Enforcing Performance Isolation Across Virtual
Machines in Xen

Diwaker Guptd, Ludmila Cherkasova Rob Gardnér, and Amin Vahdalt

! University of California, San Diego, CA 92122, USA
{dgupt a, vahdat }@s. ucsd. edu
2 Hewlett-Packard Laboratories
{l'ucy. cher kasova, r ob. gar dner }@p. com

Abstract. Virtual machines (VMs) have recently emerged as the basis for allo-
cating resources in enterprise settings and hosting centers. One loé\&¥is

in these environments is the ability to multiplex several operating systems on
hardware based on dynamically changing system characteristics velowach
multiplexing must often be done while observing per-VM performanceayu
tees or service level agreements. Thus, one important requiremgns ienvi-
ronment is effective performance isolation among VMs. In this papegddress
performance isolation across virtual machines in Xen [1]. For instaviziée Xen
can allocate fixed shares of CPU among competing VMs, it does natralyrr
account for work done on behalf of individual VMs in device driverlus, the
behavior of one VM can negatively impact resources available to othsréven

if appropriate per-VM resource limits are in place.

In this paper, we present the design and evaluation of a set of primitives
plemented in Xen to address this issue. FiX&nMonaccurately measures per-
VM resource consumption, including work done on behalf of a particdr

in Xen’s driver domains. Next, o BEDF-DCscheduler accounts for aggregate
VM resource consumption in allocating CPU. Final§hareGuardlimits the
total amount of resources consumed in privileged and driver dantsised on
administrator-specified limits. Our performance evaluation indicates tinatech-
anisms effectively enforce performance isolation for a variety ofkleads and
configurations.

1 Introduction

Virtual Machine Monitors (VMMs)are gaining popularity for building more agile and
dynamic hardware/software infrastructures. In large rpniges for example, VMMs
enable server and application consolidation in emerginrgemand utility computing
models [2, 3]. Virtualization holds the promise of achieygreater system utilization
while lowering total cost of ownership and responding mdfectively to changing
business conditions.

Virtual machines enabl&wult isolation—“encapsulating” different applications in
self-contained execution environments so that a failureria virtual machine does
not affect other VMs hosted on the same physical hardwaadormance isolatiors
another important goal. Individual VMs are often configurgith performance guar-
antees and expectations, e.g., based on service levelnagmee Thus, the resource
consumption of one virtual machine should not impact thesed guarantees to other
VMs on the same hardware.

3 We use the termsypervisoranddomaininterchangeably with VMM and VM respectively.

In this paper, we focus on performance isolation mechanisrXgn [1], a popular
open source VMM. Xen supports per-VM CPU allocation meckasi However, it —
like many other VMMs — does not accurately account for rese@onsumption in the
hypervisor on behalf of individual VMs, e.g., for I/O prosegy. Xen’s I/O model has
evolved considerably over time. In the initial design [1pgim in Figure 1a, the Xen
hypervisor itself contained device driver code and providhared device access. To
reduce the risk of device driver failure/misbehavior andddress problems of depend-
ability, maintainability, and manageability of I/O devize&Xen moved to the architecture
shown in Figure 1b [4]. Here, “isolated driver domains” (IBhost unmodified (legacy
OS code) device drivers. Domain-0 is a privileged controhdm used to manage other
domains and resource allocation policies.

This new I/O model results in a more complex CPU usage model/® intensive
applications, CPU usage has two components: CPU consum#telyuest domain,
where the application resides, and CPU consumed by the I@Ditlcorporates the
device driver and performs I/O processing on behalf of thesgdomain. However, the
work done for I/O processing in an IDD is not charged to thidting domain. Consider
a guest domain limited to 30% CPU consumption. If the workedon its behalf within
an IDD to perform packet processing consumes 20% of the G#eld,that domain may
consume 50% of overall CPU resources. Such unaccounted @#tblead is significant
for 1/0 intensive applications, reaching 20%-45% for a welkver [5].

The key contribution of this paper is the design of a set openating mechanisms
to effectively control total CPU consumption across vittmeachines in Xen. There
are a number of requirements for such a system. First, we acastrately measure the
resources consumed within individual guest domains. Nextmust attribute the CPU
consumption within IDDs to the appropriate guest domaire VMM scheduler must
be modified to incorporate the aggregate resource consoimiptthe guest domain and
work done on its behalf in IDDs. Finally, we must limit theabamount of work done
on behalf of a particular domain in IDDs based on past consompistory and target
resource limits. For instance, if a particular domain igatty consuming nearly its full
resource limits, then the amount of resources availableimahe IDDs must be scaled
appropriately.

The analog of accounting resources consumed on behalf oést gomain have
come up in scheduling operating system resources acras@inal tasks [6-12], e.g.,
in accounting for resources consumed in the kernel on belfiatidividual processes.
Our work builds upon these earlier efforts, exploring the &leallenges associated with
constructing appropriate abstractions and mechanismseircdntext of modern VM
architectures. One of the interesting problems in this spaaleveloping minimally
intrusive mechanisms that can: i) account for significaghelrony in the hypervisor

DomO Dom0
Disk
Driver
{Xe” (N/wrivér) (DiskDriver)} [Xen}
1l 1l
NIC (Nic) (pisk)
(a) I/0 Model in Xen 1.0 . . (bg 1/0 Model in Xen 3.0
Fig. 1: Evolution of Xen's I/O Architecture

and OS and ii) generalize to a variety of individual opemgsgstems and device drivers
(performance isolation will quickly become ineffectivesifen a relatively small number
of devices or operations are unaccounted for). To this eardhave completed a full im-
plementation and detailed performance evaluation of ticesgary system components
to enable effective VM performance isolation:

— XenMon: a performance monitoring and profiling tool thatagp (among other
things) CPU usage of different VMs at programmable time exaKenMon in-
cludes mechanisms to measure CPU for network processingtitDiDs (IDDs
responsible for network devices) on behalf of guest domains

— SEDF-DC: a new VM scheduler with feedback that effectivéliyaates CPU among
competing domains while accounting for consumption bothiwithe domain and
in net-1DDs.

— ShareGuard: a control mechanism that enforces a specifieddn CPU time
consumed by a net-IDD on behalf of a particular guest domain.

2 XenMon
VM)(Dom-0
(" xenmon) (‘Other front-ends)
(" xenbaked: process events)
;" Events logged in trace buffers ™
Xen xentrace: Generate Events J

Fig. 2: XenMon Architecture

To support resource allocation and management, we impleti@m accurate mon-
itoring and performance profiling infrastructure, calleeénfon? There are three main
components in XenMon (Figure 2):

— xentrace: This is a lightweight event logging facility present in XetenTrace
can log events at arbitrary control points in the hypervigach event can have
some associated attributes (for instance, for a “domaiedded” event, the as-
sociated attributes might be the ID of the scheduled domaihthe event's time
stamp). Events are logged into “trace buffers”: shared nmgmpages that can be
read by user-level Domain-0 tools. Note tk&int r ace was already implemented
in Xen — our contribution here was to determine the right $events to monitor.

— xenbaked: The events generated by XenTrace are not very useful ondhei.
xenbaked is a user-space process that péltee trace buffers for new events and
processes them into meaningful information. For instawesgollate domain sleep
and wake events to determine the time for which a domain waskbtl in a given
interval.

— xennon: This is the front-end for displaying and logging the data.

4 Our implementation of XenMon has been integrated into the official Xen&i@ base.

5 In the current implementation, events are posted via a virtual interrufstaidof periodic
polling.

XenMon aggregates a variety of metrics across all VMs pa@ly (configurable
with a default of 100 ms). For this paper, we only use the CRIization and network
accounting facilities (Section 3) of XenMon. Details onthié metrics available from
XenMon and some examples of using XenMon for analyzing CRi¢dualers in Xen
are available separately [13].

3 Network I/O Accounting

Recall that one of the challenges posed by the new I/O modé&tinis to classify IDD
CPU consumption across guest domains. This work is focusetetwork 1/0, so we
summarize network I/O processing in Xen. As mentioned eaiilhn the IDD model a
designated driver domain is responsible for each hardweurieeland all guests wishing
to use the device have to share it via the corresponding IDE.IDD has a “back-end”
driver that multiplexes I/O for multiple “front-end” drive in guest VMs over the real
device driver. Figure 3 shows this I/O architecture in moe¢ad. Note that for the
experiments reported in this paper, we use Domain-0 as iher diomain.

We briefly describe the sequence of events involved in retgia packet — the
numbers correspond to those marked in Figure 3.When the hegdeceives the packet
(2), it raises an interrupt trapped by Xen (2). Xen then deilees the domain responsi-
ble for the device and postvatual interrupt to the corresponding driver domain via the
event channg3). When the driver domain is scheduled next, it sees a pgridiarrupt
and invokes the appropriate interrupt handler. The inpgfnandler in the driver domain
only serves to remove the packet from the real device dridjearid hand it over to the
“back-end” driver (5)netbackin Figure 3. Note that no TCP/IP protocol processing is
involved in this step (except perhaps the inspection of Ehiedader).

It is netback’s responsibility to forward the packet to tloerect “front-end” driver
(netfrontin Figure 3). The driver domain transfers the ownership efrttemory page
containing the packet to the target guest domain, and théfiesoit with a “virtual
interrupt” (6). Note that this involves no data movemenpidng. When the target
guest is next scheduled, it will field the pending interruf)t The netfront driver in the
guest will then pass on the packet to higher layers of the avling stack for further
processing (8). The transmit path of a packet is similarepkthat no explicit memory
page exchange is involved (see [1] for details).

Thus, 1/0O processing in a net-IDD primarily involves two qooments: the real
device driver and the back-end (virtual) device driver. @atural approach for more
accurate accounting is to instrument these componentsetailed measurements of

75))

,

(4)(Device @
(event) Driver

event
[channels ® channels | (6) Xen}
@
@

Fig. 3: /0 processing path in Xen.

all the delays on the 1/0O path. However, this approach doéscade in Xen for two
reasons: (1) since Xen uses legacy Linux drivers, this weetplire instrumenting
all network device drivers, and (2) network drivers involvengigant asynchronous
processing, making it difficult to isolate the time consunrethe driver in the context
of a given operation.

We therefore need some alternate heuristics to estimatpahguest CPU con-
sumption. Intuitively, each guest should be charged in @rign to the amount of 1/0O
operations it generates. In [5], we used the number of memagg exchanges as an
estimator. However, we found this method to be a rather eagsproximation that does
not take into account what fraction of these page exchangesspond to sent versus
received packets, and that does not take into account th@fkthe packets.

Thus, we propose using tieimber of packetsent/received per guest domain for
distributing the net-IDD CPU consumption among guestseNlaat netback is an ideal
observation point: all of the packets (both on the send aceive paths between driver
domain and guest domaimustpass through it. We instrumented netback to provide de-
tailed measurements on the number of packets processed bgriesponding net-IDD
in both directions for each guest domain. In particular, wdeml XenTrace events for
each packet transmission/reception, with the appropgaést domain as an attribute.
We then extended XenMon to report this information.

Of course, knowing the number of packets sent and receivedpan-domain basis
does not by itself enable accurate CPU isolation. We needchanésm to map these
values to per-domain CPU consumption in the IDD. In particulve want to know
the dependence of packet size on CPU processing overhedldeabakakdown of send
versus receive packet processing. To answer these questierperform the following
two part study.

The impact of packet size on CPU overhead in net-IDlVe performed controlled
experiments involving sending packets of different sizesfaxedrate to a guest VM.
In particular, we fixed the rate at 10,000 pkts/sec and vahedacket size from 100
to 1200 bytes. Each run lasted 20 seconds and we averageesthiesrover 10 runs.
We repeated the experiments to exercise the reverse |/Ogsatiell — so the VM
wassendingpackets instead of receiving them. To prevent “pollutiohfesults due to
ACKS going in the opposite direction, we wrote a custom taolthese benchmarks
using UDP instead of TCP. The other end point for these exyeris was a separate

©
=]
©
=]

ooo VM sending packets
&xA VM receiving packets

@ee VM sending packets
&xA VM receiving packets

~
=)
~
=)

o
=]
o
=]

CPU Utilization (%
s

CPU Utilization (%
N w
o o

v
=

w
o
w
=]

N
=

[}
N
=]

=
o
=
=)

G0 200 400 600 800 1000 1200 8.0 0.5 1.0 15 2.0
Packet size (bytes) Rate (pkts/s) xle+4

Fig. 4: CPU overhead in Domain-0 for pro-Fig. 5: CPU overhead in Domain-0 for pro-

cessing packets at a fixed rate under differemiessing packets of a fixed size under varying

packet sizes. rates.

machine on our LAN. Recall that in all of our experiments, vge IDomain-0 to host
the network device driver.

Our results show that CPU consumption in net-IDD does notédémn packet size
as presented in Figure 4. The explanation is as followsndudtiver packet processing
there is no payload processing or copying; the driver Igrgiglals with the packet
header. For the rest of the I/O path within the net-IDD, themo data copying (where
CPU processing can depend on packet size) — only the owpeo$imemory pages
changes to reflect data transfer.

CPU overhead in net-IDD for Send vs. Receive I/O pathsthis experiment, we fixed
the packet size at 256 bytes and varied the rate at which a Welsser receives pack-
ets. We could thus selectively exercise the send and ret@vgaths within Xen and
measure the resulting CPU overhead in net-IDD. We denotetasSend Benchmark
and Receive Benchmarkespectively. As before, each run lasted 20 seconds and
averaged results over 10 runs.

Figure 5 presents our experimental results. An interesiitgome of this study is
that the ratio of CPU consumption in net-IDD between sendrandive paths is con-
sistently the same for different packet rates. We denotenti@asured ratio aseight.

To validate the generality of presented results we repegiteaf the experiments
presented above for two different hardware configuratiarssngle CPU Intel Pentium-
IV machine running at 2.66-GHz with a 1-Gbit Intel NIGYSTEM-1) and a dual pro-
cessor Intel Xen 2.8-GHz with a 1-Gbit Broadcom NKY6TEM-2). For both systems
under test, the CPU consumption in net-IDD does not depemuhoket size. Further,
for both system under test, the ratio of CPU consumption ifiDB between send and
receive paths is consistent for different packet rates:

— SYSTEM-1: weight = 1.1 (standard deviation 0.07);
— SYSTEM-2: weight = 1.16 (standard deviation 0.15).

These results show that the number of packets in conjungtitnthe direction
of traffic can be reasonably used to split CPU consumptionngnguiests. Concretely,
let Send/Recv(Dom;) denote packets sent/received by net-IDD to/frérom; and

we

Send/Recv(netI DD) denote the total packets sent/received by net-IDD. Then, we

define thaveightedoacket count per domain ag:ight x Send(Dom;)+ Recv(Dom;),
whereweight is the ratio of CPU consumption in net-1DD for send versugnrecpaths.
Similarly, we compute the weighted packet count for net-IDEount(netI D D).
Then we can use the fractionCount(Dom;)/wCount(netI DD) to charge CPU
usage taDom,;.

In the remainder of this paper, we use this weighted counbtopute the CPU
overhead in net-IDD for network processing on behalf ofad#ht guest domains. This
approach is also attractive because it comes with a compatgble benchmark that
derives the weight coefficient between send/receive pattaatically for different
systems and different network device drivers. It has théh&radvantage of being
general to a variety of device drivers and operating syst@ntgs, individual device
drivers may be hosted on a variety of operating systems)witfequiring error-prone
instrumentation. Of course, it has the disadvantage of xplicitly measuring CPU
consumption but rather deriving it based on benchmarks aftecplar hardware config-
uration. We feel that this trade off is inherent and thatrinstenting all possible device
driver/OS configurations is untenable for resource isofatA variety of middleware

tools face similar challenges, i.e., the inability to mgdii directly instrument lower
layers, making our approach attractive for alternatersgitas well.

With this estimation of CPU utilization per guest, we nowntwur attention to
SEDF-DC and ShareGuard.

4 SEDF-DC: CPU Scheduler with Feedback

Xen’s reservation based CPU scheduler — SEDF (Simple Bailieadline First) —
takes its roots in the Atropos scheduler [8]. In SEDF, an adstrator can specify the
CPU share to be allocated per VM. However, there is no waydwice the aggregate
CPU consumed by a domain and by driver domains acting on halbéNe have

extended SEDF to accomplish this goal.

4.1 Overview

Our modified scheduler, SEDF-DC for SEMebt Collector periodically receives
feedback from XenMon about the CPU consumed by IDDs for lfazessing on behalf
of guest domains. Using this information, SEDF-DC conagdhe CPU allocation to
guest domains to meet the specified combined CPU usage limit.

For each domaiDom,;, SEDF takes as input a tuple;, p;), where theslice s;
and theperiod p; together represent the CPU sharel®m;: Dom,; will receive at
leasts; units of time in each period of lengily. Such specifications are particularly
convenient for dynamically adjusting CPU allocations: \ae directly charge the CPU
time consumed by IDDs foDom,; by decreasing; appropriately. In CPU schedulers
based on weights, one would need to continuously re-catewaights of domains to
achieve the same result.

We now describe SEDF-DC's operation, but limit our des@iptonly to places
where SEDF-DC differs from SEDF. SEDF-DC maintains 3 queues

— @, the queue of runnable domains;

— Q. the queue of domains that have exhausted their slice arahaiting the next
period;

— @y the queue of blocked domains.

A key concept in SEDF isleadlines Intuitively, a deadline denotes the absolute
time that a domairshould havereceived its specified share of the CPU. B&thand
Q., are sorted by deadlines, making the selection of the nextadoto schedule a
constant time operation.

Each domainD;’s deadline is initialized tavVOW + p;, where NOW denotes
the current time. Let denote thefeedback intervalset to 500 ms in our current
implementation). Let net-IDD be a driver domain with a netiking device that is
shared byDom, . .., Dom,,. We will simplify the algorithm description (without loss
of generality) by considering a single net-IDD. Using XenMave compute the CPU
consumptiorused! PP of net-IDD for network 1/0 processing on behalf Bforn; dur-
ing the latest-ms interval and provide this information (for all domaits)SEDF-DC.

For each domaiom;, the scheduler tracks three valués, r;, debt!PP):

— d;: domain’s currenteadlinefor CPU allocation, the time when the current period

ends for domaiom;.

— r;: domain’s currentemaining timefor CPU allocation, the CPU time remaining

to domainDom; within its current period.

— debt!PP: CPU time consumed bPom; via the net-IDD’s networking processing

performed on behalf oDom;. We call this theCPU debtfor Dom;. At each
feedback interval, this value is incrementedusyd! PP for the latest-ms.

Note that the original SEDF scheduler only tradks, r;). The introduction of

debt!PD in the algorithm allows us to observe and enforce aggregateslon Dom;’s
CPU utilization.

Let a andb be integer numbers and let us introduce the following fuomcti—b as

follows:

@ = 9= a—botherwise

We now describe the modified procedure for updating the e Q.,, andQy)

on each invocation of SEDF-DC.

1.

. The next timer interrupt is scheduled fain(d” + p" , d"), where(d"

The timegotten; for which the currentDom; has been running is deducted from
Lr; =1r; — gotten,.
If dethDD > 0 then we attempt to charg@om; for its CPU debt by decreasing
the remammg time of its CPU slice:
— if debt!PP < r; thenr; = r; — debt! PP anddebt! PP = 0;
— if debt!PP > r; thendebt! PP = debt!PP — r; andr; = 0.

. If r; = 0, then Dom; is moved from@,. to @Q,,, since Dom; has received its

required CPU time in the current period.

. For each domaiomy, in Q,,, if NOW > d; then we perform the following

updates:
— 1y is reset tosy, — debt!PP;
— debtlPP s decreased byin(sy,, debty);
— the new deadline is set th, + py;
— If . > 0thenDom, is moved fromQ,, to Q
%, pl) and
(d", pP) denote the deadline and period of the domains that are taspbeads of
the@, andQ,, queues.

. On an interrupt, the scheduler runs the hea@pfIf Q, is empty, it selects the

head ofQ,,.

. When domairDomy, in Qy is unblocked, we make the following updates:

—if NOW < Ethen
o if dethD <r,thenr, =7, — debtiDD, anddebtiDD = 0, andDomy,
is moved fromQ, to Q.;
o f dethDD > Ty thendethDD = dethDD — 7 andrg = 0.
— if NOW > dy, then we compute for how many period®m;, was blocked.

Since Domy, was not runnable, this unused CPU time can be charged against

its CPU debt:
NOW —d
bl_periods = int {(Ok)}
Pk
debt}PP = debttPP —), — (bl_periods x sy)

— 1y, is reset tosy — debt!PP If r); > 0, then Domy, is moved fromQ), to Q..

and can be scheduled to receive the remaim}%ng
— debt! PP is adjusted by, debt!PP = debt! PP — s;
— the new deadline is set t, + py

The SEDF-DC implementation described above might haveyp@BU allocation
for domains hosting network-intensive applications, esdly when a coarser granular-
ity time intervalt is used for the scheduler feedback, etgs 2s. It might happen that
domain Dom; will get zero allocation of CPU shares for several consgeuyperiods
until the CPU debt timelebt! PP is “repaid”. To avoid this, we implemented an opti-
mization to SEDF-DC that attempts to spread the CPU debsagrultiple execution
periods.

We compute the number of times peripdfits within a feedback interval — the
intent is to spread the CPU debt blom,; across periods that happen during the feed-
back interval. We call this th€PU period frequencgf domainDom; and denote it as
period_freq;:

t
period_freq; = int <>
bi
If period_fregq; > 1, then we can spreatkbt! PP acrosperiod_freq; number of
periods, where at each period the domain is charged for &draof its overall CPU
debt:

debt! PP
spread_debt; = int (D)

period_freg;

This optimized SEDF-DC algorithm supports more consiséertt smoother CPU
allocation to domains with network-intensive applicaton

4.2 Evaluation

In this section we evaluate SEDF-DC beginning with a simgleis to demonstrate
the correctness of the scheduler and continue with a morgleanscenario to illus-
trate SEDF-DC'’s feasibility for realistic workloads. A#tdts were conducted on single
processor Pentium-IV machines running at 2.8-GHz.

=

o
=
o
=

e®e Domain 1
A A 999 Domain 0 for Domain 1
A AaA Domain 1: Combined usage

©

=}
©
=

o
=}
-}
=}
>
>
>
3

IS
=)

IS
)
CPU Utilization (%)

CPU Utilization (%)

N

=1
N
=1

®e® Domain 1
466 Domain 0 for Domain 1
aaa Domain 1: Combined usage

0 200 400 600 800 1000 1200 1400 00 200 400 600 800 1000 1200 1400

Requests/sec Requests/sec

(a) With original SEDF. (b) With SEDF-DC.
Fig. 6: Simple SEDF Benchmark

o

In the first experiment, we have a single VM (Domain-1) conféglito receive a
maximum of 60% of the CPU; Domain-0 is entitled to the remaind0%. Domain-1
hosts a Web server, loaded usimgt per f [14] from another machine. We gradually
increase the load and measure the resulting CPU utilization

Figure 6a shows the results with the unmodified SEDF schedMiesee that as the
load increases, Domain-1 consumes almost all of its shateeo€PU. Additionally,
Domain-0 incurs an overhead of almost 35% at peak loads e &main-1's traffic.
Hence, while Domain-1 was entitled to receive 60% of the CRPWUad received a
combinedCPU share of 90% via additional 1/0 processing in Domain-@.répeated
the same experiment with SEDF-DC, with the results showrigaré 6b. We can see
that SEDF-DC is able to enforce the desired behavior, keghimcombined CPU usage
of Domain-1 bounded to 60%.

In practice, system configurations are likely to be more darafed: multiple VMs,
each running a different service with different requiretsegome VMs may be 1/O in-
tensive, others might be CPU intensive and so on. Our nexrarpnt tries to evaluate
SEDF and SEDF-DC under a more realistic setup.

For this experiment, we have two VMs (Domain-1 and Domaineach hosting a
web-server. We configure both VMs and Domain-0 to receive sirtmam of 22% of
the CPU. Any slack time in the system is consumed by CPU iitemasks running in a
third VM. Domain-1's web-server is served with requestsfiless of size 10 KB at 400
requests/second, while Domain-2's web-server is servélu iguests for files of size
100 KB at 200 requests/second. We chose these rates bebaysmmpletely saturate
Domain-0 and demonstrate how CPU usage in Domain-0 may medibetween guest
domains with different workload requirements. As beforeugent t per f to generate
client requests. Each run lasts 60 seconds.

We first conduct the experiment with unmodified SEDF to ehlithe baseline.
Figure 7a shows the throughput of the two web-servers as aidmnof time. We
also measure the CPU utilization’s of all the VMs, shown in Note that Domain-
1 consumes all of its 22% available CPU cycles, while Dontagensumes only about
15% of the CPU. Even more interesting is the split of Domai@RJ utilization across
Domain-1 and Domain-2 as shown in Figure 7c. For clarify, wemarize the exper-
iment in Table 1. The first column shows the average valuethiometrics over the
entire run. Domain-1 uses an additional 9.6% of CPU for I/@cpssing in Domain-0
(42% of overall Domain-0 usage) while Domain-2 uses an audit 13.6% of CPU
via Domain-0 (58% of overall Domain-0 usage). Thus, the doedb CPU utilization

Metric SEDF [SEDF-DC
Dom-1 web-server Throughp848.06 req/225.20 req/s
Dom-2 web-server Throughgu®3.12 req/s 69.53 req/s
Dom-1 CPU 19.6% 13.7%
Dom-0 for Dom-1 9.6% 7.7%
Dom-1 Combined 29.2% 21.4%
Dom-2 CPU 14.5% 10.9%
Dom-0 for Dom-2 13.2% 10.6%
Dom-2 Combined 27.7% 21.5%

Table 1: SEDF-DC in action: metric values averaged over the duratiore ofith

of Domains 1 and 2 (the sum of their individual CPU utilizatiand CPU overhead in
Domain-0 on their behalf) is 29.2% and 27.7% respectively.

We then investigate whether we can limit the system-wide @B&fje of Domain-
1 and Domain-2 to their 22% CPU share using SEDF-DC. Figuteo@/s the results
of this experiment. Recall the operation of SEDF-DC: it comes thedebtof a VM
(work done by the IDD — in this case Domain-0 — on its behalfild &ncrementally
charges it back to the appropriate VM. This is clearly visiiol Figure 8c: theombined
utilization’s of both Domain-1 and Domain-2 hover around@r the duration of the
experiment. The oscillations result from discretizationhe way we charge back debt.

Controlling combined CPU utilization for Domain-1 and 2 ddepact the web
servers’ achievable throughput. Since the combined CPgeushDomain-1 and 2 is
limited to 22% under SEDF-DC—uversus the uncontrolled vabfe29.2% and 27.7%

50

.

400 e 8
:

300}

200

'
*, < N H
se0 g RO o %o - K *m
100} €% 0000000, 0 00 Ly 0“',‘04$,¢’,‘,0 SRR PO ‘.o,‘, "
R kY * @

Webserver Throughput (req/s)
"

Ve

Ve

o LEREN

0 10 20 30 40 50 60 70
Time (s)

(a) Web-server Throughput

e—— Dom-0
= -=-a Dom-1
¢ -9 Dom-2

N Wow
o »

‘g em BB AW magh mEERFE,

CPU utilization (%)
S
i,

"y vom® o Wiy wt Wt 1 ‘
N ‘. ° H
e " .
13 “‘,«““"‘. y“.’o‘0‘0“34“"*0-‘-.‘ooo""'y’o""‘. |
. '
10] R Y
'
5 L]
.
ns
GO 10 20 30 40 50 60 70
Time
(b) CPU Utilization
40,
R
35| . vy , -, :
1S R Az sy e e AR e AT . R
S 304t x 7L, T . N
v haa adaa Sy a Mt e L ot ety
25| & oA Ayt s atyfaa x :

N
=}

o o
.. ™ *e
*s 0 o °. oo * 4% o
* 2egald? ong sars’t a
wg m'e L] ‘l’"l Yl
4 ®=-=4a Dom-1] -
vy Dom-1 Total

SRR Y R 2 WP L e
s SOE L LE 2T LIRSS MRS TS
\

—
1Y

CPU utilization (%) in Do
—
19;1

5t | e -e-e Dom-2 b
- Vo,
0 a4 Dom-2 Total [
0 10 20 30 40 50 60 70
Time

(c) CPU Utilization in Dom-0
Fig. 7: With original SEDF.

under the original SEDF scheduler—there is a drop in througagshown in Figure 8a.
The second column of Table 1 gives the average throughpuéesalver the run for a
more concise comparison.

While SEDF-DC is capable of limiting the combined CPU usagessguest do-
mains, it does not explicitly control CPU usage in a drivemdin. Note that the split of
the CPU utilization in Domain-0 for Domain-1 and Domain-2ti§l unequal. Domain-1
is using 7.7% of CPU via Domain-0 (42% of overall Domain-Ogejawhile Domain-
2 is using 10.6% of CPU via Domain-0 (58% of overall Domaingage). We turn
our attention to controlling per-domain IDD utilizationing ShareGuard in the next
section.

__ 400 Ld
n . ,"‘ »-ma Bom.%
S 350 o -6 Dom-
g E w? B F\ .'“'. ."] fal]
300 N SV WA LT B
g O AT R LT |
e A A T R O W B A A A LS A
Wi ' AT e
300 h! N ha " N Yo :.".,' "
£ Wow oy R f KW LT |
! e HERTI
geg ‘ HRABRY L,
2 100 . " "- .”?V-‘
2 .
I} . * ¢ ° Lo Ve e e NN
E A O I N R e AR AT
g ‘~ Q‘. * l-l‘,.:
00 10 20 30 40 50 60 70
Time (s)
(a) Web-server Throughput
40
s—ea—e Dom-0
35 = -=-a Dom-1

¢ -9 Dom-2

N W
a_o

CPU utilization (%)
- N
-1

o
=)

wu
L]
[l

o

Time

(b) CPU Utilization

40,
o = -= = Dom-1
€ 35 vovev Dom-1 Total
S ¢ -¢ Dom-2
0 30 a-a-a Dom-2 Total

®

e e e e ° »

o XA e g y
e malgeg .l“':"_ gt
] W wmga mael

KN L
£ ‘.oo‘,' .

—

o,
o
°

o

CPU utilization (%) in
—
U

o

0 10 20 30 40 70

Time
(c) CPU Utilization in Dom-0
Fig. 8: With SEDF-DC.

5 ShareGuard

In the current Xen implementation, a driver domain does moitrol the amount of
CPU it consumes for I/O processing on behalf of differentsjag®mains. This lack of
control may significantly impact the performance of netwsekvices. Such control is
also required to enable SEDF-DC to enforce aggregate CRjisaits. In this section
we describe ShareGuard: a control mechanism to solve thidgm.

5.1 Overview

ShareGuard is a control mechanism to enforce a specifieddimCPU time consumed
by an IDD for 1/O processing on behalf of a particular guesthdm. ShareGuard peri-
odically polls XenMon for CPU time consumed by IDDs, and ifteegt domain’s CPU
usage is above the specified limit, then ShareGuard stopsretraffic to/from the
corresponding guest domain.

Let the CPU requirement of net-IDD be specified by a p&if?, p! PP), meaning
that net-IDD will receive a CPU allocation of at lea$f’? time units in each period of
lengthp’PP units (the time unit is typically milli-seconds). In otheovds, this spec-
ification is bounding CPU consumption of net-IDD over timed®U share! PP =

;ﬁ%. Letlimit!PP specify a fraction of CPU time in net-IDD available for netko

processing on behalf dPom; such thatimit! PP < CPUshare! PP 1f such a limit
is not set thenDom; is entitled to unlimited 1/O processing in net-IDD. Lebe the
time period ShareGuard uses to evaluate current CPU usag#-ibD and perform
decision making. In the current implementation of Share@uae use = 500 ms.

Using XenMon, ShareGuard collects information on CPU ud¢ngeet-1DD at ev-
ery feedback interval, and computes the fraction of ovéZRIU time used by net-IDD
for networking processing on behalf 8forn; (1 < i < n) during the latest interval.
Let us denote this fraction ased! . In each time interval, ShareGuard determines
the validity of the conditionused; ”” < limit!PP. If this condition is violated, then
Dom; has exhausted its CPU share for network traffic processimgtinDD. At this
point, ShareGuard applies appropriate defensive actmrthé next time intervaldef,
where

R (L
limit!PP
ShareGuard performs the following defensive actions:

— Stop accepting incoming traffic to a domain:Since our net-IDDs run Linux,
we use Linux’s routing and traffic control mechanisms [15Htop/reject traffic
destined for a particular domain. In particular, we ugg abl es [16] — they
are easily scriptable and configurable from user spacel8iteichniques can be
applied in other operating systems that may serve as wragpeother legacy
device drivers.

— Stop processing outgoing traffic from a domain:As in the previous case, we
can usd pt abl es to drop packets being transmittéwm a domain. However,
this will still incur substantial overhead in the IDD becaugt abl es will only
process the packet once it has traversed the network stable ¢DD. Ideally we
want to drop the packet before it even enters the IDD to limitpssing overhead.

One approach would be to enforcet abl es filtering within the guest domain.
However, ShareGuard does not assume any cooperation frestsgso we reject
this option. However, we still have an attractive controinpavithin the net-IDD
where packets can be dropped before entering the net-IDd®riestack: thenet-
backdriver (see Figure 3). ShareGuard sends a natification tzacktidentifying
the target domain and the required action (drop or forwdrhis is akin to setting
i pt abl es rules, except that these rules will be applied within nétbac
Whenever netback receives an outbound packet from a dorhaiili,determine if
there are any rules applicable to this domain. If so, it veike the specified action.
This is both lightweight (in terms of overhead incurred byDipDand flexible (in
terms of control exercised by IDD).

After time intervalt?®/, ShareGuard restores normal functionality in net-IDD with
respect to network traffic to/from domainom,;.

5.2 Evaluation

To evaluate the effectiveness of ShareGuard in isolatiteg ttomain CPU consump-
tion, we ran the following experimental configuration. Tékértual machines run on the
same physical hardware. Domain-1 and Domain-2 host weleisetivat support busi-
ness critical services. These services have well-defingelatations for their throughput
and response time. The CPU shares for these domains arerseetdhese expecta-
tions. Domain-3 hosts a batch application that does someutation and performs
occasional bulk data transfers. This VM supports a less itapbapplication that is not
time sensitive, but needs to complete its job eventually.

In our first experiment, we observe overall performance ef¢hthree services to
quantify the degree of performance isolation ShareGuanddediver. We configure
a dual-processor machine as follows: Domain-0 runs on ara&pprocessor and set
to consume at most 60% of the CPU. The second CPU hosts three Bdnain-1
and Domain-2 run web servers (serving 10 KB and 100 KB filepaetively), and
Domain-3 occasionally does a bulk file transfer. All these 8/Nave equal share of
the second CPU, 33% each. In this initial experiment, we dcenable ShareGuard
to demonstrate baseline performance characteristicseXjperiments were conducted
over a gigabit network, so our experiments are not netwankéid. In this experiment,
we start a benchmark that loads web servers in Domain-1 amdaibe? from two
separate machines usihgt per f for two minutes. Forty seconds into the benchmark,
Domain-3 initiates a bulk-file transfer that lasts for 40mwts.

Figure 9 shows the results as a function of time. We can gleae the adverse im-
pact of Domain-3's workload on both web servers’ throughpigure 9a). Considering
the split of CPU utilization in Domain-0 for the correspomglinterval (Figure 9c), we
find that Domain-3 uses between 20% to 30% of CPU for I/O pingsn Domain-
0 leaving insufficient CPU resources for 1/O processing ohalfeof Domain-1 and
Domain-2.

The first column in Table 2 provides a summary of average me#iues for the
baseline case where Domain-1 and Domain-2 meet their pesface expectations and
deliver expected web server throughput. These metricctélemain-1 and Domain-2
performance when there is no competing 1/O traffic issued by&in-3 in the ex-
periment. Note that in this case the combined CPU utiliratio Domain-0 for I/O
processing by Domain-1 and Domain-2 is about 50%. Since DoeMés entitled to

60% of the CPU, this means that there is about 10% CPU awaifabladditional 1/0
processing in Domain-0.

The average metric values for this experiment (without 8Gaiard) over the middle
40 second segment (where Domain-1, Domain-2, and DomalheBrapete for CPU
processing in Domain-0) are summarized in the second cohfritable 2. Domain-3
gets 23.92% of CPU for I/O processing in Domain-0, squeeiritige CPU share avail-
able for Domain-1's and Domain-2’s /O processing. As a ltesiere is a significant
decrease in achievable web server throughput: both webrsaaxe delivering only 72%
of their expected baseline capacity.

This example clearly indicates the impact of not contrgliBD CPU consumption
by different guest domains. The question is whether Shaaetzzan alleviate this prob-
lem. We repeat the experiment with ShareGuard enabled,arfijare ShareGuard to

50
:
B’ - , - ¢--4-¢ Dom-2
2 400 " M . ¥ [TS
o w b, by . P E L
3 PLE TR TN A il N HH i 1
' s
5, 300 ! H w "\" ::i:l:ﬁ] . :‘"' \
3 - 3 iy :
o u
£ A S TR KL R T ' a '
F 200 8 s %6 M AR e fostoate 0% |
. & SRRy, | W S S5 e S
2 i M % "M‘Hr." o
[N 1 [] g
2 100 L} &
\
S . b
Ol
0 20 40 60 80 100 120 140
Time (s)
(a) Web server Throughput
10
s—ea—a Dom-0
== a Dom-1
80| ¢ - Dom-2
S v-v.v Dom-3
c
2 60
=
©
N
5 40
2 WWWM . . - otgeabanetiigitoge
o) 0By T oop e e o '
S 5 ’.'d '-"-’-_l-'h'd";: i:y v,.,s:;'rl,:\ivt %, ; . ‘1‘_
ok YO Vg e, B o
o1 ‘.l wy)‘
% 20 40 60 80 100 120 140
Time
(b) CPU Utilization
10
> = =& Dom-1
= ¢ - Dom-2
o 80| v.v-y Dom-3
€
8
c 60
c
o
5 40| @ 0 4 0% o0 9069%00s® v
© 9, RAK (XYY Saded -
g 968,700 oP000 ¢ a0 00,700 . . S 2004%0699% 00, “0“,0’6“"90‘
= P TN D SN AL SN RS M
=) : W%y ey #0 Y v .
5 20 N T eamausasSs e peggmanng %™ ¢
) R !]
5| —Fi""""-—"--..-.--__-_ - o B’ .
; AL e
% 20 40 60 80 100 120 140

Time
(c) CPU Utilization in Dom-0
Fig. 9: Without ShareGuard

Metric BaselingWithout ShareGuard|With ShareGuard
Dom-1 Web server329.85 236.8 321.13
Dom-2 Web server231.49 166.67 211.88
Dom-0 for Dom-1| 11.55 7.26 11.9
Dom-0 for Dom-2| 37.41 23.9 34.1
Dom-0 for Dom-3] N/A 23.92 4.42

Table 2: ShareGuard at work: metric values are averaged over thiterdid second segment of
the runs.

limit the CPU consumption for Domain-3 in Domain-0 to 5%. trig 10 shows the
results.

Recall ShareGuard’s operation: every 500 ms it evaluatd$ @Rge in the IDD;
if a VM is violating its CPU share, it turns off all traffic pressing for that VM for
some time. We compute this duration such that over thatviatethe average CPU
utilization of the VM within the IDD will comply with the spefication. This mode
of operation is clearly visible in Figure 10c. We had direc&hareGuard to restrict
Domain-3's consumption in Domain-0 to 5%. At= 40s, ShareGuard detected that
Domain-3 had consumed almost 30% CPU in Domain-0. Accolgiitglisables traffic
processing for Domain-3 for the next 2.5 seconds, suchlileaderage utilization over
this 3 second window drops to 5%. This pattern subsequesplyats ensuring that the
isolation guarantee is maintained through the entire run.

Comparing Figure 9c and 10c, we see that with ShareGuardaibeirand Domain-
2 obtain more uniform service in Domain-0 even in the preseidomain-3’s work-
load. This is also visible in the CPU utilization (see Figifb). Finally, observe that
the web-server throughput for Domain-1 and Domain-2 imersignificantly under
ShareGuard: both web servers deliver the expected thramghp

The third column in Table 2 provides a summary of averageimeditues over the
middle 40 second segment with ShareGuard enabled. As weea@BU consumption
by Domain-1 and Domain-2, as well as web server through giamilar to the baseline
case. Web server performance does not degrade in presetineelnflk data transfer in
Domain-3 because CPU processing in the IDD on behalf of Do+Bas controlled by
ShareGuard.

6 Discussion

All three of the components discussed in this play importenmnplementary tasks in
enforcing performance isolation. Both SEDF-DC and Shaee@Gdepend on XenMon
for detailed CPU utilization information. While ShareGu#sanly relevant for work-
loads involving network 1/0, SEDF-DC is agnostic to the aw®obf workloads — it
only depends on accurate feedback on CPU utilization fromivkan.

However, SEDF-DC can only enforce guarantees on the aggr&flJ consump-
tion of a guest and its IDD — it does not consider fair allooatof the driver domain’s
finite CPU resources. ShareGuard can be used to enforce isithfbr networking
workloads. Further, ShareGuard works irrespective of tmeoe of CPU scheduler. An
artifact of Xen'’s current CPU schedulers in Xen is that SHDE-only works for single
processor systems. ShareGuard, however, supports mategsor systems as well. We
expect that this limitation will be removed with future rages of Xen.

Finally, ShareGuard is more intrusive in the sense thattively blocks a VM's
traffic. In comparison, SEDF-DC is more passive and trarmsgailso, as shown in
Section 5, CPU allocation in ShareGuard is more bursty th&®EDF-DC (compare
Figures 8c and 10c). All this underscores the fact that wdrilé&s own no single mech-
anism is perfect, working together they form a completeesyst

7 Related Work

The problem of resource isolation is as old as time sharistggys. Most of the previous
work in this area has focused on resource isolation betwemrepses in an operating
system or users on a single machine. In these systems, dicigednd resource man-
agement primitives do not extend to the execution of sigamifigarts of kernel code.

500
ao0riy oy
b iy hFh e H
300 ."'.s-il'-n:,,"l'h"‘!'.i '
' [] l
] ' - | S
| 34 ‘0“ o 0% ,.o R "’n f*_i'..’.ml't"?.' v 2 ‘.o,ﬂm"’ “-".c’o"’;“-ﬁ

. ¢°
RSE o
R

i o
200

100 ‘e

Webserver Throughput (req/s)

Time (s)

(a) Web server Throughput

=
o

e—e— Dom-0
= =& Dom-1
¢ ¢-¢ Dom-2
v-v.v Dom-3

®
=3

S
c
S 60
b=
©
N
5 40
p}
S

20} d

gt
o o e S L S |
0 20 40 60 80 100 120 140

Time

(b) CPU Utilization

=
o

= =& Dom-1

;5 ¢ o-¢ Dom-2
; 80 v-v.-v Dom-3
£
a
< 60|
=
2
g 40f, ,,\;Ws‘,a,&a ”.,\.4\0 Fonon f'l “\:o:.‘ R .
= [w
=R 3 ¢ :; ew ¥
=) !
6 fdl.pﬂ'”wm“ﬂﬂy."'ﬂb}'ﬁ\h '-I-‘M.m”mwbl‘ A
ot Bl
0 20 40 60 80 100 120 140

Time

(c) CPU Utilization in Dom-0
Fig. 10: With ShareGuard

An application has no control over the consumption of marsteay resources that the
kernel consumes on behalf of the application.

Consider network-intensive applications: most of the pssing is typically done
in the kernel and the kernel generally does not control opgry account for resources
consumed during the processing of network traffic. The tieghes used in ShareGuard
have been inspired by earlier work addressing this probl@&mnespect to receive live-
locks in interrupt based networking subsystems. Mogul €1l restrict the amount
of 1/0 processing that the kernel does on behalf of user psE® In Lazy Receiver
Processing [9] (LRP), the system uses better accountiogation (such as hardware
support for identifying which process an incoming packedéstined to) to improve
resource isolation, e.g., such that packet processing loalfoef one process does not
adversely affect the resource available to other processes

Some of the ideas motivating LRP were extended to Resourota@ers [12]. A
resource container is an operating system abstractiorctmatfor all system resources
consumed by amctivity, where an activity might span multiple processes. Resource
Containers separate the notion of resource principal ftoeeds or processes and pro-
vide support for fine-grained resource management in dpgraystems. This distinc-
tion between grotection domairand aresource principals also visible in Xen’s new
I/0 model: a VM (the protection domain) may request servioenf several different
IDDs, therefore the tracking of its resource usage needsaio across executions of all
these domains.

One limitation of Resource Containers is that they only wiorksingle processor
systems. There does not seem to be any straightforward wexytehding the notion
of anactivity to span multiple processors. This is further complicatedheyfact that
in most operating systems, each CPU is scheduled indepiynd&BDF-DC scheduler
suffers from the same limitation. However, ShareGuard th Boheduler agnostic and
it fully supports multi-processor systems.

The problem of performance isolation has been actively esdrd by multimedia
systems [8, 18]. The Nemesis operating system [8] was dedignprovide guaranteed
quality of service (QoS) to applications. Nemesis aims &v@ntQoS crosstalkhat
can occur when the operating system kernel (or a sharedrseerforms a significant
amount of work on behalf of a number of applications. One kay im which Nemesis
supports this isolation is by having applications execiwenany of their own tasks
as possible. Since a large proportion of the code executdekbalf of an application
in a traditional operating system requires no additionalilpges and does not, there-
fore, need to execute in a separate protection domain, tineebie operating system
moves the majority of operating system services into thdiegon itself, leading to
a vertically structured operating system. QoS crosstatkalao occur when there is
contention for physical resources, and applications dohawe guaranteed access to
the resources. Nemesis provides explicit low-level reseguarantees or reservations
to applications. This is not limited simply to CPU: all resces including disks [19],
network interfaces [20], and physical memory [21] — aretgdan the same way.

The networking architecture of Nemesis still has some il related to the
charging of CPU time to applications. When the device drivangmits packets for
an application, used CPU time is not charged to the appdicdtiit to the device driver.
Also, the handling of incoming packets before de-multipigxt to the receiving ap-
plication is charged to the device driver. We observe theesproblem in the context
of Xen VMM and the network driver domains, and suggest pdéssblution to this
problem.

Exokernel [22] and Denali [23] provide resource managemsgatems similar to
vertically structured operating systems. The design gmaEkokernel was to separate
protection from management. In this architecture, a mihikeanel — called Exok-
ernel — securely multiplexes available hardware resouitasffers from the VMM
approach in that iexportshardware resources rather than emulates them. VMMs have
served as the foundation of several “security kernels” PZ4-Denali differs from these
efforts in that it aims to provide scalability as well as &in for untrusted code, but it
does not provide any specialized for performance isolation

Most of the earlier work on VMMs focused on pursuing OS supgarisolating
untrusted code as a primary goal. While there is significankvem resource man-
agement in traditional operating systems, relatively lessk has been performed in
the context of virtual machines. Waldspurger [28] congidae problem of allocating
memory across virtual machines; other systems such as ij2BRIHP SoftUDC [2]
and Planetlab vServers [29] have also touched on some & ibmses. Our work takes
another step towards a general framework for strict regoisalation in virtual ma-
chines by considering the auxiliary work done on behalf ofuasg in privileged or
driver domains.

8 Conclusion and Future Work

Virtualization is fast becoming a commercially viable aftative for increasing sys-
tem utilization. But from a customer perspective, virtaation cannot succeed without
providing appropriate resource and performance isolaji@arantees. In this work, we
have proposed two mechanisms — SEDF-DC and ShareGuardimtiratve CPU and
network resource isolation in Xen. We demonstrated howethmechanisms enable
new policies to ensure performance isolation under a wanétconfigurations and
workloads.

For future work, we plan to extend these mechanisms to stigploer resources
such as disk 1/0 and memory. Work is also underway on a hieiGaltCPU scheduler
for Xen: currently Xen ships with two CPU schedulers, but theice of scheduler
has to be fixed at boot time. We expect that in the future, maoser®PU schedulers
will become available (SEDF-DC being among the first), arad laving a hierarchical
scheduler that allows the use of different schedulers fifergint domains depending
on the kinds of applications and workloads that need to bpatgd will enable more
efficient resource utilization.

We believe that performance isolation requires appropriegource allocation poli-
cies. Thus, another area for future investigation is pedi¢or efficient capacity planning
and workload management.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, ©,, A, Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the art of virtualization. In: Proc. of the 19th ACRSP, New York,
NY (2003)

2. Kallahalla, M., Uysal, M., Swaminathan, R., Lowell, D.E., Wray, Mhristian, T., Edwards,
N., Dalton, C.1., Gittler, F.: SoftUDC: A software based data centeufdity computing.
IEEE Computer (2004)

3. The Oceano Project. http://ww. research.ibm conl oceanoproj ect/

i ndex. ht nl : Last accessed 1/17/2006.

N

10.
11.

12.

13.
14.
15.
16.
17.
18.
19.
20.
21.

22.

23.
24.
25.
26.

27.
28.
29.

. Fraser, K., Hand, S., Neugebauer, R., Pratt, I., WarfieldMliamson, M.: Reconstructing

1/0. Technical Report UCAM-CL-TR-596, University of Cambrid@905)

. Cherkasova, L., Gardner, R.: Measuring CPU Overhead fdPté@essing in the Xen Virtual

Machine Monitor. In: Proc. of USENIX Annual Technical Conferen(2005)

. Chase, J.S., Levy, H.M., Feeley, M.J., Lazowska, E.D.:ri8gand protection in a single-

address-space operating system. ACM Trans. Comput. B(g). (1994) 271-307

. Jones, M.B., Leach, P.J., Draves, R.P,, J. S., .I.B.: Nwdeal-time resource management

in the Rialto operating system. In: Proc. of the 5th HotOS, Washington, [82, ULEEE
Computer Society (1995) 12

. Leslie, I.M., McAuley, D., Black, R., Roscoe, T., Barham, PHvers, D., Fairbairns, R.,

Hyden, E.: The design and implementation of an operating system to rsugigibuted
multimedia applications. IEEE Journal of Selected Areas in Communicati{i¥ (1996)

. Druschel, P., Banga, G.: Lazy receiver processing (LRPgtaark subsystem architecture

for server systems. In: Proc. of the second USENIX OSDI. (1286)-275

Bruno, J., Gabber, E., Ozden, B., Silberschatz, A.: The Ecljyerating System: Providing
Quality of Service via Reservation Domains. USENIX Annual Technicaif€rence (1998)
Verghese, B., Gupta, A., Rosenblum, M.: Performance isolasioaring and isolation in
shared-memory multiprocessors. In: Proc. of the 8th InternatiooafeZence on Architec-
tural Support for Programming Languages and Operating Systeavs,Ydrk, NY, USA,
ACM Press (1998) 181-192

Banga, G., Druschel, P., Mogul, J.C.: Resource ContainddevaFacility for Resource
Management in Server Systems. In: Proc. of the third USENIX OS[2\y NDrleans,
Louisiana (1999)

Gupta, D., Gardner, R., Cherkasova, L.: XenMon: QoS Manigaeind Performance Profil-
ing Tool. Technical report, HPL-2005-187 (2005)

Httperf.ht t p: / / www. hpl . hp. coni research/ | i nux/ htt perf/

http://ww. | artc. org/ howt o/ : Last accessed 04/02/2006.

http://ww. netfilter.org: Lastaccessed 04/02/2006.

Mogul, J.C., Ramakrishnan, K.K.: Eliminating receive livelocknrirgerrupt-driven kernel.
ACM Trans. Comput. Sysii5(3) (1997)

Yuan, W., Nahrstedt, K.: Energy-efficient soft real-time cphesiuling for mobile multime-
dia systems. In: Proc. of the 19th SOSP, New York, NY, USA, ACM (2803) 149-163
Barham, P.: A Fresh Approach to File System Quality of Service.rdo.Rf NOSSDAV
1998

(Black? R., Barham, P., Donnelly, A., Stratford, N.: Protocoplementation in a Vertically
Structured Operating System. In: Proc. of IEEE Conference on Gmpletworks. (1997)
Hand, S.M.: Self-paging in the Nemesis operating system. In: Bfdahe third USENIX
OSDI, Berkeley, CA, USA, USENIX Association (1999) 73-86

Engler, D.R., Kaashoek, M.F., J. O'Toole, J.: Exokerneloperating system architecture
for application-level resource management. In: Proc. of the 15th /&P, New York,
NY, USA, ACM Press (1995) 251-266

Whitaker, A., Shaw, M., Gribble, S.D.: Scale and performantiearibenali isolation kernel.
In: Proc. of the 5th USENIX OSDI, Boston, MA (2002)

Karger, P.A.: A retrospective of the VAX VMM security kernel.BE Trans, on Software
Engineering (1991)

Meushaw, R., Simard, D.: NetTop: Commercial Technology in bggurance applications.
2005

(Bugni)on, E., Devine, S., Rosenblum, M.: Disco: running comtyaperating systems on
scalable multiprocessors. In: Proc. of the 16th ACM SOSP, New York|M$A, ACM Press
(1997) 143-156

Creasy, R.J.: The origin of the VM/370 time-sharing system. |BMra of Research and
Development (1982)

Waldspurger, C.A.: Memory resource management in VMw&X &erver. In: Proc. of the
5th USENIX OSDI. (2002)

Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L.w¥¥aniak, M., Bowman, M.:
PlanetLab: an overlay testbed for broad-coverage services. SUBCOomput. Commun.
Rev.33(3) (2003) 3-12

