
Routing in an Internet-Scale Network Emulator

Jay Chen, Diwaker Gupta, Kashi V. Vishwanath, Alex C. Snoeren and Amin Vahdat
University of California, San Diego, CA 92093 USA

j2chen@ucsd.edu, {dgupta, kvishwanath, snoeren, vahdat}@cs.ucsd.edu

Abstract

One of the primary challenges facing scalable net-
work emulation and simulation is the overhead of storing
network-wide routing tables or computing appropri-
ate routes on a per-packet basis. We present an approach
to routing table calculation and storage based on span-
ning tree construction that provides an order of magnitude
reduction in routing table size for Internet-like topolo-
gies. In our approach, we maintain a variable number of
spanning trees for a given topology and choose the path be-
tween two hosts in each tree, choosing the shortest. We
also populate offline a negative cache of actual short-
est paths for source-destination pairs—typically a few per-
cent of the total—where the lookups result in sub-optimal
routes. We have implemented our technique in a popu-
lar network emulator, ModelNet, and show that our en-
hanced version can emulate Internet topologies 10–100
times larger than previously possible.

1. Introduction

Developing and implementing next-generation, robust,
large-scale networked systems requires a deep understand-
ing of system behavior under a wide variety of conditions.
In addition to evaluation of live systems, network simula-
tion [5, 11] and real-time emulation [13] have become es-
sential tools to understanding complex system interactions.
A primary challenge facing the designer of any simula-
tion or emulation environment is managing the trade-off be-
tween accuracy and scalability. For instance, it is impossi-
ble to capture the characteristics of the entire Internet in any
simulation; only a subset of network characteristics can be
accurately captured without undue impact on overall sys-
tem scalability. The key question then becomes: What is the
largest system that can be accurately simulated or emulated
on the target hardware platform?

We have been conducting research into building a scal-
able and accurate network emulation environment, called
ModelNet [10]. Briefly, ModelNet subjects the inter-node

packet communication of unmodified applications running
on unmodified operating systems/hardware to the hop-by-
hop characteristics of a target large-scale network topology.
The first step in this real-time emulation is looking up the
path that a packet would take through the target topology.
Currently, ModelNet assumes static routing and stores all-
pairs shortest path information in a pre-computed O(n2) ta-
ble, where n is the number of communicating end hosts.

The current obstacle to scaling ModelNet beyond a few
thousand communicating hosts on a commodity cluster is
the size of the routing table that nodes must store. The goal
of this work is to develop techniques to remove this obsta-
cle. The memory requirements for routing have received a
great deal of attention, but, traditionally, researchers have
studied how to distribute routing information amongst the
nodes of the network such that a packet can be appropri-
ately forwarded at each node. In this context, Peleg has
shown that a lower bound of Ω(n1+1/6) bits of informa-
tion are required in the network [7]. Gavoille and Pérennès
further show that, for any routing scheme, there exists a net-
work that requires Θ(n2 log d) bits of storage, where d is the
degree of the network [3]. Unfortunately, routing schemes
approaching these limits often make use of considerable
space in the packets themselves (in the form of packet rout-
ing headers) and, more importantly, the route lookup opera-
tion at each node can be expensive. In our environment, en-
tire paths are computed ahead of time, using global knowl-
edge of network topology; no routing header is used beyond
standard IP headers, and, to ensure scalable emulation, route
lookup needs to be efficient.

Thus, we present the design and implementation of tech-
niques that enable ModelNet to accurately select the short-
est path between a pair of hosts without needing to store
O(n2) routing table state. While our implementation and
evaluation is specific to ModelNet, we believe that our tech-
niques are applicable to a broad range of network simula-
tion and emulation environments. Essentially, our approach
is to trade additional per-packet computation for reduced
memory overhead. We store k spanning trees across a tar-
get large-scale topology. For each packet, we determine the
path from the specified source to the specified destination in
each of the k trees, choosing the shortest.

In this paper, we describe: i) techniques to appropriately
choose both the number of trees and the roots of the trees to
balance lookup costs and space savings, ii) the use of a small
negative cache to maintain shortest path routing for the
source destination pairs that do not result in shortest paths
based on the spanning tree calculations, iii) a simulation-
based evaluation of the potential memory savings for a va-
riety of both realistic Internet topologies and synthetically
generated power-law networks, iv) a positive route cache
to eliminate virtually all of the computational overhead as-
sociated with route lookup in the common case, and v) a
complete integration of our proposed techniques into the
ModelNet emulation environment with a quantification of
the associated performance degradation that results from
slower route lookup operations. Overall, our techniques en-
able ModelNet to scale to tens of thousands of end hosts
from a routing perspective, effectively pushing scalability
concerns to other system components.

2. Approach

Our approach uses two characteristics of network emu-
lation as points of leverage. First, a network emulator, un-
like a real network, stores all information for routes cen-
trally, giving us global information of all emulated nodes
and their adjoining connections. Second, Internet-like net-
works are typically not dense, in the sense that the Inter-
net is structured without separate links from each node to
all other nodes. The intuition is that if we generate a span-
ning tree for such graph, a relatively large percentage of
shortest paths between vertices will be contained within the
tree. As we create more spanning trees for the graph, each
one will contain a different subset of the shortest paths be-
tween vertices. Thus, as the number of spanning trees in-
creases, so does fraction of shortest paths that are in the set.
We also compute a negative cache of the shortest paths that
are not included in any of the spanning trees.

For a path lookup between any two vertices we can guar-
antee that it will be found either in the tree or the negative
cache. This can potentially result in vast improvement: As
long as a sufficiently small number of trees can cover a suf-
ficiently large percentage of shortest paths, we can elimi-
nate the need to record O(n2) shortest-paths (one for each
source destination pair in a directed graph). Also, since all
of this information is static and available before run-time it
can be precomputed. At run-time, we first check the nega-
tive cache for the shortest path. If not present, we calculate
the path between source and destination in each of k span-
ning trees, choosing the shortest. The negative cache en-
sures the resulting route is in fact the shortest available.

Available space savings depends on how well our net-
works are actually connected, how many trees we choose,
and how we choose them. For networks with the same num-

ber of vertices, as the average node degree increases, we ex-
pect our savings to decrease since the spanning trees will
contain smaller percentages of the shortest paths. If the
number of vertices in the network increases, we can pick
more spanning trees and still save the same proportion of
space. For any topology if we pick more trees, then space
savings will increase until the space being consumed by
each new tree outweighs the savings we get from a smaller
negative cache. The two extremes are if we pick zero trees
or n trees. Using zero trees results in a negative cache that
is exactly the same as all-pairs-shortest-path; n trees could
could potentially remove the need for the cache, but the size
of our trees would be O(n2).

2.1. Implementation

There are two key issues when considering implement-
ing this approach: how many trees should be generated, and
where should they be rooted. While we have not yet for-
mulated a concrete answer to the first question, we study
the performance of varying numbers of trees in the follow-
ing sections, and prescribe a simple approach for determin-
ing an appropriate number of trees at runtime. Intuitively,
short, fat spanning trees would incorporate a larger percent-
age of shortest paths within them, so trees should be rooted
at nodes of high degree. In order to validate this assump-
tion, we implemented both this degree-based approach and
a simple random selection, that picks a new, distinct root for
each new tree uniformly at random. Our spanning trees were
generated using a simple breadth first search algorithm [2,
Chap. 22] to minimize their height. Then, iterating through
each node, we use BFS again to obtain the single-source
shortest paths from the current node to every other node.
We check to see if the shortest path is contained in any of
the spanning trees, and count only paths between nodes that
have not been previously checked with the source and des-
tination reversed to avoid redundancy.

The average runtime of the components of our imple-
mentation is O(V +E) for initialization, O(T (V +E)) for
tree generation and O(V 2(T log V + (V + E)) for finding
all of the shortest paths paths (necessary in order to con-
struct the negative cache); where V is the number of ver-
tices, E is the number of edges and T is the number of
spanning trees chosen. The dominating runtime factor is
the search for shortest paths so overall our average runtime
is O(V 2(T log V + (V + E)). The storage requirement is
O(T · V) for the trees, and O(D) for the deltas where D is
the total size of the negative cache.

3. Validation

Since the efficacy of our approach depends on the char-
acteristics of the target network, we begin by considering

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

S
pa

ce
 s

av
in

gs
 (p

er
ce

nt
ag

e)

Spanning trees

Highest degree
Best random

Random

(a) EBONE: 506 nodes, 750 edges. AvgDeg 2.96.

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

S
pa

ce
 s

av
in

gs
 (p

er
ce

nt
ag

e)

Spanning trees

Highest degree
Best random

Random

(b) Level 3: 1,786 nodes, 6,919 edges. AvgDeg 7.75.

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

S
pa

ce
 s

av
in

gs
 (p

er
ce

nt
ag

e)

Spanning trees

Highest degree
Best random

Random

(c) Telestra: 3,515 nodes, 4,325 edges. AvgDeg 2.46.

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

S
pa

ce
 s

av
in

gs
 (p

er
ce

nt
ag

e)

Spanning trees

Highest degree
Best random

Random

(d) AT&T: 11,745 nodes, 14,264 edges.. AvgDeg 2.42.

Figure 1. Space savings as a function of the number of spanning trees. For each topology, we plot
the results of two different methods of selecting spanning tree roots: deterministically in order of
node degree (starting with the highest), and randomly. For the random case, we plot both the aver-
age of 31 runs (with error bars showing the standard deviation) and the best set of trees encoun-
tered. Due to time constraints, the AT&T results are currently the average of only four runs.

the potential space savings for actual Internet AS topolo-
gies. We compare the memory requirements of our tree-
based approach against a naive all-pairs shortest path rout-
ing table similar to that currently implemented in Model-
Net. We consider the length of each path to be the number
of nodes along the path including the source and destina-
tion. The negative cache size is then the sum of the lengths
of the shortest paths not included in any of the trees.

To calculate the total amount of space consumed, we add
the size of all the spanning trees to the size of our negative
cache. The size of the routing table without modifications is
computed as the sum of the lengths of the all-pairs shortest
paths divided by two. Finally, we determine the percentage
of space saved by dividing the difference between the origi-

nal size of the routing table and the size of our spanning-tree
based implementation by the size of the original table.

3.1. ISP topologies

Figure 1 presents the results for four representative au-
tonomous systems (ASes): EBONE (AS#1755), Level 3
(3356), Telestra (1221), and AT&T (7018). We do not have
access to actual AS topologies; instead, we used the topolo-
gies published by the RocketFuel [8] project.1 Space sav-
ings initially increases quickly with the number of spanning

1 In cases when the published RocketFuel topology was not fully con-
nected, we considered only the largest connected sub-component.

trees used; the percentage savings then slows and eventually
falls off gradually. This is expected since, initially, each ad-
ditional spanning tree is contributing a large number of new
shortest paths. This effect slows as we find fewer new short-
est paths with each new spanning tree. Finally, the savings
begins to decline at a certain threshold when the number of
new shortest paths gained by adding a tree is outweighed by
the storage size of the additional tree.

Focusing on the individual topologies, the first, EBONE,
is on the smaller side of the topologies we looked at. The
space savings rises rapidly, and then, compared to the oth-
ers, tails off markedly. It is interesting to note that the stan-
dard deviation of the percentage efficiency is much larger
than for the other, larger networks. The second graph, Level
3, is in the middle range of size, but it stood out because of
its high average degree (Level 3 uses MPLS to increase the
perceived IP-level connectivity of its backbone). The net ef-
fect is a slightly slower rise in the percentage of space saved
peaking at a lower point than the other graphs of the same
number of nodes. Interestingly, choosing the highest degree
nodes as roots of the tree performs better than the average
random root choices. Unlike the other topologies the two
methods do not converge as the number of trees increases.
AT&T was the largest of our available topologies. It behaves
much as would be expected: the graph peaks at a higher per-
centage space saved and falls off very slowly. The Telestra
topology is a good example of an ideal graph that behaves
similarly to the synthetic topologies below.

3.2. Generated topologies

Next, we consider how performance varies as a function
of graph topology. Clearly, it is possible to construct patho-
logical topologies that would achieve little to no space sav-
ings, but the target topologies for this algorithm are ones
relating to the Internet and other “naturally occurring” net-
works. In order to better understand the sensitivity of our
approach to various topology parameters, we used a syn-
thetic topology generator, BRITE [6]. We generate topolo-
gies with 100 to 1,000 nodes in increments of 100. In an at-
tempt to accurately model real Internet AS topologies, we
employed the ASBarabasi model [1] with an average de-
gree of four. We ran 31 distinct iterations, each with a dif-
ferent set of random roots, and one additional time using
only highest degree roots.

3.2.1. Graph size. We begin by considering the effect of
graph size. Figure 2 shows the average maximum space sav-
ings achievable by our algorithm using random node se-
lection, for an optimal number of trees. To calculate this
value, we first generate a topology of the indicated size.
Then, we generate 31 distinct sets of n random trees, for
1 ≤ n ≤ 100. We find the maximum percentage space
saved in each of the 31 iterations and average them together

 89

 90

 91

 92

 93

 94

 95

 96

 97

 100 200 300 400 500 600 700 800 900 1000

S
pa

ce
 s

av
in

gs
 (p

er
ce

nt
ag

e)

Topology size (number of nodes)

Figure 2. Space savings as a function of
graph size. Topologies generated using the
Barabasi model with an average node degree
four. Error bars are one standard deviation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400 500 600 700 800 900 1000

Tr
ee

s

Topology size (number of nodes)

Figure 3. Minimum number of trees neces-
sary to achieve the space savings reported
in Figure 2.

and calculate standard deviation. The efficiency of the algo-
rithm increases as the size of the topology increases, since
the marginal benefit of having spanning trees and negative
caches increase with the size of the topology.

Figure 3 expands on the previous result, showing the
number of trees necessary to achieve the space savings
shown in Figure 2. We determine this value by inspection:
For each iteration, We identify the maximum space savings
and then find the minimum number of trees that result in
space savings within 1% of highest achieved for that iter-
ation. The overall pattern is clear: the larger the graph, the
more trees that are necessary.

 88

 90

 92

 94

 96

 98

 100

 2 4 6 8 10 12 14 16

S
pa

ce
 s

av
in

gs
 (p

er
ce

nt
ag

e)

Average node degree

Barabasi
Waxman

RocketFuel

Figure 4. Space savings as a function of av-
erage node degree. Topology size is fixed at
1,000 nodes for Barabasi and Waxman, but
varies between 226 and 11,745 nodes for the
RocketFuel topologies.

3.2.2. Node degree. Intuitively, the effectiveness of our
algorithm depends on the connectivity of the graph. One
concise metric of graph connectivity is average node de-
gree. Here, we generate topologies of fixed size, but with
varying node degree. In an attempt to distinguish between
the effects of average degree and the particular degree dis-
tribution, we report results for two graph types: Barabasi,
as before, and Waxman [12]. For context, we also include
the various RocketFuel topologies, but they cannot be di-
rectly compared due to their varying size.

Figure 4 plots these results, varying the average degree
from 4 to 16 while keeping the number of nodes fixed at
1,000 and using the Barabasi model to generate the topolo-
gies. Again, we ran 31 random iterations up to 200 trees and
plot the largest savings observed for each degree. The max-
imum space savings is inversely proportional to the average
degree. However, Figure 5 shows that the number of trees
necessary to attain the reported savings increases with av-
erage degree. (The method used to compute the number of
trees necessary is the same as in Figure 3.) This is expected;
as the average degree rises, there is an increasing number of
shortest paths that share fewer edges, thus the set of span-
ning trees is less likely to cover as many shortest paths as
the number of edges in any spanning tree is fixed (at n− 1)
and does not increase with node degree.

3.2.3. Degree distribution. As can be seen by comparing
Figure 6 with Figure 1, there are two significant differences
between the Barabasi/RocketFuel and the Waxman topolo-
gies. First, in comparison to the random root choice, the
highest average degree algorithm performs slightly better

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16

Tr
ee

s

Average node degree

Barabasi
Waxman

RocketFuel

Figure 5. The number of spanning trees nec-
essary to achieve the savings reported in Fig-
ure 4.

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35 40 45 50

N
od

es

Degree

Barabasi (4)
Waxman (4)

AboveNet (4.2)
EBONE (3.65)

Figure 7. Comparison of node degree distri-
butions between generated and RocketFuel
topologies (normalized to 1,000 nodes).

for RocketFuel, nearly as well for Barabasi and much more
poorly in the Waxman. This difference in performance of
using highest degree roots is due to the difference in distri-
bution of node degree (as shown in Figure 7). The Barabasi
and nearly all of the RocketFuel topologies exhibit power-
law properties for the frequency of node degree versus de-
gree. However, the Barabasi models node degree distribu-
tion is shifted on both ends toward the average degree re-
sulting in a non-hierarchical and more densely connected
clusters of nodes in the graph. This causes the intuitive ad-
vantages of choosing root nodes of highest degree to gen-
erate shorter trees to be weakened. The second difference
is that, for the Waxman model, the space savings increases

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

S
pa

ce
 s

av
in

gs
 (p

er
ce

nt
ag

e)

Spanning trees

Highest degree
Best random

Random

(a) Barabasi: 1,000 nodes, 1997 edges. AvgDeg 4.0.

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

S
pa

ce
 s

av
in

gs
 (p

er
ce

nt
ag

e)

Spanning trees

Highest degree
Best random

Random

(b) Waxman: 1,000 nodes, 2000 edges. AvgDeg 4.0.

Figure 6. Space savings as a function of the number of spanning trees for synthetic graphs.

at a significantly slower rate. This is also due to the dif-
ference in distribution of node degree; the decrease in the
proportion of nodes in the network with one or two edges
causes the spanning trees we generate to be less likely to
contain the shortest path between the root and the leaves
of the tree. Lastly, an artifact of the BRITE topology gen-
eration and conversion is that each topology originally con-
tained directed links. Converting to undirected graph caused
the minimum degree to increase to two for each node. This
means the BRITE generated results were actually slightly
more pessimistic than if we had been able to distribute edges
in a manner similar to the RocketFuel topologies.

Though the percentage space saved in the Waxman
model is worse than those in Barabasi/RocketFuel mod-
els, the space saved still peaks at similar values for compa-
rable average degrees. Therefore, only the rate of increase
of space saved versus number of spanning trees cho-
sen is affected by the unfavorable distributions of the
Waxman model topologies.

4. Performance

To investigate how our approach performs in a real In-
ternet scale emulator, we integrated our route lookup tech-
niques into ModelNet. We perform benchmarks here for ac-
tual space savings and lookup degradation versus the un-
modified ModelNet route lookup scheme.

4.1. ModelNet integration

ModelNet was designed to be modular; as a conse-
quence, the route lookup functionality is cleanly separated
from the rest of the system. This enables easy integration
and effectively “drop-in” replacement with alternate routing
schemes. The process is straightforward: We simply wrote

a new lookup function which uses the spanning trees and
negative caches for route lookups instead of the original n2

routing table. The spanning trees are computed offline as a
pre-processing stage and stored in a text file. This text file is
read into the kernel at module-load time and the data struc-
tures are initialized using this file.

We measured the lookup cost by averaging over a large
number of random lookups. However, this is highly unlikely
to occur in practice. A real experiment will seldom send
packets at random; on the contrary, most experiments typ-
ically consist of packet flows. This led us to implement a
small positive cache to speed up frequently accessed routes.
Since the amount of memory devoted to the cache is con-
figurable, it does need not impact the memory savings. The
cache is associative: each cache line is a linked list of point-
ers to routes that have been computed earlier. The maxi-
mum sizes of both the cache and the individual lines can
be configured. The worst case lookup involves a constant
time indexing into the array, and O(line size) traversal of
the linked list. Our current hash implementation is naive,
and open to optimizations in the data structure and choice
of hash function. Despite this, it provides significant perfor-
mance benefits.

For our experiments, we use the same ISP topologies as
in the simulations. However, since ModelNet has slightly
different semantics and notation for describing topologies,
there are minor differences:

• ModelNet can assign “roles” to nodes in the topology
(transit node, stub node, or client node). The Model-
Net routing table is indexed only by the client nodes
(also called virtual nodes). Since our experiments per-
form routing lookups on arbitrary source/destination
pairs, we augmented the original topology by attach-
ing a client node to each node in the ISP topology.

• Our simulations are on on undirected graphs. How-
ever, ModelNet uses bi-directional edges to emulate
asymmetrical links. We therefore augment our origi-
nal topologies with bi-directional links.

The end result of these modifications is that the topolo-
gies used by ModelNet are twice as large as those used in
simulation. We account for this difference when analyzing
our results in the following subsections.

We use a heuristic to determine the number of trees to
generate for a given target topology. The number of trees,
N , is given by:

N = 2 × 0.418325× n0.61535

where n is the number of vertices in the topology. To ar-
rive at this formula, we took the data from our analysis of
topologies of various sizes (from 100 to 5,000 nodes) in the
previous section, and determined the minimum number of
trees needed to reach within 1% of the maximum space sav-
ings possible. We then computed a best-fit curve using re-
gression analysis, which gave us the constants 0.418325 and
0.61535. The additional factor of two ensures that we reach
the peak of our space savings curve. We do not consider the
average node degree since its influence is small compared
to the topology size and distribution.

4.2. Results

4.2.1. Space savings. To measure space savings, we in-
strumented ModelNet by defining separate kernel memory
heaps for MTree and ModelNet’s original routing table. Af-
ter the data structures have been created and initialized, we
simply record the memory allocated by these heaps. Note
that this is not entirely accurate since there is some gran-
ularity in memory allocation involved—for instance, when
asking to allocate memory for five integers, the heap might
receive an entire page instead (making subsequent alloca-
tions faster).

Figure 8 shows the results of this experiment. For each
ISP topology, we use a fixed number of trees and compare
it with the predicted savings (from simulations) using the
same number of trees. Note that the predicted savings take
into account the inflation in topology size inside ModelNet
as described earlier. The actual savings closely match the
predicted values. The minor extra memory consumption in
the actual case stems from the use of some auxiliary data
structures used in the implementation and the granularity of
memory measurement.

4.2.2. Pre-computation time. Table 1 shows the time re-
quired to compute the routing tables used in Figure 8 on a
2.8-GHz Intel Pentium 4, as well as several larger synthetic,
mesh-like topologies used in later experiments. Due to the
regular, well-connected nature of the mesh topologies, con-
structing trees and deltas is relatively faster.

 74

 76

 78

 80

 82

 84

 86

 88

 90

 92

 100 200 300 400 500 600 700 800 900 1000

S
pa

ce
 s

av
in

gs
 (p

er
ce

nt
ag

e)

Topology size (number of nodes)

Predicted
Actual

Figure 8. Space savings as a function of
graph size. Each topology is generated us-
ing the Barabasi model with an average node
degree of four. No positive cache was used.

Num. nodes Num. trees Time (seconds)
100 22 1
200 26 1
300 38 6
400 40 7
500 50 12

1,000 72 79
2,000 100 552
3,000 177 2,066
5,000 242 9,811

10,400 248 4,186
15,600 318 9,345
22,320 397 11,733

Table 1. Pre-computation time for a subset
of the Barabasi topologies used in Figures 2
and 3. Sizes 10,400 and larger are generated
using artificial mesh-like topologies.

4.2.3. Lookup cost. Here we evaluate the degradation in
the per-route lookup time using the MTree approach as
compared to ModelNet’s original route lookup. For our ex-
periments, we performed 10,000 random route lookups for
each topology. Figure 9 shows the results on the Barabasi
topologies use for the previous experiments. ModelNet’s
original route lookup cost is independent of the topology
size since it is simply the cost of a function call that re-
turns a memory reference. For MTree, the lookup cost in-
creases as the size of the topology increases. This is ex-
pected since the lookup now has to go through larger trees.

 0.01

 0.1

 1

 10

 100 200 300 400 500 600 700 800 900 1000

Lo
ok

up
 ti

m
e

(m
ic

ro
se

co
nd

s)

Topology size (number of nodes)

MTree
ModelNet

Cache(92%)
Cache(98%)

Figure 9. ModelNet route lookup latency. Note
the log scale on the Y axis. Barabasi topolo-
gies were used. The positive cache was re-
stricted to 1,000 routes (line size 10).

While the lookup cost for MTree is several orders of magni-
tude higher than that of the original ModelNet, there is sig-
nificant performance improvement with the introduction of
the positive cache. At high hit rates (we plot 92% and 98%),
the lookup cost comes down significantly, since most of the
routes are available in the cache.

We will see in the following section that with the posi-
tive cache in place, the emulation time still dominates the
lookup cost; there is no significant degradation in the end-
to-end performance. Previously, ModelNet’s scalability was
limited by the size of the routing table that would fit into
the memory. For instance, ModelNet was not able to load
the routing tables for a 2,000-node Barabasi topology in
our setup. On the other hand, MTree is able to load an ar-
tificial, mesh-like topology with 22,320 nodes and 84,902
edges. This topology requires 108 MB of memory (includ-
ing a 1,000-entry positive cache) for the routing data, result-
ing in 0.56-ms lookup times (assuming a 92% hit rate).

The lookup cost also varies with the number of trees used
and the size of the resulting negative cache. Figure 10 shows
the variation of lookup cost for a 200-node Barabasi topol-
ogy as a function of the number of trees. With a single tree,
the size of the negative cache is huge, making the nega-
tive cache almost as big as an n2 routing table. As the num-
ber of trees increases to ten, the lookup cost falls sharply
since a significant number of routes are now included in the
trees. On further increase in the number of trees, the lookup
cost increases slowly at first and rises sharply as the num-
ber of trees becomes very large.

4.2.4. End-to-end performance. This section inves-
tigates the degradation in end-to-end performance in

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 10 20 30 40 50 60 70 80 90 100

Lo
ok

up
 ti

m
e

(m
ill

is
ec

on
ds

)

Number of trees

Figure 10. Lookup cost as a function of num-
ber of trees for a 200-node Barabasi graph.

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 0 20 40 60 80 100 120 140 160 180 200

Th
ro

ug
hp

ut
 (p

kt
s/

se
c)

Number of flows

2 hops:Modelnet
8 hops:Modelnet

12 hops:Modelnet
2 hops:Mtree with cache
8 hops:Mtree with cache

12 hops:Mtree with cache

Figure 11. Capacity of ModelNet core:
Unmodified ModelNet vs. MTree. Artifi-
cially generated grid like topology of size
maxnumflows × numhops.

ModelNet resulting from the increased lookup costs of
MTree. Our experiment consisted of running concur-
rent independent flows and measuring the throughput
delivered by the system. We used grid-like topolo-
gies for this experiment—the “height” is the number of
flows, and the “width” is the number of hops. We manipu-
late the load on the core by varying the number of hops, as
each hop requires additional processing.

The flows correspond to a “row” in the grid, with one end
point being the source and the other being the sink. These
flows are parallel in the sense that the hops in each path are
mutually exclusive; therefore, along any path, there is no

contention for bandwidth. The access links (the hops com-
ing out of the sources and going into the sinks) are restricted
to 10 Mbps; all the other hops in the topology have 1 Gbps
of bandwidth. In the ideal case, therefore, each flow should
be getting a bandwidth of 10 Mbps with no packet drops.

Intuitively, we would expect the system to deliver in-
creasing throughput with increasing number of flows, until
the system saturates. Beyond this point, the system should
deliver a sustained constant throughput irrespective of the
number of flows. Further, we would expect that the system
performance will decrease with increasing number of hops.
Of course, the critical issue here is the performance deteri-
oration incurred as a result of using the MTree approach in-
stead of the usual n2 routing table. For this experiment, we
were using a 100-line cache, with a line size of 10.

Figure 11 shows the results of this experiment. To mea-
sure system throughput, we instrumented the core to record
the number of packets going through it every second. So,
for each experiment we gathered a “time-line” data, and
computed the 95th percentile of the packets/sec data, which
was then plotted here. The flows were run for sufficiently
long periods (30 seconds) to make sure that we avoided any
boundary effects (flows starting up or dying down) and to
give us a comfortably long measurement window where all
flows were indeed running in parallel.

There is no distinguishable performance difference be-
tween the unmodified ModelNet and the MTree approach.
Thus, putting a small positive cache in front of the span-
ning tree lookup can give tremendous savings, especially
for long flows. The system also degrades gracefully under
load, maintaining a sustained throughput of around 90,000
packets/sec at peak load (200 flows, 12 hops).

5. Conclusion and future work

This paper presents an approach to routing table calcu-
lation and storage based on multiple spanning trees rooted
at various nodes in a target topology. We find that this re-
sults in an order of magnitude reduction in routing table
size for Internet-like topologies. Off-line, we also populate
a negative cache of shortest paths that do not appear in any
of the trees. We integrated our approach into ModelNet, an
Internet-scale network emulator, and demonstrated that the
actual space savings closely match the values predicted in
simulations. We also investigated the increase in lookup and
its affect on end to end performance. Using a small positive
cache, we were able to demonstrate that the performance
of MTree is commensurate with that of unmodified Model-
Net for flow based experiments. It is likely that the perfor-
mance can be improved further with clever data structures
and better choice of hash functions.

Work on so-called compact routing [9] has devel-
oped extremely space-efficient routing mechanisms for

many classes of networks. These schemes typically do
not compute optimal, shortest paths; instead, they com-
pute routes that are within a factor k of optimal, referred
to as a stretch factor of k. Due to our need for shortest, or
stretch-1, paths, these approaches did not initially seem ap-
plicable. Recent work has shown that for Internet-like
topologies, however, compact-routing schemes often pro-
duce stretch-1 paths, and the average stretch factor of all
paths computed using compact routing on Internet-like
topologies is close to one [4]. Hence, we are interested in
exploring the applicability of these schemes to the Model-
Net environment.

Acknowledgments

The authors would like to thank David Becker, John By-
ers, Priya Mahadevan and Ken Yocum for valuable insights
and comments. Special thanks to Marvin McNett for help
with the experimental setup and cluster administration.

References

[1] A.-L. Barabasi and R. Albert. Emergence of scaling in ran-
dom networks. Science, 286:509–512, Oct. 1999.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms. Prentice Hall, 1990.

[3] C. Gavoille and S. Pérennès. Memory requirements for rout-
ing in distributed networks. In Proc. ACM PODC, pages
125–133, May 1996.

[4] D. Krioukov, K. Fall, and X. Yang. Compact routing on
Internet-Like graphs. In Proc. IEEE INFOCOM, Mar. 2004.

[5] X. Liu and A. A. Chien. Realistic large-scale online network
simulation. In Proc. ACM Supercomputing, Nov. 2004.

[6] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An
approach to universal topology generation. In Proc. MAS-
COTS, Aug. 2001.

[7] D. Peleg and E. Upfal. A trade-off between space and effi-
ciency for routing tables. J. ACM, 36(3):510–530, July 1989.

[8] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP
topologies with Rocketfuel. In Proc. ACM SIGCOMM,
pages 133–145, Aug. 2002.

[9] M. Thorup and U. Zwick. Compact routing schemes. In
Proc. ACM SPAA, pages 183–192, 2001.

[10] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić,
J. Chase, and D. Becker. Scalability and accuracy in a large-
scale network emulator. In Proc. USENIX OSDI, Dec. 2002.

[11] K. Walsh and E. G. Sirer. Staged simulation: A general tech-
nique for improving simulation scale and performance. ACM
TMACS, 14(2):170–195, Apr. 2004.

[12] B. M. Waxman. Routing of multipoint connections. IEEE
J-SAC, 6(9):1617–1622, Dec. 1998.

[13] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An in-
tegrated experimental environment for distributed systems
and networks. In Proc. USENIX OSDI, pages 255–270, Dec.
2002.

