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Abstract 
 

The complexity of automotive software systems con-
tinues to increase at a dramatic pace. Traditionally, 
the interactions between the various software compo-
nents of a vehicle are addressed only at the later 
stages in the overall development process. We advo-
cate a fresh approach, where interaction patterns be-
come the defining elements of automotive software 
services. This shifts the development focus from indi-
vidual components to their interaction in the early 
stages of the development process; potentially reduc-
ing development and integration costs for both manu-
facturers and suppliers. We present a formal service 
notion based on interaction patterns and introduce a 
systematic, service-oriented development process, sub-
stantiated by means of a corresponding tool chain. We 
illustrate our definitions and results by modeling ele-
ments of a Central Locking System, an example from 
the automotive domain. 
 
1. Introduction 
 

Automotive software systems are becoming increas-
ingly complex. In some cars up to 1400 software-
enabled functions are distributed over up to 80 Elec-
tronic Control Units (ECUs), communicating over five 
different network infrastructures within and beyond 
vehicle boundaries [6,21]. More and more, the com-
plexity ensuing from the collaboration among these 
distributed and interconnected pieces of software func-
tionality becomes the limiting factor in automotive 
software design. Traditional development processes for 
automotive software focus on the construction of indi-
vidual ECUs, starting from more or less detailed speci-
fications provided by the manufacturer; integrating 
them and the myriad of interacting software functions 
they implement into a coherent, functional, and safe 

overall product. This incurs substantial cost and effort 
for the manufacturer in later stages of the vehicle de-
velopment process.  

We conjecture that turning this picture around, and 
driving the automotive software development process 
by the features [10] or software services instead of by 
the ECUs that implement them, goes a long way to-
wards more cost-effective and less error-prone auto-
motive software development.  

Software services emerge from the interplay of sev-
eral components collaborating to complete a desired 
task. Current software development approaches and 
modeling notations focus mainly on individual compo-
nents instead of on the interaction patterns defining 
services as cross-cutting system properties. 

We present an approach to designing automotive 
software starting from service specifications. To that 
end, we introduce an interaction-based service notion 
together with a development process and correspond-
ing tool chain for service-oriented software develop-
ment.  

Our approach is driven and validated by a collabo-
ration with Ford Motor Company. In this project, the 
goal is to derive prototypic executable models – in the 
form of RTCORBA[25] components – for automotive 
services that can be handed off as “reference models” 
(not as target code) to suppliers. The suppliers can then 
validate their proposed solution against the executable 
model; this substantially streamlines the subsequent 
integration phase for both manufacturers and suppliers. 

 
1.1 Services, Roles, Components and Architec-

tures 
 

Services play an increasingly important role as a 
modeling and implementation concept across applica-
tion domains. Even in the automotive domain – repre-
sentative for the area of large-volume embedded sys-
tems with high dependability requirements – the notion 



 

of service is catching on as a means for addressing the 
ever increasing distribution and ensuing complexity of 
automotive software[1,21]. 

Despite the importance and prevalence of services, 
however, no systematic, methodological approach to 
service-oriented software development exists to date. 
In addition, none of the prominent modeling notations 
currently available address the service concept as a 
first-class modeling entity. Informal definitions for the 
term service abound in the literature (cf., for instance, 
[23,12,29,24,13]); these definitions, however, typically 
capture only syntactic lists of operations upon which a 
client can call instead of the interaction patterns behind 
them. This is inadequate as a starting point for system-
atic service-oriented development. 

In our view, a service is defined by the interaction 
among the entities involved in establishing the service.  

Defining services by the interactions ensuing from 
invoking them goes well beyond the predominantly 
syntactic service notions cited above: it provides a 
handle at meaningful concepts for service composition, 
refinement, and validation, and introduces them as 
first-class modeling elements as opposed to being 
merely first-class implementation elements.  

Clearly, services, once captured, can be imple-
mented on top of a variety of software architectures.  
Components typically participate in multiple services. 
For instance, a particular component may act as a 
server in one service, while it acts as a client in an-
other. To make the different configurations in which a 
component can participate in service executions ex-
plicit, we introduce the concept of a role. At any point 
in time during execution of the system under consid-
eration a component can play certain roles, such as the 
client or server role in a client/server interaction. Com-
ponents can change their roles over time; this distin-
guishes roles clearly, for instance, from the class con-
cept in object-orientation. Semantically, roles map to 
predicates over the state space of the system under 
consideration. 

While the focus of this paper is on presenting the 
methodological aspects of a service-oriented develop-
ment process, and the ramifications for a correspond-
ing tool chain, we refer the reader interested in a for-
malization of our service notion using the mathemati-
cal model of streams to [16,17,18]. 
 
1.2 Interaction Modeling: A Central Challenge 
in the Automotive Domain 
 

According to recent data, up to 40% of a modern 
car's cost is due to software; 50-70% of the develop-
ment cost of ECUs is related to software. Primarily, 
this complexity stems from the myriad of interactions 

among the various functions realized in software; we 
will illustrate this using the central locking system 
found in most modern cars as an example (cf. Sec. 2).  

 To capture the interaction patterns defining ser-
vices we use an extended version of Message Se-
quence Charts (MSC) [9,15]. MSCs have proven use-
ful as a graphical representation of key interaction pro-
tocols, originally in the telecommunications domain. 
They also form the basis for interaction models in the 
most recent rendition of the UML [30]. In our ex-
tended MSC notation, each MSC consists of a set of 
axes, each labeled with the name of a role (instead of 
with a component name). An axis represents a certain 
segment of the behavior displayed by the component 
implementing the corresponding role. Arrows in MSCs 
denote communication. An arrow starts at the axis of 
the sender; the axis at which the head of the arrow 
ends designates the recipient. Intuitively, the order in 
which the arrows occur (from top to bottom) within an 
MSC defines possible sequences of interactions among 
the depicted roles.  

 
1.3 Service-Oriented Development 
 

For service-oriented system development in the 
automotive domain, we suggest to follow a systematic 
development process as outlined in Figure 1. 

 

 Figure 1. Service-Oriented Software  
Development 

 
This iterative process mainly involves two phases: 

(1) define the set of services of interest – we call this 
set the service repository; (2) map the services to com-
ponent configurations to define deployments of the 
architecture. Phase (1) starts by identifying the relevant 
use cases and their relationships in the form of a use 
case graph. From these use cases the roles and their 
interactions are derived as defining elements of ser-
vices. This gives rise to a domain model for the roles 
involved. In phase (2) the role domain model is refined 
into a component configuration, onto which the set of 
services is mapped to yield an architectural configura-
tion. These architectural configurations can be readily 
implemented and evaluated as target architectures for 
the system under consideration. The process is iterative 
both within the two phases, and across: Role and ser-
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vice elicitation feeds back into the definition of the use 
case graph; architectures can be refined and refactored 
to yield new architectural configurations, which may 
lead to further refinement of the use cases. 

  
1.4 Contributions and Outline 

 
In the remainder of this text we explain the various 

elements of our service-oriented software development 
approach together with the process outlined above in 
more detail. To illustrate concepts and notations we 
introduce a realistic running example in Section 2. In 
Section 3 we apply the mentioned development proc-
ess to the running example, and show how to yield 
multiple architectural configurations for the same set 
of services. In Section 4 we describe the tool chain we 
envision for service-oriented automotive software en-
gineering. Section 5 contains a discussion of related 
work. Our conclusions appear in Section 6. 

 
2. Example – Central Locking System 

 
To illustrate the central challenges in specifying ser-

vices, as well as the applicability of the service concept 
introduced above, we model part of the Central Lock-
ing System (CLS) and its periphery as found in typical 
modern cars. The starting point for our modeling effort 
is the description of a “real” CLS in [21]; for reasons 
of brevity we use a simplified model of this CLS here.  

In today’s cars the seemingly innocent CLS service 
is interconnected with many other features in the vehi-
cle. In fact, a typical vehicle today contains distinct 
networks for each of the following: body/chassis con-
trol, powertrain control, safety control, and multime-
dia. All of those are linked in the functionality pro-
vided by CLS; it interacts with the locks (in the doors, 
trunk, sunroof etc.), a remote key, crash notification, 
the security system, light control (interior and exte-
rior), the tuner, seats and mirrors. A typical scenario 
for using the features of a correspondingly equipped 
car is to unlock the car remotely by pressing the key-
button: upon receipt of this signal, the CLS un-arms 
the security system, operates the appropriate locks and 
switches on the interior lights. The driver’s preferences 
are accessed, based on the key used, to set the mirror, 
seat and tuner presets accordingly. Flashing the exte-
rior lights signals the opening of the car from the out-
side. Upon drive-away and beyond a certain speed, the 
CLS automatically locks all doors. 

In particular, we will study the following services 
for this example: unlocking, transfer key ID, set tuner 
presets, and crash detection. The unlocking service 
involves interactions among the key fob, control, lock 
management and lighting system. To fetch the driver 
presets upon entry into the vehicle, the locking system 

control associates the driver identifier stored on the 
key fob with the corresponding data record in the data-
base. When switched on, the tuner fetches the current 
presets from the database. When a crash is detected, 
the central controller initiates unlocking of all doors.  

Besides illustrating the system structure, this exam-
ple also shows how the mentioned services overlap; in 
particular, a central controller is involved in executing 
all but the tuner preset services. This is a key charac-
teristic of service-oriented development: services are 
cross-cutting elements of the system under considera-
tion. 

 
3. Service-Oriented Development: Step-by-
Step 

 
In this section we explore the service-oriented de-

velopment process in more detail. In the following 
paragraphs, we elaborate on the steps required to de-
fine an architecture for CLS, based on the concepts of 
use cases, roles, services and components. 

 
3.1 Use Cases 

 
Our first step is to determine the relevant use cases 

of the system under consideration. These use cases can 
be related to each other by virtue of inclusion and ex-
tends relationships [30]; we can express these relation-
ships in terms of a use case graph – this graph will also 
help determine the relationships between services elic-
ited from the use cases. We consider the following four 
use cases for the CLS: unlocking, transfer_ key_ID, set 
tuner presets, and handle_crash.  

Clearly, these use cases have some overlap: both the 
unlocking of the car, and the transfer of a key ID are 
triggered by the user pressing a key on the keyfob. 
These two use cases can, however, also be considered 
separate, because there are keys that can unlock the car 
(mechanically, for instance) but do not transmit key 
identifiers. There are also more subtle dependencies 
between these use cases: the set tuner presets use case 
has a data dependency with respect to the transfer key 
ID use case; the transferred ID will influence the set-
tings of the tuner. The handle_crash use case cross-
cuts all others: whenever a crash signal occurs the CLS 
has to unlock all doors. 

All of these dependencies can be captured by an 
appropriately labeled use case graph; dependencies 
between use cases can be translated into additional 
services (see below). 

 
3.2 Roles  
 

In order to decouple the notion of service from con-
crete component configurations (architectures), we 



 

introduce the concept of a role. At any point in time 
during execution of the system under consideration a 
component can play certain roles, such as the client or 
server role in a client/server interaction. 

Within the CLS, for instance,  we can identify the 
following roles: a control unit (Control); a lock man-
ager (LM) responsible for operating the door, trunk 
and moon-roof locks; a lighting system (LS) responsi-
ble for operating the interior and exterior lights, a crash 
detection sensor (CS); a key fob (KF) responsible for 
remote and mechanical entry, and storing of the driver 
identification; a database (DB) storing the presets for 
each registered driver – the key to the database record 
is the driver identification stored in the key fob; a tuner 
(Tuner) for the entertainment system; and a user inter-
face (UI) for operating the tuner. These roles will 
likely map to a variety of different component configu-
rations depending on the concrete make and model 
under consideration. 

 Semantically, roles map to predicates over the state 
space of the system under consideration. 

 
3.3 Services  

 
We define services as the interaction patterns re-

quired to establish a specific task. This identifies ser-
vices as partial behaviors of the system under consid-
eration.  

Services associate roles with interaction patterns. 
We use MSCs to represent how the roles interact to 
establish the service under consideration. An MSC can 
also contain information about the states the roles are 
in during the course of the interaction.  

The collection of all services elicited in this way 
can be considered as a service repository for the sys-
tem. Once we have defined the service repository, the 
relationships between the different roles of the system 
are clear. We express the structural part of these rela-
tionships in the form of a role domain model. This 
domain model allows us to identify the dependencies 
between the different roles of the system and is used 
later on to identify and define corresponding compo-
nent configurations.  

 
 

Figure 2. Role Domain Model for CLS 
 

For the CLS we define the role domain model 
shown in Figure 2; here, boxes and arrows denote roles 
and directed communication channels connecting the 
roles, respectively. For instance, roles KF and Control 
are connected by means of channels ck (from Control 
to KF) and kc (from KF to Control). 

With this role domain model in place we can start 
capturing the interaction patterns defining the services 
of the CLS. Figure 3 shows the interactions of the 
unlocking service. Here, Control relays an unlck mes-
sage received from the keyfob KF to the lock man-
agement (LM) role. Upon receipt of an ok message 
from LM, Control sends the door_unlckd_sig message 
to the lighting system. The labeled hexagons in the 
MSC indicate local (control) states of role Control: it 
starts out in the LCKD state; after participating in the 
depicted interactions, Control switches into the UNLD 
state. 
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Figure 3. MSC for “unlocking” 
 
Upon receipt of an unlck message the Control role 

sends a getID message to the keyfob; KF sends the ID 
to Control, which relays the ID to the DB (cf. Figure 
4). Again, Control switches from state LCKD UNLD 
in the course of executing the service. 

 
Figure 4. MSC for “transfer driver ID” 

 
The preceding two services are overlapping in the 
sense that both share references to the unlck message 
and states LCKD/UNLD. This is characteristic of ser-
vice specifications as each individual service gives 
only a partial view on the components implementing it. 
Therefore, to obtain the complete behavior for one of 
the roles, Control, say, we have to compose all the 
services it is involved in. Because neither the MSC 
standard [9], nor UML2 [30] provides composition 
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operators for overlapping interaction patterns, we have 
introduced a corresponding “join” operator [18] (sym-
bol: ⊗). We write unlocking ⊗ transfer_driver_ID to 
indicate the interaction pattern emerging from syn-
chronizing identically labeled (or unifiable) messages 
(and states) in the operand MSCs unlocking and trans-
fer_driver_ID. All other messages (and states) in these 
operands are interleaved in the resulting interaction 
pattern – observing, of course, the respective message 
orderings in the operands. In the example, the “unlck” 
message from KF to Control is unifiable and thus iden-
tified as a single message in the composition. All other 
messages are mutually independent between unlocking 
and transfer_driver_ID.  

The start_tuner service is triggered by an “on” mes-
sage from the user interface UI to the Tuner role. The 
Tuner, in turn, requests the presets (stations, volume, 
etc.) from the database DB (cf. Figure 5). 

 

Figure 5. MSC for “start tuner” 
 

From the use case graph we have elicited earlier in 
the development process we know that there is a data 
dependency between the services start_tuner and  
transfer_driver_ID. This data dependency can be cap-
tured semantically by means of a generalized “join” 
that unifies on message labels (including origins and 
destinations) and message parameters.  

The final service we model for CLS is the han-
dle_crash service. Its actual interaction pattern is sim-
ple (cf. Figure 6).  

 
 

 
Figure 6. MSC for “handle crash” 

 
It is the relationship between handle_crash and the 

other services we have elicited so far that is notewor-
thy: handle_crash is cross-cutting in the sense that the 
“impact” message can arrive at any point during the 
execution of any other service. We refer the reader to 
[18, 15] for the definition of a “preemption” operator 
that enables us to identify handle_crash as a preemp-
tion handler triggered by the “impact” message from 
the crash sensor CS. Again, the cross-cutting nature of 
such preemption specifications is inadequately ad-
dressed in notations such as the MSC standard or 
UML2. 

Other services we could capture analogously are, 
for instance, “locking”, “partial locking/unlocking”, 
“valet unlocking”. Their composition using operators 
for sequencing, alternatives, parallel composition, and 
join (as formally defined in [18, 15]) would yield the 
overall CLS service. For reasons of brevity we restrict 
our attention to the services explicitly modeled above. 

 
3.4 Components and Architectures 

 
 Following service elicitation, we can define the ar-

chitecture for the system under consideration. Compo-
nents are the architectural entities implementing roles. 
Each component may play multiple roles. The mapping 
from roles to components determines the services a 
component participates in and, thus, also the compo-
nent’s interaction behavior. There can be many possi-
ble component configurations for a system that imple-
ments the elicited services. Therefore, we need to first 
define the component configuration for which we want 
to define an architecture. We represent component 
configurations using a deployment domain model. The 
components defined in this domain model receive their 
behavior definitions by mapping the services onto the 
chosen component configuration.  

We obtain a trivial deployment domain model from 
the role domain model by identifying components and 
roles; then, each component implements precisely one 
role. In this state of affairs, the role domain model and 
the deployment domain model coincide. 

Another extreme case is to map all roles to a single 
component; this again is a trivial affair, because we 
simply need to treat the role domain model as a speci-
fication for the “internals” (the substructure) of one 
encompassing component. 

The most interesting and methodologically chal-
lenging case arises when we map multiple roles onto 
the same deployment component. All other cases (such 
as mapping a single role onto multiple components) 
can be dealt with by refactoring/refining the role do-
main model first, and then establishing the mapping to 
the deployment domain model. 

 
 

 
Figure 7. Deployment Domain Model for 

CLS 
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We illustrate this case in our example by introduc-
ing a “Supercontroller” component, playing both the 
Control and LM (lock manager) roles. Figure 7 shows 
the corresponding deployment domain model. If we 
work with strictly hierarchical component models such 
as the ones of UML2, UML-RT, or AutoFocus (cf. 
Section 4.2), one way to establish the mapping of mul-
tiple roles onto a single component is to take the role 
domain model as a staring point, and to replace the 
roles in question by a single component having the 
same input and output channels as the replaced roles 
taken together. Then, the entire network of replaced 
roles with their supporting channels becomes the hier-
archical “child” of the freshly introduced component. 
This process can be repeated, recursing into all hierar-
chically decomposed composites, until all role labels 
have been turned into component labels.   

In general, there are many possible component con-
figurations for a system that implements the elicited 
services. Therefore, we need to first define the compo-
nent configuration for which we need to define an ar-
chitecture. Such configurations can be based on vari-
ous architectural styles [26] such as pipes and filters, 
layered architecture, or client-server.  

Layered architectures are particularly appealing as 
deployment configurations for services. Based on the 
dependencies elicited for the use case graph we can 
determine which services call upon which others. The 
former make good candidates for being on a higher 
layer of abstraction than the latter. This approach 
works well if the dependency graph has no cycles; 
otherwise these cycles have to be broken (by introduc-
ing, for instance, service proxies) before a strictly lay-
ered architecture can be derived. 

Once a component configuration has been defined, 
the architecture can be determined by selecting the 
services from the service repository that need to be 
supported by the architecture and mapping each ser-
vice to the component configuration and defining the 
component types. This happens according to the fol-
lowing two steps: (1) Select a service to be supported 
by the system, (2) Map the roles of the service to the 
components supporting that service. These steps need 
to be repeated for all services to be supported by the 
system. This mapping step allows us to select and im-
plement only those services required for the architec-
ture under consideration; it also allows us to try out 
various configurations.  

Because our service notion is interaction-based, and 
we use MSCs to capture the relevant interaction pat-
terns, we can map these patterns onto individual roles, 
and from there onto components (semi)automatically, 
using algorithms for the derivation of state machines 
from interaction specifications [14,15]. We explain this 
in more detail in Section 4.1. 

 

3.5 Service Refinement and Refactoring 
 

In practice, the initial architecture determined using 
any process, including the one outlined above, will 
have to be refined as more information about the ser-
vices and target component configurations (such as the 
concrete set of ECUs and the supporting network to-
pology available in the vehicle) is revealed. This is 
supported by the iterative nature of our process, allow-
ing the architect to refine the architecture by collecting 
increasingly detailed information about the use cases, 
roles, and services of the system under consideration: 
the service elicitation step is decoupled from the archi-
tecture mapping. Consequently, both the service re-
pository and the target architecture can be modified 
independently of one another before the next architec-
tural mapping step is performed. 

  
4. Tool Chain  
 

In this section we describe the design and imple-
mentation of a prototypic toolchain we have developed 
for supporting the service-oriented development proc-
ess introduced above. The purpose of this tool chain is 
to provide executable models for the services in vehi-
cle software. These executable models are intended as 
reference models for suppliers to validate their imple-
mentations against – not as deployable target code. The 
tool chain consists of three main ingredients: the mod-
eling tool for roles, interaction patterns and service 
specifications (M2Code), the modeling, simulation, 
verification and test tool for component configurations 
(AutoFocus) and a code generator, transforming the 
output of either M2Code or AutoFocus into executa-
bles for the RTCORBA middleware platform. 

 

Figure 8. Toolchain Supporting Service-
Oriented Development 
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fication using our full, extended MSC notation. For the 
resulting role domain model M2Code generates 
automaton specifications and deployment domain 
models that can be fed into AutoFocus for simulation, 
validation and verification; AutoFocus provides con-
nectors to verification tools such as model checkers 
and theorem provers. The code generator takes de-
ployment domain models and corresponding state 
models as input and produces code (interfaces, stubs, 
skeletons, and component implementations) for execu-
table RTCORBA components. 

Figure 8 gives a pictorial representation of this tool-
chain. In the following paragraphs we will describe 
each of these ingredients in more detail. 
 
4.1 M2Code 
 

M2Code is our tool for modeling roles and their in-
teractions, which are the defining elements for services 
in our approach. Thus, M2Code covers, in particular, 
the first phase of the service-oriented development 
process introduced in Section 1.3. A centerpiece of 
M2Code is its capability for (semi)automatically deriv-
ing state machines from interaction patterns given as 
MSCs, based on the algorithms described in [14,15]. In 
particular, it can deal with overlapping, alternatives, 
parallel composition, loops, and preemption – to name 
only some important features of dealing with interac-
tion patterns defining services. 

The output of M2Code is a role domain model to-
gether with one automaton for each role defined in this 
domain model; these automata implement the respec-
tive role’s contribution to all the services it is associ-
ated with. 

M2Code is built as a plugin for Microsoft Visio, 
and visualizes both the MSCs entered by the developer 
and, using automated layout algorithms provided in 
“graphviz” [7], also the generated state machines for 
validation purposes. 

Finally, M2Code supports exporting the modeling 
elements (both the automata and the system structure, 
i.e. the role domain model) as an XML document in 
the format expected by AutoFocus. If no verifica-
tion/validation of the resulting service model is re-
quired, AutoFocus can be bypassed, and the XML file 
can be directly used as input for the RTCORBA code 
generator. 
 
4.2 AutoFocus 
 

We have selected AutoFocus as an element in our 
toolchain, because it is freely available as a research 
platform and provides strong modeling, verification 
and validation capabilities. AutoFocus was developed 
at Technische Universität München [3]. Its notational 

elements cover system structure, data types, event 
traces, and state machines for embedded, reactive sys-
tems. 

For modeling system structure, AutoFocus employs 
system structure diagrams displaying components and 
their ports (interfaces), which are interconnected via 
channels. Components can be either terminal or hierar-
chically decomposed. For each port and channel, data 
types may be specified – both default and user defined 
types are possible. For the behavioral view of the sys-
tem (the dynamic view), AutoFocus uses state transi-
tion diagrams (STDs, automata) and extended event 
traces (EETs) . EETs are similar in spirit to the MSCs 
used in this text, but have a much more restricted ex-
pressive power; they serve mostly as a graphical repre-
sentation of simulation runs. 

AutoFocus itself has a built-in code generator tar-
geting Java, which allows step-by-step execution and 
simulation of the model under consideration. Further-
more, AutoFocus provides a number of automated and 
semi-automated testing approaches, which facilitate 
conformance tests between expected and actual inter-
action sequences in executions of the system under 
development. 

AutoFocus also supports a coupling with external 
verification and validation tools using tool “connec-
tors”. For our prototype implementation, we are using 
the Symbolic Model Verifier (SMV [28]) as the exter-
nal validation tool. By means of this model checker we 
can, for instance, formally verify the correctness of our 
mapping of services onto the deployment domain 
model. These verification and validation capabilities 
within the AutoFocus CASE tool framework are our 
motivation for taking AutoFocus models as the input 
for our code generation approach. 
 
4.4 RTCORBA Code Generator 
 

The final step towards an executable specification is 
handled by a code generator, which takes abstract, 
validated models of distributed, reactive systems as 
input, and produces executables for the RT CORBA 
middleware implementing the properties checked for 
the abstract models. This closes a gap in the develop-
ment process for reliable distributed and reactive sys-
tems, by eliminating the manual transition from cap-
tured requirements to implementation on top of RT 
CORBA. The design of the code generator (an exten-
sion of the one discussed in [20]) can easily be adapted 
to different input languages and target middlewares. 

Code generation proceeds in three steps: First, the 
code generator takes an XML file (generated by Auto-
Focus or directly out of M2Code) as input, populates a 
symbol table, and produces an IDL file containing 
CORBA interface specifications for all terminal com-
ponents of the AutoFocus model. Next, the IDL file is 



 

fed into the IDL compiler; this produces the relevant 
stubs, skeletons, and “empty” CORBA component 
implementation prototypes. Finally, the code generator 
takes the output of the IDL compiler, and populates the 
files with the code obtained from translating the behav-
ioral aspects contained in the AutoFocus model. 

As our target RT middleware we have selected 
TAO, developed at the University of Washington, Uni-
versity of California at Irvine, and Vanderbilt Univer-
sity. As a consequence, our target programming lan-
guage is C++. 

 
5. Related Work 

The complexity and challenges offered by the prob-
lems in the automotive domain have been pointed out 
earlier (see, for instance, [27]) and the automotive in-
dustry has been undergoing a silent software revolu-
tion [6,8] – however, to the best of our knowledge, 
ours is the first attempt at a systematic application of 
the service notion to software development in general, 
with a focus on the automotive domain. The notion of 
services as first-class elements from an implementation 
perspective has seen a lot of research in the emerging 
context of web services [2, 31]. There has been some 
earlier work on web service description and composi-
tion as well [22]. Using a precise, interaction-based 
service notion from the onset of the development proc-
ess and seamlessly across development phases as we 
advocate here is novel; this is also a major difference 
to other software development processes, such as the 
one described in [11].  

Although there has been little research on develop-
ing an integrated service oriented development proc-
ess, there has been some work focused on each of the 
individual stages. Wren [19], for instance, is a tool 
similar in spirit to our use of AutoFocus, in that it aids 
in component based software development through 
composition. It provides several interesting features 
including component discovery, but does not incorpo-
rate any kind of behavioral semantics for its compo-
nent notion. Attempts have also been made to extend 
UML for the automotive domain [5] – however, as we 
have argued, the UML does not treat services as first-
class modeling citizens and thus misses many of the 
important aspects of service modeling, including over-
lapping services. Baresi et al. discuss modeling and 
validation of service-oriented architectures ([4]). These 
could serve as deployment domain models for the ser-
vices we model in our approach. 

There has been some work in composing systems 
from components and validating such systems from 
their components without having to validate the system 
as a whole [32]. However, most of these approaches 
are “bottom up” (going from components to the sys-
tem), while ours is a “top down” approach (going from 

services to the components implementing them), which 
we have argued is a better suited to address the cross-
cutting nature of many important system properties. In 
this sense, our work can serve as a “front-end” to ap-
proaches such as [32]. 
 
6. Conclusion and Outlook 
 

The ever increasing complexity of automotive soft-
ware systems has become a potential road-block for 
software-based innovations and their transition into 
production vehicles. Traditional software development 
approaches are limited in their utility for the automo-
tive domain, because they address the key element of 
interaction among the myriad of software enabled ve-
hicular functions only in the late stages of the overall 
development process. Consequently, the integration 
phase where all components delivered by suppliers are 
assembled into a whole is costly, time-consuming, er-
ror-prone and difficult. 

In this text, we have introduced an approach to ser-
vice-oriented software engineering for automotive sys-
tems. Starting from a precise, interaction-based notion 
of service we have outlined a methodologically 
founded development process for service-oriented sys-
tems. We have substantiated this process by means of a 
tool chain covering all phases from capturing the inter-
action patterns defining services to designing deply-
ment models to implementing these models on top of 
RTCORBA. We have illustrated our approach using a 
simplified, yet realistic model of a central locking sys-
tem. 

Future work includes, among others, a thorough as-
sessment of multiple deployment domain models re-
garding their utility as service-oriented software archi-
tectures, an extension of the service-modeling tool 
chain to include “wizards” for refinement and refactor-
ing of services and domain models, and integration of 
Quality-of-Service specifications into the service 
model. 
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