

DieCast: Testing Distributed Systems with an Accurate Scale Model

Diwaker Gupta Kashi V. Vishwanath Amin Vahdat

University of California, San Diego

Goals

- Fidelity
 - How closely can we replicate the target system?
- Reproducibility
 - Can we do controlled experiments?
- Efficiency
 - Use fewer resources

DieCast can scale up a test infrastructure by an order of magnitude

DieCast Overview

- ✓ Replicate target system using fewer machines
- ✓ Resource equivalence: *perceived* CPU capacity, disk and network characteristics
- ✓ Preserve application performance
- × Not scaled
 - × Physical memory: mitigating solutions
 - × Secondary storage: cheap

NSDI 2008 | DieCast

Multiplexing Leads to Resource Partitioning

3 GHz CPU, 1 Gbps N/W, 15 Mbps disk I/O, 2 GB RAM

Split equally among 5 VMs

~ 600 MHz CPU, 200 Mbps N/W, 3 Mbps disk I/O, 400 MB RAM each

Time Dilation [NSDI 2006] Key idea: time is also a resource!

- Slow down passage of time within the OS
- CPU, network, disk all *appear* faster
- Experiments take longer

Time Dilation Factor (TDF) = Real time/Virtual time

In this example, TDF = 1sec/100ms = 10

Multiplexing Under Time Dilation

3 GHz CPU, 1 Gbps N/W, 15 Mbps disk I/O, 2 GB RAM

~ 600 MHz CPU, 200 Mbps N/W, 3 Mbps disk I/O, 400-MB RAM, each

~ 3 GHz CPU, 1 Gbps N/W, 15 Mbps disk I/O?, 400 MB RAM each

June 7, 2008

June 7, 2008

Disk I/O Scaling

- Invariant: perceived disk characteristics are preserved
 - Seek time
 - Read/write throughput
- Issues
 - Low level functionality in firmware
 - Different I/O models
 - Per request scaling is difficult

Implementation Details

- Supported platforms
 - Xen 2.0.7, 3.0.4, 3.1
 - Can be ported to non-virtualized systems
- Support for unmodified guest OSes
- Disk I/O scaling for different I/O models

 Fully virtualized: integration with DiskSim
 - Paravirtualized: scaling in device driver

Disk I/O Scaling: Fully Virtualized VMs

Disk I/O Scaling: Fully Virtualized VMs

Network I/O Scaling

Invariant: *Perceived* network characteristics (bandwidths and latencies) must be preserved

	Real Configuration	Perceived Configuration
Original system (TDF 1)	10 Mb/s, 20 ms	10 Mb/s, 20 ms
Time Dilation (TDF 5)	10 Mb/s, 20 ms	50 Mb/s, 4 ms
DieCast (TDF 5)	2 Mb/s, 100 ms	10 Mb/s, 20 ms

Network emulation: ModelNet, Dummynet

Recap

- Multiplex VMs for efficiency
- Time dilation to scale resources
- Disk I/O scaling
- Network I/O scaling
 - Fidelity
 - Reproducibility
 - Efficiency

At this point, the scaled system *almost* looks like original system!

Validation

- How well does DieCast scaled performance match the original system?
 - Application specific metrics
- Can a smaller system be configured to match the resources of a larger system?
 - Resource utilization profiles
- Applications: **RUBiS**, BitTorrent, Isaac
- RUBiS
 - eBay like e-Commerce service
 - Ships with workload generator

RUBiS: Topology

- Xen 3.1, fully virtualized VMs
- Debian Etch, Linux 2.6.17, 256 MB RAM
- DiskSim emulating Seagate ST3217
- Network emulation using ModelNet

June 7, 2008

RUBiS: Throughput

RUBiS: Response Time

RUBiS: Resource Usage

22 UCSD

Validation Recap

- Evaluated
 - RUBiS
 - BitTorrent
 - Isaac
- Demonstrated
 - Match application specific metrics
 - Preserve resource utilization profile

Many more details in the paper

Case study: Panasas

• Panasas builds scalable storage systems for high performance computing

– http://www.panasas.com

- Caters to variety of clients
- Difficult or even impossible to replicate deployment environment of all clients
- Limited resources for testing

DieCast in Panasas

Panasas: Evaluation Summary

- Validation
 - Two benchmarks from standard test suite: IOZone, MPI-IO; varying block sizes
 - Match performance metrics

Scaling: Used 100 machines to scale to 1000 clients

Limitations

- Memory scaling
- Long running workloads
- Specialized hardware appliances
- Fine grained timing

Summary

- DieCast: scalable testing
 - Fidelity, Reproducibility, Efficiency
- Contributions
 - Support for unmodified operating systems
 - Implement disk I/O scaling (DiskSim integration)
 - CPU scheduler enhancements for time dilation
 - Comprehensive evaluation, including a commercial storage system

Thanks!

Questions? dgupta@cs.ucsd.edu

