
Tiny ImageNet Challenge

Jiayu Wu
Stanford University

jiayuwu@stanford.edu

Qixiang Zhang
Stanford University

qixiang@stanford.edu

Guoxi Xu
Stanford University

guoxixu@stanford.edu

Abstract

We present image classification systems using Residual
Network(ResNet), Inception-Resnet and Very Deep Convo-
lutional Networks(VGGNet) architectures. We apply data
augmentation, dropout and other regularization techniques
to prevent over-fitting of our models. What’s more, we
present error analysis based on per-class accuracy. We
also explore impact of initialization methods, weight decay
and network depth on system performance. Moreover, visu-
alization of intermediate outputs and convolutional filters
are shown. Besides, we complete an extra object localiza-
tion system base upon a combination of Recurrent Neural
Network(RNN) and Long Short Term Memroy(LSTM) units.
Our best classification model achieves a top-1 test error
rate of 43.10% on the Tiny ImageNet dataset, and our best
localization model can localize with high accuracy more
than 1 objects, given training images with 1 object labeled.

1. Introduction
The ImageNet Large Scale Visual Recognition Chal-

lenge(ILSVRC) started in 2010 and has become the stan-
dard benchmark of image recognition. Tiny ImageNet
Challenge is a similar challenge with a smaller dataset but
less image classes. It contains 200 image classes, a training
dataset of 100,000 images, a validation dataset of 10,000
images, and a test dataset of 10,000 images. All images are
of size 64×64.

The goal of our project is to do as well as possible on
the image classification problem in Tiny ImageNet Chal-
lenge. In order to overcome the problem of a small training
dataset, we applied data augmentation methods to training
images, hoping to artificially create variations that help our
models generalize better. We built our models based on the
idea of VGGNet [13], ResNet [6], and Inception-ResNet
[17]. All our image classification models were trained
from scratch. We tried a large number of different set-
tings, including update rules, regularization methods, net-
work depth, number of filters, strength of weight decay, etc.

Our best model, a fine-tuned Inception-ResNet, achieves a
top-1 error rate of 43.10% on test dataset. Moreover, we
implemented an object localization network based on a
RNN with LSTM [7] cells, which achieves precise results.

In the Experiments and Evaluations section, We will
present thorough analysis on the results, including per-class
error analysis, intermediate output distribution, the impact
of initialization, etc.

2. Related Work
Deep convolutional neural networks have enabled the

field of image recognition to advance in an unprecedented
pace over the past decade.

[10] introduces AlexNet, which has 60 million param-
eters and 650,000 neurons. The model consists of five
convolutional layers, and some of them are followed by
max-pooling layers. To fight overfitting, [10] proposes
data augmentation methods and includes the technique of
dropout[14] in the model. The model achieves a top-5 er-
ror rate of 18.9% in the ILSVRC-2010 contest. A tech-
nique called local response normalization is employed to
help generalization, which is similar to the idea of batch
normalization[8]. [13] evaluates a much deeper convo-
lutional neural network with smaller filters of size 3×3.
As the model goes deeper, the number of filters increases
while the feature map size decreases by max-pooling. The
best VGGNet model achieves a top-5 test error of 6.8%
in ILSVRC-2014. [13] shows that a deeper CNN with
small filters can achieve better results than AlexNet-like
networks. However, as a CNN-based model goes deeper,
we have the degradation problem. More specifically, a
deeper CNN is supposed to have at least the same perfor-
mance as a shallower CNN, but in practice, a shallower
CNN converges to a lower error rate than a deeper CNN.
To solve this problem, [6] proposes ResNet. Residual net-
works are designed to overcome the difficulty of training a
deep convolutional neural network. Suppose the mapping
we want to approximate is H : Rn → Rm. Instead of ap-
proximatingH directly, we approximate a mapping F such
thatH(x) = F(x)+x. [6] shows empirically that the map-
ping F is easier to approximate through training. [6] re-

1

ports their best ResNet achieves a top-5 test error of 3.57%
in ILSVRC-2015.

[17] combines inception structures and residual connec-
tions. Inception-Network is able to achieve better perfor-
mance than traditional residual networks with less parame-
ters. Inception module was introduced by [18]. The basic
idea is that we apply different filters and also max-pooling
to the same volume and then concatenate all the output so
that each layer can choose the best methods during learning.

For object localization, [16] gives a model based on de-
coding an image into a set of people detections. The ap-
proach is related to OverFeat model[12], but has some im-
provement. The model relies on LSTM cells to generate
variable length outputs, and the loss function encourages
the model to make predictions in order of descending con-
fidence.

3. Approach
3.1. Data Augmentation

Preventing overfitting is an essential problem to over-
come, especially for Tiny ImageNet Challenge, because we
only have 500 training images per class 1.

First, during training, each time when an image is fed
to the model, a 56×56 crop randomly generated from the
image will be used instead. During validation and testing,
we use the center crop.

Besides, following [10], we then augment data by hor-
izontal flipping, translation and rotation. We also used
random contrast correction as an augmentation method.
We set the scaling factor to be random([0.9, 1.08]) at ev-
ery batch, and clip pixel values to the range [0, 255] af-
ter correction process to guarantee valid augmented im-
ages. Another data augmentation method we used is ran-
dom Gamma correction [11] for luminance adjustment. Af-
ter some experiments, we used correction coefficient γ =
random([0.9, 1.08]), which ensures both significant lumi-
nance change and recognizable augmented images. Fig. 1
gives concrete instances of above methods.

In order to speed up the training process, we apply these
methods in a random fashion. When an image is fed to the
model, every augmentation method is applied randomly to
this image. In this way, the total number of training ex-
amples is the same but we managed to have our models
see slightly different but highly recognizable images at each
epoch.

3.2. Modified Residual Network

Fig. 2 shows the architecture of our modified ResNet. It
consists of a series of convolutional layers of different num-
ber of filters, an average pooling layer, and finally a fully-
connected affine scoring layer. A batch normalization layer

1We used 231n utils.py from assignment starter code for data loading

is added between a convolutional layer and its ReLU activa-
tions. As [6] suggests, batch normalization layers can serve
as a source of regularization. Since the random crop gener-
ated by our data augmentation methods is of size 56×56,
although [6] uses 34 or more convolutional layers, we hy-
pothesize that we only need less layers than the models in
[6] since [6] uses 224×224 image inputs.

Unlike [6], we do not use a max pooling layer imme-
diately after the first 7×7 convolutional layer because our
input images already have a smaller size than 224×224 in
[6]. Furthermore, our first 7×7 convolutional layer does
not use a stride of 2 like [6]. Each building block for
our modified ResNet includes 2n convolutional layers with
same number of 3×3 filters, where we can adjust the depth
of the network by varying n. In this project, we have tried
n = 1 and n = 2. Notice that down-sampling is performed
at the first layer of each building block by using a stride of
2.

Combining two volumes with same dimensions is
straightforward. For two volumes with different depths and
different feature map sizes, [6] suggests two ways to create
a shortcut, (A) identity mapping with zero-padding; and (B)
a convolutional layer with 1×1 filters with a stride of 2. We
use option (B) for our residual networks. In our project, we
used option (B). Furthermore, when a 1×1 convolution is
applied, batch normalization is applied to each of the two
incoming volumes before they are merged into one volume.
Finally, ReLU is applied on the merged volume.

3.3. Modified Inception-ResNet

We reorganized the state-of-art Inception-ResNet v2
model [17]. The architecture of our modified Inception-
ResNet model is shown in Fig.3. The input images are first
down-sampled in a stem module. The stem module has par-
allel convolutional blocks, whose outputs are later concate-
nated. Moreover, one convolutional layer of spatial filter
size 1×7 and one of size 7×1 are combined to replace a
7×7 sized layer, which significantly reduces number of pa-
rameters while maintaining same receptive field. Then the
data flows through n Inception-Resnet-A modules, which
has the residual part being an inception module. A 1×1
convolutional layer is applied at the end of each inception
module to keep the output depth same as the input’s, thus
enabling the final addition operation. Then after another
down-sampling in a reduction module, the feature map flow
passes through 2n Inception-Resnet-B modules and finally
reaches a fully connected layer.

Fig.3 also shows several modifications we made to fit
the Inception-Resnet model with the tiny ImageNet chal-
lenge. Firstly, we used 2 Inception-Resnet module types
and 1 reduction module, while [17] uses 3 Inception-Resnet
module types and 2 reduction modules. This simplifies the
structure of model, and reduces number of parameters by

2

(a) Original Image (b) Contrast Adjustment: 1.3 (c) Contrast Adjustment: 0.7 (d) Gamma Correction: 0.93

(e) Gamma Correction: 1.06 (f) Horizontal Flipping (g) Random Rotation (h) Random Translation

Figure 1. Data Augmentation Methods, values in sub-figure captions are scaling factor γ

Figure 2. Residual Network Architecture

30%. Moreover, this prevents over-fitting training on tiny
ImageNet. Another modification is that we used batch nor-
malization after every convolutional layer, while [17] only
applies a batch normalization layer at the end of each mod-
ule. This modification significantly alleviate the problem of
dying neurons. What’s more, we used a keep probability of
0.5 in the final dropout layer, which is smaller than that in
[17] (0.8). The reason is that with fewer data samples, tiny
ImageNet challenge may more easily go into overfit prob-
lem, and thus it needs a smaller keep probability to intro-
duce stronger regularization. On the other hand, a too large
keep probability does not help in boosting performance, but
makes the learning process much slower. Therefore after
some tests, we chose 0.5 as the optimal keep probability.

If the depth of feature map exceeds 1000, the resid-
ual variants in Inception-ResNet modules becomes instable,
which means neurons in the network die very early during
the training process. As a result, the last convolutional layer

before average pooling may outputs only zeros, reducing
prediction accuracy. One effective solution to this problem
is to scale down the residuals parts in by a factor before
the addition. In this way, weight of the residual part is de-
creased by multiplying a small scaling factor, and thus the
identity mapping part becomes dominant. As a result, the
module becomes more residual than inceptional, thus sta-
bilizing training precess. After running independent tests,
we found the optimal scaling factor to be 0.1 for the tiny-
ImageNet challenge.

3.4. VGGNet

VGGNet architecture [13] is shown in Fig.4. Compared
to previous architectures which use large (7×7) convolu-
tional filters, VGGNet uses smaller (3×3) filters but rela-
tively deep networks (16-19 weight layers). In this way, the
network has less parameters while maintaining same recep-
tive field for each convolutional filter. Also, 1×1 convolu-
tional filters are used to linearly transform the input. All
down-sampling work is done in max pooling layers: spatial
size of the feature map is halved in every zero-padded max
pooling layer with a stride of 2. Finally, Softmax loss is
applied to output of the FC-200 layer.

We implemented VGG-19 and VGG-16 networks with
some modifications. We first reduced size of the interme-
diate fully connected layer from 4096 to 2048, as our rela-
tively tiny dataset doesn’t need large model capacity. More-
over, we removed the last max pooling layer in both net-
works so that the last down-sampling operation is not con-
ducted. This is because our images have a spatial size of
only 64×64, and the feature map needs to maintain enough
spatial size before the average pooling layer. To avoid over-
fitting, we used L2 regularization and apply a dropout layer
to each fully connected layer. To avoid killing neurons in
the negative half, we used Parametric Rectifier (PReLU)

3

Figure 3. Modified Inception-Resnet Architecture

Figure 4. Modified VGGNet Architectures

[5]defined as f(x) = max(αx, x) with a trainable param-
eter α, and apply a batch normalization layer before each
activation layer.

3.5. Object Localization Method

The localization network first encodes an image into a
block of high level features using a convolutional architec-
ture, then decodes that representation into a set of bounding
boxes. At each step, LSTM gives a new bounding box and
a confidence shows an undetected object is possibly in the
box, until LSTM is unable to find another box with a confi-
dence greater than the threshold.

In the training process we need to minimize the loss
function

L(G,C, f) = α

|G|∑
i=1

lpos(bi
pos, b̃

f(i)

pos) +

|C|∑
j=1

lc(b̃
j

c, yj) (1)

where an object bounding box b = {bpos, bc}, where
bpos = (bx, by, bw, bh) gives position, weight and height
of bounding box, and bc ∈ [0, 1] gives the confidence. lpos
gives the L1 norm between ground truth position and can-
didate hypotheses, and lc gives the cross entropy related
to candidate’s confidence. Only the boxes with confidence
higher than a threshold value will be given out, and the box
with confidence lower than a it is considered as a stop sym-
bol. Every generated box can be accepted or rejected(see
Fig.5).

4

Figure 5. Illustration of the matching of ground-truth instances
(black) to accepted (green) and rejected (red) candidates. Match-
ing should respect both precedence (1 vs 2) and localization (4 vs
3).

3.6. Training Methodology

We trained our networks using TensorFlow [1] on a Tesla
K80 GPU. For Inception ResNet models, we used RM-
SProp [19]:

M = decay ×M + (1− decay)× (∇W)2 (2)

δW = − lr ×∇W√
M + ε

(3)

with decay = 0.9 and ε = 1.0. RMSProp modulates the
learning rate of each weight value based on the magnitudes
of its gradients, which has a beneficial equalizing effect.
However, the updates do not get monotonically smaller as
training process moves forward, as it uses a moving average
of the squared gradients instead of an accumulative squared
gradient that monotonically grows larger. We used an initial
learning rate init lr = 0.05, decayed exponentially using
the equation:

lr = init lr × 0.9
t
T (4)

, where t denotes current step/iteration number, and T de-
notes total number of steps per epoch. This achieves a 0.9
learning rate decay after each epoch.

For ResNet models, we used SGD with Nesterov mo-
mentum [2]:

Vnew = µ× Vold − lr ×∇W (5)
δW = −µ× Vold + (1 + µ)× V (6)

with µ = 0.9. The essential idea of SGD with Nestrov
momentum is that it computes the gradients ”in advance”
at a point supposedly reached at next step, and then uses
that gradients for update. This helps to reduce overshoots
brought by vanilla SGD-Momentum algorithm, and proves
to work better in practice. The initial learning rate is set
to 0.1, and we decayed the learning rate by a factor of 0.1
when validation error plateaus.

For VGGNet models, we used Adam optimization[9] as
the update rule. We also used equation 4 as learning rate
decay rule with init lr = 0.001.

Model Top-1 Val Top-5 Val Top-1 Test # Params
Inception-Resnet 37.56% 18.96 % 43.10% 8.3M
ResNet 43.50% 20.30% 46.90% 11.28M
VGG-19 45.31% 23.75% 50.22% 40.2M
VGG-16 47.22% 25.20% 51.93% 36.7M

Table 1. Summary of Model Error Rates

Figure 6. Modified Inception-Resnet Top-1 Validation Error Rate

4. Experiments and Evaluations

4.1. Experimental Results

We trained all our networks from scratch, and Table 1
shows final error rates of our models. Our best model
is an Inception-Resnet network achieving 37.56 % top-
1 validation error, 18.96% top-5 validation error, and
43.10% top-1 test error. Fig.6 shows the top-1 validation
error rate of this model. To summarize, Inception-Resnet
achieves highest accuracy and uses least number of param-
eters. Resnet has almost comparable accuracy and param-
eter number to Inception-Resnet. Although VGGNet net-
works use less weight layers, they achieve lower accuracy
and have more parameters, and there are two reasons for
that. First, VGGNet uses fully connected layers with many
hidden states. Secondly, VGGNet uses a large number
of medium-sized filters (512×3×3) in each convolutional
layer, while Inception-Resnet uses either a large number of
small filters (1154×1×1) or a small amount of medium-
sized filters (64×3×3) to reduce model size.

4.2. Error Analysis

Using our best-performing Inception-ResNet model, we
calculated per-class error rates for all 200 classes on
the validation dataset. We then summarized top-5 accu-
rate/inaccurate classes from these error rates with results
shown in Table 2. We also collected images of the best-
performing class (school bus) and the worst-performing
class (nail) with respect to validation accuracy in Fig 7.

When we went into images themselves, we had some in-
teresting observations. For a class with high validation ac-
curacy, images of this class tend to share same features such
as color, texture, outline, etc. Fig.7a presents 4 images of

5

Class Name Val Accuracy Class Name Val Accuracy
school bus 0.94 nail 0.14
trolleybus 0.9 syringe 0.2
bullet train 0.9 barrel 0.24
sulphur butterfly 0.9 plunger 0.26
maypole 0.88 wooden spoon 0.26

Table 2. Top-5 Accurate/Inaccurate Classes

(a) School Bus Example Images (b) Nail Example Images

Figure 7. Images of the Most Accurate/Inaccurate Class

the school bus class. The school buses in these images all
have cubic shape and are all decorated yellow. Moreover,
these school buses are highly recognizable by human being.
On the contrary, pictures of inaccurate classes have diverse
features and appear confusing to human being. In Fig.7b,
4 images of the nail class seem to share few common fea-
tures. Moreover, these images are so confusing that even
a human being may well classify them into a wrong class.
For instance, the image on top-left looks similar to a spider,
and the image on bottom-right is dominated by a man’s face
rather than the nail itself.

We also analyzed some mistakenly recognized pictures
(Fig.8) and found two origins of error. Firstly, mistakes may
appear when the ground-truth label is very similar to an-
other label. For example, in 8b the ground-true label puma
looks like the label lion a lot, and in 8d the label mushroom
has the same outline as the label umbrella. Another reason
is that although true label is not quite similar to the mistaken
label, background of a specific image may be closely asso-
ciated with that mistaken label. In 8a, a fly lying on a flower
is recognized a bee. This is because most training images of
the bee label have flowers as background, and thus images
with flowers have higher probabilities to be labeled as bees.

4.3. Output Distribution Visualization

During the training process of our best Inception-ResNet
model, we used TensorBoard to record the runtime output
distribution of some important layers (see Fig.9 and Fig.10).
The X-axis denotes current step number, and the Y-axis de-
notes scalar values of an output matrix. A distribution figure
records changing curves of some special values of the out-
put distribution: maximum, µ + 3σ, µ + 2σ, ... µ − 3σ,
and minimum. It also records regions between these val-

(a) Fly Recognized as Bee (b) Puma Recognized as Lion

(c) Slug Recognized as Sea Slug (d) Mushroom Recognized as Umbrella

Figure 8. Mistakenly Recognized Images

Figure 9. Output Distribution of Inception-ResNet-B

Figure 10. Output Distribution of FC-200

ues. For instance, the most light-colored region on the top
corresponds to values between µ+3σ and maximum value.
Some analysis were then made using these records.

Fig.9 shows output of the last Inception-ResNet-B mod-
ule, which lies right before the average pooling layer. Since
a ReLu activation is applied, all output values are non-
negative. The figure also shows that as the training process
goes on, the µ+3σ point goes down towards 0, and the max-
imum value decreases gradually. This suggests that most
scalar values in the output matrix become zero, and the rea-
son is that most parameters in convolutional filters become
zero. This observation verifies the sparsity assumption in
statistical learning, which states that only a small portion

6

Figure 11. ResNet: Compare # Filters and # Layers

of parameters in the model contribute to the final outputs.
This assumption serves as the prerequisite of many impor-
tant machine learning theorems and attributes.

Fig.10 shows distribution of the final raw score ma-
trix produced by the FC-200 layer. As the training pro-
cess goes forward, the standard deviation of distribution be-
comes larger, suggesting that the output score matrix be-
comes more distributed. As we are using the softmax loss,
the ideal case is that the right label has a very high score,
while all other labels have low scores. Instead, the worst
case is a random guess in which all labels have the same
score. Therefore, this distribution curve with a standard de-
viation growing higher suggests that our network is learning
well (given that the network is not yet over-fitted).

4.4. Do We Need to Go Deeper?

Compared to the ImageNet challenge, our tiny ImageNet
challenge has a much smaller dataset. Also, our original
pictures with 64×64 pixels are simpler than the 299×299
pictures in ImageNet challenge. According to statistical
learning theory[20], when number of parameters in a pre-
dictor is much larger than number of data samples, the
problem may become too flexible such that there are much
more optimal solutions, which makes the model harder to
train. Thus for our problem, while going deeper with con-
volutional layers may make the model more powerful, it
increases the chance of overfitting and it requires more
computational resources and training time. Therefore, we
conducted some experiments to explore impacts of going
deeper.

Fig. 12 shows that a 10-layer ResNet ([64, 128, 256,
512]× 2) performs very similarly to a 18-layer ResNet ([64,
128, 256, 512]× 4) with the same number of filters for each
building block. Furthermore, the 10-layer ResNet is eas-
ier to train at the beginning since the validation error drops
faster than that of the 18-layer ResNet. On the other hand,
Fig. 12 also shows that a 18-layer ResNet with more filters
at each building block ([64, 128, 256, 512]×4) does per-
form significantly better than a 18-layer ResNet with less
filters at each building block ([16, 32, 64, 128]×4).

Therefore, the benefits of going deeper in this project
may be limited. One reason is that we have a small train-
ing dataset, and deeper networks usually need more data in
order to be better at generalization than shallower networks.

Figure 12. Initialization: Xavier vs. Variance

4.5. Xavier Versus Variance Initialization

We investigated two popular initialization strategies.
Since training a deep convolutional neural network is usu-
ally a non-convex optimization problem, the results are sen-
sitive to starting points. Therefore, different weight initial-
ization strategies may lead to different results.

[3] proposes an initialization strategy that takes both
input dimension and output dimension into consideration,
which is called Xavier Initialization. Xavier initialization is
defined as: Wij ∼ U

(
− 1√

n+m
, 1√

n+m

)
, where n is the

input dimension for the current layer, and m is the output
dimension for the current layer.

While xavier initialization has been shown to be very
useful in practice, [4] proposes a new initialization strategy
that is theoretically more sound and performs better in prac-
tice when used on deep networks. This variance-scaling ini-
tialization is defined as Wij ∼ N

(
0, 2/n

)
, where n is the

input dimension of the current layer.
From the definitions, we can see two differences:

first, xavier initialization uses a uniform distribution while
variance-scaling initialization relies on a normal distribu-
tion; second, xavier initialization considers both input and
output dimensions while the variance-scaling intialization
only considers the input dimension, which results in that
weights can have a larger varying range using variance-
scaling initialization.

Here we compare the two strategies on a 18-layer ResNet
with filters ([64, 128, 256, 512]×4). Fig. 12 shows that un-
til 10 epochs, namely before the learning rate is decayed,
the results of both strategies are similar. However, after the
learning rate is decayed, the network initialized with vari-
ance scaling is able to converge to a lower level, compared
to the network initialized with xavier initialization. The
results suggest that the trained weights are more likely to

7

Figure 13. 18-Layer ResNet with Different Weight Decay

Weight Decay Validation Top-1 Error

1×10−4 43.7%
2×10−4 42.1%
3×10−4 43.2%

Table 3. 18-Layer ResNet with Different Weight Decay

follow a normal distribution rather than a uniform distribu-
tion. Furthermore, the discrepancy after the learning rate is
decayed suggests that different initialization strategies may
lead to different narrow valleys on the loss surface.

4.6. The Impact of Weight Decay

Due to the fact that we only have 500 training images
per class, another challenge of this project is how to prop-
erly regulate our networks. Apart from applying data aug-
mentation methods, we are also interested in how important
weight decay is. We trained a 18-layer ResNet ([64, 128,
256, 512]×4) with a weight decay of 1×10−4, 2×10−4,
and 3×10−4.

Fig. 13 and Table 3 shows that the model with a weight decay
of 2×10−4 achieves a validation top-1 error that is 1.6% or 1.1%
lower than that of the model with 1×10−4 or 3×10−4.

From the results, we can see that weight decay does have an
impact on the performance, however, the impact may be limited to
at most around 1-2% boost on error rate.

4.7. Filter Visualization
Here we visualize half of the filters of the fist convolutional

layer of our modified 18-layer ResNet in Fig.14.We see that most
filter visualizations have different shape outlines at the center. Fur-
thermore, these filter visualizations are dominated by different col-
ors. Therefore, the visualization plot indicates that each filter is
generalizing a unique type of features.

4.8. Object Localization
Based on the object detection system TensorBox[15], we used

our dataset to train the image localization model. Noticing that the
original code only detects people’s faces, we only fed one category
of training images once, and did some modification on the code in
order to fit our data. Here we use gold fish as an example. In the
training dataset there are 500 images labeled gold fish, and we pick
80% of them as training data, and the other 20% as test data. We

Figure 14. Visualization of First Conv Layer

evaluated the performance on the test data. From Fig.15, we can
see for single object localization the performance is quite good.
Also, even if the training images only contain one box each, in the
test images the network can output more than one boxes. However,
for the detection of many objects, the performance is not so good.
We need to point out that the small size(64×64) of images limits
the performance of detection, and makes it harder to localize more
than one objects.

Figure 15. Examples of Object Localization Results

5. Conclusion and Future Work
We tailored the state-of-art deep CNN models to the 200-class

image classification problem presented in Tiny ImageNet Chal-
lenge. We implemented and modified VGGNet, ResNet, and
Inception-ResNet. We trained all our models from scratch and the
top-performing model achieves a top-1 test error of 43.1%.

We also conducted thorough analysis on the results. We found
our best model is able to recognize images with clear features,
while failing to recognize others with multiple objects or ambigu-
ous features. We also investigated different initialization strate-
gies, and we found variance scaling initialization works better
than xavier initialization for our ResNet-based models. Further-
more, we discovered that a proper weight decay strength can give
a small boost to the performance. We also learned that babysitting
the training process is imperative. Decaying learning rate is very
effective on reducing error rates.

For future work, we expect to have a better performance if we
employ model ensemble techniques, for example, we let multiple
model snapshots during the training process vote and then summa-
rize their opinions to a prediction. Furthermore, it is also interest-
ing to use pre-trained models on full ImageNet Challenge training
dataset, which will reveal whether transfer learning works on Tiny
ImageNet Challenge. Finally, if we can have some volunteers and
test them on the 200-class image recognition task, it may be inter-
esting to compare the performance of humans and deep CNNs.

8

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[2] L. Bottou. Large-scale machine learning with stochastic gra-
dient descent. In Proceedings of COMPSTAT’2010, pages
177–186. Springer, 2010.

[3] X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. the 13th Inter-
national Conference on Artificial Intelligence and Statistics,
2010.

[4] X. Glorot and Y. Bengio. Delving deep into recti-
fiers:surpassing human-level performance on imagenet clas-
sification. IEEE International Conference on Computer Vi-
sion (ICCV), 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international con-
ference on computer vision, pages 1026–1034, 2015.

[6] He,Zhang,Ren,Sun. Deep residual learning for image recog-
nition. 2016. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

[7] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[8] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

[9] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. pages
1097–1105, 2012.

[11] P. Schneider and D. H. Eberly. Geometric tools for computer
graphics. Morgan Kaufmann, 2002.

[12] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun. Overfeat: Integrated recognition, localization
and detection using convolutional networks. arXiv preprint
arXiv:1312.6229, 2013.

[13] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[15] R. Stewart. Tensorbox. https://github.com/
TensorBox/TensorBox.

[16] R. Stewart, M. Andriluka, and A. Y. Ng. End-to-end people
detection in crowded scenes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2325–2333, 2016.

[17] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-
v4, inception-resnet and the impact of residual connections
on learning. arXiv preprint arXiv:1602.07261, 2016.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. Computer Vision and Pat-
tern Recognition (CVPR), 2015 IEEE Conference, 2015.

[19] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4(2),
2012.

[20] V. Vapnik. The nature of statistical learning theory. Springer
science & business media, 2013.

9

https://github.com/TensorBox/TensorBox
https://github.com/TensorBox/TensorBox

