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1 Overview

In this project, we use machine learning to determine
when a person’s heart is beating irregularly1. This con-
dition is known as cardiac arrhythmia. To do this, we
use data from an electrocardiograph, a device used to
measure a trace of a person’s heartbeat via electrodes
placed on their skin. During a heartbeat, heart muscles
electrically polarize and depolarize as they contract, and
the machine records these events are deflections on an
electrocardiogram (ECG) trace. Our goal is to analyze
ECG data to determine whether or not arrhythmia is
present.

A normal heartbeat occurs at a relatively steady rate,
with the various chambers of the heart contracting for
a certain amount of time and in the correct order. Sig-
nificant deviations from the normal timing of these con-
tractions indicates arrhythmia. This deviation can be
classified by the specific area of the heart that is beating
abnormally, the heart rate, or the physiological cause.

To identify arrhythmia, we have taken two separate
approaches. The first approach, single-beat classifica-
tion, uses basic knowledge of physiology along with a
support vector machine (SVM) to analyze each individ-
ual beat in an ECG, reporting any abnormal beats. This
approach was highly successful in analyzing an ECG from
a previously-seen patient, and moderately successful for a
new patient. The second approach uses neural networks
to analyze the ECG in a more holistic way, without using
any knowledge from physiology. This approach, while
less successful, improved significantly over the baseline
and appears promising for future work.

2 Data

For our analysis, we have used data from the MIT–BIH
Arrhythmia Database [1, 2]. This database contains 48
half-hour excerpts of two-channel ECG recordings, of
which we exclude five as described below. These were ob-
tained from 47 different subjects studied by the BIH Ar-
rhythmia Laboratory between 1975 and 1979. Twenty-
three recordings (those labeled #1xx) are from a mixed
population of hospital patients, while the remaining 25
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Figure 1: A beat can be decomposed into waves known
as P, Q, R, S, and T, which correspond to polarization
and depolarization of different parts of the heart.

(labeled #2xx) were selected to display less common ar-
rhythmias that would not be present in a random sam-
ple. The sampling rate is 360 samples per second, with
a reading made over a 10 mV range.

Each record was annotated by two or more cardiolo-
gists, and the annotations were reconciled to yield a sin-
gle annotation set per recording. Each beat is classified
by type, and we group these classes into either ‘normal’
or ‘abnormal.’

For our first model, some pieces of the data were dis-
carded. Four of the 48 ECGs2 come from patients using a
pacemaker, a device that electrically stimulates the heart
to beat normally whenever it fails to do so. Paced beats
from these patients appear significantly different from
normal beats, and we exclude them to avoid difficulty in
patients without pacemakers. A more thorough analysis
would include these records.

All of the records include recordings from two leads
placed on the chest. One lead is always placed in the
MLII (modified lead 2) position, while the other varies
between the V1, V2, and V5 position. Because of the
inconsistency in the position of the second lead, we only
use the recording from the MLII lead. In addition, the
lead used in record 114 is not clear, so we exclude it from
our analysis.

2Records #102, #104, #107, and #217
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Figure 2: A sample of ECG data, taken from record #100. Detected beats are denoted by a red dot. The fourth
beat shown occurred prematurely and is classified as APC, or atrial premature contraction.

3 Beat Classification Approach

Arrhythmia is typically diagnosed by detecting irregu-
lar beats in an ECG [3]. Hence, in this approach we will
separate an ECG recording into its constituent beats and
attempt to classify each beat as normal or irregular. Our
goal is to use a minimal amount of information about the
physiology of the heart to identify and classify beats us-
ing machine learning, rather than building a complicated
model of each beat.

In this approach, we will build two types of models.
The first model is an individualized model, built for a
single patient. This would be useful when a person is
being tracked routinely for arrhythmia, and a sample of
the patient’s data has already been evaluated by a car-
diologist. The second model is trained on a collection of
ECG records, with the goal of identifying arrhythmia in
real time on a previously unseen patient. Both models
use the same method, and differ only in the training set.

3.1 Features

For this analysis, we model an ECG record as a series
of beats. Because a beat appears as a sharp peak in the
ECG, we are able to extract a list of beats by finding
deflections with slope above a pre-determined threshold.
Given a peak, we extract a slice of the ECG signal cen-
tered at that peak with a pre-determined width. The
collection of these slices forms a series of beats.

Each beat can be separated into a series of waves
known as the P, Q, R, S, and T waves [3]. These waves
represent electrical activity in the various parts of the
heart. The R wave, which corresponds to depolarization
of the main mass of the ventricles of the heart, can be
identified as the sharpest peak in a beat. Other waves
are identified as the peaks and troughs in the vicinity of
the R wave.

Because we only want to use a minimum amount of
physiological knowledge, we extract the following fairly
generic features from each beat:

• Maximum and minimum voltage during a beat as
well as their relative timing: This captures the main
characteristics of the R wave.

• Delay between the current beat’s peak and previous
beat’s peak: This captures the heart rate.

• Mean and mean-squared voltage of the beat: This
captures the amplitude and duration of the waves.

• Maximum voltage derivative and its relative timing:
This captures the speed of the R wave.

• Mean absolute derivative and mean-squared deriva-
tive: This captures the total amount of deflection.

Using only these simple features, we are interested to
see how well our model can ‘learn’ the complicated set of
rules used by cardiologists to identify abnormal beats.

3.2 Model

We use a support vector machine to classify each beat
in a given patient’s record as normal or abnormal. To
use the highest dimensional effective feature space possi-
ble, we used the radial basis function kernel K (xi, xj) =

exp
(
−γ ||xi − xj ||2

)
, where γ > 0 is a tunable parame-

ter. We also include a regularization parameter C, since
we do not necessarily expect our data to be linearly sep-
arable.

We used the LibSVM library [6] to perform training
and prediction. To do this, we first scaled our features
to lie in the range [0, 1], in order to use the radial basis
function most effectively [6]. We then found the opti-
mal model parameters C, γ by using the ’grid.py’ script
included with LibSVM to do a simple grid search, mini-
mizing the error for 5-fold cross-validation.

Using the method described above, we build two dif-
ferent types of models. For the first type, we train a
“personalized” model SVM on a single patient record.
We choose a random subset of 20% of the beats to be
“test” beats, and the remaining 80% to be “training”
beats. A typical record contains about 2000 beats. We
train the SVM on the training data from a single patient
record, so that the test beats can be classified as one
would expect in a scenario of ongoing monitoring.

For the second type of model, we train the SVM on a
collection of patient records. We choose a random subset
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Figure 3: Histogram of F5 scores for the 28 personalized
models. All but two records, #202 and #222, were very
successful.
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Figure 4: Histogram of F5 scores for the “real-time”
model, evaluated on 9 different patient records. All but
two records, #212 and #232, were moderately successful.

of 9 of the patient records to be “test” records, and the
remaining 34 to be “training” records. We train the SVM
on all of the data from the training records, so that the
test records can be classified as one would expect in a
“real time” hospital scenario.

3.3 Results

The “personalized” models were very successful. We
trained models for 28 of the records; the other 15 had
either too few normal beats or too few abnormal beats
to choose a useful testing and training set. To evalu-
ate their performance, we use the F-measure, which is
defined for real β as

Fβ = (1 + β2) · precision · recall

β2 · precision + recall
(1)

In particular, we choose the F5 measure, which is ap-
propriate if we place roughly 5 times as much value in
recall as in precision. In our case, false positives are much
more acceptable than false negatives. We want to catch

as many abnormal beats as possible, in case they are sig-
naling an emergency. The F5 measures are shown in Fig.
4. The models for all but two records, #202 and #222,
scored highly. These records contain a large number of
normal beats occurring in irregular rhythm, which are
difficult to categorize. In future work, it may be bene-
ficial to devise a method to consider normal beats with
abnormal rhythm separately.

The “real-time” model was, as expected, less success-
ful than the personalized models. Seven of the nine
test records performed moderately well, while records
#212 and #232 had perfect precision but very bad re-
call. Record #212 contained many abnormal beats that
looked normal in the MLII lead; an model of both leads
would likely have been more successful.

3.4 Analysis

The personalized models were surprisingly effective in
this setup. This appears to signal that classifying a beat
as normal/abnormal can be done relatively unambigu-
ously when given prior access to a classified sample of
the subject’s beats. We expect that this type of classi-
fier could be useful when a patient is subject to ongoing
monitoring. A cardiologist could classify a small num-
ber of normal and abnormal beats, then allow the model
to automatically classify the rest rather than tediously
analyzing hours of ECG recordings.

The real-time model was less effective than the per-
sonalized models, but still worked well for many of the
test records. The two records that it failed for, #212
and #232, were both in the group of recordings selected
to display less common arrhythmias, so it is not sur-
prising that the classifier was not as successful. Future
work should include a method for including uncommon
arrhythmias in both training and testing sets, perhaps
by including ECG data from other databases.

As a further refinement of the model, it would likely be
useful to use a sample-dependent regularization weight.
This would allow us to ensure that rare forms of arrhyth-
mia are not treated as anomalies by the SVM, and penal-
ize their misclassification more heavily. Because our ob-
jective function does not take into account or preference
for recall over precision, we expect that using weights
would improve our results.

An interesting extension of this problem would be to
classify abnormal beats by their type of arrhythmia. This
could be done by training a multi-class SVM, which
works by training multiple sub-models for each pair of
classes. We leave this for future study.

4 Neural Network Approach

Instead of using “intelligent” learning based on our own
knowledge of physiology, the focus of this section is to
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begin to develop a deep learning algorithm. In particu-
lar, we have implemented a neural network, or multilayer
perceptron (MLP).

4.1 Model

A multilayer perceptron uses logistic regression along
with additional intermediate layers, called hidden layers.
Here, we will be using a single hidden layer. The details
of the MLP will be described after the data is explained.

For our current analysis, we take the first five minutes
of each half-hour recording. Originally, the data for each
example are a 650000 × 3 matrix of values. The first
column is the time (in seconds). The second column is
the reading of the upper lead (in mV). The third column
is the reading of the lower lead (in mV). Because the
time sampling was verified to be the same for each ex-
ample, the first column has been stripped from the data.
To shorten the sample from thirty minutes to five min-
utes, the number of rows has been truncated to 108000.
Because there are two channels, there are thus 216000
parameters per example.

An MLP takes the input and “learns” the most rele-
vant features. In addition to using the raw amplitudes
as input, the model was also run using two forms of pre-
processing: discrete fast Fourier transforms (FFTs) and
discrete wavelet transforms (using PyWavelets [8]). We
used both Haar wavelets and Daubechies (in particular,
db3) wavelets.

The target prediction is whether or not the patient has
arrhythmia as indicated by the recording data, i.e. 1 if
arrhythmia is present and 0 otherwise. For determining
this, the oracle is obtained by checking the records in the
MIT–BIH Arrhythmia Database [1]. For each record, we
check whether there are any beats before the five-minute
mark that are classified as something other than “nor-
mal.” If there are no such irregular beats, the example is
labelled 0, for healthy. Otherwise, the example is labelled
1.

Because the data set is small, instead of using sim-
ple cross validation, we use 12-fold cross validation. We
partition the training examples into 12 subsets Si of
size 4. For each i = 1, . . . , 12, the model is trained on
S1 ∪ · · · ∪ Si−1 ∪ Si+1 ∪ · · · ∪ S12 to obtain a hypothesis
hi. The hypothesis is then tested on Si to get an error
ε̂Si

(hi). The estimated generalization error of the model
is then calculated as the average of the ε̂Si

(hi). This gen-
eralization error is the metric by which we will evaluate
our success.

Ideally, we would use leave-one-out cross-validation
(LOOCV). However, training the MLP just once takes
minutes. Due to our project timeline, we didn’t invest
the time for a four-fold increase in training time.

Here is a summary of what has been covered so far:

• Training data is a 48× 216000 matrix of real-valued
examples, along with a 48-dimensional vector of la-

bels from {0, 1}.

• The model is evaluated four times: once using the
raw data as features, once using discrete FFTs, once
using discrete Haar wavelet transforms, and once us-
ing discrete db3 wavelet transforms.

• The model is a multilayer perceptron (MLP) with a
single hidden layer. More details follow.

• The model is trained and then evaluated by using
12-fold cross validation.

A tutorial was used to implement the MLP [4]. This
uses the Theano package for Python [5].

With a single hidden layer, the MLP works by making
a prediction based off of an output vector

f(x) = G
(
b(2) +W (2)s(b(1) +W (1)x)

)
. (2)

The function G is for logistic regression. To accommo-
date multiclass classification, G is the softmax function

G(x;W, b)i =
e(Wx+b)i∑
j e

(Wx+b)j
. (3)

The function s is a nonlinear activation function for the
hidden layer. Here, we choose

s(x) = tanhx. (4)

Finally, a prediction is made by

h(x) = arg max
i
f(x)i. (5)

The parameters W (2) (a matrix) and b(2) (a vector) are
weights. The additional weights for the hidden layer,
W (1) and b(1), are called hyperparameters. These four
sets of parameters are learned by training and using
backpropagation to calculate the error (cost function).
Theano is able to calculate gradients so that backpropa-
gation doesn’t have to be implemented.

Next we comment on the dimensions of these parame-
ters. Two of the dimensions are given by the dimension of
the input vector (D = 216000) and the number of pos-
sible classifications for the output (L = 2). The other
dimension, Dh, is the dimension associated with the hid-
den layer. i.e., b(1) is a vector of dimension Dh, W (1) is
a Dh × D matrix, b(2) is a vector of dimension L, and
W (2) is an L×Dh matrix. We chose Dh = 500.

There are additional comments to be made about the
details of the model. The MLP uses L2 regularization,
i.e., it tries to keep the L2 norm of the weights low.
Training is done using mini-batch gradient descent with
a batch size of 2 and learning rate (step size) of η = 0.01.
Five to ten iterations are made through the entire batch
of 44 examples (4 being held out for cross-validation).
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Raw Data FFTs Haar Wavelets DB3 Wavelets
logistic regression 0.521 0.5 0.521 0.521

neural network 0.25 0.229 0.25 0.25

Table 1: MLP errors after using raw data and three forms of preprocessing.

4.2 Results

Using the raw data as features, the estimated generaliza-
tion error is

ε =
1

12

12∑
i=1

ε̂Si
= 0.25 (6)

after training the MLP. This is not very good, but it is an
improvement over the baseline estimated generalization
error of ε0 = 0.521. The baseline consists of running lo-
gistic regression without the hidden layer (and also with-
out L2 regularization). The results after preprocessing
are summarized in Table 1.

4.3 Analysis

The baseline error, ε0, is high, and actually higher than
what would be obtained by using a majority prediction
rule on our data set (for the MIT–BIH dataset, most
of the examples have arrhythmia). This is expected be-
cause the features, which are the 216000 raw amplitude
readings in this case, are basically useless for a linear clas-
sifier. The point here is that even with useless features,
using an MLP by adding a hidden layer and nonlinear
activation function results in a lower error.

Preprocessing the data improved performance when
FFTs were used. However, the two chosen wavelet de-
compositions did not help. The performance depended
not on the type of input, but the number of parameters
in the input. (For FFTs, the number of input param-
eters was half: real input results in an FFT with half
as many complex parameters. The imaginary parts were
dropped.) It is possible that the chosen wavelet decom-
positions were inappropriate for our data. FFTs may
have been more appropriate because of the nature of the
data (somewhat periodic graphs, where significant devi-
ations from periodicity indicate arrhythmia).

Our implementation of the MLP did help, but overall
it was still not very successful. Unfortunately, we did
not figure out how to adapt other deep learning meth-
ods, such as convolutional neural networks (for image
classification), to our data.

4.4 Future Steps

Given sufficient time, improvements could likely be made
by continuing to adjust the learning parameters. A pos-
sible idea for helpful preprocessing would be to “normal-
ize” the time-axis of the data. This would be done by
setting the unit for the time-axis to be the average time

between heartbeats for the sample, truncating each sam-
ple to be the same number of heartbeats, and adjusting
the samples to have the same initial time offset.
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