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Thanks to:
Tan, Steinbach, and Kumar, “Introduction to Data Mining”
Rajaraman and Ullman, “Mining Massive Datasets”



� For many different problems we need to quantify how 
close two objects are.

� Examples:
� For an item bought by a customer, find other similar items

� Group together the customers of site so that similar customers 
are shown the same ad.

� Group together web documents so that you can separate the 
ones that talk about politics and the ones that talk about sports.

� Find all the near-duplicate mirrored web documents.

� Find credit card transactions that are very different from 
previous transactions.

� To solve these problems we need a definition of similarity,
or distance.
� The definition depends on the type of data that we have



� Numerical measure of how alike two data 
objects are.
� A function that maps pairs of objects to real values

� Higher when objects are more alike.

� Often falls in the range [0,1], sometimes in [-1,1]

� Desirable properties for similarity
1. s(p, q) = 1 (or maximum similarity) only if p = q.  

(Identity)

2. s(p, q) = s(q, p)   for all p and q. (Symmetry)



� Consider the following documents

� Which ones are more similar?

� How would you quantify their similarity?

apple 

releases 

new ipod

apple 

releases 

new ipad

new 

apple pie 

recipe



� Number of words in common

� Sim(D,D) = 3, Sim(D,D) = Sim(D,D)  =2

� What about this document?

� Sim(D,D) = Sim(D,D)  = 3

apple 

releases 

new ipod

apple 

releases 

new ipad

new 

apple pie 

recipe

Vefa rereases new book with 

apple pie recipes



� The Jaccard similarity (Jaccard coefficient) of two sets S1, S2 is the size 
of their intersection divided by the size of their union.
� JSim (C1, C2) = |C1∩C2| / |C1∪C2|.

� Extreme behavior:
▪ Jsim(X,Y) = 1, iff X = Y

▪ Jsim(X,Y) = 0 iff X,Y have not elements in common

� JSim is symmetric

6

3 in intersection.

8 in union.

Jaccard similarity

= 3/8



� Number of words in common

� JSim(D,D) = 3/5 

� JSim(D,D) = JSim(D,D)  = 2/6

� JSim(D,D) = JSim(D,D)  = 3/9

apple 

releases 

new ipod

apple 

releases 

new ipad

new 

apple pie 

recipe

Vefa rereases

new book with 

apple pie 

recipes



document Apple Microsoft Obama Election

D1 10 20 0 0

D2 30 60 0 0

D2 0 0 10 20

Documents (and sets in general) can also be represented as vectors

How do we measure the similarity of two vectors?

How well are the two vectors aligned?



document Apple Microsoft Obama Election

D1 1/3 2/3 0 0

D2 1/3 2/3 0 0

D2 0 0 1/3 2/3

Documents D1, D2 are in the “same direction”

Document D3 is orthogonal to these two



� Sim(X,Y) = cos(X,Y)
� The cosine of the angle between X and Y

� If the vectors are aligned (correlated) angle is zero degrees and 
cos(X,Y)=1

� If the vectors are orthogonal (no common coordinates) angle is 90 
degrees and cos(X,Y) = 0

� Cosine is commonly used for comparing documents, where we 
assume that the vectors are normalized by the document length.



� If d1 and d2 are two vectors, then

cos( d1, d2 ) = (d1 • d2) / ||d1|| ||d2|| ,

where • indicates vector dot product and || d || is the length of vector d.

� Example:

d1 =  3 2 0 5 0 0 0 2 0 0 

d2 =  1 0 0 0 0 0 0 1 0 2

d1 • d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481

||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.245

cos( d1, d2 ) = .3150



document Apple Microsoft Obama Election

D1 10 20 0 0

D2 30 60 0 0

D2 0 0 10 20

cos(D1,D2) = 1

cos(D1,D3) = cos(D2,D3) = 0



� Numerical measure of how different two data 

objects are

� A function that maps pairs of objects to real 

values

� Lower when objects are more alike

� Minimum distance is 0, when comparing an 

object with itself.

� Upper limit varies



� A distance function d is a distance metric if it 

is a function from pairs of objects to real 

numbers such that:

1. d(x,y) > 0. (non-negativity)

2. d(x,y) = 0 iff x = y. (identity)

3. d(x,y) = d(y,x). (symmetry)

4. d(x,y) < d(x,z) + d(z,y) (triangle inequality ).



� Triangle inequality guarantees that the distance 

function is well-behaved.

� The direct connection is the shortest distance

� It is useful also for proving properties about the data

� For example, suppose I want to find an object that 

minimizes the sum of distances to all points in my dataset

� If I select the best point from my dataset, the sum of 

distances I get is at most twice that of the optimal point.



� Vectors � � ��, … , �� and � � ���, … , ��	
� Lp norms or Minkowski distance:


� �, � � 	 ��  �� � �	⋯� �� 	 �� � � ��

� L2 norm: Euclidean distance:


� �, � � ��  �� � �	⋯� ��  �� �

� L1 norm: Manhattan distance:

� �, � � ��  �� �	⋯� |��  ��|

� L∞ norm: 

� �, � � max ��  �� , … , |��  ��|

� The limit of Lp as p goes to infinity.

Lp norms are known to be distance metrics
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x = (5,5)

y = (9,8)
L2-norm:

������, �	 	� 42� 32 � 	5

L1-norm:

������, �	 	� 4 � 3	 � 	74

35

L∞-norm:

������, �	 	� max 3,4 	� 	4



� � 	 ���, … , �!	

r

Green: All points y at distance L1(x,y) = r from point x

Blue: All points y at distance L2(x,y) = r from point x

Red: All points y at distance L∞(x,y) = r from point x



� We can apply all the Lp distances to the cases 

of sets of attributes, with or without counts, if 

we represent the sets as vectors

� E.g., a transaction is a 0/1 vector

� E.g., a document is a vector of counts.



� Jaccard distance: 

"#����$, %	 	� 	1	– 	"(�)�$, %	

� Jaccard Distance is a metric

� Cosine distance:

#����$, %	 	� 	1  cos	�$, %	
� Cosine distance is a metric



� JDist(x,x) = 0 
� since JSim(x,x) = 1

� JDist(x,y) = JDist(y,x) 
� by symmetry of intersection

� JDist(x,y) > 0 
� since intersection of X,Y cannot be bigger than the 

union.
� Triangle inequality:

� Follows from the fact that JSim(X,Y) is the probability 
of randomly selected element from the union of X and 
Y to belong to the intersection
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� Hamming distance  is the number of positions in 
which bit-vectors differ.
� Example: p1 = 10101

p2 = 10011.
▪ d(p1, p2) = 2 because the bit-vectors differ in the 3rd and 4th

positions.

▪ The L1 norm for the binary vectors

� Hamming distance between two vectors of 
categorical attributes is the number of positions in 
which they differ.
� Example: x = (married, low income, cheat),                    

y = (single,    low income, not cheat)

� d(x,y) = 2
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� d(x,x) = 0 since no positions differ.
� d(x,y) = d(y,x) by symmetry of “different 

from.”
� d(x,y) > 0 since strings cannot differ in a 

negative number of positions.
� Triangle inequality: changing x to z and then 

to y is one way to change x to y.

� For binary vectors if follows from the fact that 
L1 norm is a metric
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� How do we define similarity between strings?

� Important for recognizing and correcting 

typing errors and analyzing DNA sequences.

weird wierd

intelligent unintelligent

Athena Athina



� The edit distance  of two strings is the number of 
inserts and deletes of characters needed to turn 
one into the other. 

� Example: x = abcde ; y = bcduve.
� Turn x into y by deleting a, then inserting u and v

after d.

� Edit distance = 3.
� Minimum number of operations can be 

computed using dynamic programming
� Common distance measure for comparing DNA 

sequences
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� d(x,x) = 0 because 0 edits suffice.

� d(x,y) = d(y,x) because insert/delete are 

inverses of each other.

� d(x,y) > 0: no notion of negative edits.

� Triangle inequality: changing x to z and 

then to y is one way to change x to y. The 

minimum is no more than that
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� Allow insert, delete, and mutate.

� Change one character into another.

� Minimum number of inserts, deletes, and 

mutates also forms a distance measure.

� Same for any set of operations on strings.

� Example: substring reversal or block transposition 

OK for DNA sequences

� Example: character transposition is used for spelling
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� We can view a document as a distribution over the words

� KL-divergence (Kullback-Leibler) for distributions P,Q

#-. /‖1 � 23 � log 3��	6��	7
� KL-divergence is asymmetric. We can make it symmetric 

by taking the average of both sides
� JS-divergence (Jensen-Shannon) 

"( /, 1 � 	 ��#-. /‖1 + 
�
�#-. 1‖/

document Apple Microsoft Obama Election

D1 0.35 0.5 0.1 0.05

D2 0.4 0.4 0.1 0.1

D2 0.05 0.05 0.6 0.3



Thanks to:
Rajaraman and Ullman, “Mining Massive Datasets”
Evimaria Terzi, slides for Data Mining Course. 



� We saw many definitions of similarity and 

distance

� How do we make use of similarity in practice?

� What issues do we have to deal with?



� Recommendation systems

� When a user buys an item (initially books) we want to 

recommend other items that the user may like

� When a user rates a movie, we want to recommend 

movies that the user may like

� When a user likes a song, we want to recommend 

other songs that they may like

� A big success of data mining

� Exploits the long tail



� Content-based:

� Represent the items into a feature space and 

recommend items to customer C similar to 

previous items rated highly by C

▪ Movie recommendations: recommend movies with 

same actor(s), director, genre, …

▪ Websites, blogs, news: recommend other sites with 

“similar” content



likes

Item profiles

Red

Circles

Triangles
User profile

match

recommend
build



� Finding the appropriate features

� e.g., images, movies, music

� Overspecialization

� Never recommends items outside user’s content 

profile

� People might have multiple interests

� Recommendations for new users

� How to build a profile?



� Collaborative Filtering (user –user)

� Consider user c

� Find set D of other users whose ratings are 

“similar” to c’s ratings

� Estimate user’s ratings based on ratings of users 

in D



� Collaborative filtering (item-item)

� For item s, find other similar items 

� Estimate rating for item based on ratings for 

similar items

� Can use same similarity metrics and prediction 

functions as in user-user model

� In practice, it has been observed that item-

item often works better than user-user



� Works for any kind of item

� No feature selection needed

� New user problem

� New item problem

� Sparsity of rating matrix

� Cluster-based smoothing?



� Find duplicate and near-duplicate documents 
from a web crawl.

� Why is it important:
� Identify mirrored web pages, and avoid indexing 

them, or serving them multiple times

� Find replicated news stories and cluster them 
under a single story.

� Identify plagiarism

� What if we wanted exact duplicates?



� Both the problems we described have a common 

component

� We need a quick way to find highly similar items to a query

item

� OR, we need a method for finding all pairs of items that 

are highly similar.

� Also known as the Nearest Neighbor problem, or 

the All Nearest Neighbors problem

� We will examine it for the case of near-duplicate 

web documents.



� What is the right representation of the 
document when we check for similarity?
� E.g., representing a document as a set of characters 

will not do (why?)
� When we have billions of documents, keeping 

the full text in memory is not an option.
� We need to find a shorter representation

� How do we do pairwise comparisons of billions 
of documents?
� If exact match was the issue it would be ok, can we 

replicate this idea?



1. Shingling : convert documents, emails, 

etc., to sets.

2. Minhashing : convert large sets to short 

signatures, while preserving similarity.

3. Locality-Sensitive Hashing (LSH): focus 

on pairs of signatures likely to be similar.

41



42

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures :

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

sensitive

Hashing

Candidate

pairs :

those pairs

of signatures

that we need

to test for

similarity.



� A k -shingle (or k -gram) for a document is a 

sequence of k characters that appears in the 

document.

� Example: document = abcab. k=2

� Set of 2-shingles = {ab, bc, ca}.

� Option: regard shingles as a bag, and count ab

twice.

� Represent a document by its set of k-shingles.
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� Shingle: a sequence of k contiguous 

characters
a rose is a rose is a rose

a rose is 

rose is a

rose is a 

ose is a r

se is a ro

e is a ros

is a rose

is a rose 

s a rose i

a rose is

a rose is 



� Documents that have lots of shingles in common 
have similar text, even if the text appears in 
different order.

� Careful: you must pick k large enough, or most 
documents will have most shingles.
� Extreme case k = 1: all documents are the same

� k = 5 is OK for short documents; k = 10 is better for 
long documents.

� Alternative ways to define shingles:
� Use words instead of characters

� Anchor on stop words (to avoid templates)
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� To compress long shingles, we can hash 

them to (say) 4 bytes.

� Represent a doc by the set of hash values 

of its k-shingles.

� From now on we will assume that shingles 

are integers

� Collisions are possible, but very rare

46



� Hash shingles to 64-bit integers

a rose is 

rose is a

rose is a 

ose is a r

se is a ro

e is a ros

is a rose

is a rose 

s a rose i

a rose is

1111

2222

3333

4444

5555

6666

7777

8888

9999

0000

Set of Shingles Set of 64-bit integers
Hash function

(Rabin’s fingerprints)



� Document: A document is represented as a set
shingles (more accurately, hashes of shingles)

� Document similarity: Jaccard similarity of the sets of 
shingles.
� Common shingles over the union of shingles

� Sim (C1, C2) = |C1∩C2|/|C1∪C2|.

� Although we use the documents as our driving 
example the techniques we will describe apply to any 
kind of sets.
� E.g., similar customers or items.
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� Problem: shingle sets are too large to be kept in memory.

� Key idea: “hash” each set S to a small signature Sig (S), such that:

1. Sig (S) is small enough that we can fit a signature in main memory for 
each set.

2. Sim (S1, S2) is (almost) the same as the “similarity” of Sig (S1) and Sig 
(S2). (signature preserves similarity).

� Warning: This method can produce false negatives, and false 
positives (if an additional check is not made).
� False negatives: Similar items deemed as non-similar

� False positives: Non-similar items deemed as similar



� Represent the data as a boolean matrix M
� Rows = the universe of all possible set elements 
▪ In our case, shingle fingerprints take values in [0…264-1]

� Columns = the sets 
▪ In our case, documents, sets of shingle fingerprints

� M(r,S) = 1 in row r and column S if and only if r is a 
member of S.

� Typical matrix is sparse.
� We do not really materialize the matrix
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� Universe: U = {A,B,C,D,E,F,G}

� X = {A,B,F,G}

� Y = {A,E,F,G}

� Sim(X,Y) = 
8
9

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1



� Universe: U = {A,B,C,D,E,F,G}

� X = {A,B,F,G}

� Y = {A,E,F,G}

� Sim(X,Y) = 
8
9

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

At least one of the columns has value 1



� Universe: U = {A,B,C,D,E,F,G}

� X = {A,B,F,G}

� Y = {A,E,F,G}

� Sim(X,Y) = 
8
9

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

Both columns have value 1



� Pick a random permutation of the rows (the 
universe U).

� Define “hash” function for set S
� h(S) = the index of the first row (in the permuted 

order) in which column S has 1.

� OR

� h(S) = the index of the first element of S in the 
permuted order.

� Use k (e.g., k = 100) independent random 
permutations to create a signature.
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� Input matrix
S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

A

C

G

F

B

E

D

S1 S2 S3 S4

1 A 1 0 1 0

2 C 0 1 0 1

3 G 1 0 1 0

4 F 1 0 1 0

5 B 1 0 0 1

6 E 0 1 0 1

7 D 0 1 0 1

1 2 1 2



� Input matrix
S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

D

B

A

C

F

G

E

S1 S2 S3 S4

1 D 0 1 0 1

2 B 1 0 0 1

3 A 1 0 1 0

4 C 0 1 0 1

5 F 1 0 1 0

6 G 1 0 1 0

7 E 0 1 0 1

2 1 3 1



� Input matrix
S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

C

D

G

F

A

B

E

S1 S2 S3 S4

1 C 0 1 0 1

2 D 0 1 0 1

3 G 1 0 1 0

4 F 1 0 1 0

5 A 1 0 1 0

6 B 1 0 0 1

7 E 0 1 0 1

3 1 3 1



� Input matrix
S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S4

h1 1 2 1 2

h2 2 1 3 1

h3 3 1 3 1

≈

• Sig(S) = vector of hash values 
• e.g., Sig(S2) = [2,1,1]

• Sig(S,i) = value of the i-th hash 

function for set S
• E.g., Sig(S2,3) = 1

Signature matrix



Pr(h(S1) = h(S2)) = Sim(S1,S2)

� where the probability is over all choices of  
permutations. 

� Why?
� The first row where one of the two sets has value 

1 belongs to the union.
▪ Recall that union contains rows with at least one 1.

� We have equality if both sets have value 1, and 
this row belongs to the intersection
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Zero similarity is preserved

High similarity is well approximated

� The similarity of signatures  is the fraction of 
the hash functions in which they agree.

� With multiple signatures we get a good 
approximation

60

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S4

1 2 1 2

2 1 3 1

3 1 3 1

≈

Actual Sig

(S1, S2) 0 0

(S1, S3) 3/5 2/3

(S1, S4) 1/7 0

(S2, S3) 0 0

(S2, S4) 3/4 1

(S3, S4) 0 0

Signature matrix



� Assume a billion rows

� Hard to pick a random permutation of 

1…billion

� Even representing a random permutation 

requires 1 billion entries!!!

� How about accessing rows in permuted 

order?

� �



Approximating row permutations: pick k=100

hash functions (h1,…,hk)

for each row r 

for each hash function hi

compute hi (r ) 

for each column S that has 1 in row r

if hi (r ) is a smaller value than Sig(S,i) then

Sig(S,i) = hi (r);

Sig(S,i) will become the smallest value of hi(r) among all rows 

(shingles) for which column S has value 1 (shingle belongs in S); i.e., hi 

(r) gives the min index for the i-th permutation

In practice this means selecting the 

function parameters

In practice only the rows (shingles) that 

appear in the data

hi (r) = index of shingle r in permutation

S contains shingle r

Find the shingle r with minimum index



Pick k=100 hash functions (h1,…,hk)

for each row r 

for each hash function hi

compute hi (r ) 

for each column S that has 1 in row r

if hi (r ) is a smaller value than Sig(S,i) then

Sig(S,i) = hi (r);

In practice this means selecting the 

hash function parameters

Compute hi (r) only once for all sets
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Row S1 S2

A 1 0

B 0 1

C 1 1

D 1 0

E 0 1

h(x) = x+1 mod 5

g(x) = 2x+3 mod 5

h(0) = 1 1 -

g(0) = 3 3 -

h(1) = 2 1 2

g(1) = 0 3 0

h(2) = 3 1 2

g(2) = 2 2 0

h(3) = 4 1 2

g(3) = 4 2 0

h(4) = 0 1 0

g(4) = 1 2 0

Sig1 Sig2

Row S1 S2

E    0 1

A    1 0

B 0 1

C    1 1

D    1 0

Row S1 S2

B    0 1

E    0 1 

C    1 0

A 1 1

D   1 0

x

0

1

2

3

4

h(Row)

0

1

2

3

4

g(Row)

0

1

2

3

4

h(x)

1

2

3

4

0

g(x)

3

0

2

4

1
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� Problem: Find all pairs of documents with 

similarity at least t = 0.8

� While the signatures of all columns may fit in 

main memory, comparing the signatures of 

all pairs of columns is quadratic in the number 

of columns.

� Example: 106 columns implies 5*1011 column-

comparisons.

� At 1 microsecond/comparison: 6 days.
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� What we want: a function f(X,Y) that tells whether or not X and Y is a 

candidate pair: a pair of elements whose similarity must be evaluated.

� A simple idea: X and Y are a candidate pair if they have the same min-

hash signature.

� Easy to test by hashing the signatures.

� Similar sets are more likely to have the same signature.

� Likely to produce many false negatives.

▪ Requiring full match of signature is strict, some similar sets will be lost.

� Improvement: Compute multiple signatures; candidate pairs should have 

at least one common signature. 

� Reduce the probability for false negatives.

! Multiple levels of Hashing!
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Matrix M

n hash functions

Sig(S):

signature for set S

hash function i

Sig(S,i)

signature for set S’

Sig(S’,i)

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’)
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� Divide the signature matrix Sig  into b bands of 

r rows.

� Each band is a mini-signature with r hash functions.
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Matrix Sig

r rows

per band

b bands

One

signature

n = b*r hash functions

b mini-signatures
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� Divide the signature matrix Sig  into b bands of 

r rows.

� Each band is a mini-signature with r hash functions.

� For each band, hash the mini-signature to a 

hash table with k buckets.

� Make k as large as possible so that mini-signatures 

that hash to the same bucket are almost certainly 

identical.
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Matrix M

r rows
b bands

321 5 64 7

Hash Table Columns 2 and 6

are (almost certainly) identical.

Columns 6 and 7 are

surely different.
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� Divide the signature matrix Sig  into b bands of r
rows.
� Each band is a mini-signature with r hash functions.

� For each band, hash the mini-signature to a hash 
table with k buckets.
� Make k as large as possible so that mini-signatures that 

hash to the same bucket are almost certainly identical.
� Candidate column pairs are those that hash to the 

same bucket for at least 1 band.
� Tune b and r to catch most similar pairs, but few 

non-similar pairs.
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Similarity s of two sets

Probability

of sharing

a bucket

t

No chance

if s < t

Probability

= 1 if s > t
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Similarity s of two sets

Probability

of sharing

a bucket

t

Remember:

probability of

equal hash-values

= similarity

Single hash signature

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’)
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Similarity s of two sets

Probability

of sharing

a bucket

t

s r 

All rows

of a band

are equal

1 -

Some row

of a band

unequal

( )b 

No bands

identical

1 -

At least

one band

identical

t ~ (1/b)1/r 
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s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

t = 0.5
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� Tune to get almost all pairs with similar 

signatures, but eliminate most pairs that 

do not have similar signatures.

� Check in main memory that candidate 

pairs really do have similar signatures.

� Optional: In another pass through data, 

check that the remaining candidate pairs 

really represent similar sets .



� Big Picture: Construct hash functions h: Rd����U 
such that for any pair of points p,q, for distance
function D we have:
� If D(p,q)≤r, then Pr[h(p)=h(q)] ≥ α is high

� If D(p,q)≥cr, then Pr[h(p)=h(q)] ≤ β is small

� Then, we can find close pairs by hashing

� LSH is a general framework: for a given distance
function D we need to find the right h
� h is (r,cr, α, β)-sensitive
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� For cosine distance, there is a technique 

analogous to minhashing for generating a 

(d1,d2,(1-d1/180),(1-d2/180))- sensitive 

family for any d1 and d2.

� Called random hyperplanes.
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� Pick a random vector v, which determines 

a hash function hv with two buckets.

� hv(x) = +1 if v.x > 0; = -1 if v.x < 0.

� LS-family H = set of all functions derived 

from any vector.

� Prob[h(x)=h(y)] = 1 – (angle between x 

and y divided by 180).
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� Pick some number of vectors, and hash your 

data for each vector.

� The result is a signature (sketch ) of +1’s and 

–1’s that can be used for LSH like the 

minhash signatures for Jaccard distance.
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� We need not pick from among all possible 

vectors v to form a component of a sketch.

� It suffices to consider only vectors v

consisting of +1 and –1 components.
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� Pick some number of vectors, and hash your 

data for each vector.

� The result is a signature (sketch ) of +1’s and 

–1’s that can be used for LSH like the 

minhash signatures for Jaccard distance.
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� We need not pick from among all possible 

vectors v to form a component of a sketch.

� It suffices to consider only vectors v

consisting of +1 and –1 components.
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� Coupon Collector Problem
� Reservoir Sampling
� Hadoop = MapReduce + HDFS
� Information Retrieval = TD-IDF
� Association Analysis = Frequent Itemsets + 

Frequent Rules (sorted by Lift)
� Similarity Analysis = Shingling + Min-Hash + 

Locality Sensitive Hashing
� Min-Hashing = compact representation of sets 

that maintains similarity.
� LSH = Find similar candidates using hashing.


