Stanford Network Analysis
Project) [17] for Facebook, where an ego-network of a user is a set of “social circles” formed by this user’s
friends [18]. This dataset consists 10 ego-networks, 4233 circles, 4039 nodes, and 88234 edges. We choose
the network around user 414 which consists of 7 circles, 150 nodes and 3386 edges. We further create tables
Ri(A,B) for i ∈ [4] and insert Ej into Ri if the rank of Ej mod 4 = i. All edges are bi-directed. We
evaluate three different queries on this dataset as below:

• Q2(A,B,C,D) : −R1(A,B), R2(B,C), R3(C,D)

• Q3(A,B,C) : −R1(A,B), R2(B,C), R3(C,A)

• Q4(A,C,E,G) : −R1(A,B), R2(B,C), R3(E,F), R4(F,G).

• Q5(A,B,C) : −R1(A,E), R2(B,E), R3(C,E)

which are commonly used in community detection or friend recommendation over social networks. For
instance, Q2 finds a path of length three, Q3 finds a triangle, Q4 finds a pair of length-2 connection, and Q5

captures a common friend. All of them are NP-hard, so ComputeADP only returns heuristic results.

8.2 Scalability

Poly-time query: We evaluate ADP(σθQ1, D, kθ) on the TPC-H dataset with different input sizes N =1k,
10k, 100k, 1M, 10M, which denotes the number of survived tuples after selection. We use different fractions
ρ = 0.1, 0.25, 0.5, 0.75. Figure 7 display the results for both reporting and counting versions. The running
time increases with increase of input data size and the ρ. Since the counting version only performs com-
putation on numbers in dynamic programming, it uses much less memory and behaves much more scalable
than the reporting version does. Moreover, as a remedy for reporting results when the data size becomes
large, we also test the Greedy and Drastic on σθQ1 (by directly invoking Line 5 in Algorithm 2), whose
running time is much smaller than the exact algorithm as shown in Figure 8. Meanwhile, we also show the
quality of these three techniques in Figure 9. All of them coincide due to the data distribution for σθQ1,
which implies that Greedy and Drastic also find optimal solutions. But Greedy is not as scalable as
Drastic to larger dataset with input size 100K or more.

Hard query: We next evaluate ADP(Q1, D, kθ) on the TPC-H dataset with different input sizes N =1k,
10k, 100k, 1M, 10M and ρ = 0.1, 0.25, 0.5, 0.75 using Greedy and Drastic separately. Since Drastic only
computes the “profit” for all input tuples through a SQL query once, while Greedy needs to update these
statistics once an input tuple is removed. Thus, Drastic takes much less time than Greedy, as shown in
Figure 10. We also compare the quality of solutions returned by these two heuristics, as shown in Figure 11.
Due to the data distribution (which is varied in Section 8.4), Greedy and Drastic have the same quality
when data size is smaller than 100K. However, Greedy is not scalable to larger dataset and quality results
are only shown for Drastic in Figure 11.

Comparison with brute-force: Next, we evaluate the BruteForce algorithm on the TPC-H dataset
for the NP-hard query ADP(Q1, D, k) with input size N = 500 and ρ = 0.1. The straightforward brute-force
implementation does not work even on such a small dataset, since it iterates over all subsets of input tuples
and issues as many as 2500 SQL queries in total. We use an optimization here by iterating all subsets in
increasing order of their sizes, until a feasible solution (removing at least k query results) is found.

24

We compare the optimized BruteForce with two heuristics. All three algorithms have their quality
coinciding for this small dataset, as shown in Figure 13. But heuristics significantly improve the running
time of BruteForce, as shown in Figure 12. The BruteForce did not stop in several hours for N = 1000
or ρ = 0.2.

8.3 Complexity of Queries

For each of Q2, Q3, Q4, Q5, we ran our experiments on the SNAP dataset and varied the fraction of query
results to be removed (denoted as ρ) over {0.1, 0.25, 0.5, 0.75}. We evaluated Greedy and Drastic as
follows. First, we invoked GreedyForCQ directly on Q2, Q3, Q5 since neither of the simplification steps
can be applied to these queries. For Q4, Greedy first decomposes it into two subqueries as Q41(A,C) :
−R1(A,B), R2(B,C) and Q42(E,G) : −R3(E,F), R4(F,G) using Decompose, and handles them using
GreedyForCQ separately. Next, we invoked DrasticGreedyForFullCQ on Q2, Q3 directly. All run-
ning times are displayed in Figure 14. As Drastic cannot be applied to Q4, Q5 with projection, these are
not in Figure 14. The quality of these heuristics is displayed in Figure 15.

The running time of Drastic depends on (i) the number of endogenous relations, (ii) computing the
profits for all tuples in an endogenous relation by SQL queries, (iii) sorting the tuples by profit, and (iv)
finding tuples with largest profits whose profits add up to at least k. Note that Q2, Q3 are executed on
the same dataset and the number of input tuples to be removed are almost the same (see Figure 15). So
Figure 14 displays the difference in runtimes for executing the SQL queries for Q2, Q3.

The running time of Greedy depends on (i) the number of iterations of the while loop, which is equal to
the number of input tuples to be removed, (ii) the number of SQL queries for each iteration of the while loop,
which is the number of endogenous relations, and (iii) the time for executing one SQL query. On Q2, Q3, Q5,
Greedy removes almost the same number of tuples as shown in Figure 15. So, Figure 14 displays the
difference in running time for executing SQL queries for Q2, Q3, Q5 respectively. Note that Greedy needs
to solve a dynamic program in Decompose as well as a large number of sub-problems for both Q41, Q42,
which is only relevant to the sizes of their own query results, so Q4 has a larger and stable running time
even though it removes much fewer input tuples.

8.4 Data Distribution

We study the performance of ComputeADP for a poly-time solvable singleton query Q6(A,B) : −R1(A),
R2(A,B) and an NP-hard query Qpath(A,B) : −R1(A), R2(A,B), R3(B) on various data distributions,
where the degrees of values from A or B in relation R2(A,B) is varied according to to obtain the different
distributions. We used the Zipfian distribution, where the frequency of the i-th distinct key is proportional to
i−α. The parameter α ≥ 0 controls the skewness of the distribution: larger α means larger skew. We fix the
distribution of degrees for values in B as uniform and vary the skewness of degrees of values in A by varying
α. We evaluate both Q6 and Qpath on our synthetic dataset with different input sizes N = 1k, 10k, 100k, 1M
and 0.2N distinct values in A and B separately. The results for Qpath are shown in Figure 16–19, and those
for Q6 are shown in Figure 20–23. We also tested other values of α, which are reported in Figures 24, 25,
26, 27.

For every fixed value of α, the running time as well as the size of solutions returned by any algorithm
increase with the input size and the value of ρ. If both the input size and ρ are fixed, the size of the solution
decreases with increasing α. This is because on a skewed instance, the same number of output tuples can be
removed by removing fewer input tuples. The running time for Drastic and Exact stays almost the same
since computing the profits for input tuples is the most costly step, independent of the size of the solution.
However, the running time of Greedy decreases with the size of the solution, which is affected by α.

8.5 Optimizations

Next, we evaluate our optimizations on synthetic datasets. We use the following two queries: a singleton
query Q5 (attributes in R1 are universal) and a disconnected query Q6 (that can be decomposed into three
easy queries).

• Q7(A,B,C,D,E, F,G) : −R1(A,B,C), R2(A,B,C,D,E), R3(A,B,C,D,G), R4(A,B,C, F)

25

103 104 105 106

Input size

101

102

103

104

105

106

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 16: α = 0 (hard)

103 104 105 106

Input size

101

102

103

104

105

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 17: α = 0 (hard)

103 104 105 106

Input size

101

102

103

104

105

106

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 18: α = 1 (hard)

103 104 105 106

Input size
100

101

102

103

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 19: α = 1 (hard)

103 104 105 106

Input size

101

102

103

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Exact, =10%
Exact, =25%
Exact, =50%
Exact, =75%

Figure 20: α = 0 (easy)

103 104 105 106

Input size

101

102

103

104

105

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Exact, =10%
Exact, =25%
Exact, =50%
Exact, =75%

Figure 21: α = 0 (easy)

103 104 105 106

Input size
101

102

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Exact, =10%
Exact, =25%
Exact, =50%
Exact, =75%

Figure 22: α = 1 (easy)

103 104 105 106

Input size
100

101

102

103

104

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Exact, =10%
Exact, =25%
Exact, =50%
Exact, =75%

Figure 23: α = 1 (easy)

103 104 105 106

Input size

101

102

103

104

105

106

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 24: α = 0.25 (hard)

103 104 105 106

Input size

101

102

103

104

105

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 25: α = 0.25 (hard)

103 104 105 106

Input size

101

102

103

104

105

106

107

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 26: α = 0.5 (hard)

103 104 105 106

Input size

101

102

103

104

105

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 27: α = 0.5 (hard)

26

=50% =75%

101

102

Ru
nn

in
g

tim
e

(m
s)

Comparison w/o optimization over singleton
Remove one by one
Remove as whole
Improved algorithm

Figure 28: Q7.

=1% =10%
103

104

105

106

107

Ru
nn

in
g

tim
e

(m
s)

Comparison w/o optimization over decomposition
Full partitions
Two partitions
Improved DP

Figure 29: Q8.

• Q8(A1, · · · , C3) : −R11(A1), R12(A1, B1), R21(A2), R22(A2, B2), R31(A3), R32(A3, B3)

We generate relatively small synthetic datasets, as the non-optimized algorithm would take prohibitively long
time on larger ones. For Q7, each relation has 500 input tuples and each tuple is randomly generated with a
combination of integers between 1 and 100; for Q8, R11, R21, R31 each has 25 input tuples and R12, R22, R32

each has 50. Each input tuple is randomly generated with a combination of integers between 1 and 100.
For ADP(Q7, D, k), we compare three different strategies: (1) removing universal attributes A,B,C one by
one, (2) removing A,B,C together, and (3) invoking procedure Singleton(Q7, D, k) based on sorting; the
results are shown in Figure 28. For ADP(Q8, D, k), we compare three different strategies: (1) decompose into
3 partitions at once, (2) decompose into 2 partitions each time, and (3) improved dynamic programming; the
results are shown in Figure 29. Note that all these strategies will compute all subproblems ADP(Qi, D, k) for
each subquery Qi(Ai, Bi, Ci) : −Ri1(Ai, Bi), Ri2(Ai, Bi), but only differ how the solutions for each subquery
are used to construct the optimal solution for the ADP(Q7, D, k) problem. Figures 28 and 29 show that
optimizations improve the running time significantly.

9 Future Work

Several open questions remain. First, it would be interesting to study the ADP problem beyond CQs. In
particular, many natural queries involve self-joins and/or aggregates like sum, for which the observations of
this paper do not apply. It is also natural to consider scenarios where all input tuples are not equivalent
in terms of the cost of removing them. As a first step, one might want to consider a scenario where only
a subset of input tuples can be removed, and the remaining input tuples cannot be deleted. Investigating
the approximability of the ADP problem is another interesting research direction. Although we showed some
preliminary results in this context, obtaining an exact characterization of the approximability of this problem
for individual queries, even for the special case of the Resilience problem, remains open. A related question
is that of the parameterized complexity of ADP with respect to k for full CQs. While we showed that ADP

admits a poly-time algorithm for fixed k, obtaining an FPT algorithm for the problem remains open.

27

References

[1] B. Applebaum. Pseudorandom generators with long stretch and low locality from random local one-way func-
tions. SIAM Journal on Computing, 42(5):2008–2037, 2013.

[2] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Trans. Database Syst., 6(4):557–575,
Dec. 1981.

[3] P. Buneman, S. Khanna, and W.-C. Tan. On propagation of deletions and annotations through views. In Pro-
ceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS ’02, pages 150–158, 2002.

[4] B. Caskurlu, V. Mkrtchyan, O. Parekh, and K. Subramani. Partial vertex cover and budgeted maximum
coverage in bipartite graphs. SIAM J. Discrete Math., 31(3):2172–2184, 2017.

[5] J. Chen and I. A. Kanj. Constrained minimum vertex cover in bipartite graphs: complexity and parameterized
algorithms. Journal of Computer and System Sciences, 67(4):833–847, 2003.

[6] E. Chlamtác, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca. The densest k-subhypergraph problem.
SIAM Journal on Discrete Mathematics, 32(2):1458–1477, 2018.

[7] E. Chlamtáč, M. Dinitz, and Y. Makarychev. Minimizing the union: Tight approximations for small set bipartite
vertex expansion. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 881–899. SIAM, 2017.

[8] G. Cong, W. Fan, and F. Geerts. Annotation propagation revisited for key preserving views. In Proceedings of
the 15th ACM International Conference on Information and Knowledge Management, CIKM ’06, pages 632–641,
2006.

[9] N. N. Dalvi and D. Suciu. The dichotomy of probabilistic inference for unions of conjunctive queries. J. ACM,
59(6):30:1–30:87, 2012.

[10] U. Dayal and P. A. Bernstein. On the correct translation of update operations on relational views. ACM Trans.
Database Syst., 7(3):381–416, Sept. 1982.

[11] C. Freire, W. Gatterbauer, N. Immerman, and A. Meliou. The complexity of resilience and responsibility for
self-join-free conjunctive queries. PVLDB, 9(3):180–191, 2015.

[12] C. Freire, W. Gatterbauer, N. Immerman, and A. Meliou. New results for the complexity of resilience for binary
conjunctive queries with self-joins. arXiv preprint arXiv:1907.01129, 2019.

[13] R. Gandhi, S. Khuller, and A. Srinivasan. Approximation algorithms for partial covering problems. Journal of
Algorithms, 53(1):55–84, 2004.

[14] B. Kimelfeld. A dichotomy in the complexity of deletion propagation with functional dependencies. In Pro-
ceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 191–202, 2012.

[15] B. Kimelfeld, J. Vondrák, and R. Williams. Maximizing conjunctive views in deletion propagation. In Proceedings
of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2011, June
12-16, 2011, Athens, Greece, pages 187–198, 2011.

[16] B. Kimelfeld, J. Vondrák, and D. P. Woodruff. Multi-tuple deletion propagation: Approximations and com-
plexity. PVLDB, 6(13):1558–1569, 2013.

[17] J. Leskovec and A. Krevl. Snap datasets: Stanford large network dataset collection. http: // snap. stanford.
edu/ data/ , June 2014.

[18] J. Leskovec and J. J. Mcauley. Learning to discover social circles in ego networks. In Advances in neural
information processing systems, pages 539–547, 2012.

[19] E. Livshits, B. Kimelfeld, and S. Roy. Computing optimal repairs for functional dependencies. In Proceedings of
the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Houston, TX, USA,
June 10-15, 2018, pages 225–237, 2018.

[20] L. Mathieson and S. Szeider. The parameterized complexity of regular subgraph problems and generalizations.
In Proceedings of the fourteenth symposium on Computing: the Australasian theory-Volume 77, pages 79–86,
2008.

[21] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The complexity of causality and responsibility for
query answers and non-answers. PVLDB, 4(1):34–45, 2010.

[22] A. Meliou, W. Gatterbauer, and D. Suciu. Reverse data management. PVLDB, 4(12):1490–1493, 2011.

[23] A. Meliou and D. Suciu. Tiresias: the database oracle for how-to queries. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012,
pages 337–348, 2012.

[24] S. Roy, L. Orr, and D. Suciu. Explaining query answers with explanation-ready databases. PVLDB, 9(4):348–
359, 2015.

[25] S. Roy and D. Suciu. A formal approach to finding explanations for database queries. In International Conference

28

http://snap.stanford.edu/data/
http://snap.stanford.edu/data/

on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 1579–1590, 2014.

[26] M. Y. Vardi. The complexity of relational query languages. In STOC, pages 137–146, 1982.

[27] S. A. Vinterboa. A note on the hardness of the k-ambiguity problem. 2002.

[28] E. Wu and S. Madden. Scorpion: Explaining away outliers in aggregate queries. PVLDB, 6(8):553–564, 2013.

29

A Endogenous relations

To compare our definitions with those from [11], we need to introduce the following terminologies. In a
CQ Q, relation Rj ∈ rels(Q) is exogenous if there exists another relation Ri 6= Rj ∈ rels(Q) such that
attr(Ri) ⊂ attr(Rj), and endogenous otherwise. It should be noted that if there are more than one relation
defining on the same attributes, i.e., attr(Ri) = attr(Rj), then we just consider arbitrary one of them as
endogenous and the remaining as exogenous. InQ() : −R1(A), R2(A,B), R3(B,C), R4(B,C), R5(B,C), there
are two endogenous relations R1 and any one of R3, R4, R5. We generalize their observation on endogenous
relations in [11] to the ADP problem, as stated in Lemma 13, which will be used in this paper.

Lemma 13. For any CQ Q, if ADP(Q,D, k) problem is poly-time solvable, there exists a solution which only
removes input tuples from endogenous relations.

Proof. Consider an arbitrary solution S for ADP(Q,D, k). By contradiction, assume tuple t ∈ Rj is removed
by S where Rj is an exogenous relation. Let Ri ∈ rels(Q) be the endogenous relation such that attr(Ri) ⊂
attr(Rj), and t′ be the tuple such that πattr(Ri)t = t′. If t′ ∈ S, we observe that S − {t} also removes
at least k results from Q(D), contradicting the optimality of S. Otherwise, t′ /∈ S. Then we claim that
S − {t} + {t′} is also an optimal solution for ADP(Q,D, k). Applying this argument to each tuple removed
from exogenous relation, we will obtain an optimal solution which only removes tuples from endogenous
solution. Thus adding the restriction on Q doesn’t change the minimum number of tuples to be removed for
ADP(Q,D, k).

B Proof of Lemma 5

We show the NP-hardness of each problem in Lemma 5 separately.

Hardness Proof of Problem (1). With an equivalent definition, problem (1) is exactly the Partial Vertex
Cover for Bipartite Graphs (PVCB) problem, which is known to be NP-hard [4].

Definition 11. The input to the problem is an undirected bipartite graph G(A,B,E) where E is the set of
edges between two sets of vertices A and B, and an integer k. The goal is to find a subset S ⊆ A ∪ B of
minimum size such that at least k edges from E have at least one endpoint in S.

Hardness Proof of Problem (2). It is easy to relate problem (2) to the k-Minimum Coverage (KMC)
problem, which is known to be NP-hard [27].

Definition 12. Given a universe U , a family S of subsets of U and an integer k, find k subsets from S such
that the size of their union is minimized.

We give a reduction from the KMC problem that takes as input (U ,S) and k, denoted as KMC(U ,S, k).
Moreover, it can be easily checked that this reduction preserves the approximation, i.e., if there is an
α-approximation algorithm for the ADP(Qswing, D, k) problem, then there must exist an α-approximation
algorithm for the KMC problem.

Given an instance of the KMC problem, we construct a bipartite graph G = (A,B,E) as follows. For each
element u ∈ U , we include a vertex bu ∈ B. For each subset S ∈ S, we include a vertex aS ∈ A. If u ∈ S,
we add an edge (aS , bu) ∈ E. Next we show that the problem KMC(U ,S, k) has a solution of size ≤ c if and
only if the problem (2) has a solution of size ≤ c.

The“only-if” direction. Suppose we are given a solution S ′ ⊆ S for problem KMC(U ,S, k) of size ≤ c.
We then construct a solution for problem (2) as follows. If u ∈

⋃
S∈S′ S, then we remove bu from B. This

solution removes at most c vertices from B since |
⋃
S∈S′ S| ≤ c. Moreover, every vertex aS ∈ A is removed

as long as S ∈ S′. The total number of vertices removed from A is at least k, thus this is exactly a solution
for problem (2) of size ≤ k.

The “if” direction. Suppose we are given a solution for problem (2) of size ≤ c. We choose k arbitrary
vertices from A which is removed because of the removal of vertices in B, denoted as A′. We then construct
a solution for KMC(U ,S, k) as {S : aS ∈ A′}. It can be easily argued that |

⋃
S:aS∈A′ S| ≤ c. Suppose not,

30

there must exist at least one vertex bu for u ∈
⋃
S:aS∈A′ not removed. In this way, at least one vertex in A′

cannot be removed, coming to a contradiction.

Hardness Proof of Problem (3). However, to our knowledge, there is no existing result directly implying
the hardness of problem (3). We first elaborate it as the Sided-Constrained Vertex Cover in Bipartite Graphs
(SVCB).

Definition 13. The input to the problem is an undirected bipartite graph G(A,B,E) where E is the set of
edges between two sets of vertices A and B, and an integer c. The goal is to find a subset S ⊆ A ∪ B of
minimum size such that each edge from E have at least one endpoint in S and at least c vertices in A are
included in S.

A related problem that has been studied is the constrained minimum vertex cover, which is known to be
NP-complete [5], but with a different settings from SVCB. It asks to find a minimum vertex cover S ⊆ A∪B
such that |A ∩ S| ≤ k1 and |B ∩ S| ≤ k2 for some input integer k1, k2. As a side product, we also first show
that SVCB problem is NP-hard in Lemma 14, whose proof is given in Appendix C of independent interest.

Lemma 14. The SVCB problem is NP-hard.

We give a reduction from the decision version of SVCB problem that takes input G = (A,B,E) and an
integer c ≤ |A|, denoted as SVCB(G, c). For simplicity, assume each vertex in G is incident to at least one
edge in E. Given an instance of the SVCB problem, we have the same bipartite graph G for problem (3). Next
we show that SVCB(G, c) has a solution of size ≤ c′ if an only if the problem (3) with parameter k = |A| − c
has a solution of size ≤ c′ − c.

The“only-if” direction. Suppose we are given a vertex cover C for the problem SVCB(G, c) of size
≤ c′. Let B1 = C ∩ B and A1 = C ∩ A, where |A1| ≥ c. As a complement of C, (A − A1, B − B1) form an
independent set of G. This implies that for each vertex a ∈ A−A1, if (a, b) ∈ E, then b ∈ B1.

We construct a solution S for problem (3) as follows. We choose arbitrary |A1| − c vertices from A1,
denoted as A2. Let S = A2 ∪ B1. The size of S can be bounded as |A1| + |B1| − c = |C| − c′ ≤ c′ − c.
Moreover, it can be easily checked that S is a valid solution for problem (3). Each vertex a ∈ A−A1 will be
removed, since all of its neightbors are in B1, which have been removed already. Additional |A1| − c vertices
are also removed from A2. Thus, the total number of vertices removed from A is |A−A1|+ |A1|−c = |A|−c.

The “if” direction. Suppose we are given a solution S for the problem (3) with parameter k = |A|− c,
of size ≤ c′ − c. Let B1 = S ∩ B and A2 = {a ∈ A : (a, b) /∈ E ∀b ∈ B − B1}. We mention two important
properties on S first. (i) If |A2| ≥ |A| − c, then S = B1 with size ≤ c′ − c. (ii) If |A2| < |A| − c, there must
be |S ∩ (A−A2)| ≥ |A| − |A2| − c. In this case, c′ − c ≥ |S| ≥ |S ∩ (A−A2)|+ |B1| ≥ |A| − |A2| − c+ |B1|,
thus c′ ≥ |A| − |A2|+ |B1|.

We construct a solution C for the problem SVCB(G, c) as follows. If |A2| ≥ |A| − c, choose arbitrary
|A2| − |A|+ c vertices from A2 as A3 and set C = (A−A2 +A3, B1). Otherwise, set C = (A−A2, B1).

Observe that C is a valid vertex cover since (A2, B −B1) is an independent set of G. It remains to show
that |C| ≤ c′ and |C ∩ A| ≥ c. Note that if |A2| ≥ |A| − c, we have |C ∩ A| = |A| − |A2| + |A3| = c and
|C| = |A| − |A2|+ |A3|+ |B1| ≤ c+ c′− c = c′, implied by (i). Otherwise, |C ∩A| = |A| − |A2| ≥ c. Moreover,
|C| = |A| − |A2|+ |B1| ≤ c′, implied by (ii).

C Proof of Lemma 14

In this part, we prove the NP-hardness of SVCB problem by showing that the NP-complete problem of CLIQUE
in a regular graph [20] is polynomial time reducible to it, denoted as REGULAR-CLIQUE.

Recall that the input is an undirected bipartite graph G(A,B,E) where E is the set of edges between
two sets of vertices A and B, and an integer c ≤ |A|. The goal is to find a subset S ⊆ A ∪ B of minimum
size such that each edge from E have at least one endpoint in S and at least c vertices in A are included by
S.

Instance Construction. Let G′ = (V ′, E′) be a d-regular graph, where |V ′| = n and |E′| = m. Let
5 ≤ q ≤ n−1

2 be an integer. The CLIQUE problem asks whether there exists a set of q vertices in V ′ such
that each pair of vertices chosen are connected by an edge in E′. We construct an instance G = (A ∪B,E)

31

with k1, k2 as follows. Each vertex u ∈ V ′ defines a vertex-block, in forms of a biclique Au × Bu, where
Au ⊆ A contains λ1 vertices and Bu ⊆ B contains λ2 distinct vertices. Moreover, λ1 − λ2 ≥ d. Each edge
e ∈ E′ defines a vertex be ∈ B. If vertex u is the endpoint of edge e in G′, we just add one edge from be to
one vertex in Au with degree λ2. This is always possible since λ1 > d. In our constructed graph, there is
|A| = λ1n, |B| = λ2n+m and |E| = λ1λ2n+ 2m. Set c = λ1q.

Any λ1, λ2, d satisfying the following the constraints work for this proof, say, λ1 = 2q(q+1), λ2 = 2q2, d =
2q.

1. λ1 > max{2q − 1, 12q(q − 1)};

2. λ1 − λ2 ≥ d ≥ 2q;

3. (λ1 − λ2)(n− q) + 1
2q(q − 1) ≥ m;

4. λ1 ≥ (q − 1) · d;

5. λ2 + 1
2 (q − 1) > 1

2λ1;

6. λ2 >
1
2λ1 + 1

2 (q − 1)(d− q);

7. 2m = nd;

8. d ≤ n− 1.

But for generality, we still use λ1, λ2, d for analysis. We will show that the original graph G′ = (V ′, E′) has a
clique of size q if and only if the bipartite graph G = (A∪B,E) has a vertex cover J such that |J ∩A| ≥ λ1q
and |J | ≤ λ1q + λ2(n− q) +m− 1

2q(q − 1).

“Yes” instance: If there exists a clique of size q in G′, we construct the vertex cover as follows. If a
vertex u ∈ V ′ is in the clique, choose Au; otherwise, choose Bu. For an edge e = (u, u′) ∈ E′, if at least one
of u, u′ is not in the clique, choose eu. It can be easily checked that each edge is covered, so this is a valid
vertex cover. Moreover, |J ∩A| = λ1q and |J | = λ1q + λ2(n− q) +m− 1

2q(q − 1).

“No” instance:If there exists no clique of size q in G′, every vertex cover J of G with |J ∩ A| ≥ λq,
must have its size strictly larger than λ1q + λ2(n− q) +m− 1

2q(q − 1). Let J∗ be the minimum one among
the class of vertex covers with |J ∩A| ≥ λ1q.

The first observation is that |J∗∩A| = λ1q. By contradiction, assume |J∗∩A| > λ1q. If we can find some
u ∈ V ′ with Au (J∗, then Au ⊆ J∗; for each vertex a ∈ Au ∩ J∗, we remove a from J∗ and add be to J∗ if
there is a edge block be connected to v. Otherwise, for each u ∈ V ′ with Au ∩J∗ 6= ∅, there is Au ∩J∗ = Au.
In this case, |J∗ ∩ A| = λ1q

′′ with q′′ > q. For an arbitrary u ∈ V ′ with Au = J∗, we remove Au from J∗

and add Bu ∪ (
⋃
e∈E′:u∈e be) to J∗. Note that |Bu ∪ (

⋃
e∈E′:u∈e be)| = |Bu|+ |

⋃
e∈E′:u∈e be| = λ2 + d ≤ λ1.

In this way, we can get a better (at least not worse) vertex cover while maintaining the constraint that
|J∗ ∩A| ≥ λ1q.

Based on J∗, we divide vertices in V ′ into three subsets:

A1 = {u ∈ V ′ : Au − J∗ = ∅};

A2 = {u ∈ V ′ : Au − J∗ 6= ∅, Au ∩ J∗ 6= ∅};

A3 = {u ∈ V ′ : Au ∩ J∗ = ∅};

Note that J∗ has to pick the Bu for every u ∈ A2 ∪ A3. We further consider two cases: (1) |A1| = q; (2)
|A1| ≤ q − 1. Both cases are built on the following common observations. Consider an edge block be with
e = (u, u′). Let aeu ∈ Au and aeu′ ∈ Au′ be the two vertices incident to be in G. Note that be /∈ J∗ if and
only if aeu ∈ J∗ and aeu′ ∈ J∗.

Case 1: |A1| = q. In this case, |A2| + |A3| = n − q, and A2 = ∅ since |J∗ ∩ A| = λ1q. For any edge
e = (u, u′) ∈ E, be /∈ J∗ if and only if u ∈ A1 and u′ ∈ A1. Since there is no q-clique in G′, J∗ has size at
least λ1q + λ2(n− q) +m− 1

2q(q − 1) + 1.
Case 2: |A1| ≤ q − 1. Consider each edge e = (u, u′) ∈ G′. Observe that if one of u, u′ is in A3, there

must be be ∈ J∗. We further distinguish three more cases for e when be /∈ J∗. (i) both u, u′ ∈ A1, be /∈ J∗.

32

Let α be the number of edges falling into this case. (ii) u, u′ ∈ A2, then J∗ has to choose both aeu, aeu′ for
only exempting eu. (iii) one of u, u′ is in A1 and the other in A2, say u ∈ A1, u

′ ∈ A2, then J∗ has to choose
aeu′ for exempting be; and the number of such edges is at most |A1| · d − 2α. Note that J∗ will exempt as
many as edge blocks as possible. With the additional budget of λ1(q − |A1|) vertices in A2, it will firstly
exempt as many edge blocks in (iii) as possible; and then exempt edge blocks in (ii). Under the parameter
constraint (1), λ1(q − |A1|) ≥ |A1| · d ≥ |A1| · d − 2α for any |A1| ∈ {1, 2, · · · , q − 1}. So the number of
exempted edge blocks is at most

f(|A1|) = α+ |A1| · d− 2α+
1

2

(
λ1(q − |A1|)− (|A1| · d− 2α)

)
=

1

2
|A1| · d+

1

2
λ1(q − |A1|)

In this case, J∗ has size at least λ1q + λ2(n− |A1|) +m− f(|A1|). To show why it is always strictly larger
than λ1q + λ2(n− q) +m− 1

2q(q − 1), it suffices to show that

λ2(q − |A1|)− f(|A1|) +
1

2
q(q − 1) > 0

for any |A1| ∈ {0, 1, 2, · · · , q − 1}. Rearranging the inequality, this is equivalent to show

(λ2 −
1

2
λ1)(q − x) +

1

2
q(q − 1)− 1

2
xd > 0

holds for any x ∈ [0, q− 1]. Note that this is a monotone function, so it holds for the whole interval [0, q− 1]
as long as it holds for both endpoints. For x = 0, it holds if λ2 + 1

2 (q − 1) > 1
2λ1. For x = q − 1, it holds if

λ2 >
1
2λ1 + 1

2 (q − 1)(d− q). Both constraints are implied by the parameter settings.

D Proof of Theorem 3

We will prove Theorem 3 by drawing an equivalence to Theorem 2. For simplicity, when there is a triad-like
or strand structure, or the head join of non-dominated relations is non-hierarchical in Q, Q is referred to
contain hard structure.

We first show that these two simplification steps in procedure IsPtime preserve the hard structures
(Lemma 8 and Lemma 9).We then investigate three base cases. Note that when Q is boolean, there is no
triad structure since head(Q) ∩ attr(Ri) = ∅ for any Ri ∈ rels(Q). The head join of Q has no attributes,
thus always being hierarchical. On boolean CQ, Theorem 3 degenerates to Theorem 4 directly. So, it remains
to consider the case when there is a vacuum relation in Q (Lemma 15) or IsPtime(Q) goes to “other” in
Figure 3 (Lemma 16).

Proof Lemma 8. For each relation Ri ∈ rels(Q), let R′i be the corresponding relation in Q−A, with
attr(R′i) = attr(Ri) − {A}. We first mention two important observations for Q,Q−A: (1) there is a
one-to-one correspondence of non-dominated (resp. endogenous) relations in Q and Q−A, i.e., Ri is non-
dominated (resp. endogenous) if and only R′i is non-dominated (resp. endogenous); (2) for a full CQ, Q is
hierarchical if and only if Q−A is hierarchical. Both can be easily checked by definition. .

The “only-if” direction. Suppose Q contains hard structure, and we prove each case separately.
If there is a triad-structure with a triple of endogenous relations R1, R2, R3 ∈ rels(Q) such that for each

pair of relations, say R1, R2, there exists a path between R1, R2 only using attributes in attr(Q)−head(Q)−
attr(R3). Obviously, A doesn’t appear on this path since A ∈ attr(R3). Correspondingly, this path between
R′1, R

′
2 only uses attributes in attr(Q−A)−head(Q−A)−attr(R3) = attr(Q)−head(Q)−attr(R′3). Similar

argument applies for R′1, R
′
3 and R′2, R

′
3. Thus, R′1, R

′
2, R

′
3 form a triad in Q−A.

If there is a strand with a pair of non-dominated relations R1, R2 ∈ rels(Q) such that (1) head(Q) ∩
attr(R1) 6= head(Q) ∩ attr(R2); (2) attr(Ri) ∩ attr(Rj) − head(Q) 6= ∅. It can be easily checked that
head(Q)∩attr(R′1) 6= head(Q)∩attr(R′2), and attr(R′i)∩attr(R′j)−head(Q−A) = attr(Ri)∩attr(Rj)−
head(Q) 6= ∅. Thus, R′1, R

′
2 form a strand in Q−A.

33

If the head join of non-dominated relations in Q is non-hierarchical, removing a universal attribute A
from all relations doesn’t change this property. Thus, the head join of non-dominated relations in Q−A is
also non-hierarchical.

The “if” direction. Suppose Q−A contains hard structure. This direction can be argued similarly with
the “only-if” direction.

Proof of Lemma 9. We first mention two important observations for a disconnected query: (1) the set of non-
dominated (resp. endogenous) relations in Q is just the disjoint union of non-dominated (resp. endogenous)
relations in each subquery; (2) a full join is hierarchical, if each of its connected subqueries is hierarchical.
Both can be easily checked by definition.

The “only-if” direction. Suppose Q contains hard structure, and we prove each case separately.
If there is a triad-structure with a triple of endogenous relations R1, R2, R3 ∈ rels(Q), they must come

from the same subquery, say Qi, since there exists a path between any pair of them by definition. It can be
easily checked that R1, R2, R3 still form a triad in Qi.

Similarly, if there is a strand with a pair of endogenous relations R1, R2 ∈ rels(Q), they must come from
the same subquery, say Qi, since they are connected. It can be easily checked that R1, R2 still form a strand
in Qi.

If the head join of non-dominated relations in Q is non-hierarchical, we can identify two attributes
A,B and three non-dominated relations R1, R2, R3 such that A ∈ attr(R1) ∩ attr(R2) − attr(R3) and
B ∈ attr(R3) ∩ attr(R2)− attr(R1). In this way, R1, R2, R3 must come from the same subquery, say Qi.
It can be easily checked that this condition still holds in Qi, thus being non-hierarchical.

The “if” direction. Suppose Qi contains hard structure. It can be easily checked that any hard
structure in Qi also exists in Q.

Lemma 15. For a CQ Q, if there is a vacuum relation, then Q doesn’t contain any hard structure.

Proof. Let Ri be the vacuum relation. By definition, every remaining relation Rj ∈ rels(Q) − {Ri} is
dominated by Ri. Thus, there is neither triad-like nor strand structure in Q. The head join of non-
dominated relations in Q only includes Ri, thus always being hierarchical. Overall, Q doesn’t contain any
hard structure.

Lemma 16. For a CQ Q, if IsPtime(Q) goes to “other” in Figure 3, then Q contains hard structure.

Proof. We follow the same proof plan for Lemma 4, by distinguishing the class of CQs characterized by
Lemma 16 into three cases, as illustrated in Figure 4. Recall that any query characterized by Lemma 4 is
connected, without any universal attribute and vacuum relation. we show that Q falling into any one case
contains hard structure.

Case 1: head join contains at least one vacuum relation. Let Ri ∈ rels(Q) be the relation such that
attr(Ri) 6= ∅ and attr(Ri) ⊆ attr(Q)−head(Q). We start from any non-output attributeB ∈ attr(Ri) and
do a binary search until we find an output attribute A. Let R1, R2 be the consecutive pair of relations on this
path between A,B, such that A ∈ attr(R1). Note that attr(R2) ⊆ attr(Q)−head(Q); otherwise, R2 would
be the first relation containing output attributes in our search. Moreover, R2 is non-dominated since there
is no vacuum relation in Q, and R1 is also non-dominated since attr(R1)∩ attr(R2) ⊆ attr(Q)− head(Q).
In this way, R1, R2 form a stand in Q.

Case 2: head join is disconnected (and no vacuum relation). As there is no vacuum relation in head
join, head(Q)∩ attr(Ri) 6= ∅ holds for each relation Ri ∈ rels(Q). Moreover, we can always identify a pair
of attributes X,Z ∈ head(Q) such that there is no path between X,Z in the head join. As Q is connected,
every path between X,Z in Q uses at least one non-output attribute.

Consider any path between X,Z in Q, in which there is a pair of consecutive relations R1, R2 such that
attr(R1) ∩ attr(R2) ⊆ attr(Q) − head(Q); otherwise, X,Z are connected in the head join. Obviously,
attr(R1) ∩ attr(R2) ∩ head(Q) = ∅. We claim that both R1, R2 are non-dominated. Suppose not, say R1

is dominated by Ri. By definition, attr(Ri) ⊆ attr(R1). Observe that attr(Ri) − attr(R2) 6= ∅ since
attr(Ri)− attr(R2) ⊇ attr(Ri)∩ head(Q)− attr(R2) ⊇ attr(Ri)∩ attr(R1)∩ head(Q)− attr(R2) 6= ∅.
Implied by Definition 7, attr(R1)∩attr(R2) ⊆ attr(Ri)∩head(Q), coming to a contradiction. Applying a
similar argument, we can show that R2 is non-dominated. Moreover, attr(R1) ∩ head(Q) 6= ∅, attr(R2) ∩

34

head(Q) 6= ∅, and attr(R1)∩ attr(R2)∩ head(Q) = ∅, thus attr(R1)∩ head(Q) 6= attr(R2)∩ head(Q). In
this way, R1, R2 form a strand in Q.

Case 3: head join is connected (and no vacuum relation). As there is no vacuum relation in head
join, head(Q) ∩ attr(Ri) 6= ∅ holds for each relation Ri ∈ rels(Q). Note that there exists no universal
attribute in Q.

We claim that the head join of non-dominated relations in Q is also connected. Suppose not, there is a
pair of attributes A,B ∈ head(Q) which becomes disconnected in the head join of non-dominated relations.
Consider any path P between A,B in the head join of Q, a sequence of relations where each pair of consecutive
relations share at least one output attribute. We construct another path P ′ as follows. For each relation
Rj ∈ P , if it is dominated by Ri ∈ rels(Q), then we just replace Rj by Ri in P ′. Let R1 ∈ P,R′1 ∈ P ′ be
the first relation in each path respectively. If A /∈ attr(R′1), then add an arbitrary non-dominated relation
R′0 ∈ rels(Q) such that A ∈ attr(R′0) before R′1. The similar operation is applied for B. We next argue
that P ′ is a valid path between A,B. It suffices to show that for each pair of consecutive relations in P ′,
they share at least one output attribute.

If R′0 exists, we first show that attr(R′0) ∩ attr(R′1) ∩ head(Q) 6= ∅. In this case, R1 6= R′1; otherwise,
A ∈ attr(R1). Observe that attr(R′1)attr(R′0) 6= ∅, then A ∈ attr(R1)∩attr(R′0) ⊆ attr(R′1)∩head(Q) ⊆
attr(R′1), coming to a contradiction. Otherwise, attr(R′1) ⊆ attr(R′0), thus

attr(R′0) ∩ attr(R′1) ∩ head(Q) = attr(R′1) ∩ head(Q) 6= ∅.

The symmetric case when such a relation for B is added can be argued similarly.
Consider any pair of consecutive relationsR1, R2 ∈ P . LetR′1, R

′
2 be the corresponding relations in P ′. By

contradiction, assume R′1 ∩R′2 ∩ head(Q) = ∅. If R1 = R′1, R2 = R′2, it comes to a contradiction. Otherwise,
we further distinguish two cases. If only one of R1 = R′1 and R2 = R′2 holds, say R1 6= R1, R2 = R′2. Since
attr(R′2)− attr(R′1) 6= ∅, then attr(R1)∩ attr(R2) = attr(R1)∩ attr(R′2) ⊆ attr(R′1)∩ head(Q), which
implies attr(R′1) ∩ attr(R′2) ∩ head(Q), coming to a contradiction. Otherwise, R1 6= R1, R2 6= R′2, which
can be argued similarly.

Note that if a full CQ is connected without a universal attribute, it must be non-hierarchical, implied
by the definition of hierarchical join. In this way, the head join of non-dominated relations in Q is non-
hierarchical.

When IsPtime(Q) goes to “others”, some hard structure has been identified in Q in each case, thus
completing the whole proof.

35

	Introduction
	Related Work
	Preliminaries
	Background
	Problem Definition
	Special Cases

	Poly-time Decidability
	Hardness Preservation in Simplifications
	NP-Hardness for ``Others''
	Core Queries
	Hardness Preserving Mapping
	Mapping to the core

	Structural Characterization
	Boolean CQ Revisited
	Hard Structures for General CQs
	Triad-like
	Non-hierarchical Join
	Strand

	Sketch of Proof of Theorem 3

	Approximations
	Full CQs
	Inapproximability of General CQs

	Algorithms and Optimizations
	Boolean
	Singleton
	Universe and Decompose
	Greedy Heuristics
	Supporting Selection Operator

	Experiments
	black Datasets and Queries
	Scalability
	Complexity of Queries
	Data Distribution
	Optimizations

	Future Work
	Endogenous relations
	Proof of Lemma 5
	Proof of Lemma 14
	Proof of Theorem 3

