

Towards a Process and Tool-Chain for Service-Oriented
Automotive Software Engineering

Ingolf H. Krüger, Diwaker Gupta, Reena Mathew, Praveen Moorthy,
Walter Phillips, Sabine Rittmann, Jaswinder Ahluwalia

Computer Science and Engineering Department
University of California, San Diego

9500 Gilman Drive, La Jolla, CA 92093-0114, USA
{ikrueger,dgupta,rmathew,pmoorthy,whphilli,srittmann,jas}@ucsd.edu

Abstract

The complexity of automotive software systems con-
tinues to increase at a dramatic pace. Traditionally,
the interactions between the various software compo-
nents of a vehicle are addressed only at the later
stages in the overall development process. We advo-
cate a fresh approach, where interaction patterns be-
come the defining elements of automotive software
services. This shifts the development focus from indi-
vidual components to their interaction in the early
stages of the development process; potentially reduc-
ing development and integration costs for both manu-
facturers and suppliers. We present a formal service
notion based on interaction patterns and introduce a
systematic, service-oriented development process, sub-
stantiated by means of a corresponding tool chain. We
illustrate our definitions and results by modeling ele-
ments of a Central Locking System, an example from
the automotive domain.

1. Introduction

Automotive software systems are becoming increas-
ingly complex. In some cars up to 1400 software-
enabled functions are distributed over up to 80 Elec-
tronic Control Units (ECUs), communicating over five
different network infrastructures within and beyond
vehicle boundaries [6,21]. More and more, the com-
plexity ensuing from the collaboration among these
distributed and interconnected pieces of software func-
tionality becomes the limiting factor in automotive
software design. Traditional development processes for
automotive software focus on the construction of indi-
vidual ECUs, starting from more or less detailed speci-
fications provided by the manufacturer; integrating
them and the myriad of interacting software functions
they implement into a coherent, functional, and safe

overall product. This incurs substantial cost and effort
for the manufacturer in later stages of the vehicle de-
velopment process.

We conjecture that turning this picture around, and
driving the automotive software development process
by the features [10] or software services instead of by
the ECUs that implement them, goes a long way to-
wards more cost-effective and less error-prone auto-
motive software development.

Software services emerge from the interplay of sev-
eral components collaborating to complete a desired
task. Current software development approaches and
modeling notations focus mainly on individual compo-
nents instead of on the interaction patterns defining
services as cross-cutting system properties.

We present an approach to designing automotive
software starting from service specifications. To that
end, we introduce an interaction-based service notion
together with a development process and correspond-
ing tool chain for service-oriented software develop-
ment.

Our approach is driven and validated by a collabo-
ration with Ford Motor Company. In this project, the
goal is to derive prototypic executable models – in the
form of RTCORBA[25] components – for automotive
services that can be handed off as “reference models”
(not as target code) to suppliers. The suppliers can then
validate their proposed solution against the executable
model; this substantially streamlines the subsequent
integration phase for both manufacturers and suppliers.

1.1 Services, Roles, Components and Architec-

tures

Services play an increasingly important role as a
modeling and implementation concept across applica-
tion domains. Even in the automotive domain – repre-
sentative for the area of large-volume embedded sys-
tems with high dependability requirements – the notion

of service is catching on as a means for addressing the
ever increasing distribution and ensuing complexity of
automotive software[1,21].

Despite the importance and prevalence of services,
however, no systematic, methodological approach to
service-oriented software development exists to date.
In addition, none of the prominent modeling notations
currently available address the service concept as a
first-class modeling entity. Informal definitions for the
term service abound in the literature (cf., for instance,
[23,12,29,24,13]); these definitions, however, typically
capture only syntactic lists of operations upon which a
client can call instead of the interaction patterns behind
them. This is inadequate as a starting point for system-
atic service-oriented development.

In our view, a service is defined by the interaction
among the entities involved in establishing the service.

Defining services by the interactions ensuing from
invoking them goes well beyond the predominantly
syntactic service notions cited above: it provides a
handle at meaningful concepts for service composition,
refinement, and validation, and introduces them as
first-class modeling elements as opposed to being
merely first-class implementation elements.

Clearly, services, once captured, can be imple-
mented on top of a variety of software architectures.
Components typically participate in multiple services.
For instance, a particular component may act as a
server in one service, while it acts as a client in an-
other. To make the different configurations in which a
component can participate in service executions ex-
plicit, we introduce the concept of a role. At any point
in time during execution of the system under consid-
eration a component can play certain roles, such as the
client or server role in a client/server interaction. Com-
ponents can change their roles over time; this distin-
guishes roles clearly, for instance, from the class con-
cept in object-orientation. Semantically, roles map to
predicates over the state space of the system under
consideration.

While the focus of this paper is on presenting the
methodological aspects of a service-oriented develop-
ment process, and the ramifications for a correspond-
ing tool chain, we refer the reader interested in a for-
malization of our service notion using the mathemati-
cal model of streams to [16,17,18].

1.2 Interaction Modeling: A Central Challenge
in the Automotive Domain

According to recent data, up to 40% of a modern
car's cost is due to software; 50-70% of the develop-
ment cost of ECUs is related to software. Primarily,
this complexity stems from the myriad of interactions

among the various functions realized in software; we
will illustrate this using the central locking system
found in most modern cars as an example (cf. Sec. 2).

 To capture the interaction patterns defining ser-
vices we use an extended version of Message Se-
quence Charts (MSC) [9,15]. MSCs have proven use-
ful as a graphical representation of key interaction pro-
tocols, originally in the telecommunications domain.
They also form the basis for interaction models in the
most recent rendition of the UML [30]. In our ex-
tended MSC notation, each MSC consists of a set of
axes, each labeled with the name of a role (instead of
with a component name). An axis represents a certain
segment of the behavior displayed by the component
implementing the corresponding role. Arrows in MSCs
denote communication. An arrow starts at the axis of
the sender; the axis at which the head of the arrow
ends designates the recipient. Intuitively, the order in
which the arrows occur (from top to bottom) within an
MSC defines possible sequences of interactions among
the depicted roles.

1.3 Service-Oriented Development

For service-oriented system development in the
automotive domain, we suggest to follow a systematic
development process as outlined in Figure 1.

 Figure 1. Service-Oriented Software
Development

This iterative process mainly involves two phases:

(1) define the set of services of interest – we call this
set the service repository; (2) map the services to com-
ponent configurations to define deployments of the
architecture. Phase (1) starts by identifying the relevant
use cases and their relationships in the form of a use
case graph. From these use cases the roles and their
interactions are derived as defining elements of ser-
vices. This gives rise to a domain model for the roles
involved. In phase (2) the role domain model is refined
into a component configuration, onto which the set of
services is mapped to yield an architectural configura-
tion. These architectural configurations can be readily
implemented and evaluated as target architectures for
the system under consideration. The process is iterative
both within the two phases, and across: Role and ser-

 Development Process for Service-Oriented Software Architectures

A
rc

hi
te

ct
ur

e
D

ef
in

iti
on

Se
rv

ic
e

El
ic

ita
tio

n

Use Case Graph Roles

R1 R2 R3

Services

R2R1 R1

R3

Role Domain Model

R2

C4

C1
C2

Component Configuration

C3

Architecture

C2:R2

C3:R2

C1:R1

C4:R3

R2R1C1

C2

Mapping

vice elicitation feeds back into the definition of the use
case graph; architectures can be refined and refactored
to yield new architectural configurations, which may
lead to further refinement of the use cases.

1.4 Contributions and Outline

In the remainder of this text we explain the various

elements of our service-oriented software development
approach together with the process outlined above in
more detail. To illustrate concepts and notations we
introduce a realistic running example in Section 2. In
Section 3 we apply the mentioned development proc-
ess to the running example, and show how to yield
multiple architectural configurations for the same set
of services. In Section 4 we describe the tool chain we
envision for service-oriented automotive software en-
gineering. Section 5 contains a discussion of related
work. Our conclusions appear in Section 6.

2. Example – Central Locking System

To illustrate the central challenges in specifying ser-

vices, as well as the applicability of the service concept
introduced above, we model part of the Central Lock-
ing System (CLS) and its periphery as found in typical
modern cars. The starting point for our modeling effort
is the description of a “real” CLS in [21]; for reasons
of brevity we use a simplified model of this CLS here.

In today’s cars the seemingly innocent CLS service
is interconnected with many other features in the vehi-
cle. In fact, a typical vehicle today contains distinct
networks for each of the following: body/chassis con-
trol, powertrain control, safety control, and multime-
dia. All of those are linked in the functionality pro-
vided by CLS; it interacts with the locks (in the doors,
trunk, sunroof etc.), a remote key, crash notification,
the security system, light control (interior and exte-
rior), the tuner, seats and mirrors. A typical scenario
for using the features of a correspondingly equipped
car is to unlock the car remotely by pressing the key-
button: upon receipt of this signal, the CLS un-arms
the security system, operates the appropriate locks and
switches on the interior lights. The driver’s preferences
are accessed, based on the key used, to set the mirror,
seat and tuner presets accordingly. Flashing the exte-
rior lights signals the opening of the car from the out-
side. Upon drive-away and beyond a certain speed, the
CLS automatically locks all doors.

In particular, we will study the following services
for this example: unlocking, transfer key ID, set tuner
presets, and crash detection. The unlocking service
involves interactions among the key fob, control, lock
management and lighting system. To fetch the driver
presets upon entry into the vehicle, the locking system

control associates the driver identifier stored on the
key fob with the corresponding data record in the data-
base. When switched on, the tuner fetches the current
presets from the database. When a crash is detected,
the central controller initiates unlocking of all doors.

Besides illustrating the system structure, this exam-
ple also shows how the mentioned services overlap; in
particular, a central controller is involved in executing
all but the tuner preset services. This is a key charac-
teristic of service-oriented development: services are
cross-cutting elements of the system under considera-
tion.

3. Service-Oriented Development: Step-by-
Step

In this section we explore the service-oriented de-

velopment process in more detail. In the following
paragraphs, we elaborate on the steps required to de-
fine an architecture for CLS, based on the concepts of
use cases, roles, services and components.

3.1 Use Cases

Our first step is to determine the relevant use cases

of the system under consideration. These use cases can
be related to each other by virtue of inclusion and ex-
tends relationships [30]; we can express these relation-
ships in terms of a use case graph – this graph will also
help determine the relationships between services elic-
ited from the use cases. We consider the following four
use cases for the CLS: unlocking, transfer_ key_ID, set
tuner presets, and handle_crash.

Clearly, these use cases have some overlap: both the
unlocking of the car, and the transfer of a key ID are
triggered by the user pressing a key on the keyfob.
These two use cases can, however, also be considered
separate, because there are keys that can unlock the car
(mechanically, for instance) but do not transmit key
identifiers. There are also more subtle dependencies
between these use cases: the set tuner presets use case
has a data dependency with respect to the transfer key
ID use case; the transferred ID will influence the set-
tings of the tuner. The handle_crash use case cross-
cuts all others: whenever a crash signal occurs the CLS
has to unlock all doors.

All of these dependencies can be captured by an
appropriately labeled use case graph; dependencies
between use cases can be translated into additional
services (see below).

3.2 Roles

In order to decouple the notion of service from con-
crete component configurations (architectures), we

introduce the concept of a role. At any point in time
during execution of the system under consideration a
component can play certain roles, such as the client or
server role in a client/server interaction.

Within the CLS, for instance, we can identify the
following roles: a control unit (Control); a lock man-
ager (LM) responsible for operating the door, trunk
and moon-roof locks; a lighting system (LS) responsi-
ble for operating the interior and exterior lights, a crash
detection sensor (CS); a key fob (KF) responsible for
remote and mechanical entry, and storing of the driver
identification; a database (DB) storing the presets for
each registered driver – the key to the database record
is the driver identification stored in the key fob; a tuner
(Tuner) for the entertainment system; and a user inter-
face (UI) for operating the tuner. These roles will
likely map to a variety of different component configu-
rations depending on the concrete make and model
under consideration.

 Semantically, roles map to predicates over the state
space of the system under consideration.

3.3 Services

We define services as the interaction patterns re-

quired to establish a specific task. This identifies ser-
vices as partial behaviors of the system under consid-
eration.

Services associate roles with interaction patterns.
We use MSCs to represent how the roles interact to
establish the service under consideration. An MSC can
also contain information about the states the roles are
in during the course of the interaction.

The collection of all services elicited in this way
can be considered as a service repository for the sys-
tem. Once we have defined the service repository, the
relationships between the different roles of the system
are clear. We express the structural part of these rela-
tionships in the form of a role domain model. This
domain model allows us to identify the dependencies
between the different roles of the system and is used
later on to identify and define corresponding compo-
nent configurations.

Figure 2. Role Domain Model for CLS

For the CLS we define the role domain model
shown in Figure 2; here, boxes and arrows denote roles
and directed communication channels connecting the
roles, respectively. For instance, roles KF and Control
are connected by means of channels ck (from Control
to KF) and kc (from KF to Control).

With this role domain model in place we can start
capturing the interaction patterns defining the services
of the CLS. Figure 3 shows the interactions of the
unlocking service. Here, Control relays an unlck mes-
sage received from the keyfob KF to the lock man-
agement (LM) role. Upon receipt of an ok message
from LM, Control sends the door_unlckd_sig message
to the lighting system. The labeled hexagons in the
MSC indicate local (control) states of role Control: it
starts out in the LCKD state; after participating in the
depicted interactions, Control switches into the UNLD
state.

KF Control LM LS

LCKD

UNLD

unlck
unlck

ok

door_unlckd_sig

Figure 3. MSC for “unlocking”

Upon receipt of an unlck message the Control role

sends a getID message to the keyfob; KF sends the ID
to Control, which relays the ID to the DB (cf. Figure
4). Again, Control switches from state LCKD UNLD
in the course of executing the service.

Figure 4. MSC for “transfer driver ID”

The preceding two services are overlapping in the
sense that both share references to the unlck message
and states LCKD/UNLD. This is characteristic of ser-
vice specifications as each individual service gives
only a partial view on the components implementing it.
Therefore, to obtain the complete behavior for one of
the roles, Control, say, we have to compose all the
services it is involved in. Because neither the MSC
standard [9], nor UML2 [30] provides composition

lc

cl

Control

kcck

cc
cls

ut

LM

KF

LS CS

DB

cd

dc

Tuner

td dt

UI

KF Control DB

LCKD

UNLD

unlck

getID

id
preset(id)

operators for overlapping interaction patterns, we have
introduced a corresponding “join” operator [18] (sym-
bol: ⊗). We write unlocking ⊗ transfer_driver_ID to
indicate the interaction pattern emerging from syn-
chronizing identically labeled (or unifiable) messages
(and states) in the operand MSCs unlocking and trans-
fer_driver_ID. All other messages (and states) in these
operands are interleaved in the resulting interaction
pattern – observing, of course, the respective message
orderings in the operands. In the example, the “unlck”
message from KF to Control is unifiable and thus iden-
tified as a single message in the composition. All other
messages are mutually independent between unlocking
and transfer_driver_ID.

The start_tuner service is triggered by an “on” mes-
sage from the user interface UI to the Tuner role. The
Tuner, in turn, requests the presets (stations, volume,
etc.) from the database DB (cf. Figure 5).

Figure 5. MSC for “start tuner”

From the use case graph we have elicited earlier in
the development process we know that there is a data
dependency between the services start_tuner and
transfer_driver_ID. This data dependency can be cap-
tured semantically by means of a generalized “join”
that unifies on message labels (including origins and
destinations) and message parameters.

The final service we model for CLS is the han-
dle_crash service. Its actual interaction pattern is sim-
ple (cf. Figure 6).

Figure 6. MSC for “handle crash”

It is the relationship between handle_crash and the

other services we have elicited so far that is notewor-
thy: handle_crash is cross-cutting in the sense that the
“impact” message can arrive at any point during the
execution of any other service. We refer the reader to
[18, 15] for the definition of a “preemption” operator
that enables us to identify handle_crash as a preemp-
tion handler triggered by the “impact” message from
the crash sensor CS. Again, the cross-cutting nature of
such preemption specifications is inadequately ad-
dressed in notations such as the MSC standard or
UML2.

Other services we could capture analogously are,
for instance, “locking”, “partial locking/unlocking”,
“valet unlocking”. Their composition using operators
for sequencing, alternatives, parallel composition, and
join (as formally defined in [18, 15]) would yield the
overall CLS service. For reasons of brevity we restrict
our attention to the services explicitly modeled above.

3.4 Components and Architectures

 Following service elicitation, we can define the ar-

chitecture for the system under consideration. Compo-
nents are the architectural entities implementing roles.
Each component may play multiple roles. The mapping
from roles to components determines the services a
component participates in and, thus, also the compo-
nent’s interaction behavior. There can be many possi-
ble component configurations for a system that imple-
ments the elicited services. Therefore, we need to first
define the component configuration for which we want
to define an architecture. We represent component
configurations using a deployment domain model. The
components defined in this domain model receive their
behavior definitions by mapping the services onto the
chosen component configuration.

We obtain a trivial deployment domain model from
the role domain model by identifying components and
roles; then, each component implements precisely one
role. In this state of affairs, the role domain model and
the deployment domain model coincide.

Another extreme case is to map all roles to a single
component; this again is a trivial affair, because we
simply need to treat the role domain model as a speci-
fication for the “internals” (the substructure) of one
encompassing component.

The most interesting and methodologically chal-
lenging case arises when we map multiple roles onto
the same deployment component. All other cases (such
as mapping a single role onto multiple components)
can be dealt with by refactoring/refining the role do-
main model first, and then establishing the mapping to
the deployment domain model.

Figure 7. Deployment Domain Model for

CLS

CS Control LM

impact
unlck

UI Tuner DB

on

presets(id,data)

get_preset

Super-

Controller

kcck

cc

cls

ut

KF

LS

CS

DB
cd

dc

Tuner

td dt

UI

We illustrate this case in our example by introduc-
ing a “Supercontroller” component, playing both the
Control and LM (lock manager) roles. Figure 7 shows
the corresponding deployment domain model. If we
work with strictly hierarchical component models such
as the ones of UML2, UML-RT, or AutoFocus (cf.
Section 4.2), one way to establish the mapping of mul-
tiple roles onto a single component is to take the role
domain model as a staring point, and to replace the
roles in question by a single component having the
same input and output channels as the replaced roles
taken together. Then, the entire network of replaced
roles with their supporting channels becomes the hier-
archical “child” of the freshly introduced component.
This process can be repeated, recursing into all hierar-
chically decomposed composites, until all role labels
have been turned into component labels.

In general, there are many possible component con-
figurations for a system that implements the elicited
services. Therefore, we need to first define the compo-
nent configuration for which we need to define an ar-
chitecture. Such configurations can be based on vari-
ous architectural styles [26] such as pipes and filters,
layered architecture, or client-server.

Layered architectures are particularly appealing as
deployment configurations for services. Based on the
dependencies elicited for the use case graph we can
determine which services call upon which others. The
former make good candidates for being on a higher
layer of abstraction than the latter. This approach
works well if the dependency graph has no cycles;
otherwise these cycles have to be broken (by introduc-
ing, for instance, service proxies) before a strictly lay-
ered architecture can be derived.

Once a component configuration has been defined,
the architecture can be determined by selecting the
services from the service repository that need to be
supported by the architecture and mapping each ser-
vice to the component configuration and defining the
component types. This happens according to the fol-
lowing two steps: (1) Select a service to be supported
by the system, (2) Map the roles of the service to the
components supporting that service. These steps need
to be repeated for all services to be supported by the
system. This mapping step allows us to select and im-
plement only those services required for the architec-
ture under consideration; it also allows us to try out
various configurations.

Because our service notion is interaction-based, and
we use MSCs to capture the relevant interaction pat-
terns, we can map these patterns onto individual roles,
and from there onto components (semi)automatically,
using algorithms for the derivation of state machines
from interaction specifications [14,15]. We explain this
in more detail in Section 4.1.

3.5 Service Refinement and Refactoring

In practice, the initial architecture determined using
any process, including the one outlined above, will
have to be refined as more information about the ser-
vices and target component configurations (such as the
concrete set of ECUs and the supporting network to-
pology available in the vehicle) is revealed. This is
supported by the iterative nature of our process, allow-
ing the architect to refine the architecture by collecting
increasingly detailed information about the use cases,
roles, and services of the system under consideration:
the service elicitation step is decoupled from the archi-
tecture mapping. Consequently, both the service re-
pository and the target architecture can be modified
independently of one another before the next architec-
tural mapping step is performed.

4. Tool Chain

In this section we describe the design and imple-
mentation of a prototypic toolchain we have developed
for supporting the service-oriented development proc-
ess introduced above. The purpose of this tool chain is
to provide executable models for the services in vehi-
cle software. These executable models are intended as
reference models for suppliers to validate their imple-
mentations against – not as deployable target code. The
tool chain consists of three main ingredients: the mod-
eling tool for roles, interaction patterns and service
specifications (M2Code), the modeling, simulation,
verification and test tool for component configurations
(AutoFocus) and a code generator, transforming the
output of either M2Code or AutoFocus into executa-
bles for the RTCORBA middleware platform.

Figure 8. Toolchain Supporting Service-
Oriented Development

The general idea is to model roles and services in

M2Code based on its capabilities for interaction speci-

M2Code
(MS Visio Plugin)

AutoFocusConnectorValidation
Tools

RTCGenerator
IDL Compiler

Stubs/
Skeletons

Interfaces

Code

XML

XML

M2Code
(MS Visio Plugin)

AutoFocusConnectorValidation
Tools

RTCGenerator
IDL Compiler

Stubs/
Skeletons

Interfaces

Code

XML

XML

fication using our full, extended MSC notation. For the
resulting role domain model M2Code generates
automaton specifications and deployment domain
models that can be fed into AutoFocus for simulation,
validation and verification; AutoFocus provides con-
nectors to verification tools such as model checkers
and theorem provers. The code generator takes de-
ployment domain models and corresponding state
models as input and produces code (interfaces, stubs,
skeletons, and component implementations) for execu-
table RTCORBA components.

Figure 8 gives a pictorial representation of this tool-
chain. In the following paragraphs we will describe
each of these ingredients in more detail.

4.1 M2Code

M2Code is our tool for modeling roles and their in-
teractions, which are the defining elements for services
in our approach. Thus, M2Code covers, in particular,
the first phase of the service-oriented development
process introduced in Section 1.3. A centerpiece of
M2Code is its capability for (semi)automatically deriv-
ing state machines from interaction patterns given as
MSCs, based on the algorithms described in [14,15]. In
particular, it can deal with overlapping, alternatives,
parallel composition, loops, and preemption – to name
only some important features of dealing with interac-
tion patterns defining services.

The output of M2Code is a role domain model to-
gether with one automaton for each role defined in this
domain model; these automata implement the respec-
tive role’s contribution to all the services it is associ-
ated with.

M2Code is built as a plugin for Microsoft Visio,
and visualizes both the MSCs entered by the developer
and, using automated layout algorithms provided in
“graphviz” [7], also the generated state machines for
validation purposes.

Finally, M2Code supports exporting the modeling
elements (both the automata and the system structure,
i.e. the role domain model) as an XML document in
the format expected by AutoFocus. If no verifica-
tion/validation of the resulting service model is re-
quired, AutoFocus can be bypassed, and the XML file
can be directly used as input for the RTCORBA code
generator.

4.2 AutoFocus

We have selected AutoFocus as an element in our
toolchain, because it is freely available as a research
platform and provides strong modeling, verification
and validation capabilities. AutoFocus was developed
at Technische Universität München [3]. Its notational

elements cover system structure, data types, event
traces, and state machines for embedded, reactive sys-
tems.

For modeling system structure, AutoFocus employs
system structure diagrams displaying components and
their ports (interfaces), which are interconnected via
channels. Components can be either terminal or hierar-
chically decomposed. For each port and channel, data
types may be specified – both default and user defined
types are possible. For the behavioral view of the sys-
tem (the dynamic view), AutoFocus uses state transi-
tion diagrams (STDs, automata) and extended event
traces (EETs) . EETs are similar in spirit to the MSCs
used in this text, but have a much more restricted ex-
pressive power; they serve mostly as a graphical repre-
sentation of simulation runs.

AutoFocus itself has a built-in code generator tar-
geting Java, which allows step-by-step execution and
simulation of the model under consideration. Further-
more, AutoFocus provides a number of automated and
semi-automated testing approaches, which facilitate
conformance tests between expected and actual inter-
action sequences in executions of the system under
development.

AutoFocus also supports a coupling with external
verification and validation tools using tool “connec-
tors”. For our prototype implementation, we are using
the Symbolic Model Verifier (SMV [28]) as the exter-
nal validation tool. By means of this model checker we
can, for instance, formally verify the correctness of our
mapping of services onto the deployment domain
model. These verification and validation capabilities
within the AutoFocus CASE tool framework are our
motivation for taking AutoFocus models as the input
for our code generation approach.

4.4 RTCORBA Code Generator

The final step towards an executable specification is
handled by a code generator, which takes abstract,
validated models of distributed, reactive systems as
input, and produces executables for the RT CORBA
middleware implementing the properties checked for
the abstract models. This closes a gap in the develop-
ment process for reliable distributed and reactive sys-
tems, by eliminating the manual transition from cap-
tured requirements to implementation on top of RT
CORBA. The design of the code generator (an exten-
sion of the one discussed in [20]) can easily be adapted
to different input languages and target middlewares.

Code generation proceeds in three steps: First, the
code generator takes an XML file (generated by Auto-
Focus or directly out of M2Code) as input, populates a
symbol table, and produces an IDL file containing
CORBA interface specifications for all terminal com-
ponents of the AutoFocus model. Next, the IDL file is

fed into the IDL compiler; this produces the relevant
stubs, skeletons, and “empty” CORBA component
implementation prototypes. Finally, the code generator
takes the output of the IDL compiler, and populates the
files with the code obtained from translating the behav-
ioral aspects contained in the AutoFocus model.

As our target RT middleware we have selected
TAO, developed at the University of Washington, Uni-
versity of California at Irvine, and Vanderbilt Univer-
sity. As a consequence, our target programming lan-
guage is C++.

5. Related Work

The complexity and challenges offered by the prob-
lems in the automotive domain have been pointed out
earlier (see, for instance, [27]) and the automotive in-
dustry has been undergoing a silent software revolu-
tion [6,8] – however, to the best of our knowledge,
ours is the first attempt at a systematic application of
the service notion to software development in general,
with a focus on the automotive domain. The notion of
services as first-class elements from an implementation
perspective has seen a lot of research in the emerging
context of web services [2, 31]. There has been some
earlier work on web service description and composi-
tion as well [22]. Using a precise, interaction-based
service notion from the onset of the development proc-
ess and seamlessly across development phases as we
advocate here is novel; this is also a major difference
to other software development processes, such as the
one described in [11].

Although there has been little research on develop-
ing an integrated service oriented development proc-
ess, there has been some work focused on each of the
individual stages. Wren [19], for instance, is a tool
similar in spirit to our use of AutoFocus, in that it aids
in component based software development through
composition. It provides several interesting features
including component discovery, but does not incorpo-
rate any kind of behavioral semantics for its compo-
nent notion. Attempts have also been made to extend
UML for the automotive domain [5] – however, as we
have argued, the UML does not treat services as first-
class modeling citizens and thus misses many of the
important aspects of service modeling, including over-
lapping services. Baresi et al. discuss modeling and
validation of service-oriented architectures ([4]). These
could serve as deployment domain models for the ser-
vices we model in our approach.

There has been some work in composing systems
from components and validating such systems from
their components without having to validate the system
as a whole [32]. However, most of these approaches
are “bottom up” (going from components to the sys-
tem), while ours is a “top down” approach (going from

services to the components implementing them), which
we have argued is a better suited to address the cross-
cutting nature of many important system properties. In
this sense, our work can serve as a “front-end” to ap-
proaches such as [32].

6. Conclusion and Outlook

The ever increasing complexity of automotive soft-
ware systems has become a potential road-block for
software-based innovations and their transition into
production vehicles. Traditional software development
approaches are limited in their utility for the automo-
tive domain, because they address the key element of
interaction among the myriad of software enabled ve-
hicular functions only in the late stages of the overall
development process. Consequently, the integration
phase where all components delivered by suppliers are
assembled into a whole is costly, time-consuming, er-
ror-prone and difficult.

In this text, we have introduced an approach to ser-
vice-oriented software engineering for automotive sys-
tems. Starting from a precise, interaction-based notion
of service we have outlined a methodologically
founded development process for service-oriented sys-
tems. We have substantiated this process by means of a
tool chain covering all phases from capturing the inter-
action patterns defining services to designing deply-
ment models to implementing these models on top of
RTCORBA. We have illustrated our approach using a
simplified, yet realistic model of a central locking sys-
tem.

Future work includes, among others, a thorough as-
sessment of multiple deployment domain models re-
garding their utility as service-oriented software archi-
tectures, an extension of the service-modeling tool
chain to include “wizards” for refinement and refactor-
ing of services and domain models, and integration of
Quality-of-Service specifications into the service
model.

Acknowledgments
Our work was partially supported by the UC Discovery
Grant and the Industry-University Cooperative Re-
search Program, as well as by funds from the Califor-
nia Institute for Telecommunications and Information
Technology. We are grateful to K.V. Prasad and Ed
Nelson (Ford Motor Company), as well as to the
anonymous reviewers for insightful comments on the
approach presented here. The authors are also grateful
to Manfred Broy, Bernd Finkbeiner and Jon Whittle
for helpful discussions on the topics presented in this
text. We thank Oliver Müller for developing an initial
prototype of the code generator.

References
[1] AMI-C: http://www.ami-c.org/publicspecrelease.asp

[2] M. Aoyama, S. Weerawarana, H. Maruyama, C. Szyper-
ski, K. Sullivan, and D. Lea, Web services engineering:
promises and challenges, in: Proceedings of the 24th Interna-
tional Conference on Software Engineering (2002), ACM
Press, pp. 647—648, 2002.

[3] AutoFocus, available at: http://autofocus.informatik.tu-
muenchen.de/index-e.html

[4] L. Baresi, R. Heckel, S. Thöne, and D. Varrò, Modeling
and validation of service-oriented architectures: application
vs. style, in: Proceedings of the 9th European software engi-
neering conference, ACM Press, pp. 68—77, 2003.

[5] M. von der Beeck, P. Braun, M. Rappl, and C. Schroeder,
Automotive UML: a (meta) model-based approach for sys-
tems development, in: UML for real: design of embedded
real-time systems, pp. 271—299, Kluwer Academic Publish-
ers, 2003.

[6] M. Broy, Automotive software engineering, in: Proceed-
ings of the 25th International Conference on Software Engi-
neering (2003), IEEE Computer Society, pp. 719—720,
2003.

[7] Graphviz: http://www.research.att.com/sw/tools/graphviz

[8] K. Grimm, Software technology in an automotive com-
pany: major challenges, in: Proceedings of the 25th interna-
tional conference on Software Engineering (2003), IEEE
Computer Society, pp. 498—503, 2003.

[9] ITU-T, ITU-T Recommendation Z.120 – Message Se-
quence Chart (MSC96), ITU-T, Geneva, 1996.

[10] M. Jackson, P. Zave: Distributed Feature Composition:
A Virtual Architecture for Telecommunications Services.
IEEE Trans. Software Eng. 24(10): 831-847, 1998.

[11] I. Jacobson, G. Booch, J. Rumbaugh: The Unified
Software Development Process. Addison-Wesley, 1999.

[12] Jini: http://wwws.sun.com/software/jini/specs/

[13] JXTA: http://jxme.jxta.org/

[14] I. Krüger, R. Grosu, P. Scholz, and M. Broy: From
MSCs to Statecharts, in: Franz. J. Rammig (ed.): Distributed
and Parallel Embedded Systems, Kluwer Academic Publish-
ers, 1999.

[15] I. Krüger, Distributed System Design with Message
Sequence Charts, PhD thesis, Technische Universität
München, 2000.

[16] I. Krüger, Specifying Services with UML and UML-RT,
Electronic Notes in Theoretical Computer Science, Vol.
65(7), 2002.

[17] I. Krüger, Towards Precise Service Specification with
UML and UML-RT, in: Critical Systems Development with
UML (CSDUML), Workshop at «UML» 2002, 2002.

[18] I. Krüger, Capturing Overlapping, Triggered, and Pre-
emptive Collaboratons, in: Mauro Pezze (ed.): Fundamental
Approaches to Software Engineering, 6th International Con-
ference, FASE 2003, Lecture Notes in Computer Science
2621, Springer 2003.

[19] C. Lüer, D. S. Rosenblum, Wren — an environment for
component based development, in: Proceedings of the 8th
European software engineering conference held jointly with
9th ACM SIGSOFT international symposium on Founda-
tions of software engineering (2001), ACM Press, pp. 207—
217, 2001.

[20] O. Müller: Generating RT-CORBA Components from
Service Specifications, Abschlussarbeit, Fakultät für
Informatik, Technische Universität München, 2004.

[21] E. C. Nelson and K. V. Prasad, Automotive Infotronics:
An emerging domain for Service-Based Architecture, in: I. H.
Krüger, B. Schätz, M. Broy, and H. Hussmann (eds.),
SBSE'03 Service-Based Software Engineering, Proceedings
of the FM2003 Workshop, Technical Report TUM-I0315,
Technische Universität München, 2003.

[22] C. Pahl and M. Casey, Ontology support for web service
processes, in: Proceedings of the 9th European software
engineering, ACM Press, pp. 208—216, 2003.

[23] Parlay 3.0: http://www.parlay.org/specs/index.asp

[24] D. S. Platt and K. Ballinger, Introducing Microsoft
.NET, Microsoft Press, 2001.

[25] D. C. Schmidt, A. Gokhale, T. H. Harrison, and G. Pa-
rulkar, A high-performance end system architecture for real-
time CORBA, in: IEEE Communications Magazine, 14(2),
Feb. 1997.

[26] M. Shaw and D. Garlan, Software Architecture, Per-
spectives on an Emerging Discipline, Prentice Hall, 1996.

[27] C. Sinz, A. Kaiser, and W. Küchlin, Formal methods for
the validation of automotive product configuration data,
Artif. Intell. Eng. Des. Anal. Manuf. 17, 1 (2003), 75—97,
2003.

[28] SMV: http://www2.cs.cmu.edu/~modelcheck/smv.html

[29] J. Snell, D. Tidwell, and P. Kulchencko, Programming
Web Services with SOAP, O’Reilly, 2002.

[30] UML 2.0: http://www..omg.org/uml

[31] S. Weerawarana, Web services and software engineer-
ing: challenges and opportunities, in: Proceedings of the
23rd International conference on Software Engineering
(2001), IEEE Computer Society, p. 683, 2001.

[32] F. Xie and J. C. Browne, Verifed systems by composition
from verified components, in: Proceedings of the 9th Euro-
pean software engineering conference held jointly with 10th
ACM SIGSOFT international symposium on Foundations of
software engineering (2003), ACM Press, pp. 277—286,
2003.

