
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Scalable Virtual Machine Multiplexing

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Diwaker Gupta

Committee in charge:

Professor Amin Vahdat, Chair
Professor Tara Javidi
Professor Bill Lin
Professor Alex C. Snoeren
Professor Geoffrey M. Voelker

2009

Copyright
Diwaker Gupta, 2009
All rights reserved.

The dissertation of Diwaker Gupta is approved, and it is
acceptable in quality and form for publication on microfilm
and electronically:

Chair

University of California, San Diego

2009

iii

DEDICATION

To my parents, for everything.

iv

EPIGRAPH

km�y�vAEDkAr-t� mA Pl�q� kdAcn।

mA kmPlh�t� B�r̂ mA t� s\go_-(vkmEZ॥

—�Fmd̂ Bgvd̂ gFtA , 2�47

Let your claim lie on action alone and never on the fruits;
you should never be a cause for the fruits of action;

let not your attachment be to inaction.
—The Bhagavad Gita, 2.47

(English translation by Dr. S. Sankaranarayan)

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xii

Acknowledgements . xiii

Vita and Publications . xvi

Abstract of the Dissertation . xvii

Chapter 1 Introduction . 1
1.1 Scalable Network Emulation . 6
1.2 Large-Scale Testing . 7
1.3 Challenges . 9

1.3.1 Vertical Scalability . 9
1.3.2 Horizontal Scalability . 10

1.4 Contributions . 11
1.4.1 Time Dilation . 12
1.4.2 DieCast . 12
1.4.3 Difference Engine . 13

1.5 Organization . 14

Chapter 2 Background and Related Work . 16
2.1 Virtualization Concepts . 16
2.2 Virtualization Benefits . 18
2.3 Xen Overview . 20
2.4 Virtual Machine Multiplexing . 22
2.5 Network Simulation and Emulation 22
2.6 Testing Large Systems . 23

2.6.1 Real-World Testing . 24
2.6.2 Detecting Performance Anomalies 24
2.6.3 Modeling Internet Services 24

2.7 Memory Management . 25
2.7.1 Page Sharing . 25
2.7.2 Delta Encoding . 25
2.7.3 Memory Compression . 26

vi

Chapter 3 A Framework for Large Scale Testing 28
3.1 Overview . 28
3.2 Choosing the Scaling Factor . 32
3.3 Cataloging the Original System 33
3.4 Workload Generation . 35
3.5 Network Emulation . 36
3.6 Configuring the Virtual Machines 36
3.7 Summary . 38

Chapter 4 Time Dilation . 39
4.1 Concept . 39
4.2 Implementation . 41

4.2.1 Time Flow in Xen . 43
4.2.2 Modifications to the Xen hypervisor 44
4.2.3 Modifications to XenoLinux 45
4.2.4 Support for OS Diversity 46
4.2.5 Time Dilation on Other Platforms 46

4.3 Limitations . 47
4.3.1 Pervasiveness and Fidelity 47
4.3.2 Timer Interrupts . 49
4.3.3 Uniformity: Outside the Dilation Envelope 49

4.4 Validation . 50
4.4.1 Methodology . 51
4.4.2 Hardware Validation . 52
4.4.3 Single Flow Packet-Level Behavior 53

4.5 Applications . 59
4.5.1 Protocol Evaluation . 59
4.5.2 High-bandwidth Applications 62

Chapter 5 Resource Scaling in a Dilated Time Frame 67
5.1 Network Scaling . 69
5.2 CPU Scaling . 73

5.2.1 Three CPU Schedulers in Xen 73
5.2.2 Scheduler CPU Allocation Accuracy 75
5.2.3 Validation . 82

5.3 Disk Scaling . 85

Chapter 6 DieCast Evaluation . 90
6.1 Methodology . 90
6.2 BitTorrent . 92
6.3 RUBiS . 97
6.4 Exploring DieCast Accuracy . 102
6.5 Commercial System Evaluation 106
6.6 DieCast Usage Scenarios . 111

vii

Chapter 7 Harnessing Memory Redundancy Across Virtual Machines 114
7.1 Architecture . 114

7.1.1 Page Sharing . 116
7.1.2 Patching . 117
7.1.3 Compression . 120
7.1.4 Paging Machine Memory 121

7.2 Implementation . 121
7.2.1 Modifications to Xen . 122
7.2.2 Clock . 125
7.2.3 Page Sharing . 127
7.2.4 Page Similarity Detection 127
7.2.5 Compression . 128
7.2.6 Paging Machine Memory 129

Chapter 8 Difference Engine Evaluation . 132
8.1 Cost of Individual Operations . 132
8.2 Clock Performance . 133
8.3 Techniques in Isolation . 138
8.4 Real-world Applications . 139

8.4.1 Base Scenario: Homogeneous VMs 140
8.4.2 Heterogeneous OS and Applications 144
8.4.3 Increasing Aggregate System Performance 145

Chapter 9 Conclusions . 149
9.1 Future Work . 150

9.1.1 Infrastructure Optimization 150
9.1.2 Exploiting Improved Hardware Support 152
9.1.3 Scaling Low-level Subsystems 152

9.2 Limitations . 153
9.3 Summary . 155

Bibliography . 159

viii

LIST OF FIGURES

Figure 1.1: A virtual machine environment vs. a regular operating system. 2
Figure 1.2: With traditional multiplexing, on a single physical machine hosting four

virtual machines, each VM gets a fraction of the underlying physical re-
sources. 5

Figure 2.1: VMM taxonomy: Type I VMMs execute directly on the hardware, while
Type II VMMs need a host OS to run. 17

Figure 2.2: Xen is a Type-I hypervisor supporting both para-virtualized and fully-
virtualized VMs. 21

Figure 3.1: Scaling a network service to the DieCast infrastructure. 30

Figure 4.1: Compare a system operating in real time (top) with a system running with
a TDF of 10 (bottom). Note that time dilation does not affect the rate of
external events, such as network packet arrival. 40

Figure 4.2: Packet timings for the first second of a TCP connection with no losses
for native Linux and three time dilation configurations. In all cases, we
configure link bandwidth and delay such that the bandwidth-delay product
is constant. 54

Figure 4.3: Packet timings for the first second of a TCP connection with 1% deter-
ministic losses. 56

Figure 4.4: Packet timings for 200 ms of the trace show in Figure 4.3 starting at an
offset of 400 ms. 57

Figure 4.5: Comparison of inter-packet transmission times for a single TCP flow across
10 runs. 58

Figure 4.6: Protocol Evaluation: Per-flow throughput of 50 flows for TCP and TCP
BiC between two hosts on a network with an 80-ms RTT as a function of
network bandwidth. 61

Figure 4.7: Protocol evaluation: Normalized average per-flow throughput of 50 flows
for TCP and TCP BiC between two hosts on a network with 150-Mbps
bandwidth as a function of RTT. 62

Figure 4.8: Using time dilation for evaluating BitTorrent: Increasing the number of
clients results in higher aggregate bandwidths, until the system reaches
some bottleneck (CPU or network capacity). Time dilation can be used to
push beyond these bottlenecks. 64

Figure 5.1: Per-flow throughput for 60 flows sharing a bottleneck link. Each flow lasts
10 seconds, and each group of 20 flows is subject to a different RTT. The
mean and deviation are taken across the flows within each group. 72

Figure 5.2: Mean throughput of 50 TCP flows between two hosts on a network with
an 80-ms RTT as a function of network bandwidth. The 50 flows are
partitioned among 1–10 virtual machines. 73

Figure 5.3: Allocation error in the SEDF scheduler. 76
Figure 5.4: Allocation error in the Credit scheduler. 77

ix

Figure 5.5: CDF+
− of CPU allocation errors. 78

Figure 5.6: Normalized relative error over three minute intervals. 79
Figure 5.7: CPU allocation error, Credit, SMP case, 3 domains, NWC-mode. 80
Figure 5.8: CPU scaling. 81
Figure 5.9: Per-flow throughput of 50 TCP flows between a CPU-scaled sender and

unconstrained receiver. CPU utilization at the sender is restricted to the
indicated percentages. 83

Figure 5.10: Per-flow throughput of 50 TCP flows between an unconstrained sender and
a CPU-scaled receiver. CPU utilization at the receiver is restricted to the
indicated percentages. 83

Figure 5.11: Per-flow throughput of 50 TCP flows across two hosts as a function of
network bandwidths. CPU utilization at the sender is restricted to the
indicated percentages. Experiments run with TDF of 10. 84

Figure 5.12: For para-virtualized VMs, we inject per-request delays in the blkfront

device driver. Disk scaling for fully-virtualized VMs is delegated to a per-
VM disksim process that integrates with ioemu to appropriately delay
each request. 85

Figure 5.13: dd throughput under time dilation using DiskSim. 87
Figure 5.14: DBench throughput under time dilation using DiskSim. 88

Figure 6.1: Topology for BitTorrent experiments . 93
Figure 6.2: Performance with varying file sizes. 93
Figure 6.3: Varying topology and version. 94
Figure 6.4: Varying number of clients. 95
Figure 6.5: Different configurations. 96
Figure 6.6: RUBiS setup. 98
Figure 6.7: Comparing RUBiS application performance: Baseline vs. DieCast. . . . 99
Figure 6.8: CPU profile. 100
Figure 6.9: Memory profile. 101
Figure 6.10: Network profile. 101
Figure 6.11: Architecture of Isaac. 102
Figure 6.12: Request completion time. 103
Figure 6.13: Tier-breakdown. 104
Figure 6.14: Stressing database and CPU. 105
Figure 6.15: Validating DieCast on PanFS. 109

Figure 7.1: The three different memory conservation techniques employed by Differ-
ence Engine: whole-page sharing, page patching, and compression. In
this example, five physical pages are stored in less than three machine
memory pages for a savings of roughly 50%. 115

Figure 7.2: Effectiveness of the similarity detector for varying number of indices, index
length and number of candidates. All entries use a 18-bit hash. 120

Figure 7.3: The page-state transition diagram. 122
Figure 7.4: Architecture of the swap mechanism. 129

x

Figure 8.1: Lifetime of patched and compressed pages for three different workloads.
Our NRU implementation works well in practice. 134

Figure 8.2: Workload: Identical pages. Performance with zero pages is very similar.
All mechanisms exhibit similar gains. 135

Figure 8.3: Workload: Random pages. None of the mechanisms perform very well,
with sharing saving the least memory. 136

Figure 8.4: Workload: Similar pages with 95% similarity. Patching does significantly
better than compression and sharing. 137

Figure 8.5: Difference Engine performance with homogeneous VMs running RUBiS 141
Figure 8.6: Difference Engine performance with homogeneous VMs compiling the

Linux kernel. 142
Figure 8.7: Four identical VMs executing dbench. For such homogeneous workloads,

both Difference Engine and ESX eventually yield similar savings, but
DE extracts more savings while the benchmark is in progress. 143

Figure 8.8: Memory savings for Mixed-1. Difference Engine saves up to 45% more
memory than ESX. 144

Figure 8.9: Memory savings for Mixed-2. Difference Engine saves almost twice as
much memory as ESX. 145

Figure 8.10: Up to a limit, Difference Engine can help increase aggregate system
performance by spreading the load across extra VMs. 146

xi

LIST OF TABLES

Table 4.1: Basic dilation summary. 44
Table 4.2: Network scaling. 51
Table 4.3: Validating performance prediction: the mean per-flow throughput and stan-

dard deviations of 50 TCP flows for different hardware configurations. . . 53
Table 4.4: Statistical summary of inter-packet transmission times. 59

Table 5.1: Restoring fidelity: Time dilation alone is not sufficient to match the re-
source characteristics of machines in the original system — mechanisms to
independently scale various resources are required. 68

Table 6.1: Time taken (in seconds) to download a 50 MB file averaged across ten
BitTorrent clients. Disk I/O scaling matters more in systems with significant
disk I/O. In particular, if network latencies dominates, the impact of disk
scaling diminishes. 97

Table 6.2: Aggregate read/write throughputs from the IOZone benchmark with block
size 16 MB. PanFS performance scales gracefully with larger client pop-
ulations. 110

Table 7.1: Effectiveness of page sharing across three 512-MB VMs running Windows
XP, Debian and Slackware Linux using 4-KB pages. 118

Table 7.2: Memory consumed by Difference Engine data structures for identifying
memory sharing opportunities. These are the fixed costs only, and do not
include per-VM overhead for data structures such as shadow page tables.
All memory is allocated from Xen’s heap, which is under 12 MB in size. 122

Table 7.3: Throughout of scp between two VMs for various ioemu mapping strategies.124

Table 8.1: CPU overhead of different functions. 133
Table 8.2: Application performance under Difference Engine for the heterogeneous

workload Mixed-1 is within 7% of the baseline. 145

xii

ACKNOWLEDGEMENTS

When I was applying to graduate school, I had no intention of joining a PhD program,

let alone completing a PhD. I have come a long way since and this journey would not have

been possible without the support of family, friends, colleagues and several others. While I

have tried my best to be thorough in my acknowledgments, let me apologize beforehand for

any omissions — the fault is entirely mine.

The cornerstone of a fruitful Ph.D. is the relationship between the adviser and the

advised. Beyond the technical output of a dissertation, I believe that the real lessons learnt in

graduate school lie in the non-technical knowledge gained from this relationship. I am truly

grateful that I could work with Professor Amin Vahdat for my dissertation, and I will be forever

indebted to him for giving me this opportunity. Amin has been a source of inspiration for me,

both professionally and personally. Whenever I felt lost or drifted and lost focus, he was there

to nudge me in the right direction; whenever I was being unproductive or feeling demotivated,

he was there to gently correct me and provide the required moral boost. Amin’s keen intellect

and wisdom are matched only by his humility and modesty. I continue to learn from him and

benefit from his experiences in all areas, be it time management, analyzing and approaching a

new problem, maintaining a good work–life balance, or managing people and priorities.

One of the things I admire most about Amin is his attitude towards his students. He

approaches each student differently, depending on the individual — he does not prescribe to

the one-size-fits-all approach. I distinctly recall my first Ph.D. review with him. The Ph.D.

review is an opportunity for the adviser and the student to discuss each others’ strengths and

weaknesses. At the outset, Amin told me that I had many strengths but discussing them

would not help me. Instead, he suggested, that we discuss my weaknesses. At this point, he

proceeded to succinctly point out four specific areas he thought I could improve upon. At first

I was a little disappointed. But in hindsight, I realize that it was probably the most productive,

useful and influential meeting I’ve had with Amin in all these years. I only hope that I have

been able to improve myself in those areas. Amin is a true visionary. He has the uncanny

ability to crystallize grand project ideas and instantly fashion a “big picture” out of the vague,

disconnected ideas that I would present him with. He has been an absolute pleasure to work

with, giving me the space to explore tangential ideas when I wanted, while at the same time

keeping me from wandering aimlessly for too long.

Of course, I am indebted to several other faculty members in the SysNet group as

well. I would especially like to express my gratitude to the following faculty members: Alex

xiii

Snoeren, for one of the most enjoyable classes I took at UCSD and for teaching me how to

analyze graphs; Stefan Savage, for teaching me how to identify exciting problems and how

to convert radical, outrageous sounding ideas into feasible and news-worthy research projects;

Geoff Voelker, for coming up with the wonderful names for my papers, for his warm and

genteel temperament and for teaching me how to evaluate a system; George Varghese, for

teaching me how to put ideas into practice and how to convert theory into applied research.

But graduate school would be impossible without the support of colleagues and friends.

I’m thankful to my friends in the systems group at large, and my lab-mates in particular for

all the good times in school — sessions of playing foosball and darts, latte breaks and most

importantly, the hallway conversations. In particular, I want to thank Alvin AuYoung, John

McCullough, Justin Ma, Marti Motoyama, Priya Mahadevan, Qing Zhang, Ryan Braud, and

Yuvraj Agarwal for their camaraderie — it has been an absolute pleasure and an honor working

with these fine folk. One colleague, however, has been particularly inspiring for me: I started

working with Kashi Venkatesh Vishwanath as a young graduate student and during the course

of the next few years I learnt tremendously from him, especially about working smarter, not

harder and the importance of automation and systematic benchmarking.

The sysadmin staff for our group has been amazing and instrumental in my dissertation.

Marvin McNett is always a wealth of information and it was reassuring to have him by my

side, both as support staff and later as fellow grad student. Chris Edwards is an endless source

of amazement to me — how could a single person know so much about so many different

things is something I still struggle with. I shall always cherish the long discussions we had.

I also want to thank the administrative staff, in particular Michelle Panik, Kim Greeves and

Paul Terry. No Ph.D. in the department would ever complete without the tireless perseverance

and vigilance of Julie Conner, so many thanks to her as well.

I next want to thank the Indian graduate student community in UCSD. I made some

lifelong friends during my time here. I specially want to thank my first house mates from

Apartment 6224 and members of the UCSDPanduz — you have given me some wonderful

memories! My heartfelt gratitude to my friends out of town who provided me with the much

needed support and encouragement from hundreds and thousands of miles away — Asim

Shankar, Priyendra Singh Deshwal, Abhaya Agarwal, Vibhore Vardhan and Ravi Shankar

Srivastava warrant a special mention.

My acknowledgments would be incomplete without a mention of the free and open

source software community. I’m a passionate user and advocate, and a modest contributor of

xiv

open source software. This dissertation would not have been possible without open source:

from the Xen virtual machine monitor on which my entire dissertation is built, to the tools I

use on a daily basis for conducting and publishing my research. So thank you, all the tireless,

unsung heroes whose voluntary efforts have given millions quality software for free, and more

importantly, an opportunity to understand and learn the way these applications work.

And finally, I would like to thank my family. I am what I am today because of my

parents. They are the pillars of support and inspiration in my life. I thank them for simply

being them, for their unwavering trust and confidence, and for their guidance and wisdom. I

only wish I can bring as much pride to them as they bring to me. I thank my sister for being

the perfect elder sister. Her constant love and support are hugely motivating and I thank her

for giving me perspective on so many things in life. Last, but not the least, I want to thank

my wife, Surabhi, for making my life a lot more adventurous and exciting than it used to be.

She has been a wonderful listener, and her patience and encouragement saw me through the

most frustrating of times.

I always believed that a Ph.D. is more about the journey than the reaching the destina-

tion. Having gone through the process, the belief has turned into a conviction. This journey

could not have been possible without the tremendous support of friends, family and colleagues

and I am grateful to them for this opportunity.

Chapters 1, 4 and 5, in part, are reprints of the material as it appears in Proceedings

of USENIX Symposium on Networked Systems Design and Implementation (NSDI) 2006.

Gupta, Diwaker; Yocum, Kenneth; McNett, Marvin; Snoeren, Alex C.; Vahdat, Amin; Voelker,

Geoffrey M. The dissertation author was the primary investigator and author of this paper.

Chapters 1, 3, 5 and 6, in part, are reprints of the material as it appears in Proceedings

of USENIX Symposium on Networked Systems Design and Implementation (NSDI) 2008.

Gupta, Diwaker; Vishwanath, Kashi V.; Vahdat, Amin. The dissertation author was the primary

investigator and author of this paper.

Chapters 1, 7 and 8, in part, are reprints of the material as it appears in Proceedings of

USENIX Symposium on Operating System Design and Implementation (OSDI) 2008. Gupta,

Diwaker; Lee, Sangmin; Vrable, Michael; Savage, Stefan; Snoeren, Alex C.; Varghese, George;

Voelker, Geoffrey M.; Vahdat, Amin. The dissertation author is the primary investigator and

author of this paper.

xv

VITA

2003 B.Tech. in Computer Science and Engineering,
Indian Institute of Technology, Kanpur, India

2006 M.S. in Computer Science,
University of California, San Diego

2009 Ph.D. in Computer Science,
University of California, San Diego

PUBLICATIONS

“Difference Engine: Harnessing Memory Redundancy in Virtual Machines.” Diwaker Gupta,
Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Snoeren, George Varghese, Geoffrey M.
Voelker and Amin Vahdat. Proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2008.

“DieCast: Testing Distributed Systems with an Accurate Scale Model.” Diwaker Gupta, Kashi
V. Vishwanath and Amin Vahdat. Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2008.

“Usher: An Extensible Framework for Managing Clusters of Virtual Machines.” Marvin
McNett, Diwaker Gupta, Amin Vahdat and Geoffrey M. Voelker. Proceedings of the 21st
Large Installation Systems Administration Conference (LISA), 2007.

“Enforcing Performance Isolation Across Virtual Machines.” Diwaker Gupta, Ludmila Cherkasova,
Rob Gardner and Amin Vahdat. Proceedings of the 7th ACM/IFIP/USENIX Middleware Con-
ference (MIDDLEWARE), 2006.

“To Infinity and Beyond: Time-Warped Network Emulation.” Diwaker Gupta, Kenneth Yocum,
Marvin McNett, Alex C. Snoeren, Amin Vahdat and Geoffrey M. Voelker. Proceedings of the
3rd USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2006.

“Routing in an Internet-Scale Network Emulator.” Jay Chen, Diwaker Gupta, Kashi V. Vish-
wanath, Alex C. Snoeren and Amin Vahdat. Proceedings of the 12th ACM/IEEE Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), 2004.

xvi

ABSTRACT OF THE DISSERTATION

Scalable Virtual Machine Multiplexing

by

Diwaker Gupta

Doctor of Philosophy in Computer Science

University of California, San Diego, 2009

Professor Amin Vahdat, Chair

A virtual machine (VM) is a software abstraction of a real, physical machine. Virtu-

alization has been around for almost 50 years, beginning with IBM’s pioneering work in the

1960s. However, recent years have seen a significant surge in the interest and use of virtualiza-

tion, driven by better hardware support, increasing power costs and low resource utilizations.

Server consolidation is by far the most common application for virtualization — by aggregating

multiple services on a single physical machine, organizations can reduce costs and increase

the utilization of their infrastructure. While server consolidation remains a powerful driving

force, virtualization is now becoming even more compelling for the innovative applications it

enables, such as to support legacy software, for disaster recovery and backup, and for intrusion

detection and malware analysis, to name a few.

The key premise of this dissertation is that the ability to efficiently multiplex virtual

machines is critical to realizing the benefits of virtualization, not just for existing applications

such as server consolidation, but also in enabling some fundamentally new applications. An

inevitable consequence of conventional mechanisms for multiplexing is resource partitioning:

individual VMs can only use a fraction of the actual physical resources. This partitioning

limits not only the resources available for a single VM, but also the total number of VMs

that the hardware can support. Here we hit a fundamental barrier — the aggregate resources

xvii

available to the VMs are bounded by the capacity of the underlying hardware. This dissertation

describes mechanisms to work around this barrier to increase the perceived resource capacity

of individual VMs, as well as to increase the total number of VMs that can be created.

First, we present “time dilation,” a technique that allows the perceived aggregate ca-

pacity of the VMs to exceed the capacity of the underlying hardware. Time dilation also

enables many interesting experiments, such as predicting application behavior and protocol

performance in resource-rich environments. Next, we use time dilation to build a framework

and methodology called DieCast for accurate testing of large systems using a much smaller

infrastructure. Finally, we present Difference Engine, a system that exploits fine-grained

similarities in memory among VMs to extract twice as much memory savings as the current

state of the art, thus freeing memory for additional VMs. Together, our contributions make

significant advances in making virtual machine multiplexing more scalable.

xviii

Chapter 1

Introduction

It is not often that an old idea, one that has been around for more than half a century,

is suddenly able to generate the kind of interest and excitement that virtualization has done in

recent years. Virtualization refers to the methodology of partitioning a single, physical machine

into independent, isolated containers, each of which can host its own operating system and

application stack. A virtual machine environment differs significantly from the conventional

operating system model for managing resources on a physical machine.

Figure 1.1a shows a regular physical machine where the operating system (OS) is

responsible for managing the various system resources such as CPU and main memory among

several applications. In a virtualized environment (Figure 1.1b), instead of the OS managing

the hardware resources, there is a thin software layer called the virtual machine monitor

(VMM) that is responsible for managing the system resources among several virtual machines

(VMs), sometimes also referred to as domains. The VMM is sometimes also referred to as

the hypervisor — we use the two terms interchangeably in this dissertation.

Popek and Goldberg [88] define a virtual machine to be an “efficient, isolated duplicate

of the real machine.” Thus, a virtual machine is essentially a software abstraction of a real,

physical machine. Each VM can have its own OS and application stack. Typically, this

is completely transparent to software running inside the virtual machine — for all practical

purposes, the software believes that it is actually running on real hardware. The operating

system running in a VM is called a guest OS. The hardware and software techniques and the

methodology used to support the VM abstraction are collectively referred to as virtualization.

The history of virtualization — its origins and subsequent obsolescence for nearly

three decades, followed by the recent resurgence — is instructive in that it demonstrates how

1

2

Operating

System

Applications

(a) The operating system is convention-

ally responsible for managing system re-

sources among several applications.

Virtual�Machine�Monitor

Virtual�Machines

(b) The virtual machine monitor multi-

plexes the physical resources among sev-

eral virtual machines. The operating sys-

tem within each virtual machine believes

it is running on real hardware.

Figure 1.1: A virtual machine environment vs. a regular operating system.

technology that is ahead of its time is sometimes abandoned, and how good ideas eventually are

recycled. IBM did much of the pioneering work in virtualization in the 1960s when computers

were huge, expensive and inaccessible to but a select few. As a result, there was significant

interest in techniques that would allow multiple users to simultaneously access a computer.

Time-sharing and multiprogramming were borne out of the initial efforts to support multi-user

environments.

Virtualization emerged as a natural extension to these ideas, since a virtual machine

could cleanly encapsulate the entire operating system and application stack, completely isolat-

ing users from one another. In a regular operating system, users often share the file system and

software stack along with all the installed applications and libraries. Furthermore, resource

accounting and allocation typically happens at process granularity in such systems. Virtual

machines simplify the allocation and accounting, especially if each user is using several pro-

cesses. Each user can also set up his or her own distinct software environment — right from

the underlying operating system up to the applications — independent of other users on the

machine. Thus, VMs offered a much cleaner and more complete abstraction than simple

process-based address-space isolation.

Another early motivation for virtualization was to provide portability and backwards

3

compatibility. At that time, every new system was different than previous systems both in terms

of the low-level hardware interface, as well as the system software. As a result, software had

to be rewritten from scratch for each different system. IBM pioneered the use of virtualization

to support both forward and backward compatibility by standardizing the instruction set [43].

We take standardized architectures granted for today, but back then this was a revolutionary

concept. By using a virtual machine monitor, they could guarantee that the operating system

would always see a consistent hardware interface, regardless of the actual hardware running

underneath. A side-effect of this instruction-level standardization was that it became possible

for other hardware vendors to build IBM-compatible hardware. IBM’s monopoly established

its hardware platform as the de facto architecture for which software was written. As a result,

new entrants in to the computer hardware market had incentive to provide compatibility with

software written for IBM hardware by using an appropriate virtualization layer [1]. These

virtualization layers often exported a different hardware interface than the physical hardware.

As personal computers and commodity servers replaced mainframes, clusters of inex-

pensive, off-the-shelf equipment emerged as the preferred model for computing. As opposed

to a centralized mainframe, compute resources were distributed across a large number of ma-

chines. Complicated mechanisms such as virtualization were an overkill for low-end machines

like the initial PCs. At the same time, the emergence of portable, commodity OSes like

Unix and Windows provided a common platform for software developers, further obviating the

need for virtualization to provide hardware compatibility. As a result, interest in virtualization

gradually faded and the idea was largely abandoned for the next two decades.

However, by the late 90s, personal computers had become powerful enough that com-

modity operating systems were not able to effectively utilize resources such as multiple proces-

sors and large amounts of memory. This led to research efforts such as Disco [27] in 1997 that

explored the use of virtualization as a means of enabling commodity OSes to use the hardware

more effectively without having to significantly modify or rewrite the operating system. Over

the past decade, interest in virtualization has continued to increase steadily. In particular, the

last few years have seen a significant surge in the interest and use of virtualization, both in the

industry and academia. Virtualization was a $5.5 billion industry in 2007 and is expected to

grow to $11 billion by 2011 [2]. Another study estimates that by 2009, two-thirds of all IT

departments will virtualize almost half of their servers [57].

While there are many factors contributing to this renewed interest, they can be sum-

marized thus: virtualization enables more efficient use of existing resources. In other words,

4

organizations see virtualization as a way of getting more value out of their infrastructure. The

overarching theme of this dissertation is in the same spirit: to extract more value and utility

from a given infrastructure using virtualization. Let us take a closer look at the two dominant

driving forces behind virtualization.

The first is based around total cost of ownership (TCO). While the infrastructure costs

of a datacenter have remained largely stable, the administrative costs and the power and cooling

costs have increased at an alarming rate and continue to do so [3, 77, 91]. Further, anecdotal

evidence suggests that typical datacenter servers are severely under-utilized, typically running

at 5–15% utilization [4] because of the need to over-provision for peak levels of demand,

because fault isolation mandates that individual services run on individual machines, and

because many services often run best on a particular operating system configuration (precluding

service sharing for a particular configuration). Hence, enterprises have significant incentive

to consolidate their servers using virtualization: by aggregating multiple services on fewer

physical machines, organizations can reduce costs and increase resource utilization levels.

The other and perhaps more important reason why virtualization is increasingly more

compelling is its versatility: virtualization has enabled novel applications in many different

areas. For instance, since the VMM can export different hardware interfaces to the guest OS,

virtualization can support legacy software and hardware, even if the real hardware does not

exist or is unavailable. Virtual machines provide a secure, isolated container to run an operating

system. The powerful system-level monitoring and introspection offered by VMs is useful for

many applications such as intrusion detection [47] and malware detection [103, 69]. VMs also

provide fine-grained (instruction-level) logging, useful for debugging operating systems [70].

Finally, virtual machines can be created on demand and migrated from one physical machine to

another. This ability gives organizations tremendous flexibility in provisioning resources, and

allows them to rapidly adapt to failures [84] and changing workloads. Section 2.2 offers a more

comprehensive list of the various benefits of virtualization. Virtualization thus presents unique

opportunities, both as a vehicle for academic research, and also for commercial products.

This dissertation makes contributions in both of these domains. The key premise is

that the ability to efficiently multiplex virtual machines is critical to realizing the benefits of

virtualization. An obvious consequence of conventional mechanisms for multiplexing virtual

machines is resource partitioning: virtual machines hosted on the same physical machine will

share the underlying physical resources, and hence, individual VMs can only use a fraction of

the actual resources. Resource partitioning limits not only the resources available for a single

5

CPU

Network

Memory } }

Horizontal
Scalability

Vertical
Scalability

Traditional
Multiplexing

Physical
Machine

Virtual
Machines

Figure 1.2: With traditional multiplexing, on a single physical machine hosting four virtual

machines, each VM gets a fraction of the underlying physical resources.

VM, but also the total number of VMs that the hardware can support (see Figure 1.2). We refer

to the former problem as vertical scalability and the latter as horizontal scalability. Note that

these limits are not independent — increasing the number of VMs would reduce the resources

available to any single VM. Together, they represent a fundamental barrier — the aggregate

resources available to the VMs on a single physical machine are bounded by the capacity of

the underlying hardware. Similarly, the utility of a given set of virtual machines is limited by

the total hardware capacity of the underlying physical infrastructure.

We show that both these challenges can be addressed by reconsidering conventional

mechanisms for resource multiplexing. This dissertation claims that alternate mechanisms for

resource multiplexing exist. Further, these mechanisms not only support existing applications

of virtualization in areas such as server consolidation, but also enable several unique and

important applications that would not have been possible otherwise.

Addressing horizontal scalability means increasing the number of VMs that a single

physical machine can support. A higher multiplexing factor allows for more aggressive server

consolidation, for instance, translating to reduced costs and increased utilization. However, it

is unclear what it means to address vertical scalability in this context. We cannot possibly

create more physical resources out of void, so clearly the real resource capacity of a VM will

always be bounded. However, what can be manipulated is the perceived resource capacity

of individual VMs. This dissertation presents mechanisms to allow the perceived resource

capacity of VMs to exceed that of the underlying hardware. We argue that this ability enables

some unique applications that would have been otherwise impossible.

We next present two concrete problems that can benefit from the capability to go

6

beyond the hardware capacity. Both these problems are particularly relevant and timely in

today’s world of increasingly large and complex systems that we interact with on a daily basis.

The Internet is an obvious example, but air-traffic control systems, stock exchanges, cellular

and telephone networks, cable and satellite television are all examples of such large, distributed

systems. Because of the increasing dependence of our socio-economic infrastructure on such

systems, our ability to effectively test and accurately evaluate them — especially at scale —

is paramount. Unfortunately, as the following examples show, all too often we are limited in

our testing and empirical evaluation by the capacity of the underlying hardware.

1.1 Scalable Network Emulation

Network emulation is a popular and widely used technique for testing systems, predict-

ing system behavior and exploring application performance [102]. However, researchers are

forced to work within the constraints of the capacity of the underlying hardware, for example,

the bandwidth of the underlying network. While more powerful machines and higher capacity

networks may exist, they will probably be accessible to a select few, and, even then, availability

might be constrained geographically as well as temporally. Further, for certain regimes, the

physical hardware might simply not exist (such as terabit wide-area links). Software-based

simulators also make it possible to explore arbitrary resource regimes. However, a complete

software simulation lacks realism — ideally we would like to use real hardware with unmodi-

fied operating systems and applications. The ability to experiment beyond the physical capacity

of underlying hardware presents a number of interesting applications. Consider the following

scenarios:

• Emerging I/O technologies. Imagine a complex cluster-based service interconnected

by 100-Mbps and 1-Gbps Ethernet switches. The system developers suspect overall

service performance is limited by network performance. However, upgrading to 10-

GigE switches and interfaces involves substantial expense and overhead. The developers

desire a low-cost mechanism for determining the potential benefits of higher-performance

network interconnects before committing to the upgrade.

• Scalable network emulation. Today large ISPs cannot evaluate the effects of modifica-

tions to their topology or traffic patterns outside of complex and high-level simulations.

While they would like to evaluate internal network behavior driven by realistic traffic

7

traces, this often requires accurate emulation of terabits per second of bisection band-

width.

• High bandwidth-delay networking. We have recently seen the emergence of computa-

tional grids [20, 51] inter-connected by high-speed and high-latency wide-area intercon-

nects. For instance, 10-Gbps links with 100–200 ms round-trip times are currently feasi-

ble. Unfortunately, existing transport protocols, such as TCP, deliver limited throughput

to flows sharing such a link. A number of research efforts have proposed novel proto-

cols for high bandwidth-delay-product settings [65, 74, 113, 112, 63, 52, 67]. However,

evaluation of the benefits of such efforts is typically relegated to simulation or to those

with access to expensive wide-area links. But even with access to such links, it is not

possible to experiment with “what if” scenarios.

1.2 Large-Scale Testing

Today, more and more services are being delivered by complex systems consisting

of large ensembles of machines spread across multiple physical networks and geographic

regions. Economies of scale, incremental scalability, and good fault-isolation properties have

made clusters the preferred architecture for building planetary-scale services. A single logical

request may touch dozens of machines on multiple networks, all providing instances of services

transparently replicated across multiple machines. Services consisting of hundreds of thousands

of machines now exist [33, 95].

Economic considerations have pushed service providers to a regime where individual

service machines must be made from commodity components—saving an extra $500 per node

in a 100,000-node service is critical. Similarly, nodes run commodity operating systems,

with only moderate levels of reliability, and custom-written applications that are often rushed

to production because of the pressures of “Internet Time.” In this environment, failure is

common [85] and it becomes the responsibility of higher-level software architectures, usually

employing custom monitoring infrastructures and significant service and data replication, to

mask individual, correlated, and cascading failures from end clients [97].

One of the primary challenges facing designers of modern network services is testing

their dynamically evolving system architectures. In addition to the sheer scale of the target sys-

tems, challenges include: heterogeneous hardware and software, dynamically changing request

patterns, complex component interactions, failure conditions that only manifest under high

8

load [75], the effects of correlated failures [59], and bottlenecks arising from complex network

topologies. Before upgrading any aspect of a networked service—the load balancing/replication

scheme, individual software components, the network topology—architects would ideally cre-

ate an exact copy of the system, modify the single component to be upgraded, and then subject

the entire system to both historical and worst-case workloads. Such testing must include sub-

jecting the system to a variety of controlled failure and attack scenarios since problems with

a particular upgrade will often only be revealed under certain specific conditions.

Creating an exact copy of a modern networked service for testing is often technically

challenging and economically infeasible. The architecture of many large-scale networked ser-

vices can be characterized as “controlled chaos,” where it is often impossible to know exactly

what the hardware, software, and network topology of the system looks like at any given time.

Even when the precise hardware, software and network configuration of the system is known,

the resources to replicate the production environment might simply be unavailable, particu-

larly for large services. And yet, reliable, low-overhead, and economically feasible testing of

network services remains critical to delivering robust higher-level services. As one motivating

example, consider that the Nikkei Stock Exchange recently shut down for a day [22] while the

New York Stock Exchange indicated an inaccurate precipitous price drop (dropping 200 points

almost instantly) [9] as a result of, in both cases, unusually high trading volumes. Today,

testing Internet services is relegated to small-scale deployments on hardware, software, and

interconnects that only approximate the target architecture.

Instead, imagine if we had a framework to accurately predict the behavior of modern

network services while employing an order of magnitude less hardware. For example, consider

a service consisting of 10,000 heterogeneous machines, 100 switches, and hundreds of individ-

ual software configurations. Consider the benefits of configuring a small number of machines

(e.g., 100–1000 depending on service characteristics) to emulate the original configuration as

closely as possible. We could then subject this test infrastructure to the same workload and

failure conditions of the original service. The performance and failure response of the test

system should closely approximate the real behavior of the target system. Of course, these

goals are infeasible without giving something up: if it were possible to capture the complex

behavior and overall performance of a 10,000 node system on 1,000 nodes, then the original

system should likely run on 1,000 nodes.

The ability to increase the perceived resource capacity of VMs, allowing the aggregate

capacity to exceed that of the underlying hardware, makes such a framework possible. Mech-

9

anisms to increase vertical scalability are therefore critical for such applications. But note that

such a framework would benefit from horizontal scalability as well — packing more VMs on

fewer physical machines will reduce the hardware required to replicate and test a given system

even further. As we mentioned earlier, horizontal scalability also supports existing applications

such as server consolidation.

1.3 Challenges

Standard mechanisms for resource multiplexing in VMMs provide neither horizontal

nor vertical scalability. For instance, CPU and network are typically time-shared among VMs

while main memory is often simply statically partitioned. Scaling a system both horizontally

and vertically implies that the system somehow sees more resources than the actual physical

resources available. Clearly, we must give something up in order to do this. In this section we

highlight the main challenges and trade-offs in achieving vertical and horizontal scalability.

1.3.1 Vertical Scalability

Since we do not have control over the availability of actual physical resources, our

approach to address vertical scalability is to instead simply convince the operating system (and,

hence, all applications) that it has more resources than it actually does. As this dissertation

will demonstrate, if implemented properly, this perception alone is extremely powerful even

though the real resource availability remains unchanged. To be useful, this perception must

be:

• transparent, meaning that existing operating systems and applications should not require

any modifications. Transparency is desirable because we want to our approach to be

broadly applicable: requiring operating system support not only involves significant

implementation overhead to support multiple platforms, but also assumes that operating

systems can be trusted and users are not malicious.

• pervasive, meaning that the operating system and applications should not be able to

detect that the resource capacity they perceive does not reflect reality — the resources

must appear and behave exactly as real resources. A pervasive implementation is required

to present a consistent view of the world — if different components in a system perceive

different realities, it can lead to unexpected behavior.

10

Next, in order to validate such an approach, we need to compare an existing system

that matches the perceived resource capacity of some test system. That is, we must compare

two systems such that the real resource capacity of one matches the perceived resource capacity

of the other. Appropriately configuring systems for such resource equivalence requires fine-

grained control over the allocation of various system resources such as CPU and network

bandwidth. Such control is particularly challenging for disk I/O: no good mechanisms exist

to control the quality of service for disk I/O (such as throughput and latency) even in regular

operating systems, let alone virtual machine monitors.

Thus the key challenges for achieving vertical scalability are implementing a broadly

applicable mechanism for creating a high-fidelity alternate reality for VMs where the perceived

resource capacity differs from the real resource capacity, and providing fine-grained, indepen-

dent knobs for controlling the actual physical resources available to each virtual machine.

1.3.2 Horizontal Scalability

We noted earlier that virtual machines are particularly attractive for server consolida-

tion. Their strong resource and fault isolation guarantees allow multiplexing of hardware among

individual services, each configured with a custom operating system. One of the promises of

virtual machine technology for server consolidation is to run many such services on a single

physical machine while still allowing independent configuration and failure isolation. This is

precisely the notion of horizontal scalability. The first step in increasing horizontal scalability

is to identify the primary bottleneck in creating more VMs per physical machine. Since each

additional VM consumes some system resources, the primary bottleneck is the system resource

that is exhausted most quickly.

First, note that the CPU requirements of applications (and frequently, VMs, since a

common model is to dedicate one VM per application) is often bursty [39, 41]. Such bursty

usage patterns make statistical multiplexing particularly attractive: systems can be provisioned

for average load since the likelihood of all co-located VMs hitting peak load are quite small.

However, while physical CPUs are frequently amenable to such multiplexing, main

memory is not. For instance, while many services run comfortably with 1 GB of main

memory, a multiplexing degree of 10 would require that each VM running on a host be

allocated just 100 MB of main memory. Increasing a machine’s physical memory is often both

difficult and undesirable. Incremental upgrades in memory capacity are subject to both the

availability of extra slots on the motherboard and the ability of the memory chipset to support

11

higher-capacity modules. Moreover such upgrades often involve replacing—as opposed to

just adding—memory chips. Not only is high-density memory expensive, it also consumes

significant power. Looking forward, as high density multi-core processors become the norm,

the bottleneck for VM multiplexing will increasingly be the memory, not the CPU. Finally,

applications and operating systems are becoming more and more resource-intensive. As a

result, commodity operating systems require significant physical memory to avoid frequent

paging.

Not surprisingly, researchers and commercial VM software vendors have focused sig-

nificant attention on decreasing the memory requirements for virtual machines. Notably, the

VMware ESX server implements content-based page sharing, which has been shown to reduce

the memory footprint of multiple, homogeneous virtual machines by 10–40% [110]. We find

that these values depend greatly on the operating system and configuration of the guest VMs.

We are not aware of any previously published sharing figures for mixed-OS ESX deployments.

Our evaluation indicates, however, that the benefits of ESX-style page sharing decrease as the

heterogeneity of the guest VMs increases, due in large part to the fact that full-page sharing

requires the candidate pages to be identical. We claim that there are significant additional ben-

efits from sharing at a sub-page granularity, i.e., there are many pages that are nearly identical.

The challenge then is to efficiently find such similar pages and to coalesce them into a smaller

memory footprint without degrading application performance.

1.4 Contributions

Scalable multiplexing poses several challenges, and, at the same time, presents new

opportunities for applying virtualization in scalable network emulation and large-scale testing.

This dissertation explores alternative approaches for resource multiplexing in virtual machines

and the applications they enable. We claim that 1) we can increase the perceived resource

capacity of VMs (to address vertical scalability) by giving up time itself, and that 2) more

efficient memory management mechanisms for VMMs exist, and that these mechanisms can

increase the number of VMs that can be supported on a single physical machine (for horizontal

scalability). Increasing the perceived resource capacity of a given infrastructure allows us

to accurately replicate and test much larger systems, while packing more VMs on a single

physical machine enables aggressive server consolidation. We validate our claims by providing

comprehensive implementations for a popular open-source virtual machine monitor. We further

demonstrate how our mechanisms can be used in practice to attack some of the concrete

12

problems we introduced earlier in the chapter. Specifically, this dissertation makes the following

contributions:

1.4.1 Time Dilation

First, we develop a technique called time dilation to allow the perceived aggregate

capacity of a system to exceed the capacity of the underlying hardware. Our implementation

supports unmodified applications running in commodity operating systems and stock hard-

ware. The interposition between a VM and the VMM provides the additional potential to

independently dilate time for each hosted virtual machine.

• Time-dilated virtual machines. We show how to completely encapsulate a host running

a commodity operating system in an arbitrarily dilated time frame within a VM. We

allow processing power and I/O performance to be scaled independently (e.g., to hold

processing power constant while scaling I/O performance by a factor of 10, or vice

versa).

• Accurate network dilation. We perform a detailed comparison of TCP’s complex end-

to-end protocol behavior—in isolation, under loss, and with competing flows—under

dilated and real time frames. We find that both the micro and macro behavior of the

system are indistinguishable under dilation. To demonstrate our ability to predict the per-

formance of future hardware scenarios, we show that the time-dilated performance of an

appropriately dilated six-year old machine with 100-Mbps Ethernet is indistinguishable

from a modern machine with Gigabit Ethernet.

• End-to-end experimentation. We demonstrate the utility of time dilation by experi-

menting with a content delivery overlay service. In particular, we explore the impact

of high-bandwidth network topologies on the performance of BitTorrent [7], emulat-

ing multi-gigabit bisection bandwidths using a traffic shaper whose physical capacity is

limited to 1 Gbps.

1.4.2 DieCast

Next, we leverage time dilation to build DieCast, a complete environment for con-

structing accurate models of network services. DieCast is not just a framework, but also a

methodology for large scale testing of systems using a much smaller infrastructure. Our goals

with DieCast are to enable accurate testing of large systems at scale while preserving realism.

13

We run the actual operating systems and application software of some target envi-

ronment on a fraction of the hardware in that environment. To support complete system

evaluations, DieCast provides mechanisms to independently scale individual resources such

as CPU, network and disk in a dilated time frame. In particular, we integrate a full disk simula-

tor into the virtual machine monitor (VMM) to consider a range of possible disk architectures.

Finally, we conduct a detailed system evaluation, quantifying DieCast’s accuracy for a range

of services, including a commercial storage system.

1.4.3 Difference Engine

Main memory increasingly seems to be the primary bottleneck limiting the number

of virtual machines that can be supported by a single physical machine. To address this, we

present Difference Engine, an extension to the Xen virtual machine monitor that not only

shares identical pages, but also supports sub-page sharing and in-memory compression of

infrequently accessed pages. Among the set of similar pages, we are able to store multiple

pages as patches relative to a single baseline page. We view these sub-page patches as a form

of compression — one in which existing pages act as a pre-existing dictionary. Traditional

stream-based compression algorithms typically do not have sufficient “look-ahead” to find

commonality across a large number of pages or across large chunks of content, but they can

exploit commonality within a local region, such as a single memory page. Thus, we employ

traditional compression for those pages that are are not good candidates for patching and

also unlikely to be accessed in the near future. We show that an efficient implementation of

compression nicely complements whole-page sharing and patching.

Our results show that Difference Engine can reduce the memory footprint of ho-

mogeneous workloads by up to 90%, a significant improvement over previously published

systems [110]. For a heterogeneous setup (different operating systems hosting different appli-

cations), we can reduce memory usage by nearly 70%. In a head-to-head comparison against

VMware’s ESX server running the same workloads, Difference Engine delivers a factor of

1.5 more memory savings for a homogeneous workload and a factor of 1.6-2.5 more memory

savings for heterogeneous workloads. Critically, we demonstrate that these benefits can be

obtained without negatively impacting application performance. In fact, we show that Dif-

ference Engine can leverage this improved memory efficiency to increase aggregate system

performance by utilizing the free memory to create additional virtual machines in support of

a target workload. For instance, one can improve the aggregate throughput available from

14

multiplexing virtual machines running web services onto a single physical machine.

In summary, our contributions enable us to push beyond hardware limits by two orders

of magnitude for scalable network emulation, while preserving realism and accuracy. Similarly,

our techniques can be used to test a large scale system by using an order of magnitude smaller

infrastructure. Finally, we demonstrate a factor of two improvement in horizontal scalability by

making more efficient use of system memory. This work makes virtual machine multiplexing

significantly more scalable compared to the current state-of-the-art.

1.5 Organization

Chapter 2 covers the requisite background and concepts that are frequently referred to

in this dissertation. It also discusses the related work.

We introduce the DieCast framework in Chapter 3 with an overview of the DieCast

architecture. The chapter concludes by highlighting the requirement of time dilation and

accurate resource scaling to make DieCast possible. In Chapter 4, we describe time dilation

in detail. We discuss general implementation strategies and then describe our implementation

of time dilation in Xen. We then present a comprehensive validation and evaluation of time

dilation. While time dilation uniformly scales all temporal resources, DieCast additionally

requires mechanisms to independently control CPU, disk and network resources in a dilated

time frame. These are the subject matter of Chapter 5. We present the implementation

and microbenchmarks for each of the mechanisms. Chapter 6 evaluates DieCast across four

representative networked services, including a commercial file system.

Chapter 7 discusses the design and implementation of Difference Engine, our frame-

work for extracting memory savings across VMs by considering sub-page granularity redun-

dancies. We evaluate Difference Engine using microbenchmarks and a comprehensive suite

of workloads, including head-to-head comparisons against the VMware ESX server in Chapter

8.

Finally Chapter 9 presents some future work and concludes with a summary of the

dissertation.

Chapter 1, in part, is a reprint of the material as it appears in Proceedings of USENIX

Symposium on Networked Systems Design and Implementation (NSDI) 2006. Gupta, Diwaker;

Yocum, Kenneth; McNett, Marvin; Snoeren, Alex C.; Vahdat, Amin; Voelker, Geoffrey M.

The dissertation author was the primary investigator and author of this paper.

Chapter 1, in part, is a reprint of the material as it appears in Proceedings of USENIX

15

Symposium on Networked Systems Design and Implementation (NSDI) 2008. Gupta, Diwaker;

Vishwanath, Kashi V.; Vahdat, Amin. The dissertation author was the primary investigator

and author of this paper.

Chapter 1, in part, is a reprint of the material as it appears in Proceedings of USENIX

Symposium on Operating System Design and Implementation (OSDI) 2008. Gupta, Diwaker;

Lee, Sangmin; Vrable, Michael; Savage, Stefan; Snoeren, Alex C.; Varghese, George; Voelker,

Geoffrey M.; Vahdat, Amin. The dissertation author is the primary investigator and author of

this paper.

Chapter 2

Background and Related Work

Virtualization and virtual machines are much overloaded terms. For instance, many

dynamic programming languages such as Java, Python and Ruby have run-time environments

that are called virtual machines. We begin this chapter by clarifying the terminology and

definitions of various virtualization concepts in the context of this dissertation. We also discuss

some of the benefits and applications of virtualization.

While the ideas in this dissertation are applicable to virtual machine monitors in

general, most of our implementation is built on top of Xen [35], an open-source virtual machine

monitor. We give a brief overview of Xen in this chapter.

Finally, our work builds upon previous efforts in a number of areas, particular network

emulation, large-scale testing, memory management and virtual machine multiplexing. We

discuss the salient related work in each of these areas below.

2.1 Virtualization Concepts

There are several approaches to virtualization, and hence, several different ways of

classifying virtualization platforms. A common classification in the literature, due to Goldberg

[56], is to distinguish between Type I and Type II VMMs. Figure 2.1 depicts the differences

between these two types of VMMs. A Type I VMM, also known as a bare-metal hypervisor,

executes directly on the physical machine. Thus, in this model, the hypervisor is responsible

for managing the low level system resources across virtual machines. Xen [35] and VMware

ESX server fall in this category. A Type II VMM, also known as a hosted hypervisor, differs

in that it needs a host operating system underneath – essentially it runs like any other user-

16

17

Hardware

VMM�(Xen,�VMWare�ESX)

Guest�OS
(Linux)

Guest�OS
(Windows)

(a) Type I VMM

Hardware

Host�OS
(Windows,�Linux)

VMM�(Bochs)

Guest�OS
(Linux)

VMM�(VMware)

Guest�OS
(Windows)

(b) Type II VMM

Figure 2.1: VMM taxonomy: Type I VMMs execute directly on the hardware, while Type II

VMMs need a host OS to run.

space application. Therefore, a Type II VMM depends on the underlying host OS for resource

management. VMMs such as Bochs [73], VMware Workstation Edition, and UML [46] would

fall in this category. Unless otherwise stated, we assume a Type I hypervisor in this dissertation.

One of the primary responsibilities of the VMM is to manage system resources among

VMs. Much like an operating system, the primary resources a VMM manages are CPU

cycles, main memory, network I/O and disk I/O. It is fair to say among these, mechanisms

for CPU management for VMs are the most sophisticated, in part due to the rich literature

on process scheduling in operating systems. Mechanisms for managing memory and network

I/O are simplistic in comparison. Main memory is typically statically partitioned among VMs.

Most VMMs provide mechanisms to either share the network bandwidth among VMs equally,

or to implement simple quality-of-service policies. Simple best-effort, fair-share scheduling

represents the state of the art in disk I/O management.

VMM CPU schedulers can be characterized along several dimensions. For instance,

proportional share (PS) schedulers allocate CPU according to the relative weights assigned to

the virtual machines. In contrast, some schedulers might allow specifying reservations: abso-

lute upper limits on the amount of the CPU that a virtual machine may consume. While PS

schedulers are simpler to implement and easier to reason about, performance critical applica-

tions often have to meet service level agreements and would benefit from guaranteed resource

reservations.

Schedulers can also be classified as supporting work-conserving and/or non-work-

18

conserving modes. In work-conserving mode, the shares or reservations are meaningful only

for non-idle VMs. That is, idle VMs have no claim on the unused CPU cycles in their quota

and the slack CPU can be allocated to any other eligible VM. Thus the CPU is idle if and only

if there are no runnable VMs in the system. For example, in the case of two VMs with equal

weights, if one of the VMs is idle, the other VM can consume 100% of the CPU. The exact

opposite is true for the non-work-conserving mode. Any unused CPU cycles allocated to VMs

get wasted — they are not accessible to any other VM. Considering the previous example of

two VMs with equal weights, each VM can individually consume a maximum of 50% of the

CPU at any point, even if the other VM is completely idle.

We further distinguish between preemptive and non-preemptive CPU schedulers. A

preemptive scheduler reruns the scheduling algorithm whenever a VM becomes runnable. If

the subsequently selected VM has higher priority over the running VM, the scheduler preempts

the running VM and schedules the selected VM. A non-preemptive scheduler, on the other

hand, only acts on scheduling decisions when the running VM voluntarily gives up CPU.

Having a preemptive scheduler is important for achieving good performance on I/O intensive

workloads in shared environments. These workloads are often blocked waiting for I/O events,

and their performance could suffer in presence of CPU intensive jobs if the CPU scheduler is

not preemptive.

Section 2.7 presents some of the related work on memory management in virtual

machine monitors. Next, we discuss the various benefits that virtualization offers. As discussed

earlier, the versatility of virtualization is one of the primary drivers of its adoption.

2.2 Virtualization Benefits

Virtualization creates an additional layer of indirection between the actual physical

resources and the resources visible to the virtual machines. Because this layer resides under-

neath the guest OS, it gives increased flexibility in how resources are managed. Furthermore,

a virtual machine cleanly encapsulates and captures the state of the entire system, including

the OS and all applications. This software abstraction of a physical machine is much easier

to analyze and manipulate than a real physical machine, and consequently, enables several

different applications that would not have been possible otherwise.

Here we outline some of the advantages of using virtual machines. This list is not

exhaustive, and the advantages are not listed in any particular order.

19

• Server consolidation: As we saw earlier, server consolidation to increase utilizations

and reduce infrastructure as well as power and cooling costs is one of the most attractive

uses of virtualization.

• Legacy hardware/software support: Virtualization decouples the hardware exposed to

the VMs from the actual physical hardware. VMs can therefore be used to run legacy

software for which hardware does not exist or is not available [5]. In the same vein,

virtual machines can be an effective interim measure on newer hardware, until operating

system support for the hardware becomes robust, mature and stable.

• Security: The VMM can precisely control the input/output from a virtual machine.

Further, if a VM crashes, it can simply be restarted. This ability to run operating

systems within a secure, isolated sandbox has applications in intrusion detection and

malware analysis. For instance, if a computer virus intrudes a VM, an external observer

can easily determine if the VM has been infected and shut down any further network

communication to/from the VM to contain the infection. The VM can then be restarted

from a known “clean” state.

• Shared hosting: Infrastructure providers use virtual machines to create dedicated en-

vironments for clients — each client gets full control over the software stack running

within the VM, and clients are unaware of other co-located clients. The strong resource

isolation guarantees possible with VMs are critical for such use cases.

• Testing and development: VMs provide powerful system level debugging and perfor-

mance monitoring. By putting debugging tools under the guest operating system, we can

make them transparent and isolated from the guest. This allows debugging operating sys-

tems in a manner similar to regular program debugging — examining memory contents,

instruction level checkpointing and replay and so on. VMs also accelerate cross-platform

development: instead of building and testing applications on several different hardware

platforms with different software stacks, a single physical machine hosting multiple,

appropriately-configured VMs can be used to accomplish the same. Virtual machines

can also be leveraged in QA testing, especially for fault-injection stress tests since mul-

tiple VMs can be used in parallel and crashed VMs can be quickly recreated from a

known “golden” image.

• Scalability and reliability: New virtual machines can be quickly created when required.

VMs can also be migrated from one physical machine to another. This flexibility in

20

provisioning the resources allows organizations to build more agile infrastructures. For

instance, recent cloud-computing offerings are using virtualization to scale applications

on demand [6] — developers can use APIs to quickly instantiate new VMs as the

load increases. Virtualization is also a valuable addition to the repertoire of tools and

techniques for building reliable systems. A production server can be kept in sync with

a suspended VM, which can transparently take over the role of the server should it fail

[36]. By virtue of their design, virtual machines are ideal for localizing faults. A faulty

VM may only harm itself; even if it crashes, that would not have an impact on other

VMs in the system.

• Simplified management: Virtual machines simplify administration and provisioning of

a physical infrastructure. Quickly booting pre-created VM images is much easier than

a complicated setup procedure for a server. A user may even carry his/her working

environment on a portable storage device for anywhere, anytime access. Keeping a set

of virtual machine images updated and patched is much simpler compared to updating

the same number of physical machines.

We reiterate that the above is not an exhaustive list and innovations continue to present

ever new and interesting applications of virtualization. Of course, virtualization has its down-

sides as well. Section 9.2 discusses some of the trade-offs of using virtualization in the context

of this dissertation. We now turn our attention to the virtual machine platform that we build

on for all the implementation described in this dissertation.

2.3 Xen Overview

Must of the research described in this dissertations builds on top of the Xen virtual

machine monitor, though the ideas remain applicable to other platforms as well. Xen [35] is

an open source, Type-I hypervisor, developed initially at the University of Cambridge, UK.

Figure 2.3 shows the high level architecture of Xen. When Xen boots, it creates an initial

virtual machine called Domain-0. This is a privileged, control domain through which other

VMs can be created and managed.

Xen pioneered an approach called para-virtualization where the guest OS is modified

to take advantage of the knowledge that it is running on top of a VMM to optimize certain

operations. For instance, the guest OS in a para-virtualized VM might directly manipulate

21

Hardware

Xen

Domain-0 Guest�OS

(paravirtualized)

Guest�OS

(fully-virtualized)

Figure 2.2: Xen is a Type-I hypervisor supporting both para-virtualized and fully-virtualized

VMs.

the hardware page tables, avoiding the overhead of simulating page tables in software. Para-

virtualization exports a modified (non-x86 compatible) hardware interface to the OS. This

allows Xen to deliver high performance on usually expensive operations such as network I/O.

However, the drawback of this approach is that the guest OS needs modifications. As a result,

virtualization is no long transparent — the OS has to know that a virtualization layer exists —

and this may not be desirable, specially when security is a concern. Further, each supported

guest OS has to be modified for para-virtualization, which incurs some additional overhead.

Worse yet, it might simply be impossible to adapt an OS for para-virtualization, if the source

code is not available, for instance.

The primary motivation behind para-virtualization was to work around the limitations

of the x86 architecture: it is well known that the x86 instruction set is not properly virtualizable

[94]. However, better hardware support from both Intel [61] and AMD [26] has eliminated

some of these limitations. This support allows Xen to support fully-virtualized VMs, that

can host unmodified guest OS images. While several performance bottlenecks still remain,

this approach enables running arbitrary x86-compatible OSes just with their binary images.

Fully-virtualized VMs are also referred to as hardware virtual machines or HVMs.

In order to keep the hypervisor small and efficient, and to leverage existing code to

provide broad hardware support, Xen does not contain any device drivers in the hypervisor

itself. Instead, most of the hardware access, in particular the I/O devices, is relegated to

Domain-0. This implies that by default, any VMs on the system — para-virtualized, or fully-

virtualized — must go through Domain-0 for their I/O services. This model is called a split

I/O service model since Domain-0 is responsible for servicing the I/O for all other VMs on

the system. Of course, the mechanisms for servicing I/O requests different vastly among para-

22

virtualized and fully-virtualized VMs. Nevertheless, this split I/O model in Xen has important

ramifications for scalable multiplexing as we shall see in later chapters.

With this background on virtual machines in general and Xen, in particular, we next

survey the related work in virtual machine multiplexing, network emulation, large-scale testing

and memory management.

2.4 Virtual Machine Multiplexing

One of the goals in this dissertation is to address horizontal scalability by increasing

the number of VMs that can be supported on a single physical machine. A notable earlier

effort in this direction was the Denali isolation kernel [108], which scaled to thousands of

virtual machines. However, Denali’s VMs do not support general purpose operating systems

— they are specialized execution environments where each VM executes a single application.

Denali was designed specifically for supporting large scale web services. The ability to run

general purpose, unmodified operating systems is critical for supporting legacy applications

and to ease the transition from a physical to a virtualized infrastructure.

There is a large body of work, orthogonal to our efforts, on improving the performance

overhead of virtual machine multiplexing.

2.5 Network Simulation and Emulation

The idea of changing the flow of time to explore faster networks, as used in time

dilation (Chapter 4), is not a new one. Network simulators [21, 93, 96] use a similar idea; they

run the network in virtual time, independent of wall-clock time. This feature allows network

simulators to explore arbitrarily fast or long network pipes, but the accuracy of the experiments

depends on the fidelity of the simulated code to the actual implementation. The “scalability” of

the simulation are bound by compute cycles, and potentially by main memory. However, this

scalability comes at the cost of realism: ideally we would like to use unmodified applications

on real operating systems and network stacks. Our techniques aim to preserve realism while

enabling scalable network emulation with high fidelity.

Complete machine simulators such as SimOS [90] and specialized device simulators

such as DiskSim [58] have also been used for decoupling the real hardware from the hardware

perceived by the operating system, in order to evaluate systems on alternate hardware con-

figurations. However, these approaches are still fundamentally limited by the capacity of the

23

underlying hardware. In contrast, our techniques allow pushing beyond the actual hardware

capacity: time dilation combines the flexibility to explore future hardware configurations with

the ability to run real-world applications on unmodified operating systems and protocol stacks.

Superficially, emulation techniques (e.g. ModelNet [102]), offer a more realistic al-

ternative to simulation because they support running unmodified applications and operating

systems. Unfortunately, such emulation is still limited by the capacity of the available physical

hardware and hence is often best suited to considering wide-area network conditions (with

smaller bisection bandwidths) or smaller system configurations.

There is a body of work, complementary to our effort to establish the fidelity between

the dilated and real networks, that addresses the accuracy and relevance of network models.

It is widely recognized that useful network models are notoriously difficult to construct [53].

Similarly, Claffy et al. [40] discussed the applicability of sampling techniques for network

characterization. We would like to leverage work in this area to explore the sensitivity of time

dilation to the underlying network parameters.

2.6 Testing Large Systems

One popular approach to testing complex network services is through building a sim-

ulation model of system behavior under a variety of access patterns. While such simulations

are valuable, we argue that simulation is best suited for validating correctness and for un-

derstanding coarse-grained performance characteristics of certain configurations. Simulation

is less well suited to detect performance problems or to capturing the effects of unexpected

component interactions, failures, etc. than testing the actual system at scale on real hardware.

Further, both simulation and emulation involve trade-offs that are violate our goals

of realism and scalability. Emulation is more realistic than simulation, but is still limited

by the capacity of the underlying hardware. For instance, multiplexing 1,000 instances of

an overlay across 50 physical machines interconnected by gigabit Ethernet may be feasible

when evaluating a file sharing service on clients with cable modems. However, the same 50

machines will be incapable of emulating the network or CPU characteristics of 1,000 machines

in a multi-tier network service consisting of dozens of racks and high-speed switches.

SHRiNK [87] is perhaps most closely related to DieCast in spirit. SHRiNK aims to

evaluate the behavior of faster networks by simulating slower ones. For example, their “scaling

hypothesis” states that the behavior of 100-Mbps flows through a 1-Gbps pipe should be similar

to 10-Mbps through a 100-Mbps pipe. When this scaling hypothesis holds, it becomes possible

24

to run simulations more quickly and with a lower memory footprint. Relative to this effort,

we show how to scale fully operational computer systems, considering complex interactions

among CPU, network, and disk spread across many nodes and topologies.

2.6.1 Real-World Testing

Platforms such as PlanetLab [86] and EmuLab [109] allow real-world testing of large-

scale systems. PlanetLab is a federated collection of several hundred machines distributed

all over the world. This infrastructure is shared by the academic research community for

distributed systems and networking research. Unfortunately, because of its design and limited

resources, experiments on PlanetLab are not reproducible and can not scale beyond a few

hundred nodes. Further, PlanetLab only runs Linux and can not support arbitrary OS and

applications.

EmuLab gives more flexibility to the users. Users can specify the desired topology

and the software configuration. However, even EmuLab’s scalability is constrained by the

number of co-located VMs one can create on a single physical machine. Further, the network

characteristics and disk performance is again limited by the capacity of the underlying hardware.

DieCast is unique in its ability to support arbitrary hardware and software, as well as being

able to scale beyond the capacity of the underlying hardware. It is conceivable that DieCast

can be deployed on the EmuLab or PlanetLab infrastructure, integrating with some of their

services for easy deployment and management.

2.6.2 Detecting Performance Anomalies

There have been a number of recent efforts to debug performance anomalies in network

services, including Pinpoint [42], MagPie [34], and Project 5 [25]. Each of these initiatives

analyzes the communication and computation across multiple tiers in modern Internet services

to locate performance anomalies. These efforts are complementary to ours as they attempt to

locate problems in deployed systems. Conversely, the goal of DieCast is to test particular

software configurations at scale to locate errors before they affect a live service.

2.6.3 Modeling Internet Services

Finally, there have been many efforts to model the performance of network services

to, for example, dynamically provision them in response to changing request patterns [49,

101] or to reroute requests in the face of component failures [32]. Once again, these efforts

25

typically target already running services relative to our goal of testing service configurations.

Alternatively, such modeling could be used to feed simulations of system behavior or to verify

at a coarse granularity DieCast performance predictions.

2.7 Memory Management

Difference Engine builds upon a large body of previous work in page sharing, mem-

ory compression, and delta encoding. In each case, we attempt to leverage existing approaches

where appropriate.

2.7.1 Page Sharing

Two common approaches in the literature for finding redundant pages are content-based

page sharing (exemplified by VMware ESX server [110]) and explicitly tracking page changes

to build knowledge of identical pages (e.g., the “transparent page sharing” used in Disco [27]).

Transparent page sharing can be more efficient, but requires several hooks and modifications

into the guest OS, not required by ESX server or by Difference Engine. This property is

desirable for supporting unmodified OS images.

To find sharing candidates, ESX hashes contents of each page and uses hash collisions

to identify potential duplicates. Both ESX server and Difference Engine perform a byte-by-

byte comparison once a hash match is found before actually sharing the page.

Once shared, pages in our system can manage updates in a copy-on-write fashion, as

in Disco and ESX server. We build upon earlier work on flash cloning [103] of VMs, which

allows new VMs to be cloned from an existing VM in milliseconds; as the newly created VM

writes to its memory, it is given private copies of the shared pages. An extension by Kloster

et al. studied full-page sharing in Xen [68] and we build upon this experience, adding support

for fully virtualized (HVM) guests, integration with the global clock, and numerous bug fixes

and optimizations.

2.7.2 Delta Encoding

Our initial investigations into page similarity were inspired by research in leveraging

similarity across files in large file systems. There are two issues we needed to address: how

to find a suitable candidate page to construct a patch against and, once a candidate page is

found, how to construct and store the patch.

26

In the GLIMPSE system [79], Manber proposed computing Rabin fingerprints over

fixed-size blocks at multiple offsets in a file. Similar files will then share some fingerprints.

One way of finding a candidate page is to pick the one with the maximum number of common

fingerprints. However, in a dynamically evolving virtual memory system, this approach does

not scale well since every time a page changes its fingerprints must be recomputed as well.

Further, it is inefficient to find the maximal intersecting set from among a large number of

candidate pages.

Broder adapted Manber’s approach to the problem of identifying documents (in this

case, Web pages) that are nearly identical using a combination of Rabin fingerprints and

sampling based on minimum values under a set of random permutations [30]. His paper also

contains a general discussion of how thresholds should be set for inferring document similarity

based on the number of fingerprints (or sets of fingerprints) in common.

While these techniques can be used to identify similar files, they do not address how

to efficiently encode the differences. Douglis and Iyengar explored using Rabin fingerprints

and delta encoding to compress similar files in the DERD system [45], but only considered

whole files. Kulkarni et al. [66] extended the DERD scheme to exploit similarity at the block

level. In this spirit, Difference Engine also tries to exploit memory redundancy at several

different granularities.

2.7.3 Memory Compression

Compressing memory is not a new idea. Douglis et al. [44] implemented memory

compression in the Sprite operating system with mixed results. In their experience, memory

compression was sometimes beneficial, but at other times the performance overhead outweighed

the memory savings. Subsequently, Wilson et al. argued Douglis’ mixed results were primarily

due to slow hardware [111]. They also developed new compression algorithms that exploited

the inherent structure present in virtual memory, whereas earlier systems used general purpose

compression algorithms.

Despite its mixed history, several operating systems have dabbled with in-memory

compression. A company called Ram Doubler launched a product that promised to “double

the RAM” on Apple Macintoshes in the early ’90s [72]. Tuduce et al. [100] implemented a

compressed cache for Linux that adaptively manages the amount of physical memory devoted

to compressed pages using a simple algorithm shown to be effective across a wide variety of

workloads. Castro et al. present an alternative adaptive scheme where the compressed area

27

is resized based on estimating whether the page would be on disk if compression were not

used [50].

In the next chapter, we introduce DieCast: our framework for testing large systems

accurately, using a much smaller infrastructure. In the process, we outline the requirements of

such a framework and the building blocks that constitute the system.

Chapter 2, in part, is a reprint of the material as it appears in Proceedings of USENIX

Symposium on Networked Systems Design and Implementation (NSDI) 2006. Gupta, Diwaker;

Yocum, Kenneth; McNett, Marvin; Snoeren, Alex C.; Vahdat, Amin; Voelker, Geoffrey M.

The dissertation author was the primary investigator and author of this paper.

Chapter 2, in part, is a reprint of the material as it appears in Proceedings of USENIX

Symposium on Networked Systems Design and Implementation (NSDI) 2008. Gupta, Diwaker;

Vishwanath, Kashi V.; Vahdat, Amin. The dissertation author was the primary investigator

and author of this paper.

Chapter 2, in part, is a reprint of the material as it appears in Proceedings of USENIX

Symposium on Operating System Design and Implementation (OSDI) 2008. Gupta, Diwaker;

Lee, Sangmin; Vrable, Michael; Savage, Stefan; Snoeren, Alex C.; Varghese, George; Voelker,

Geoffrey M.; Vahdat, Amin. The dissertation author is the primary investigator and author of

this paper.

Chapter 3

A Framework for Large Scale Testing

We use the problem of large-scale system testing (as described in Chapter 1) to present

our approach for addressing the challenges of vertical and horizontal scalability. We wish to

develop a testing methodology and architecture that can accurately predict the behavior of

modern network services while employing an order of magnitude fewer hardware resources.

This chapter describes the architecture for DieCast— a framework for accurate, scalable

testing of large systems. Such a framework should capture the end-to-end behavior of the

target system, including the application level performance metrics as well as the low-level

system behavior. As we discussed in the previous chapter, while emulation and simulation are

valuable techniques for evaluating services in their own right, they do not provide the level of

realism and scalability that we desire.

We start with a general overview of our approach to scaling a system down to a target

test harness. In particular we discuss the desired goals of such a system and why a virtual

machine based infrastructure makes sense in this context. Next we discuss the building blocks

of the architecture and conclude with the key missing building blocks that will be the subject

matter of subsequent chapters.

3.1 Overview

For DieCast to be useful and reliable, it should meet the following goals:

• Fidelity: DieCast must accurately mimic the behavior of the target system. Critically,

besides replicating the steady-state behavior of the system, DieCast should also capture

any faulty behavior or performance anomalies. Not only do we want to match the

28

29

application performance, we also want to capture and preserve the system level behavior

such as resource utilization profiles.

• Efficiency: Efficiency is an overloaded term in the literature. We define efficiency as

the ratio of the size of the original system to the size of the test harness. Thus, a system

with high efficiency will be able to replicate and test the original system using fewer

resources than a low efficiency system.

• Reproducibility: The ability to conduct repeatable experiments in a controlled environ-

ment is crucial for isolating faults and performance problems. Thus, live deployments

on platforms such as PlanetLab [86] are not suitable since we have no control over the

background traffic, for instance.

The ideal test environment would simply duplicate the entire infrastructure, including

all the physical machines, networking hardware and software configuration of the original

system. However, this approach has low efficiency as defined above. We want to reproduce

similar conditions, except using far fewer machines. One natural approach to reducing the

number of machines is to simply encapsulate each physical machine in the original system

into a VM, and then multiplex these VMs on a fewer physical machines. But this naïve server

consolidation does not work because each individual VM might have a very different resource

capacity than its corresponding physical machine in the original system, and hence will behave

differently, violating fidelity.

Figure 3.1 gives an overview of our approach. On the top (Figure 3.1a) is an abstract

depiction of a network service. A load balancing switch sits in front of the service and redirects

requests among a set of front-end HTTP servers. These requests may in turn travel to a middle

tier of application servers, who may query a storage tier consisting of databases or network

attached storage returning a final result to the client who made the original request.

Figure 3.1b shows how a target service might be scaled with DieCast. Clearly, for

efficiency we need to multiplex several components of the original system onto fewer machines.

This multiplexing might be done in one of many ways — for instance, a single machine may

host both the web server and the database server processes. However, virtual machines a much

cleaner abstraction for this kind of multiplexing. Not only do VMs offer strong isolation,

accurate resource allocation but they also make it fairly straight forward to go from the original

system to the test harness. Thus, we encapsulate all nodes from the original service in virtual

machines and multiplex several of these VMs onto physical machines in the test harness.

30

Gigabit�SwitchGigabit�SwitchLoad�Balancer

Web�server App�server DB�server

(a) Original System

����N/W
Emulation

Gigabit�Switch

VMM VMM VMM

VMM VMM VMM

Load�Balancer

Gigabit�SwitchGigabit�SwitchLoad�Balancer

Web�server App�server DB�server

(b) Test System

Figure 3.1: Scaling a network service to the DieCast infrastructure.

31

However, this multiplexing destroys the original network topology. DieCast leverages

network emulation to recreate the network topology and characteristics of the original system.

But for a faithful reproduction of the original system, apart from the network topology, we

require resource equivalence for each physical machine of the original system: each VM in

the test harness should perceive the exact same resources and exhibit the precise behavior of

the corresponding physical machine in the original system.

As we saw in Chapter 1, multiplexing causes resource partitioning, which violates

resource equivalence. Consider a simple distributed system comprising five, identical physical

machines. Each machine has a 3-GHz processor, 1 Gbps of network bandwidth and 15 Mbps

of read throughput on the disk. In a DieCast-scaled system, we create five virtual machines

corresponding to each physical machine in the original system. For efficiency, let us say we

multiplex these virtual machines on a single physical machine. If this physical machine has

the same specifications as the machines in the original system, and all five share the resources

equally, then each VM will effectively get the equivalent of a 600-MHz processor, 400-MB

RAM, 200 Mbps bandwidth on the network and 3 Mbps disk throughput. Clearly then, each

of these VMs will behave and perform very differently than their physical counterparts. For

DieCast to accurately replicate system behavior and capacity, we ideally want each of these

virtual machines to perceive the same amount of resources that a physical machine in the

original system did.

The actual physical resources in a given test harness are finite, and thus limited. We

instead attack the problem of resource partitioning by increasing the perceived resource capacity

of VMs. For the remainder of this chapter, assume that we have at our disposal a mechanism

to uniformly scale various resources in the system such as CPU, network bandwidth and disk

I/O throughput, by a configurable scaling factor. We call this mechanism time dilation and

the scaling factor the time dilation factor (TDF). Thus in the above example, if we were to

multiplex the virtual machines with a TDF of 5, then each virtual machine would perceive

a 3-GHz CPU, 1-Gbps network bandwidth and 15-Mbps disk throughput for reads. In other

words, it will perceive the same resource capacity as a physical machine in the original system.

The next chapter describes time dilation and related issues in further detail.

The overall goal is to improve predictive power. That is, runs with DieCast on

smaller machine configurations should accurately predict the performance and fault tolerance

characteristics of some larger production system. In this manner, system developers may

experiment with changes to system architecture, network topology, software upgrades, and

32

new functionality before deploying them in production. Successful runs with DieCast should

improve confidence that any changes to the target service will be successfully deployed. Below,

we discuss the steps in applying our general approach to applying DieCast scaling to target

systems.

3.2 Choosing the Scaling Factor

The first question to address is the desired scaling factor. One use of DieCast is to

reproduce the scale of an original service in a test cluster. Another application is to scale

existing test harnesses to achieve more realism than possible from the raw hardware. For

instance, if 100 nodes are already available for testing, then DieCast might be employed to

scale to a thousand-node system with a more complex communication topology. While the

DieCast system may still fall short of the scale of the original service, it can provide more

meaningful approximations under more intense workloads and failure conditions than might

have otherwise been possible.

Overall, the goal is to pick the largest scaling factor possible while still obtaining

accurate predictions from DieCast, since the prediction accuracy will naturally degrade with

increasing scaling factors. This maximum scaling factor depends on the characteristics of the

target system. Section 6.6 highlights the potential limitations of DieCast scaling. In general,

scaling accuracy will degrade with:

1. application sensitivity to the fine-grained timing behavior of external hardware devices;

2. capacity-constrained physical resources; and

3. system devices not amenable to virtualization.

In the first category, application interaction with I/O devices may depend on the exact

timing of requests and responses. Consider for instance a fine-grained parallel application that

assumes all remote instances are co-scheduled. A DieCast run may mis-predict performance

if target nodes are not scheduled at the time of a message transmission to respond to a blocking

read operation. If we could interleave at the granularity of individual instructions, then this

would not be an issue. However, context switching among virtual machines means that we

must pick time slices on the order of milliseconds. Second, DieCast cannot scale the capacity

of hardware components such as main memory, processor caches, and disk. Finally, the

original service may contain devices such as load balancing switches that are not amenable to

33

virtualization or dilation. Even with these caveats, we have successfully applied scaling factors

of 10 to a variety of services with near-perfect accuracy as discussed in Chapter 6.

Of the above limitations to scaling, we consider capacity limits for main memory and

disk to be most significant. However, we do not believe this to be a fundamental limitation.

In particular, secondary storage is readily available and the price/byte continues to decrease.

Thus, one partial solution is to configure the test system with more memory and storage

than the original system. While this approach will reduce some of the economic benefits of

our approach, it will not erase them. For instance, doubling a machine’s memory will not

typically double its hardware cost. More importantly, it will not substantially increase the

typically dominant human cost of administering a given test infrastructure because the number

of required administrators for a given test harness usually grows with the number of machines

in the system rather than with the total memory of the system.

With respect to main memory, ongoing research in VMM architectures have the po-

tential to reclaim some of the memory [110] and storage overhead [107] associated with

multiplexing VMs on a single physical machine. For instance, four nearly identically config-

ured Linux machines running the same web server will overlap significantly in terms of their

memory and storage footprints. Similarly, consider an Internet service that replicates content

for improved capacity and availability. When scaling the service down, multiple machines from

the original configuration may be assigned to a single physical machine. A VMM capable of

detecting and exploiting available redundancy could significantly reduce the incremental stor-

age overhead of multiplexing multiple VMs. In effect, this increases the horizontal scalability

on a system. We have built a system (Chapter 7) that saves a factor of two to three more

memory than the current state of the art.

Initially, we view the task of choosing the scaling factor to be both service-specific and

requiring some validation. However, it should be feasible to partially automate this process.

We leave this to future work.

3.3 Cataloging the Original System

The next task is to configure the appropriate virtual machine images onto our test

infrastructure. Maintaining a catalog of the hardware and software configuration that comprises

an Internet service is challenging in its own right. However, for the purposes of this dissertation,

we assume that such a catalog is available. This catalog would consist of all of the hardware

making up the service, the network topology, and the software configuration of each node.

34

The software configuration includes the operating system, installed packages and applications,

and the initialization sequence run on each node after booting.

The original service software may or may not run on top of virtual machines. However,

given the increasing benefits of employing virtual machines in data centers for service config-

uration and management and the popularity of VM-based appliances that are pre-configured

to run particular services [23], we assume that the original service is in fact VM-based. This

assumption is not critical to our approach but it also partially addresses any baseline perfor-

mance differential between a node running on bare hardware in the original service and the

same node running on a virtual machine in the test system. Tools such as VMware’s P2V

Assistant [106] can automate the process of converting an existing physical machine to a VM

image.

35

We further require a tool that ideally automates the process of determining the char-

acteristics of a given networked service. Important characteristics include:

• the physical machines that makes up the service (processor, memory, disk capacity, etc.),

• the software configuration of each machine (operating system version, application soft-

ware running on each machine, etc.),

• the network interconnectivity of the target service (switches, routers, routes through the

installation, etc.), and

• any special hardware in the service such as load balancing switches, firewalls, and

intrusion detection systems.

Of course, accurately characterizing and inventorying a large-scale network service

in this manner is a difficult challenge in and of itself. Ideally, an automated tool would run

periodically to perform introspection of the network services, building an accurate model of

service characteristics and interconnectivity. Many networked services employ a combination

of manual and automated techniques to build a database containing this information. The

quality of the models that DieCast builds will improve with our ability to extract network

service characteristics.

3.4 Workload Generation

Once DieCast has prepared the test system to be resource equivalent to the original

system, we can subject it to an appropriate workload. These workloads will in general be

application-specific. For instance, Monkey [38] shows how to replay a measured TCP request

stream sent to a large-scale network service. For this dissertation, we use application-specific

workload generators where available and in other cases write our own workload generators

that both capture normal behavior as well as stress the service under extreme conditions.

To maintain a target scaling factor, clients should also ideally run in DieCast-scaled

virtual machines. This approach has the added benefit of allowing us to subject a test service

to a high level of perceived-load using relatively few resources. Thus, DieCast scales not only

the capacity of the test harness but also the workload generation infrastructure.

36

3.5 Network Emulation

DieCast configures VMs to communicate through a network emulator to reproduce

the characteristics of the original system topology. Using scripts similar to those employed in

the original system we can then initialize the test system and subject it to appropriate workloads

and fault-loads to evaluate system behavior. The next step in the configuration process is to

match the network configuration of the original service using network emulation. We configure

all VMs in the test system to route all their communication through our emulation environment.

Note that DieCast is not tied to any particular emulation technology: we have successfully

used DieCast with Dummynet [89], ModelNet [102] and Netem [15] where appropriate.

It is likely that the bisection bandwidth of the original service topology will be larger

than that available in the test system. Thus somehow we need to to support higher bisection

bandwidths than the capacity of the underlying physical hardware.

3.6 Configuring the Virtual Machines

With an understanding of appropriate scaling factors and a catalog of the original

service configuration, DieCast then configures individual physical machines in the test system

with multiple VM images reflecting, ideally, a one-to-one map between physical machines in

the original system and virtual machines in the test system. With a scaling factor of 10, each

physical node in the target system would host 10 virtual machines. The mapping from physical

machines to virtual machines should account for: similarity in software configurations, per-

VM memory and disk requirements and the capacity of the hardware in the original and test

system. In general, a solver may be employed to determine a near-optimal matching [92].

However, given the VM migration capabilities of modern VMMs and DieCast’s controlled

network emulation environment, the actual location of a VM is not as significant as in the

original system. For the relatively modest services that we have considered to date, we perform

this mapping by hand.

We alluded earlier to our technique of time dilation to address resource partitioning

and it is the subject matter for the next chapter. However, time dilation scales all the resources

uniformly, that is, by the same scaling factor. Such uniform scaling works fine in cases where

all system components are homogeneous, but to deal with heterogeneous configurations, we

require some additional mechanisms. Let us look at examples of each scenario.

Consider a physical machine hosting 10 VMs. We would like to configure the VMS

37

such that each VM appears to have the processing power of the entire original machine available

to it. To address resource partitioning, say we run the VMs with a scaling factor of 10. With

this simple strategy, however, if nine of the virtual machines were mostly idle at any point in

time, the tenth virtual machine would appear to have 10 times the processing power of the

original machine (all the power of the original machine, dilated by a factor of 10). To address

this, DieCast would run each VM with a scaling factor of 10, but allocate each VM only 10%

of the actual physical resource. We only explicitly scale CPU and disk I/O latency on the host;

scaling of network I/O happens via network emulation as described earlier.

However, for heterogeneous systems, more flexible mechanisms are needed. For in-

stance, imagine that in the original system each physical machine is equipped with 2-GHz

processors but the test harness is made up of older, 1-GHz machines. However, both the

original system and test harness have identical disk drives. Now, to achieve a scaling factor

of two, we need to multiplex two VMs on each test machine. However, with a TDF of two,

each dilated VM will still only perceive a 1-GHz processor where as we would like the VMs

to perceive 2-GHz CPUs. This can be done by using a TDF of four, but in this case the disk

drives appear twice as fast under DieCast. What we really need are mechanisms for indepen-

dently scaling CPU, disk and network under a dilated time frame. In the example above, we

could scale down the disk by a factor of two in the dilated time frame such that the perceived

disk characteristics are preserved. These mechanisms are the subject of Chapter 5.

Using these knobs and an appropriate scaling factor, DieCast configures the VMs

such that each VM appears to have resources identical to a physical machine in the original

system. In the homogeneous case, we assume that the processing power (and other resources)

of the 10 physical machines running in the original system is identical to the processing

power of the one machine in the test harness. This assumption makes it straightforward to

determine the amount of resources to allocate to each virtual machine, simply based on the

dilation factor. With homogeneous machines and a scaling factor of sf , DieCast configures

the VMs to allocate (1/sf) resources to each virtual machine independent of the number

of virtual machines hosted on a particular physical machine. In general however, there will

be significant heterogeneity in both the original and test service machines. Thus, we must

account for the resource differential when assigning resources to individual components. For

instance if a machine in the original configuration is r times more powerful (or less powerful

for r < 1) than the corresponding test machine, the scheduler would assign (r/sf) resources

to the corresponding virtual machine.

38

Assigning a single number to capture the performance differential between two ma-

chines will introduce some error in test results, for instance because processor performance,

cache size, I/O bus speed, etc. may all scale independently. However, we believe that for small

performance differentials, this error is acceptable.

3.7 Summary

In this chapter we have provided an overview of the DieCast approach. Our goal

is to create a hi-fidelity replica of the original system using fewer resources in a controlled

environment. For efficiency, we encapsulate each physical machine in the original system in

its own virtual machine, and then we consolidate these VMs onto fewer physical machines.

Before that we need a detailed specification of the hardware and software configuration of the

system. Several tools exist to make it easy to convert physical machines to VM images.

However, multiplexing causes resource partitioning, so a VM in the DieCast-scaled

system might have a resource capacity very different than its physical counterpart in the original

system. For preserving fidelity, we want to maintain the invariant of resource equivalence:

each VM in the DieCast-scaled system should perceive resources similar to the corresponding

physical machine in the original system.

In the next chapter we describe time dilation, a technique that allows increasing the

perceived resource capacity of individual VMs by a configurable scaling factor. However, this

alone is not enough to preserve resource equivalence. Machines in the test harness might have

very different hardware configurations than machines in the original system. Further, machines

in both the original system and the test harness might not be homogeneous. Consequently, we

must be able to precisely configure the resources available to each VM, such that after time

dilation, the perceived resource capacity matches with the original system. Chapter 5 describes

the mechanisms to independently control allocation of various system resources to individual

VMs.

Chapter 3, in part, is a reprint of the material as it appears in Proceedings of USENIX

Symposium on Networked Systems Design and Implementation (NSDI) 2008. Gupta, Diwaker;

Vishwanath, Kashi V.; Vahdat, Amin. The dissertation author was the primary investigator

and author of this paper.

Chapter 4

Time Dilation

A critical building block of DieCast is the ability to scale up the perceived resource

capacity of a virtual machine. This chapter describes the concept and design of time dilation.

We conclude the chapter with the details of our implementation of time dilation in Xen and a

discussion of some of the limitations of this technique.

4.1 Concept

The key insight behind time dilation is that we can trade off time for other resources

in the system. By providing the illusion to an operating system and its applications that time

is passing at a rate different from real time, we can manipulate the perceived capacity of the

system. For example, we may wish to convince a system that, for every ten seconds of wall-

clock time, only one second of time passes in the operating system’s dilated time frame. Time

dilation does not, however, change the arrival rate of physical events such as those from I/O

devices like a network interface or disk controller. Hence, in this example, from the operating

system’s perspective, physical resources appear 10 times faster: in particular, data arriving

from a network interface at a physical rate of 10 MBps appears to the OS to be arriving at

100 MBps.

We refer to the ratio between the rate at which time passes in the physical world to

the operating system’s perception of time as the time dilation factor, or TDF; a TDF greater

than one indicates the external world appears faster than it really is. Figure 4.1 illustrates the

difference between an operating system in the real time frame (Figure 4.1a) and an OS with a

TDF of 10 (Figure 4.1b). The same period of physical time passes for both operating systems.

39

40

Real�time
frame

Events
10�MB

1�second

Perceived�Bandwidth�=�10MB/s

(a) Real time frame

Dilated�time

frame

Events
10�MB

100�milliseconds

Perceived�Bandwidth�= 100�MB/s

(b) Dilated time frame (TDF 10)

Figure 4.1: Compare a system operating in real time (top) with a system running with a TDF

of 10 (bottom). Note that time dilation does not affect the rate of external events, such as

network packet arrival.

Each OS receives the same amount of data over the network (10 MB), the only difference is

the time interval over which this data is received as perceived by the OS and the applications.

The undilated OS perceives a bandwidth of 10 MBps, while the OS in the dilated time frame

perceives a much faster bandwidth of 100 MBps.

This observation is critical: physical devices such as the network continue to deliver

events at the same rate to both OSes. The dilated OS, therefore, perceives ten times the network

I/O rate because it experiences only one tenth the delay between I/O events. Similarly, time

dilation scales the perceived available processing power as well. A system will experience

TDF times as many cycles per perceived second from the processor. Such CPU scaling is

particularly relevant to CPU-bound network processing because the number of cycles available

to each arriving byte remains constant. For instance, a machine with TDF of ten sees a ten

times faster network, but would also experience a tenfold increase in CPU cycles per second.

Generalizing, we observe that time dilation impacts all temporal or streaming resources.

That is, resources that have a time based rate associated with them, such as CPU cycles per

second or network bandwidth or disk bandwidth. On the other hand, spatial resources — those

that can be statically partitioned and do not have a time based rate associated with them, such

41

as main memory or disk capacity — are not affected by time dilation.

Thus time dilation effectively scales up the perceived resource capacity of any given

physical machine. As mentioned in the first chapter, this scaling up of resources enables

several interesting applications, including extrapolation to future scenarios and scalable network

emulation. We will see how this helps DieCast in a subsequent chapter.

4.2 Implementation

Time dilation must encapsulate the OS in an arbitrary time frame, distinct from the

real time frame. Note that an operating system relies on various time sources to keep track

of time. Most applications running within the OS rely on the operating system’s timekeeping

facilities for keeping track of time in user space. Hence, manipulating the operating system’s

perception of time is necessary and in most cases, sufficient, to implement time dilation. In

order to do this, we need to interpose between each time source that the OS consumes, and

manipulate it appropriately before it is used by the OS. If all time sources are appropriately

adjusted, the OS will automatically perceive a different time frame.

For instance, suppose a regular, undilated OS receives 100 timer interrupts every

second (that is, it runs with a 100-Hz clock). Then, the same OS running with a TDF of

10 should only receive 10 timer interrupts every second of real time, such that the perceived

rate of timer interrupts is still 100 per second of dilated time. Other common time sources

are: special hardware registers such as the Time Stamp Counter (TSC) on x86 platforms, on

board crystals and platform timers such as the High Performance Event Timer (HPET) or the

Programmable Internet Timer (PIT), information stored in the BIOS, external time sources

(such as NTP) and so on.

In terms of actually building an implementation based on the above strategy, one

approach would be to implement time dilation directly in the operating system. In other

words, the OS would take the time dilation factor as input (perhaps as a boot time parameter)

and internally manipulate the various time sources. As an example, the OS might choose to

ignore some of the timer interrupts it receives from the underlying hardware. This approach

is problematic for several reasons:

• It violates transparency, because the OS is clearly aware of time dilation.

• Each supported OS would have to be modified individually.

42

• Some modifications — such has manipulating the frequency of timer interrupts — are

much harder, if not impossible, to implement in hardware.

This dissertations pursues the alternative approach of implementing time dilation in

the virtual machine monitor. VMMs already provide a clean abstraction of the underlying

hardware to the guest OS, including several standard time sources that most OSes use. By

adjust the time sources at these interfaces, time dilation immediately becomes available to all

OSes supported by the VMM. This saves us from reinventing the wheel for each different OS,

and also allows from a completely transparent implementation. Additionally, modifications are

contained entirely in software, since the VMM has software based mechanisms for functionality

that might otherwise usually reside in hardware, such as timers and interrupt delivery.

Of course, a virtualization-based implementation might not always be possible. For

instance, the OS might not be virtualizable, or the VMM might not run on a particular hard-

ware platform. In such cases, nothing precludes a direct implementation of time dilation, and

in fact we have ported time dilation to non-virtualized platforms (see Section 6.5). Alterna-

tive implementation targets for time dilation include directly modifying the operating system,

simulation packages, and emulation environments.

Critical to time dilation is a VMM’s ability to modify the perception of time within a

guest OS. Fortunately, VMMs must already perform this functionality, for example, because a

guest OS may develop a backlog of “lost ticks” if it is not scheduled on the physical processor

when it is due to receive a timer interrupt. VMMs typically periodically synchronize the guest

OS time with the physical machine’s clock. One challenge is that operating systems often use

multiple time sources for better precision. For example, Linux uses up to five different time

sources [71]. Exposing so many different mechanisms for time keeping in virtual machines

becomes challenging (see [105] for a discussion).

To address these requirements, we implemented a time dilation prototype using the

Xen VMM. Though our implementation is Xen-specific, we believe the concepts can apply to

other virtual machine environments. Our current implementation supports Xen versions 2.0.7,

3.0.4 and 3.1 (both para-virtualized and fully-virtualized VMs).

As discussed below, our modifications to Xen are compact and portable, giving us

confidence that our techniques will be applicable to any operating system that Xen supports.

In some sense, time dilation is free in many simulation packages: extrapolating to future

scenarios might be as simple as setting appropriate values on particular parameters such as

bandwidth on network links. However, we explicitly target running unmodified applications

43

and operating systems for necessary realism. Finally, while network emulation does allow

experimentation with a range of network conditions, it is necessarily limited by the performance

of currently available hardware. For this reason, time dilation is a valuable complement to

network emulation, allowing an experimenter to easily extrapolate evaluations to future, faster

environments.

We now give a brief overview of time keeping in Xen, describe our modifications

to it, and discus the applicability of time dilations to other virtualization platforms. Our

modifications to Xen are small: in all, we added/modified approximately 1,100 lines of C and

Python code. More than 50% of our changes are to non-critical tools and utilities; the core

changes to Xen and XenoLinux are less than 500 lines of code. Our modifications are less

than 0.5% of the base code size of each component.

4.2.1 Time Flow in Xen

The Xen VMM exposes two notions of time to VMs. Real time is the number of

nanoseconds since boot. Wall-clock time is the traditional Unix time-since-epoch (midnight,

January 1, 1970 UTC). Xen also delivers periodic timer interrupts to the VM to support the

time keeping mechanisms within the guest OS.

While Xen allows the guest OS to maintain and update its own notion of time via an

external time source (such as NTP), the guest OS often relies solely on Xen to maintain accurate

time. Real and wall-clock time pass between the Xen hypervisor and the guest operating system

via a shared data structure. There is one data structure per VM written by the VMM and read

by the guest OS.

The guest operating system updates its local time values on demand using the shared

data structure — for instance, when servicing timer interrupts or calling getttimeofday.

However, the VMM updates the shared data structure only at certain discrete events, and thus

it may not always contain the current value. In particular, the VMM updates the shared data

structure when it delivers a timer interrupt to the VM or schedules the VM to run on an

available CPU.

As described in Chapter 2, Xen uses para-virtualization to achieve scalable per-

formance with virtual machines without sacrificing functionality or isolation. With para-

virtualization, Xen does not provide a perfect virtualization layer. Instead, it exposes some

features of the underlying physical hardware to gain significant performance benefits. For

instance, on the x86 architecture, Xen allows guest OSes (for our tests, we use Linux as our

44

Table 4.1: Basic dilation summary.

Variable Original Dilated
Real time stime_irq stime_irq/tdf

Wall-clock wc_sec, wc_usec wc_sec/tdf, wc_usec/tdf

Timer interrupts HZ/sec (HZ/tdf)/sec

guest OS) to read the Time-Stamp Count (TSC) register directly from hardware (via the RDTSC

instruction). The TSC register stores the number of clock cycles since boot and is incremented

on every CPU cycle. The guest OS reads the TSC to maintain accurate time between timer

interrupts. By contrast, kernel variables such as Linux jiffies or BSD ticks only advance

on timer interrupts.

Newer versions of Xen, however, leverage hardware support for virtualization allowing

Xen to boot unmodified operating systems — this is required to boot proprietary operating

systems such as Windows. Recent processors by both Intel and AMD provide this support, and

in fact even allow the TSC to be virtualized in hardware. Our implementation appropriately

scales the TSC for both para-virtualized and fully-virtualized domains. For para-virtualized

VMs, the value of the TSC is scaled within the guest OS (thus guest OS modifications are

needed). For HVM VMs, the hypervisor itself exposes the scaled value to the VM, hence no

guest modifications are needed.

4.2.2 Modifications to the Xen hypervisor

Our modified VMM maintains a TDF variable for each hosted VM. For our applica-

tions, we are concerned with the relative passage of time rather than the absolute value of real

time; in particular, we allow—indeed, require—that the host’s view of wall-clock time diverge

from reality. Thus the TDF divides both real and wall-clock time.

We modify two aspects of the Xen hypervisor. First we extend the shared data structure

to include the TDF field. Our modified Xen tools, such as xm, allow specifying a positive,

integral value for the TDF on VM creation. When the hypervisor updates the shared data

structure, it uses this TDF value to modify real and wall clock time. In this way, real time is

never exposed to the guest OS through the shared data structure. This design also allows us

to provide each VM with an independent time frame.

Dilation also impacts the frequency of timer interrupts delivered to the VM. The

VMM controls the frequency of timer interrupts delivered to an undilated VM (timer inter-

rupts/second); in most OS’s a HZ variable, set at compile time, defines the number of timer

45

interrupts delivered per second. For transparency, we need to maintain the invariant that HZ

accurately reflects the number of timer interrupts delivered to the VM during a second of

dilated time. Without adjusting timer interrupt frequency, the VMM will deliver TDF-times

too many interrupts. For example, the VMM will deliver HZ interrupts in one physical time

second, which will look to the dilated VMM as HZ/(second/TDF) = TDF ×HZ. Instead,
we reduce the number of interrupts a VM receives by a factor of TDF. Table 4.1 summarizes

the discussion so far.

Finally, Xen runs with a default HZ value of 100, and configures guests with the same

value. However, HZ = 100 gives only a 10-ms precision on system timer events. In contrast,

current 2.6 series of Linux kernels uses a HZ value of 1000 by default—the CPU overhead

is not significant, but the accuracy gains are tenfold. This increase in accuracy is desirable

for time dilation because it enables guests to measure time accurately even in the dilated time

frame. Thus, we increase the HZ value to 1000 in both Xen and the guest OS.

The changes described thus far are required regardless of the type of virtual machine

— para-virtualized or fully-virtualized. These modifications implement the core functionality

required in the hypervisor to support time dilation for either type of VM. Next we describe

the modifications required to a para-virtualized guest OS kernel followed by our hypervisor

extensions specific to the HVM support.

4.2.3 Modifications to XenoLinux

One goal of our implementation was to minimize required modifications to the guest

OS. Because the VMM appropriately updates the shared data structure, one primary aspect of

OS time-keeping is already addressed. We further modify the guest OS to read an appropriately

scaled version of the hardware Time Stamp Counter (TSC). XenoLinux now reads the TDF

from the shared data structure and adjusts the TSC value in the function get_offset_tsc.

The Xen hypervisor also provides guest OS programmable alarm timers. Our last

modification to the guest OS adjusts the programmable timer events. Because guests specify

timeout values in their dilated time frames, we must scale the timeout value back to physical

time. Otherwise they may set the timer for the wrong (possibly past) time.

The modifications described here are only relevant for para-virtualized VM images

which are running a modified kernel. While we only describe our modifications to the Xeno-

Linux kernel here, we have explored modifying other guest OSes as well and the modifications

are generally quite small.

46

Note that the para-virtualized virtual machines already require significant OS modifi-

cations, and our additional modifications to support time dilation are negligible in comparison.

Next, we describe time dilation support for fully virtualized VMs where all our modifications

are contained within the hypervisor and unmodified operating systems can be run as is.

4.2.4 Support for OS Diversity

The para-virtualized version of time dilation is quite limited in its utility because of

the following reasons: it only supports Linux as the guest OS, and the guest kernel requires

modifications to fully support pervasive time dilation. For instance, without the modifications

to read an appropriately scaled TSC, an application might be able to peek “outside the box” of

the dilated time frame to infer the real time frame, thus violating transparency. Generalizing

to other platforms would have required code modifications to the respective OS. To be widely

applicable, DieCast (and hence time dilation) must support a variety of operating systems.

To address these limitations, we ported time dilation to support fully-virtualized VMs,

enabling support for unmodified OS images. While Xen support for fully virtualized VMs

differs significantly from the para-virtualized VM support in several key areas such as I/O

emulation, access to hardware registers, and time management, the general strategy for im-

plementation remains the same: we want to intercept all sources of time and scale them. In

particular, our implementation scales the Programmable Interrupt Timer (PIT), the TSC regis-

ter on x86 platforms, the Real Time Clock (RTC), the ACPI power management timer and the

High Performance Event Timer (HPET).

4.2.5 Time Dilation on Other Platforms

Architectures: Our implementation should work on all platforms supported by Xen. One

remark regarding transparency of time dilation to user applications in para-virtualized VMs

on the x86 platform is in order: recall that we intercept calls to read the TSC within the guest

kernel. However, since the RDTSC instruction is not a privileged x86 instruction, guest user

applications might still issue assembly instructions to read the hardware TSC register. It is

possible to work around this by watching the instruction stream emanating from a VM and

trapping to the VMM on a RDTSC instruction, and then returning the appropriate value to the

VM. However, this approach would go against Xen’s para-virtualization philosophy and would

results in an unacceptable performance slowdown. An alternative approach would be to do

binary rewriting (as done by VMware ESX server).

47

This is a non-issue for fully virtualized VMs on platforms with appropriate hardware

support. Both Intel and AMD processors have hardware support for trapping the RDTSC instruc-

tion making it easy to virtualize within the hypervisor itself, making the RDTSC interposition

completely transparent to the guest OS and applications within, even when using assembly

instructions.

VMMs: The only fundamental requirement from a VMM for supporting time dilation is that

it have mechanisms to update/modify time perceived by a VM. As mentioned earlier, due to

the difficulties in maintaining time within a VM, all VMMs already have similar mechanisms

so that they can periodically bring the guest OS time in sync with real time. For instance,

VMware has explicit support for keeping VMs in a “fictitious time frame” that is at a constant

offset from real time [105]. Thus, it should be straightforward to implement time dilation for

other VMMs. In fact, for hosted VMMs (Type II VMMs) such as Qemu and Bochs, it is even

easier to implement time dilation since they usually operate completely in the user-space.

Operating systems: Our para-virtualized implementation provides dilation support only for

Linux. Our experience so far and a preliminary inspection of the code for other guest OSes

indicate that all of the guest OSes that Xen supports can be easily modified to support time

dilation. In fact, time dilation can also be implemented on operating systems that are not

supported by Xen. Section 6.5 describes our modifications to a non-virtualized proprietary

operating system to support time dilation. See section 9.2 for a discussion on the question of

whether the VMM or the OS is the right place for implementing time dilation.

4.3 Limitations

This section discusses some of the limitations of time dilation. One obvious limitation

is time itself: since time dilation slows down the passage of time within the OS, an hour

long experiment (in the OS’s time frame) would run for ten hours for a TDF of 10. Real-life

experiments running for hours are not uncommon, so the time required to run experiments at

high dilation factors is substantial. Below we discuss other, more subtle limitations.

4.3.1 Pervasiveness and Fidelity

Time dilation uniformly scales the perceived performance of all system devices, in-

cluding network bandwidth, perceived CPU processing power, and disk and memory I/O.

48

Unfortunately, scaling all aspects of the physical world is unlikely to be useful: a researcher

may wish to focus on scaling certain features (e.g., network bandwidth) while leaving oth-

ers constant. Consequently, certain aspects of the physical world may need to be rescaled

accordingly to achieve the desired effect.

Consider TCP, a protocol that depends on observed round-trip times to correctly com-

pute retransmission timeouts. These timing measurements must be made in the dilated time

frame. Because time dilation uniformly scales the passage of time, it not only increases per-

ceived bandwidth, it also decreases perceptions of round-trip time. Thus, a network with 10-ms

physical round trip time (RTT) would appear to have 1-ms RTT to dilated TCP. Because TCP

performance is sensitive to RTT, such a configuration is likely undesirable. To address this

effect, we independently scale bandwidth and RTT by using network emulation [89, 102] to

deliver appropriate bandwidth and latency values. In this example, we increase link delay by a

factor of 10 to emulate the jump in bandwidth-delay product one expects from the bandwidth

increase.

Similar use cases exist for mechanisms to independently scale other resources such as

the CPU and disk I/O characteristics. These are the subject matter of Chapter 5.

But such scaling is not possible in all situations. For instance, under time dilation, low

level subsystems such as the memory I/O bus and the PCI bus will also appear faster. Thus, a

memory benchmark such as lmbench [14] will report much shorter memory access latencies

under time dilation. The vast majority of applications are impervious to such low level artifacts,

since other latencies, such as network and disk I/O, typically dominate. However, applications

that require preserving the real-world memory access latencies under a dilated time frame are

currently unsupported.

Finally, hardware and software architectures may evolve in ways that time dilation

cannot support. For instance, consider a future host architecture with TCP offload [81], where

TCP processing largely takes place on the network interface rather than in the protocol stack

running in the operating system. Our current implementation does not dilate time for firmware

on network interfaces, and may not extend to other similar architectures. In particular, time

dilation might not be able to extrapolate the behavior of a fundamentally different hardware

architecture than the platform it is running on.

49

4.3.2 Timer Interrupts

The guest reads time values from Xen through a shared data structure. Xen updates

this structure every time it delivers a timer interrupt to the guest. This happens on the following

events:

1. when a domain is scheduled;

2. when the currently executing domain receives a periodic timer interrupt; and

3. when a guest-programmable timer expires.

We argued earlier that, for successful dilation, the number of timer interrupts delivered

to a guest should be scaled down by the TDF. Of these three cases, we can only control the

second and the third. By default our implementation does not change the scheduling pattern of

the virtual machines for two reasons. First, we do not change the scheduling pattern because

scheduling parameters are usually global and system wide. Scaling these parameters on a

per-domain basis would likely break the semantics of many scheduling schemes. Second,

we would like to retain scheduling as an independent variable in our system, and therefore

not constrain it by the choice of TDF. Thus, users could choose any one of the three CPU

schedulers available in Xen.

However, for applications that are sensitive to the exact scheduling patterns of a VM, it

might be necessary to manipulate the scheduling pattern when running in a dilated time frame.

Section 5.2 describes our modifications to the CPU scheduler to support such applications.

Also, reducing the frequency of interrupts to the currently executing domain has its

side-effects. As the frequency of interrupts delivered goes down, the domain becomes more

and more unresponsive, and thus unsuitable for interactive processing. However, as we shall

show in the evaluation section, network emulation is still accurate up to a TDF of 100.

4.3.3 Uniformity: Outside the Dilation Envelope

Time dilation works as expected only when all components in a system are running

at the same time dilation factor. In particular, any external interactions — such as network

communication with remote hosts, or delays external to the VM — must be accounted for,

otherwise the OS might experience an inconsistent state. Consider a single packet traversing

the network. Packet processing within the VM occurs in the dilated time frame. Ideally, all

packet processing external to the VM should also be uniformly dilated.

50

Specifically, we scale the time a packet spends inside the VM (since time is measured

in the dilated frame) and the time a packet spends over the network (using traffic shaping tools

or network emulators). However, we do not scale the time a packet spends inside the Xen

hypervisor and Domain-0, or the time it takes to process the packet at the other end of the

connection.

These unscaled components may affect the OS’s interpretation of round trip time.

Consider the time interval between a packet and its acknowledgment across a link of latency

R scaled by S, and let δ denote the portion of this time that is unscaled. In a perfect world

where everything is dilated uniformly, a dilated host would measure the interval to be simply

Tperfect = R + δ. A regular, undilated host measures the interval as Tnormal = S × R + δ;

a dilated host in our implementation would observe the same scaled by S, so Tdilated =

Tnormal/S = (S ×R+ δ)/S.

We are interested in the error relative to perfect dilation:

ε =
(Tperfect − Tdilated)

Tperfect

=
(

1− 1
S

) (
δ

R+ δ

)
Note that ε approaches δ/(R + δ) when S is large. In the common case this is of

little consequence. For the regime of network configurations we are most interested in (high

bandwidth-delay product networks), the value of R is typically orders of magnitude higher

than the value of δ. As our results in Section 4.4 show, dilation remains accurate over a wide

range of round trip times, bandwidths, and time-dilation factors that we consider. To verify

this, we empirically measured δ by collecting TCP RTT samples across a single Dummynet

[89] hop. For each sample, we treat anything above the known two-way propagation delay of

the link as comprising the unscaled time. Across multiple combinations of bandwidths and

link delays (ranging from 10 Mbps/10 ms to 100 Mbps/100 ms), we measured this error to be

less than 1 ms.

We next validate the expected behavior of time dilation and establish its accuracy.

4.4 Validation

We begin this section with a description of the general methodology used for validating

time dilation. Next, we present a straw-man test to verify the expected behavior of time dilation

51

Table 4.2: Network scaling.

TDF Real Configuration Perceived Configuration
1 100 Mbps, 80 ms 100 Mbps, 80 ms
10 100 Mbps, 80 ms 1000 Mbps, 8 ms
10 10 Mbps, 800 ms 100 Mbps, 80 ms
t B Mbps, L ms B Mbps, L ms
t B/t Mbps, L× t ms B Mbps, L ms

by using older hardware running under a dilated time frame to predict the performance of newer,

more capable hardware. We then validate time dilation across a variety of microbenchmarks.

We compare the behavior of a single TCP flow subject to various network conditions under

different time dilation factors. Finally, we evaluate time dilation in more complex settings with

multiple flows.

4.4.1 Methodology

Observe that the goal of validation is to ensure that a system exhibits some expected

behavior in a given, controlled environment. To define this “expected” behavior, we first

establish a baseline performance using some readily available system. We then compare the

performance of the test system running under time dilation with the baseline to determine the

accuracy. Time dilation uniformly increases the perceived capacity in the test system by the

scaling factor TDF. Hence, we configure test system such that after time dilation, the perceived

resource capacity of the test system matches that of the baseline configuration (recall the notion

of resource equivalence defined in the previous chapter). The baseline performance is usually

defined by an application specific metric. Then the metric for accuracy under this resource

equivalence condition is the performance differential between the test system and the baseline

system.

For instance, our first experiment uses an older machine with a 500-MHz processor

to predict the performance of a newer 2.6-GHz computer using a TDF of 5. In this case, the

resource equivalence was possible because we had older, less powerful hardware at hand. But

in general, it might not be possible or practical to construct the test system out of less capable

hardware, otherwise we would need multiple distinct hardware ensembles to evaluate multiple

scaling factors. We therefore need mechanisms to explicitly control the resource allocation in

the dilated time frame such that resource equivalence is preserved. The next chapter describes

the mechanisms for several different resources in great detail. For this chapter, we briefly

52

describe the network scaling since our validation experiments here are focused primarily on

the ability to accurately replicate network intensive workloads.

Consider two hosts connected to each other via a single network link. Assume further

that the network characteristics — in particular the bandwidth and the latency — of this link

are configurable. For the baseline, we configure the link to have 100-Mbps bandwidth and

a one way latency of 40 ms (thus the RTT is 80 ms). In order to validate time dilation, we

wish to observe the network performance under different time dilation factors, maintaining the

invariant that the network characteristics, such as the link bandwidth and latency, as perceived

by the end hosts remain unchanged.

But if the end hosts are run under a TDF of 10, they will perceive the RTT to be

only 8 ms, since the 80-ms RTT in real time will only feel like 8-ms in the dilated time

frame. Correspondingly, the end hosts will perceive a much higher bandwidth of 1000 Mbps.

Clearly, this violates our desire to maintain resource equivalence. If instead the physical link is

configured to have 10-Mbps bandwidth and a one way delay of 400 ms, then in the dilated time

frame the link will appear to have 100-Mbps bandwidth and 80 ms RTT, which is precisely

the desired outcome. In general, for a TDF of t, a link with bandwidth B and one way latency

L should be reconfigured with bandwidth B/t and latency L × t. Table 4.2 summarizes this

discussion.

Existing traffic shaping tools can be leveraged at the end points of a given link for

altering the network characteristics. Alternatively, since we already use network emulation

environments such as Dummynet [89] and ModelNet [102] for our validation experiments,

modifying link characteristics is a simple matter of reconfiguring the emulated topology with

the appropriately scaled bandwidth and latency values.

4.4.2 Hardware Validation

We start by evaluating the predictive accuracy of time dilation using multiple genera-

tions of hardware. One of the key motivations for time dilation is as a predictive tool, such as

predicting the performance and behavior of protocol and application implementations on future

higher-performance network hardware. To validate time dilation’s predictive accuracy, we use

dilation on older hardware to predict TCP throughput as if we were using recent hardware.

We then compare the predicted performance with the actual performance when using recent

hardware.

We use time dilation on three hardware configurations, listed in Table 4.3, such that

53

Table 4.3: Validating performance prediction: the mean per-flow throughput and standard

deviations of 50 TCP flows for different hardware configurations.

Configuration TDF Mean (Mbps) St.Dev. (Mbps)
2.6 GHz, 1-Gbps NIC (restricted to 500-Mbps) 1 9.39 1.91
1.13 GHz, 1-Gbps NIC (restricted to 250-Mbps) 2 9.57 1.76
500 MHz, 100-Mbps NIC 5 9.70 2.04

each configuration resembles a 2.5-GHz processor with a 500-Mbps NIC, under the coarse

assumption that CPU performance roughly scales with processor frequency. The base hardware

configurations are 500-MHz and 1.13-GHz Pentium III machines with 10/100-Mbps and 1-

Gbps network interfaces, respectively, and a 2.6-GHz Pentium IV machine with a 1-Gbps

network interface. In cases where the base hardware was not available (a 250-Mbps or a 500-

Mbps NIC, for instance), we restrict the available bandwidth on the 1-Gbps interfaces using

standard traffic shaping tools.

For each hardware configuration, we measure the TCP throughput of 50 flows com-

municating with another identical machine. Using Dummynet [89], we configure the network

between the hosts to have an effective RTT of 80 ms. We then calculate the mean per-flow

throughput and standard deviation across all flows. As Table 4.3 shows, both the mean and

deviation of per-flow throughput are consistent across the hardware configurations, which span

over an order of magnitude of difference in hardware performance. For example, time dilation

using a 500 MHz CPU with a 100-Mbps NIC dilated with a TDF of 5 is able to accurately

predict TCP throughput of a 2.6-GHz CPU with a 1-Gbps NIC (restricted to 500-Mbps using

the Linux traffic shaping tools). For this admittedly simple example at least, we conclude

that time dilation is an effective tool for making reasonable performance predictions for more

capable hardware that what is actually available.

In the following experiments, we further examine the accuracy of time dilation on

fine-grained packet level behavior.

4.4.3 Single Flow Packet-Level Behavior

It is tempting to validate time dilation by comparing an easy to measure metric, such as

average throughput of a TCP flow. However, such coarse metrics are fairly easy to reproduce,

and do not capture many interesting properties that manifest themselves at finer-grained time

intervals, such as the distribution of inter-packet arrival times. Hence, we next illustrate that

54

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0

500000

1000000

1500000

2000000

2500000

3000000

Se
qu

en
ce

#

Data Packets
Acks

(a) Native Linux: link bandwidth 100 Mbps, link delay 10ms

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0

500000

1000000

1500000

2000000

2500000

3000000

Se
qu

en
ce

#

Data Packets
Acks

(b) Xen VM (TDF 1): link bandwidth 100 Mbps, link delay 10 ms

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0

500000

1000000

1500000

2000000

2500000

3000000

Se
qu

en
ce

#

Data Packets
Acks

(c) Xen VM (TDF 10): link bandwidth 10 Mbps, link delay 100 ms

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0

500000

1000000

1500000

2000000

2500000

3000000

Se
qu

en
ce

#

Data Packets
Acks

(d) Xen VM (TDF 100): link bandwidth 1 Mbps, link delay 1000 ms

Figure 4.2: Packet timings for the first second of a TCP connection with no losses for native

Linux and three time dilation configurations. In all cases, we configure link bandwidth and

delay such that the bandwidth-delay product is constant.

55

time dilation preserves the perceived packet-level timing of TCP.

We use two end hosts directly connected through a Dell Powerconnect 5224 gigabit

switch. Both systems are Dell PowerEdge 1750 servers with dual Intel 2.8-GHz Xeon pro-

cessors, 1 GB of physical memory, and Broadcom NetXtreme BCM5704 integrated gigabit

Ethernet NICs. The end hosts run Xen 2.0.7, modified to support time dilation. We use Linux

2.6.11 as the Xen guest operating system, and all experiments run inside of the Linux guest

VMs. All protocols in our experiments use their default parameters unless otherwise specified.

We use two identical machines running Linux 2.6.10 and Fedora Core 2 for our “unmodified

Linux” results.

We control network characteristics such as bandwidth, delay, and loss between the two

hosts using Dummynet. In addition to its random loss functionality, we extended Dummynet

to support deterministic losses to produce repeatable and comparable loss behavior. Unless

otherwise noted, all endpoints run with identical parameters (buffer sizes, TDFs, etc.).

In this experiment, we first transfer data on TCP connections between two unmodified

Linux hosts and use tcpdump [19] on the sending host to record packet behavior. We measure

TCP behavior under both lossless and deterministic lossy conditions.

We then repeat the experiment with the sending host running with TDFs of {1, 10,

100}, spanning two orders of magnitude. When dilating time, we configure the underlying

network such that a time-dilated host perceives the same network conditions as the original

TCP experiment on unmodified hosts. For example, for the experiment with unmodified hosts,

we set the bandwidth between the hosts to 100 Mbps and the delay to 10 ms. To preserve the

same network conditions perceived by a host dilated by a factor of 10, we reduce the bandwidth

to 10 Mbps and increase the delay to 100 ms using Dummynet. Thus, if we are successful, a

time dilated host will see the same packet timing behavior as the unmodified case, even though

the physical network conditions have changed substantially. We include results with TDF of 1

to compare TCP behavior in an unmodified host with the behavior of our system modified to

support time dilation.

We show sets of four time sequence graphs in Figures 4.2 and 4.3. Each graph shows

the packet-level timing behavior of TCP on four system configurations: unmodified Linux, and

Linux running in Xen with our implementation of time dilation operating under TDFs of 1,

10, and 100. The first set of graphs shows the first second of a trace of TCP without loss.

Each graph shows the data and ACK packet sequences over time, and illustrates TCP slow-start

and transition to steady-state behavior. Qualitatively, the TCP flows across configurations have

56

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0

200000

400000

600000

800000

1000000

1200000

Se
qu

en
ce

#

Data Packets
Acks
Duplicate Acks
Transmitted Packets

(a) Native Linux: link bandwidth 100 Mbps, link delay 10 ms

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0

200000

400000

600000

800000

1000000

1200000

Se
qu

en
ce

#

Data Packets
Acks
Duplicate Acks
Transmitted Packets

(b) TDF 1: link bandwidth 100 Mbps, link delay 10 ms

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0

200000

400000

600000

800000

1000000

1200000

Se
qu

en
ce

#

Data Packets
Acks
Duplicate Acks
Transmitted Packets

(c) TDF 10: link bandwidth 10 Mbps, link delay 100 ms

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0

200000

400000

600000

800000

1000000

1200000

Se
qu

en
ce

#

Data Packets
Acks
Duplicate Acks
Transmitted Packets

(d) TDF 100: link bandwidth 1 Mbps, link delay 1000 ms

Figure 4.3: Packet timings for the first second of a TCP connection with 1% deterministic

losses.

57

0.00 0.05 0.10 0.15
Time (s)

0

50000

100000

150000

200000

250000

300000

Se
qu

en
ce

#

Data Packets
Acks
Duplicate Acks
Transmitted Packets

(a) Native Linux: link bandwidth 100 Mbps, link delay 10 ms

0.00 0.05 0.10 0.15 0.20
Time (s)

0

50000

100000

150000

200000

250000

300000

Se
qu

en
ce

#

Data Packets
Acks
Duplicate Acks
Transmitted Packets

(b) TDF 1: link bandwidth 100 Mbps, link delay 10 ms

0.00 0.05 0.10 0.15
Time (s)

0

50000

100000

150000

200000

250000

300000

Se
qu

en
ce

#

Data Packets
Acks
Duplicate Acks
Transmitted Packets

(c) TDF 10: link bandwidth 10 Mbps, link delay 100 ms

0.00 0.05 0.10 0.15
Time (s)

0

50000

100000

150000

200000

250000

300000

Se
qu

en
ce

#

Data Packets
Acks
Duplicate Acks
Transmitted Packets

(d) TDF 100: link bandwidth 1 Mbps, link delay 1000 ms

Figure 4.4: Packet timings for 200 ms of the trace show in Figure 4.3 starting at an offset of

400 ms.

58

0 5 10 15 20 25
Time interval (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

TDF 1
TDF 10
TDF 100

(a) Distribution under no loss

0 5 10 15 20 25
Time interval (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

TDF 1
TDF 10
TDF 100

(b) Distribution under 1% loss

Figure 4.5: Comparison of inter-packet transmission times for a single TCP flow across 10

runs.

nearly identical behavior.

Comparing Figures 4.2a and 4.2b, we see that a dilated host has the same packet-level

timing behavior as an unmodified host. More importantly, we see that time dilation accurately

preserves packet-level timings perceived by the dilated host. Even though the configuration

with a TDF of 100 has network conditions two orders of magnitude different from the base

configuration, time dilation successfully preserves packet-level timings.

Time dilation also accurately preserves packet-level timings under lossy conditions.

The second set of time sequence graphs in Figure 4.3 shows the first second of traces of TCP

experiencing 1% loss. As with the lossless experiments, the TCP flows across configurations

have nearly identical behavior even with orders of magnitude differences in network conditions.

Finally, the third set of graphs in Figure 4.4 shows a 200 ms window of the same TCP traces

starting at an offset of 400 ms into the trace. These graphs show a smaller time interval to

illustrate the packet timings in more detail.

Figures 4.2 and 4.3 illustrate the accuracy of time dilation qualitatively. For a more

quantitative analysis, we compared the distribution of the inter-arrival packet reception and

transmission times for the dilated and undilated flows. Figure 4.5 plots the cumulative distri-

bution function for inter-packet transmission times for a single TCP flow across 10 runs under

both lossy and lossless conditions. Visually, the distributions track closely. Table 4.4 presents

a statistical summary for these distributions, the mean and two indices of dispersion — the

coefficient of variance (CoV) and the inter-quartile range (IQR) [62]. An index of dispersion

indicates the variability in the given data set. Both CoV and IQR are unit-less, i.e., they take

59

Table 4.4: Statistical summary of inter-packet transmission times.

Metric No loss 1% loss
TDF 1 TDF 10 TDF 100 TDF 1 TDF 10 TDF 100

Mean (ms) 0.458 0.451 0.448 0.912 1.002 0.896
CoV 0.242 0.218 0.206 0.298 0.304 0.301
IQR 0.294 0.248 0.239 0.202 0.238 0.238

the unit of measurement out of variability consideration. Therefore, the absolute values of

these metrics is not of concern to us, but that they match under dilation is. Given the inherent

variability in TCP, we find this similarity satisfactory. The results for inter-packet reception

times are similar.

Having established the accuracy of time dilation in preserving low level packet be-

havior, we now present some examples of how time dilation can be used as an effective tool

for pushing beyond hardware limitations to evaluate protocols and applications in resource

rich environments. Section 5.1 presents further validation of time dilation in more complex

scenarios in the presence of multiple VMs.

4.5 Applications

The ability of time dilation to create a realistic perception of more resources — faster

CPUs, higher bandwidths and lower latencies — presents some unique opportunities for scal-

able network emulation. To refresh, time dilation enables researchers to extrapolate to scenar-

ios that can not be supported by the underlying physical hardware, while preserving realism.

Having performed micro-benchmarks to validate the accuracy of time dilation, we now demon-

strate the utility of time dilation for two scenarios: network protocol evaluation and analyzing

performance bottlenecks in high-bandwidth applications.

4.5.1 Protocol Evaluation

A key application of time dilation is as a tool for evaluating the behavior and perfor-

mance of protocols and their implementations on future networks. As an initial demonstration

of our system’s utility in this space, we show how time dilation can support evaluating TCP

variants designed for high bandwidth-delay network environments, in particular using the pub-

licly available BiC [113] extension to the Linux TCP stack. BiC uses binary search to increase

the congestion window size logarithmically — the rate of increase is higher when the current

60

transmission rate is much less than the target rate, and slows down as it gets closer to the target

rate.

We set up a dumbbell topology with a single bottleneck link. We fix the RTT on the

link to 80 ms, and vary the bandwidth. The experiment is run on machines connected with

Gigabit Ethernet, and using time dilation we use the underlying 1-Gbps network to compare

the default TCP flavor in Linux 2.6 kernels (NewRENO) with TCP BiC on a wide area link

with bandwidth up to a 100 Gbps. We use Dummynet to manipulate the actual delay on the

bottleneck link in order to preserve the 80 ms RTT under time dilation. We are limited from

exploring higher bandwidths due to Dummynet’s inability to accurately emulate extremely large

delays. For example, 80 ms RTT at a TDF of 100 requires accurately emulating 4000 ms one

way delay.

In this experiment, for a given network bandwidth we create 50 connections between

two hosts with a lifetime of 1000 RTTs and measure the resulting throughput of each connec-

tion. We perform this experiment for the two TCP variants: NewRENO and BiC. In all of

the following experiments, we adjust the Linux TCP buffers as suggested in the TCP Tuning

Guide [13].

Figure 4.6 shows the per-flow throughput across the 50 connections as a function of

network bandwidth. For each configuration, we plot the average per-flow throughput, and the

error bar marks the standard deviation across all flows. In Figure 4.6a, the X-axis goes up to 1

Gbps, and represents the regime where the accuracy of time dilation can be validated against

actual observations. Figures 4.6b (1 to 10 Gbps) and 4.6c (10 to 100 Gbps) show how time

dilation can be used to extrapolate performance.

The graphs show three interesting results. First, time dilation enables us to experiment

with protocols beyond hardware limits using implementations rather than simulations. Here

we experiment with an unmodified TCP stack beyond the 1 Gbps hardware limit to 100 Gbps.

Second, we can experimentally show the impact of high bandwidth-delay products on TCP

implementations. Beyond 10 Gbps, per-flow TCP throughput starts to level off. Finally, we

can experimentally demonstrate the benefits of new protocol implementations designed for

such networks. Figure 4.6b shows that in the 1–10 Gbps regime, BiC outperforms TCP

by a significant margin. However, in Figure 4.6c we see that TCP shows a steady, gradual

improvement and both BiC and TCP level off beyond 10 Gbps.

TCP performance is also sensitive to RTT. To show this effect under high-bandwidth

conditions, we perform another experiment with 50 connections between two machines. How-

61

0.0 0.2 0.4 0.6 0.8 1.0
Bottleneck bandwidth (Gbps)

0

5

10

15

20

25

Pe
r-f

lo
w

th
ro

ug
hp

ut
(M

bp
s) TDF 1 (NewReno)

TDF 10 (NewReno)
TDF 10 (BiC)

(a) Validating dilation: TCP performance under dilation matches actual, observed

performance.

2 4 6 8 10
Bottleneck bandwidth (Gbps)

0

10

20

30

40

50

60

70

80

90

Pe
r-f

lo
w

th
ro

ug
hp

ut
(M

bp
s) NewReno

BiC

(b) Using dilation for protocol evaluation: comparing TCP with TCP BiC under

high bandwidth.

20 40 60 80 100
Bottleneck bandwidth (Gbps)

0

20

40

60

80

100

Pe
r-f

lo
w

th
ro

ug
hp

ut
(M

bp
s)

NewReno
BiC

(c) Pushing the dilation envelope: using a TDF of 100 to evaluate protocols under

extremely high bandwidths.

Figure 4.6: Protocol Evaluation: Per-flow throughput of 50 flows for TCP and TCP BiC

between two hosts on a network with an 80-ms RTT as a function of network bandwidth.

62

0 100 200 300 400 500 600 700 800
Perceived RTT (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
r-f

lo
w

no
rm

al
iz

ed
th

ro
ug

hp
ut

Baseline
TDF 10

Figure 4.7: Protocol evaluation: Normalized average per-flow throughput of 50 flows for TCP

and TCP BiC between two hosts on a network with 150-Mbps bandwidth as a function of

RTT.

ever, this time we fix the network bandwidth at 150 Mbps and vary the perceived RTT between

the hosts instead. For clarity, we present an alternative visualization of the results: instead

of plotting the absolute per-flow throughput values, we instead plot normalized throughput

values as a fraction of maximum potential throughput. For example, with 50 connections on

a 150-Mbps bandwidth link, the maximum average per-flow throughput would be 3 Mbps.

Our measured average per-flow throughput was 2.91 Mbps, resulting in a normalized per-flow

throughput of 0.97.

Figure 4.7 shows the average per-flow throughput of TCP as a function of RTT from

0–800 ms. We chose this configuration to match a recent study on XCP [65], a protocol

targeting high bandwidth-delay conditions. The results show the well-known dependence of

TCP throughput on RTT, and that time dilation preserves this behavior.

4.5.2 High-bandwidth Applications

Time dilation can significantly enhance our ability to evaluate data-intensive appli-

cations with high bisection bandwidths using limited hardware resources. For instance, the

recent popularity of peer-to-peer environments for content distribution and streaming requires

significant aggregate bandwidth for realistic evaluations. Capturing the requirements of 10,000

63

hosts with an average of 1 Mbps per host would require 10 Gbps of emulation capacity and

sufficient processing power for accurate study—a hardware configuration that would be pro-

hibitively expensive to create for many research groups.

We show initial results of our ability to scale such experiments using modest hardware

configurations with BitTorrent [7], a high-bandwidth peer-to-peer, content distribution protocol.

Our goal is to explore the bottlenecks when running a large scale experiment using the publicly

available BitTorrent implementation [7] (version 3.4.2).

We conduct our experiments using 10 physical machines hosting VMs running Bit-

Torrent clients interconnected through one ModelNet [102] core machine emulating an uncon-

strained network topology of 1,000 nodes. The client machines and the ModelNet core are

physically connected via a Gigabit switch. The ModelNet topology is unconstrained in the

sense that the network emulator forwards packets as fast as possible between endpoints. We

create an overlay of BitTorrent clients, all of which are downloading a 46-MB file from an

initial “seeder”. We vary the number of clients participating in the overlay, distributing them

uniformly among the 10 VMs. As a result, the aggregate bisection bandwidth of the BitTorrent

overlay is limited by the emulation capacity of ModelNet, resource availability at the clients,

and the capacity of the underlying hardware.

In the following experiments, we demonstrate how to use time dilation to evaluate

BitTorrent performance beyond the physical resource limitations of the test-bed. As a basis,

we measure a BitTorrent overlay running on the VMs with a TDF of 1 (no dilation). We

scale the number of clients in the overlay from 40 to 240 (4–24 per VM). We measure the

average time for downloading the file across all clients, as well as the aggregate bisection

bandwidth of the overlay; we compute aggregate bandwidth as the number of clients times the

average per-client bandwidth (file size/average download time). Figure 4.8a shows the mean

and standard deviation for 10 runs of this experiment as a function of the number of clients.

Since the VMs are not dilated, the aggregate bisection bandwidth cannot exceed the 1-Gbps

limit of the physical network. From the graph, though, we see that the overlay does not reach

this limit; with 200 clients or more, BitTorrent is able to sustain aggregate bandwidths only up

to 570 Mbps. Increasing the number of clients further does not increase aggregate bandwidth

because the host CPUs become saturated beyond 20 BitTorrent clients per machine.

In the undilated configuration, CPU becomes a bottleneck before network capacity.

Next we use time dilation to scale CPU resources to provide additional processing for the

clients without changing the perceived network characteristics. To scale CPU resources, we

64

0 50 100 150 200 250
Number of clients

400

500

600

700

800

900

1000

A
gg

re
ga

te
ba

nd
w

id
th

(M
bp

s)

0 50 100 150 200 25020

40

60

80

100

120

140

160

180

Ti
m

e
to

do
w

nl
oa

d
(s

)

Aggregate bandwidth
Mean download time

(a) VMs are running with TDF of 1 (no dilation). Performance degrades as clients

contend for CPU resources.

0 50 100 150 200 250
Number of clients

1000

1500

2000

2500

3000

3500

4000

A
gg

re
ga

te
ba

nd
w

id
th

(M
bp

s)

0 50 100 150 200 25010

12

14

16

18

20

22

24

26

Ti
m

e
to

do
w

nl
oa

d
(s

)

Aggregate bandwidth
Mean download time

(b) VMs are running with TDF of 10 and perceived network capacity is 1 Gbps.

Dilation removes CPU contention, but network capacity becomes saturated with

many clients.

0 50 100 150 200 250
Number of clients

1000

1500

2000

2500

3000

3500

4000

4500

A
gg

re
ga

te
ba

nd
w

id
th

(M
bp

s)

0 50 100 150 200 25010

12

14

16

18

20

22

24

Ti
m

e
to

do
w

nl
oa

d
(s

)

Aggregate bandwidth
Mean download time

(c) VMs are running with TDF of 10. Perceived network capacity is 10 Gbps.

Increasing perceived network capacity removes network bottleneck, enabling ag-

gregate bandwidth to scale until clients again contend for CPU.

Figure 4.8: Using time dilation for evaluating BitTorrent: Increasing the number of clients

results in higher aggregate bandwidths, until the system reaches some bottleneck (CPU or

network capacity). Time dilation can be used to push beyond these bottlenecks.

65

repeat the previous experiment but with VMs dilated with a TDF of 10. To keep the network

capacity the same as before, we restrict the physical capacity of each client host link to 100

Mbps so that the underlying network appears as a 1-Gbps network to the dilated VMs. In effect,

we dilate time to produce a new configuration with hosts with 10 times the CPU resources

compared with the base configuration, interconnected by an equivalent network. Figure 4.8b

shows the results of 10 runs of this experiment. With the increase in CPU resources for

the clients, the BitTorrent overlay achieves close to the maximum 1-Gbps aggregate bisection

bandwidth of the network. Note that the download times (in the dilated time frame) also

improve as a result; due to dilation, though, the experiment takes longer in wall clock time

(the most noticeable cost of dilation).

In the second configuration, network capacity now limits BitTorrent throughput. When

using time dilation in the second configuration, we constrained the physical links to 100

Mbps so that the network had equivalent performance as the base configuration. In our last

experiment, we increase both CPU resources and network capacity to scale the BitTorrent

evaluation further. We continue dilating the VMs with a TDF of 10, but now remove the

constraints on the network: client host physical links are 1 Gbps again, with a maximum

aggregate bisection bandwidth of 10 Gbps in the dilated time frame. In effect, we dilate time

to produce a configuration with 10 times the CPU and network resources as the base physical

configuration.

Figure 4.8c shows the results of this last experiment. From these results, we see that

the “faster” network leads to a significant decrease in download times (in the dilated time

frame). Second, beyond 200 clients we see the aggregate bandwidth leveling out, indicating

that we are again running into a bottleneck. On inspection, at that point we find that the end

hosts are saturating their CPUs again as with the base configuration. Note, however, that in

this case the peak bisection bandwidth exceeds 4 Gbps — performance that cannot be achieved

natively with the given hardware.

We believe that time dilation is a valuable tool for evaluating large scale distributed

systems by creating resource-rich environments. It represents a reasonable trade-off between

realism and accuracy, compared to the current state-of-the-art. In fact, dilation enables scal-

ing the size of the experiment as well. On the same set of 10 physical machines, we have

successfully experimented with up to 400 BitTorrent clients.

DieCast further leverages time dilation to solve the converse problem, that of evaluat-

ing large distributed systems using a much smaller infrastructure. The next chapter discusses

66

resource management mechanisms required by DieCast, in addition to time dilation.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of USENIX

Symposium on Networked Systems Design and Implementation (NSDI) 2006. Gupta, Diwaker;

Yocum, Kenneth; McNett, Marvin; Snoeren, Alex C.; Vahdat, Amin; Voelker, Geoffrey M.

The dissertation author was the primary investigator and author of this paper.

Chapter 5

Resource Scaling in a Dilated Time
Frame

Section 3.1 introduced the notion of resource equivalence: a VM in a DieCast-scaled

system should perceive the same resource capacity as its physical counterpart in the original

system. Since multiplexing partitions the underlying resources among all the co-located VMs,

we need mechanisms to restore fidelity and increase the perceived resource capacity of each

VM to match its corresponding physical machine. In the previous chapter, we saw how time

dilation can uniformly scale the perceived capacity of various system resources such as the

CPU, network and disk I/O. However, time dilation alone is not sufficient to restore fidelity,

especially in scenarios where the physical machines in the test harness differ significantly from

the physical machines in the original system, or when there is non-trivial heterogeneity within

machines in the original system.

Consider a system with two physical machines whose specifications appear in the

first row of Table 5.1. Suppose we wish to use DieCast to replicate and test this system

using a single test machine whose configuration appears in the second row of the same table.

Note that the two machines in the original system have very different CPU, network and disk

characteristics.

First, note that if we simply created two identical VMs on the test machine, each VM

will get roughly half of the underlying resources. The resulting VMs perceive a drastically

different environment than their physical counterparts. Next, if we run these (identical) VMs

under a time dilation factor of two, then each VM perceives twice the resources that it actually

has. As Table 5.1 shows (fourth row, last two columns), the first VM now perceives resources

67

68

Table 5.1: Restoring fidelity: Time dilation alone is not sufficient to match the resource

characteristics of machines in the original system—mechanisms to independently scale various

resources are required.

Original
system

2.4-GHz CPU,
1-Gbps NW,
Server-class
HDD

2-GHz CPU,
100-Mbps NW,
Desktop-class
HDD

Test sys-
tem

2.4-GHz CPU, 1-Gbps NW,
Server-class HDD
Actual configuration Perceived configuration

Two
identical
VMs

1.2-GHz CPU,
0.5-Gbps NW,
Server-class HDD

1.2-GHz CPU,
0.5-Gbps NW,
Server-class HDD

1.2-GHz CPU,
0.5-Gbps NW,
Server-class HDD

1.2-GHz CPU,
0.5-Gbps NW,
Server-class HDD

Identical
VMs @
TDF 2

1.2-GHz CPU,
0.5-Gbps NW,
Server-class HDD

1.2-GHz CPU,
0.5-Gbps NW,
Server-class HDD

2.4-GHz CPU,
1-Gbps NW,
Server-class
HDD

2.4-GHz CPU,
1-Gbps NW,
Server-class
HDD

Scaled
VMs @
TDF 2

1.2-GHz CPU
(50%), 0.5-
Gbps NW (50%),
Server-class HDD

1-GHz CPU
(41.67%), 50-
Mbps NW (5%),
Desktop-class
HDD

2.4-GHz CPU,
1-Gbps NW,
Server-class
HDD

2-GHz CPU,
100-Mbps NW,
Desktop-class
HDD

quite similar to that of the first physical machine. However, the second VM still perceives a

very different configuration compared to the second physical machine in the original system.

Thus, time dilation alone is clearly insufficient to restore fidelity in this case.

What we need, in fact, are mechanisms to precisely control the resources visible to

individual VMs such that after time dilation, the perceived resource capacities match those

of the machines in the original system. For instance, if the second VM is allocated only

41.67% of the underlying CPU, only 5% of the underlying network bandwidth, and if somehow

the hard drive exposed to the second VM behaves like a desktop-class device rather than a

server-class device, then after time dilation, the second VM will perceive a configuration very

similar to the second physical machine. Note that we need independent knobs for each of the

various resources in a system. These mechanisms are the subject of this chapter. We consider

mechanisms for scaling three primary resources: the network, the CPU and the disk.

69

5.1 Network Scaling

Previous chapters have already covered some aspects of network scaling. In particular,

we use traffic shaping tools and network emulators to configure the network topology such

that perceived network characteristics such as per-hop bandwidths and latencies are preserved

under time dilation. This section considers various facets of network scaling in more detail.

There are two aspects to scaling the network. First, there are the network resources

on the local host itself. In particular, any end point has an inherent first-hop bottleneck — it

cannot transmit or receive data at a rate higher than that supported by the physical network

interface. Let us call appropriately scaling this host network interface local network scaling.

Second, any network interactions external to the system must be scaled appropriately as well.

In particular, the network properties of the original system must be preserved on a per-hop

basis, as perceived by a time dilated system. We call this external network scaling.

Most modern network interface cards (NICs) support 1 Gbps bi-directional sustained

throughput (also called duplex-mode). However, it is extremely rare for the bandwidth of

the local interface to be the primary bottleneck in an end-to-end network path. It is much

more likely that some intermediate, low-bandwidth link is the bottleneck. Hence, scaling the

bandwidth at the local network interface is unlikely to have a measurable impact. Nevertheless,

for completeness and correctness of the scaled system, we still throttle the local interface.

Besides, there might be legitimate settings where the local interface is the primary bottleneck

— on hosts connected with a 10-Gbps fabric, for instance.

Scaling the bandwidth on the local interface is quite trivial. Most modern operating

systems already ship with traffic shaping tools that allow rate limiting traffic and traffic shaping

on the local interface. In particular, Linux has a comprehensive suite of traffic shaping tools

that we leverage to do the scaling [12]. Recall that Domain-0 is the privileged, control domain

in Xen, and DieCast runs Linux as the guest OS within Domain-0. An artifact of the split

device driver model in Xen is that, corresponding to each physical interface within a VM,

Xen creates a virtual interface in Domain-0. We simply perform traffic shaping on the virtual

interface(s) corresponding to the VM(s) in question. As before, if the local interface in the

original system had a bandwidth B, then under time dilation with a TDF of t, we configure

the interface to a maximum bandwidth of B/t.

Note that there is also a latency component attached to the local network interface.

But unlike bandwidth, latency is additive. Which means that because the access latency for the

local interface is substantially smaller than external network latencies, a situation where the

70

local interface latency dominates is unlikely. Hence scaling the latency on the local interface

is typically not required.

Of course, this discussion assumes that the traffic shaping tool of choice does its job

faithfully. Control mechanisms tend to lose their accuracy at the extremes, when the bandwidths

and latencies are too high or too low. Fortunately, time dilation is of significant value here.

It may appear that the latencies involved in a local interface of the original system may be

low enough that the additional software overhead associated with the traffic shaping tool could

make it difficult to match the target latencies. To our advantage, maintaining accurate latency

with time dilation actually requires increasing the real-time delay of a given packet; e.g., a

100-µs delay network link in the original network should be delayed by 1 ms when dilating

by a factor of 10. Thus, network scaling actually simplifies the task of accurately emulating a

larger/faster network environment.

We also note that we are able to use sophisticated traffic-shaping tools for DieCast

because of the general-purpose environment in Domain-0. However, this does not preclude

DieCast from operating on other virtualization platforms. For instance, the VMware ESX

server ships with built-in mechanisms to shape traffic on a per-VM basis [104].

Next, we discuss external network scaling. Recall that the goal is to preserve the per-

ceived network characteristics of each hop in the network topology. Ideally, if all components

of a distributed system run under the same time dilation factor, including all the intermediate

links, routers and switches, then the perceived network characteristics will be automatically

preserved. For instance, each router will still honor the bandwidth constraints on flows (if

any) within the dilated time frame. However, it might not be possible to port time dilation

for such network appliances, due to limitations of the software or non-virtualizable hardware.

Further, it is unclear how a physical link can support time dilation on its own — the link itself

is simply a medium for transmitting data. Support for time dilation must come from either the

end points or some other external mechanism.

One can always interpose an emulation environment to overlay an emulated topology

on top of any given physical topology. This additional layer of indirection gives us a lot

more flexibility in terms of deployment. If the original topology is being emulated in software

using a network emulator, then doing network scaling is simply a matter of reconfiguring the

bandwidth and latencies of each hop, as discussed in Section 4.4.1. However, just reconfiguring

the per-hop characteristics does not take into account the queuing delays and the emulation

overhead within the emulator.

71

Consider ModelNet [102], a software traffic shaper for the FreeBSD and Linux kernels.

ModelNet maintains a series of queues corresponding to individual links in a target topology. It

moves received packets from queue to queue in real time, appropriately delaying (or dropping)

the packet according to the current hop-by-hop bandwidth, latency, and congestion character-

istics of the target topology. Upon reaching its destination in the target topology, ModelNet

forwards the packet to the appropriate VM in the test system. If the per-packet emulation time

is non-trivial, then this time will be unaccounted for if we simply scale the per-hop charac-

teristics of the original topology. An alternate approach would be to run the ModelNet core

itself in a dilated time frame, and leaving the characteristics of the original network topology

untouched. This approach would ensure that the emulator replicates the characteristics in the

dilated time frame, which is precisely what we want. However, in most cases the overheads

within the emulator are low enough that running it within a dilated time frame is not required.

Such low overheads are useful if the emulator can not be virtualized, for instance.

DieCast relies on network emulation to do the external network scaling. We now

present a more detailed validation of the network scaling mechanisms. To demonstrate that

dilation preserves TCP behavior under a variety of conditions, even for short flows, we per-

formed the following set of experiments under heterogeneous conditions. In these experiments,

60 flows shared a bottleneck link. We divided the flows into three groups of 20 flows, with

each group subject to an RTT of 20 ms, 40 ms, or 60 ms. We also varied the bandwidth of the

bottleneck link from 10 Mbps to 600 Mbps. We conducted the experiments for a range of flow

lengths from 5 seconds to 60 seconds and verified that the results were consistent independent

of flow duration.

We present data for one set of experiments where each flow lasts for 10 seconds.

Figure 5.1 plots the mean and standard deviation across the flows within each group for TDFs

of 1 (regular TCP) and 10. For all three groups, the results from dilation agree well with the

undilated results: the throughputs for TDF of 1 match those for TDF of 10 within measured

variability. Note that these results also reflect TCP’s known throughput bias towards flows

with smaller RTTs.

In our experiments thus far, all flows originated at a single VM and were destined

to a single VM. However, when running multiple VMs (as might be the case to support, for

instance, scalable network emulation experiments [102, 108]) one has to consider the impact

of VMM scheduling overhead on performance. To explore the issue of VMM scheduling, we

investigate the impact of spreading flows across multiple dilated virtual machines running on

72

0 100 200 300 400 500 600
Bottleneck bandwidth (Mbps)

0

2

4

6

8

10

12

14

16

18

Pe
r-f

lo
w

th
ro

ug
hp

ut
(M

bp
s)

20 ms

40 ms

60 ms

Baseline
TDF 10

Figure 5.1: Per-flow throughput for 60 flows sharing a bottleneck link. Each flow lasts 10

seconds, and each group of 20 flows is subject to a different RTT. The mean and deviation are

taken across the flows within each group.

the same physical host. In particular, we verify that simultaneously scheduling multiple dilated

VMs does not negatively impact the accuracy of dilation.

In this experiment, for a given network bandwidth we create 50 connections between

two hosts with a lifetime of 1000 RTTs and measure the resulting throughput of each con-

nection. We configure the network with an 80 ms RTT, and vary the perceived network

bandwidth from 0–4 Gbps using 1-Gbps switched Ethernet. Undilated TCP has a maximum

network bandwidth of 1 Gbps, but time dilation enables us to explore performance beyond

the raw hardware limits (we previously visited this point in Section 4.5.1). We repeat this

experiment with the 50 flows split across 2, 5 and 10 virtual machines running on one physical

machine.

Our results indicate that VMM scheduling does not significantly impact the accuracy of

dilation. Figure 5.2 plots the mean throughput of the flows for each of the four configurations

of flows divided among virtual machines. Error bars mark the standard deviation. Once again,

the mean flow throughput for the various configurations are similar.

Thus, our mechanisms for network scaling remain accurate across a variety of network

conditions and VM configurations. We discuss CPU scaling next.

73

0 200 400 600 800 1000
Bottleneck bandwidth (Mbps)

0

5

10

15

20

25

Pe
r-f

lo
w

th
ro

ug
hp

ut
(M

bp
s)

1 VM
2 VMs
5 VMs
10 VMs

Figure 5.2: Mean throughput of 50 TCP flows between two hosts on a network with an 80-ms

RTT as a function of network bandwidth. The 50 flows are partitioned among 1–10 virtual

machines.

5.2 CPU Scaling

We begin this section with a brief discussion of the three CPU schedulers available

in Xen. A good understanding of the features of these schedulers and the trade-offs they

represent is important in deciding how to allocate CPU to VMs. Note that time dilation itself

(and, hence, DieCast) is agnostic to the choice of CPU scheduler. We do, however, make

modifications to CPU schedulers in some cases to improve the support for time dilation.

5.2.1 Three CPU Schedulers in Xen

Xen is unique among virtualization platforms in that it gives users a choice among

different CPU schedulers, as a configurable boot-time parameter. However, this choice comes

with the burden of choosing the right scheduler and configuring it appropriately. Since its

inception, Xen has introduced three different CPU schedulers. We briefly characterize the

main features of these schedulers below and motivate their inclusion in Xen. In the discussion

below, we denote the work-conserving mode as WC-mode and the non-work-conserving mode

as NWC-mode. For a description of these modes, please refer to Section 2.1.

74

Borrowed Virtual Time (BVT) [48] is a fair-share scheduler based on the concept of virtual

time: the VM with the least virtual time is scheduled first. Additionally, BVT provides low-

latency support for real-time and interactive applications by allowing latency-sensitive VMs

to “warp” back in virtual time, thus gaining scheduling priority. The VM effectively borrows

virtual time from its future CPU allocation.

The scheduler is configured with a context switch allowance C, which is the real-time

by which the current VM is allowed to advance beyond another runnable VM with equal

claim on the CPU. Each runnable domain receives a share of CPU in proportion to its weight

weighti. To achieve this, the virtual time of the currently running Domi is incremented by

its running time divided by weighti.

In summary, BVT has the following features:

• preemptive (if warp is used), WC-mode only;

• optimally-fair: the error between fair share and actual allocation is never greater than

context switch allowance C plus one allocation slice;

• low-overhead implementation on multiprocessors as well as uni-processors.

The lack of NWC-mode in BVT severely limits its usage in a number of environments,

and which brings us to this next scheduler.

Simple Earliest Deadline First (SEDF) [82] uses real-time algorithms to deliver hard guar-

antees on CPU allocation. Each domain Domi specifies its CPU requirements with a tuple

(si, pi, xi), where the slice si and the period pi together represent the CPU share that Domi

requests: SEDF guarantees that Domi will receive at least si units of time in each period of

length pi. A boolean flag xi indicates whether Domi is eligible to receive extra CPU if there

is CPU slack in the system (WC-mode). SEDF distributes this slack time in a fair manner

after all runnable domains have received their CPU share. One can allocate 30% CPU to a

domain by specifying the requirement as either (3 ms, 10 ms, 0) or (30 ms, 100 ms, 0). The

time granularity in the definition of the period impacts scheduler fairness.

In summary, SEDF has the following features:

• preemptive, supports both WC and NWC modes;

• fairness depends on the value of the period: shorter periods support allocation at finer

time granularity;

75

• implements per-CPU queues: this design choice implies that SEDF lacks global load

balancing on multiprocessors.

Credit Scheduler [8] is the most recent (and currently the default) CPU scheduler in Xen,

featuring good out-of-the-box performance for average workloads and automatic load balancing

of virtual CPUs across physical CPUs on a symmetric multi-processor (SMP) host. Before a

CPU goes idle, it will consider other CPUs in order to find any runnable virtual CPU (VCPU).

This approach guarantees that no physical CPU idles if there is any runnable VCPU in the

system.

Each VM is assigned a weight and a cap. If the cap is 0, then the VM can receive

any extra CPU (WC-mode). A non-zero cap limits the amount of CPU a VM receives (NWC-

mode). The Credit scheduler uses 30 ms time slices for CPU allocation. A VM receives at

most 30 ms of CPU time before being preempted to run another VM. Once every 30 ms,

the priorities (credits) of all runnable VMs are recalculated. The scheduler monitors resource

usage every 10 ms.

In summary, Credit has the following features:

• non-preemptive, supports both WC and NWC modes;

• global load balancing on multiprocessors.

In the course of this dissertation, we had occasion to use all of the above CPU sched-

ulers at some point. In order to scale the CPU for DieCast, we want to precisely control

the amount of CPU available to individual VMs. This is straightforward using the SEDF and

Credit schedulers, since they directly support the NWC-mode. While the BVT scheduler does

not directly support NWC-mode, a potential workaround is to run a CPU intensive job in a

separate VM with the weights appropriately set such that the target VM can consume no more

than the desired amount of CPU. Next, we evaluate the accuracy of CPU allocation for the

SEDF and Credit schedulers.

5.2.2 Scheduler CPU Allocation Accuracy

A traditional metric used for analyzing and comparing CPU schedulers is the error of

CPU allocation: it captures the difference between the specified CPU allocation and actual CPU

consumption for a CPU intensive VM. To evaluate the CPU allocation error in NWC-mode for

76

0 10 20 30 40 50 60 70 80 90
Targeted CPU Allocation (%)

−40

−20

0

20

40

60

80

100

N
or

m
al

iz
ed

Re
la

tiv
e

Er
ro

r(
%

)

Figure 5.3: Allocation error in the SEDF scheduler.

SEDF and Credit schedulers, we designed a simple benchmark, called ALERT (ALlocation
ERror Test):

• Domain-0 is allocated a fixed, 6% CPU share during the all benchmark experiments;

• the guest domain Dom1 executes a CPU-intensive task;

• for each benchmark point i the CPU allocation to Dom1 is fixed to Ai, and each

experiment i continues for 3 min;

• the experiments are performed with Ai = 1%, 2%, 3%, ..., 10%, 20%, ... , 90%.

This benchmark minimizes contention for resources: there is always enough CPU

for Dom1 to receive its allocated CPU. While ALERT does not guarantee the same CPU

allocation accuracy when there are competing VMs, one can easily extend ALERT to test the

CPU allocation error for multiple VMs, as well as for multi-VCPU VMs. The goal of ALERT
is to establish the baseline accuracy of CPU allocation by designing the simplest, minimal

experiment.

Let Uk
i denote CPU usage of Dom1 measured during the k-th time interval in bench-

mark experiment i. If a CPU scheduler works accurately we should see that for X% of CPU

allocation to Dom1 it should consume X % of CPU, i.e., ideally, Uk
i = Ai for any k-th time

77

0 10 20 30 40 50 60 70 80 90
Targeted CPU Allocation (%)

−40

−20

0

20

40

60

80

100

N
or

m
al

iz
ed

Re
la

tiv
e

Er
ro

r(
%

)

Figure 5.4: Allocation error in the Credit scheduler.

interval in benchmark experiment i. Let Erk
i denote the normalized relative error of CPU

allocation:

Erk
i = (Ai − Uk

i)/Ai

We execute the ALERT benchmark under the SEDF and Credit schedulers in Xen. The

Credit scheduler uses 30 ms as a time slice for CPU allocation as described in Section 5.2.1.

To match the CPU allocation time granularity we use 10 ms period in SEDF in our comparison

experiments.

Figures 5.3 and 5.4 show the normalized relative errors of CPU allocation with ALERT
for SEDF and Credit schedulers respectively at one second time granularity, i.e., we compare

the CPU usage Uk
i of Dom1 measured at each second during experiment i with the assigned

CPU allocation value Ai. X-axes represent the targeted CPU allocation, Y-axes show the

normalized relative error. Each experiment is represented by 180 measurements (3 min = 180

sec); thus, each “stack” in Figures 5.3 and 5.4 has 180 points and the stack’s density reflects

the error distribution.

As Figure 5.3 shows, the CPU allocation errors under SEDF are consistent and rel-

atively small across all of the tested CPU allocation values. The Credit scheduler has much

higher allocation error overall as shown in Figure 5.4. The errors are especially high for

78

−100 0 100 200 300 400
Normalized Relative Error (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Credit
SEDF

Figure 5.5: CDF+
− of CPU allocation errors.

smaller CPU allocation targets, say below 30%. 1

Figure 5.5 presents the relative distribution of all the errors measured during the

ALERT experiments for the SEDF and Credit schedulers. We plot the normalized relative

errors measured at 1-second time scale for all the performed experiments in ALERT (18×180 =

3240 data points). The figure is a combination of the complementary CDFs of the negative

errors as well as the positive errors. We call it CDF+
− . From the figure, we can see that

the Credit scheduler is over-allocating the CPU share more often than under-allocating (note

the area under the curve for the positive errors), while for SEDF under-allocation is more

common. As apparent from Figure 5.5 the Credit scheduler has a much higher CPU allocation

error compared to SEDF scheduler.

Figure 5.6 shows the normalized relative errors of CPU allocation at three minute time

scale, i.e., we compare the targeted CPU allocation with average CPU utilization measured at

the end of each ALERT experiment (each experiment runs for 3 min). Overall, SEDF and

Credit show comparable CPU allocation averages over longer time scale. However, the Credit

scheduler’s errors are still significantly higher than SEDF’s errors for CPU allocation in the

range [1%, 30%] as shown in Figure 5.6.
1We had to limit the shown error in Figure 5.4 to the range of [−50%, 100%] for visibility: the actual range of

the observed errors is [−100%, 370%].

79

0 10 20 30 40 50 60 70 80 90
Target CPU Allocation (%)

−20

0

20

40

60

80

100

120

140

N
or

m
al

iz
ed

Re
la

tiv
e

Er
ro

r(
%

)

Credit
SEDF

Figure 5.6: Normalized relative error over three minute intervals.

Allocation accuracy on multi-processors. To efficiently use CPU resources in SMP ma-

chines, special support is required from the underlying CPU scheduler. Recall that unlike the

Credit scheduler, neither BVT nor SEDF support global load balancing, which limits their CPU

usage efficiency. In other words, only the Credit scheduler has mechanisms to transparently

migrate VCPUs to idle physical CPUs in the system.

To evaluate the accuracy of the Credit scheduler on SMP machines, we setup three

VMs on a dual-CPU machine, with we allocate one-third (66%) of the total CPU resources

to each VM. As before, each VM is hosting a CPU-intensive task. Each experiment lasts ten

minutes and the CPU allocation error is measured at one second intervals. Figure 5.7 presents

the CDF+
− for this experiment. As the figure shows, the CPU allocation error introduced by

the global load balancing scheme is relatively high when observed at a fine time granularity.

CPU Scaling in DieCast. DieCast employs a non-work conserving scheduler to ensure that

each virtual machine receives no more than its allotted share of resources even when spare

capacity is available. Suppose a CPU intensive task takes 100 seconds to finish on the original

machine. The same task would now take 1000 seconds (of real time) on a dilated VM, since

it can only use a tenth of the CPU. However, since the VM is running under time dilation, it

only perceives that 100 seconds have passed. Thus, the VMs show similar behavior in terms

80

−40 −30 −20 −10 0 10 20
Normalized Relative Error (%)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Domain-0
Domain-1
Domain-2

Figure 5.7: CPU allocation error, Credit, SMP case, 3 domains, NWC-mode.

of perceived processing power.

Unless otherwise stated, we use Xen’s Credit scheduler to allocate an appropriate

fraction of CPU resources to each VM in NWC-mode. However, simply scaling the CPU does

not govern how those CPU cycles are distributed across time. Thus, a VM that is allocated

10% CPU might receive its 10% share in a single burst of a long, uninterrupted execution, or

the 10% might get spread out across multiple, smaller executions.

The original Credit scheduler can schedule the same VM in consecutive time slices, as

long as it does not consume its allocated share of the CPU. Thus, if a VM set to be dilated by a

factor of 10 consumes less than 10% of the CPU in each time slice, then it can potentially get

scheduled on every invocation of the scheduler, since in aggregate it never consumes more than

its share of 10% CPU. This potential to run continuously distorts the performance of I/O-bound

applications under dilation. In particular, they will observe a different timing distribution than

they would in the real time frame. This distortion increases with increasing TDF. We found

that, for some workloads, we actually need to enforce that a VM’s CPU allocation is spread

more uniformly across multiple executions.

We modify the Credit CPU scheduler in Xen to support this mode of operation as

follows: if a VM runs for the entire duration of its time slice, we ensure that it does not

get scheduled for the next (tdf − 1) time slices. If a VM voluntarily yields the CPU or is

81

102 103 104 105 106 107

Number of SHA1 operations
10−3

10−2

10−1

100

101

102

103

Ti
m

e
(s

)

TDF 1
TDF 2
TDF 5
TDF 10

(a) The default behavior under time dilation is to uniformly increase the perceived

processor power. Thus the same computation takes lesser and lesser time within

the dilated time frame.

102 103 104 105 106 107

Number of SHA1 operations
10−3

10−2

10−1

100

101

102

103

Ti
m

e
(s

)

TDF 1
TDF 2
TDF 5
TDF 10

(b) Under a TDF of f , a VM with 1/f of the underlying CPU behaves like an

undilated machine consuming 100% CPU.

Figure 5.8: CPU scaling.

82

pre-empted before its time slice expires, it may be re-scheduled in a subsequent time slice.

However, as soon as it consumes a cumulative total of a time slice’s worth of run time (carried

over from the previous time it was descheduled), it will be pre-empted and not allowed to run

for another (tdf − 1) time slices.

5.2.3 Validation

Our first set of experiments validates the following claim. In a simple model, a VM

with TDF of 10 running with 10% of the CPU has the same per-packet cycle budget as an

undilated VM running with 100% of the CPU. Conversely, a VM running under a TDF of 10

perceives a ten times faster CPU, in terms of the available processing power (cycles/second)

and consequently, in terms of the time taken to accomplish a given CPU intensive task.

Figure 5.8 shows the results of an experiment to validate this hypothesis. The exper-

iment involves a single VM performing some number of SHA-1 hashes. This computation

is CPU intensive, and by varying the number of hashes to compute, we can control the time

it takes to finish the benchmark. Figure 5.8a demonstrates the default behavior under time

dilation — as the dilation factor increases, the time taken to perform a given task (as measured

within the VM) decreases. We then repeat the same experiment, except this time the CPU is

scaled such that after time dilation, the perceived CPU capacity remains unchanged. Thus, for

a TDF of 10, the VM is restricted to 10% of the underlying CPU. We use the Credit scheduler

to specify the CPU reservations. As Figure 5.8b shows, after CPU scaling, the time taken

for the computations to finish under various time dilation factors matches that of the baseline

configuration without time dilation.

Such CPU scaling also allows us to control the perceived CPU capacity independent

of the network characteristics. We validate this hypothesis by running an experiment similar

to that described for Figure 5.2. This time, however, we adjust the VMM’s CPU scheduling

algorithm to restrict the amount of CPU allocated to each VM. We use the BVT scheduler to

assign appropriate weights to each domain, and a CPU intensive job in a separate domain to

consume the surplus CPU. Note that schedulers with native support for NWC-mode — such

as Credit and SEDF — can simply be configured with appropriate CPU shares.

The goal of this experiment is to show that CPU scaling allows faithful emulation of

CPU-bound scenarios. First, we find an undilated scenario that is CPU-limited by increasing

link capacity. Because the undilated processor has enough power to run the network at line

speed, we reduce its CPU capacity by 50%. We compare this to a VM dilated by TDF of

83

0 200 400 600 800 1000
Bottleneck bandwidth (Mbps)

0

2

4

6

8

10

12

14

16

18

Pe
r-f

lo
w

th
ro

ug
hp

ut
(M

bp
s)

Baseline (TDF 1)
50% (TDF 1)
5% (TDF 10)

Figure 5.9: Per-flow throughput of 50 TCP flows between a CPU-scaled sender and uncon-

strained receiver. CPU utilization at the sender is restricted to the indicated percentages.

0 200 400 600 800 1000
Bottleneck bandwidth (Mbps)

0

2

4

6

8

10

12

14

16

18

Pe
r-f

lo
w

th
ro

ug
hp

ut
(M

bp
s)

Baseline (TDF 1)
50% (TDF 1)
5% (TDF 10)

Figure 5.10: Per-flow throughput of 50 TCP flows between an unconstrained sender and a

CPU-scaled receiver. CPU utilization at the receiver is restricted to the indicated percentages.

84

0 500 1000 1500 2000 2500 3000 3500 4000
Bottleneck bandwidth (Mbps)

0

10

20

30

40

50

60

70

Pe
r-f

lo
w

th
ro

ug
hp

ut
(M

bp
s)

80% CPU
40% CPU
10% CPU

Figure 5.11: Per-flow throughput of 50 TCP flows across two hosts as a function of network

bandwidths. CPU utilization at the sender is restricted to the indicated percentages. Experi-

ments run with TDF of 10.

10 whose CPU has been scaled to 5%. The experimental setup is identical to that in Figure

5.2: 50 flows, 80-ms RTT. For clarity, we first throttled the sender alone, leaving the CPU

unconstrained at the receiver; we then repeat the experiment with the receiver alone throttled.

Figures 5.9 and 5.10 show the results. We plot the per-flow throughput, and error bars mark

the standard deviation.

If we successfully scale the CPU, flows across a dilated link of the same throughput

will encounter identical CPU limitations. Both figures confirm the effectiveness of CPU

scaling, as the 50% and 5% lines match closely. The unscaled line (100%) illustrates the

performance in a CPU-rich environment. Moreover our system accurately predicts that receiver

CPU utilizations are higher than the sender’s, confirming that it is possible to dilate CPU and

network independently by leveraging the VMM CPU schedulers.

We can also use time dilation as a tool to estimate the computational power required

to sustain a target bandwidth. For instance, from Figure 5.11, we can see that across a 4-Gbps

pipe with an 80-ms RTT, 40% CPU on the sender is sufficient for TCP to reach around 50%

utilization. This means that processors that are four times as fast as today’s processors will

be needed to achieve similar performance (since 40% CPU at TDF of 10 translates to 400%

85

disksim

VM�disk�image

disk�device
driver

Xen

Dom0 VM

ioemu

(a) I/O Model for fully-virtualized VMs

blkback

Disk

Device�Driver

blkfront

Xen

Dom0 VM

(b) I/O Model for para-virtualized VMs

Figure 5.12: For para-virtualized VMs, we inject per-request delays in the blkfront device

driver. Disk scaling for fully-virtualized VMs is delegated to a per-VM disksim process that

integrates with ioemu to appropriately delay each request.

CPU at TDF of 1).

5.3 Disk Scaling

As with other resources that we have considered thus far, the default behavior under

time dilation is that a VM will perceive a much faster disk with a higher throughput and a

lower response time. As the example in beginning of this chapter demonstrated, DieCast

requires the ability to precisely control the disk characteristics perceived by a VM. In other

words, we would like to specify the disk characteristics that are exposed on a per-VM basis.

Appropriately scaling disk performance is a research challenge in its own right. Disk

performance depends on such factors as head and track-switch time, SCSI-bus overhead, con-

troller overhead, and rotational latency. A simple starting point would be to vary disk perfor-

mance assuming a linear scaling model, but this could potentially violate physical properties

inherent in disk drive mechanics. Besides, the test harness might be equipped with hard drives

that differ significantly from the hard drives in the physical machines on the original system.

Thus, DieCast effective requires some mechanism to decouple the actual physical hard drive

from the disk that is exposed to individual VMs.

Ideally, we would scale individual disk requests at the disk controller layer. The com-

plexity of modern drive architectures, particularly the fact that much low level functionality is

implemented in firmware, makes such implementations challenging. Note that simply delaying

requests in the device driver is not sufficient, since disk controllers may re-order and batch

86

requests for efficiency. On the other hand, functionality embedded in hardware or firmware is

difficult to instrument and modify. Further complicating matters are the different I/O models

in Xen: one for para-virtualized VMs and one for fully-virtualized VMs. DieCast provides

mechanisms to scale disk I/O for both models.

For fully-virtualized VMs, DieCast integrates a highly accurate and efficient disk

system simulator — DiskSim [58] — which gives us a good trade-off between realism and

accuracy. Figure 5.12a depicts our integration of DiskSim into the fully virtualized I/O model:

for each VM, a dedicated user-space process (ioemu) in Domain-0 performs I/O emulation by

exposing a “virtual disk” to the VM (the guest OS is unaware that a real disk is not present).

A special file in Domain-0 serves as the backend storage for the VM’s disk. To allow

ioemu to interact with DiskSim, we wrote a wrapper around the simulator for inter-process

communication.

After servicing each request (but before returning), ioemu forwards the request to

DiskSim, which then returns the time, rt, the request would have taken in its simulated disk.

Since we are effectively layering a software disk on top of ioemu, each request should ideally

take exactly time rt in the VM’s time frame, or tdf ∗rt in real time. If delay is the amount by

which this request is delayed, the total time spent in ioemu becomes delay+dt+st, where st

is the time taken to actually serve the request (DiskSim only simulates I/O characteristics, it

does not deal with the actual disk content) and dt is the time taken to invoke DiskSim itself.

The required delay is then (tdf ∗ rt)− dt− st. Since all the quantities here are either known

or easily measured, computing the required delay is straightforward.

The architecture of DiskSim, however, is not amenable to integration with the para-

virtualized I/O model (Figure 5.12b). In this “split I/O” model, a front-end driver in the VM

(blkfront) forwards requests to a back-end driver in Domain-0 (blkback), which are then

serviced by the real disk device driver. Thus para-virtualized I/O is largely a kernel activity,

while DiskSim runs entirely in user-space. Further, a separate DiskSim process would be

required for each simulated disk, whereas there is a single back-end driver for all VMs.

For these reasons, for para-virtualized VMs, we inject the appropriate delays in the

blkfront driver. This approach has the additional advantage of containing the side effects of

such delays to individual VMs — blkback can continue processing other requests as usual.

Further, it eliminates the need to modify disk-specific drivers in Domain-0. We emphasize that

this design is functionally equivalent to per-request scaling in DiskSim: the key difference is

that scaling in DiskSim is much closer to the (simulated) hardware. Overall our implementation

87

1 2 3 4 5 6 7 8 9 10
Time Dilation Factor

0

2000

4000

6000

8000

10000

D
isk

th
ro

ug
hp

ut
(k

B/
s)

w/o disksim scaling
disksim scaled
with modified scheduler

Figure 5.13: dd throughput under time dilation using DiskSim.

of disk scaling for para-virtualized VM’s is simpler though less accurate and somewhat less

flexible since it requires the disk subsystem in the testing hardware to match the configuration

in the target system.

We have validated both our implementations using several micro-benchmarks. First,

we run dd, a Unix tool for performing raw I/O to disk. Figure 5.13 shows the read throughput

from a disk under various time dilation factors. The solid red line shows that in the absence

of any disk I/O scaling, the read throughput exhibits a near-linear increase. Note that this

baseline configuration also runs DiskSim, except that no per-request scaling takes place. With

the per-request scaling turned on, we see that the read performance remains constant even

under increasing dilation factors.

But dd is an admittedly simple, albeit powerful tool. We next run DBench [98] —

a popular hard-drive and file-system benchmark — under different dilation factors and plot

the reported throughput. Figure 5.14 shows the results for the fully-virtualized I/O model

with DiskSim integration (results for the para-virtualized implementation can be found in a

separate technical report [55]). Ideally, the throughput should remain constant as a function of

the dilation factor. We first run the benchmark without scaling disk I/O or CPU, and we can

see that the reported throughput increases almost linearly, an undesirable behavior. Next, we

repeat the experiment and scale the CPU alone (thus, at TDF 10 the VM only receives 10%

88

0 2 4 6 8 10
Time Dilation Factor

0

500

1000

1500

2000

D
isk

th
ro

ug
hp

ut
(k

B/
s)

CPU and Disk unscaled
CPU scaled
Disk and CPU scaled
Disk and CPU scaled (improved)

Figure 5.14: DBench throughput under time dilation using DiskSim.

of the CPU). While the increase is no longer linear, in the absence of disk dilation it is still

significantly higher than the expected value. Finally, with disk dilation in place we can see

that the throughput closely tracks the expected value.

However, as the TDF increases, we start to see some divergence. After further inves-

tigation, we found that this deviation results from the way we scaled the CPU. In particular,

this is an example of a workload where the distribution, and not just the aggregate fraction,

of CPU cycles becomes important. Recall our modifications to the Credit scheduler described

in Section 5.2. The final line in figure 5.14 shows the results of the DBench benchmark with

using this modified scheduler. As we can see, the throughput remains consistent even at higher

TDFs. Note that unlike in this benchmark, DieCast typically runs multiple VMs per machine,

in which case this “spreading” of CPU cycles occurs naturally as VMs compete for CPU.

In summary, this chapter has presented mechanisms to independently scale resources

available to individual VMs. This ability is crucial to allow DieCast to deal with heterogeneity,

both within the physical machines in a given target system, and between the physical machines

in the original system and the physical machines in the test harness. Taking a look at Table

5.1, we know have mechanisms that enable us to perform all the resource scaling outlined in

the final row of the table. At this point, we have all the machinery required for DieCast to

work. We now focus our attention on validating DieCast itself.

89

Chapter 5, in part, is a reprint of the material as it appears in Proceedings of USENIX

Symposium on Networked Systems Design and Implementation (NSDI) 2008. Gupta, Diwaker;

Vishwanath, Kashi V.; Vahdat, Amin. The dissertation author was the primary investigator

and author of this paper.

Chapters 5, in part, is a reprint of the material as it appears in Proceedings of USENIX

Symposium on Networked Systems Design and Implementation (NSDI) 2006. Gupta, Diwaker;

Yocum, Kenneth; McNett, Marvin; Snoeren, Alex C.; Vahdat, Amin; Voelker, Geoffrey M.

The dissertation author was the primary investigator and author of this paper.

Chapter 6

DieCast Evaluation

We outlined the following goals for DieCast in Chapter 3: fidelity, reproducibility and

efficiency. The approach we have taken thus far can be summarized as follows. We first map

the physical machines into virtual machines and consolidate the VMs on a smaller number of

physical machines, for efficiency. Using a combination of network emulation and workload

generation, we can ensure reproducibility. Finally, to restore fidelity and preserve the resource

equivalence between VMs in the test system and physical machines in the original system, we

use time dilation in conjunction with resource scaling.

After going through the above steps, the claim is that the test system closely resembles

the original system. This chapter aims to validate this claim. We begin by describing the

general methodology for validating DieCast, followed by a detailed validation using three very

different distributed systems. We conclude the chapter with a case study of using DieCast on

a real-world commercial file system. Since time dilation does not scale main memory capacity,

a DieCast-scaled system will end up partitioning the main memory among co-located VMs.

This partitioning limits the number of VMs that can be created on a single physical machine.

The next chapter addresses this limitation.

6.1 Methodology

We seek to answer the following questions with respect to DieCast-scaling:

1. Can we configure a smaller number of physical machines to match the CPU capacity,

complex network topology, and I/O rates of a larger service? (validates efficiency)

90

91

2. How well does the performance of a scaled service running on fewer resources match

the performance of a baseline service running with more resources? (validates fidelity)

3. What are the limits of scaling? At what point do our predictions lose so much accuracy

that they are no longer valuable?

With respect to validating fidelity, we are interested in not just the application-specific

performance metrics, but also the low-level system behavior such as the resource utilization

profile. To evaluate the accuracy of DieCast scaling, We consider three different systems,

representative of a broad spectrum of network services that we wish to target:

• BitTorrent [7], a popular peer-to-peer file sharing program;

• RUBiS [37], an auction service prototyped after eBay; and

• Isaac, our configurable network three-tier service that allows us to generate a range of

workload scenarios.

The methodology for validating DieCast is similar to the methodology we used for

validating time dilation (Section 4.4). To evaluate DieCast for a given system, we first establish

the baseline performance: this involves determining the configuration(s) of interest, fixing the

workload, and benchmarking the performance. We then scale the system down by an order of

magnitude and compare the DieCast performance to the baseline. While we have extensively

evaluated DieCast implementations for several versions of Xen, we only present the results

for the Xen 3.1 implementation here.

In general, our methodology (which we believe is a “best-practice” approach) for

evaluating systems with DieCast is three pronged:

1. Establish the baseline: involves determining the configuration space of interest, deter-

mining the metrics of interest, estimating variability and fixing the workload.

2. Microbenchmark DieCast: validate DieCast across minor configuration changes, for

small setups.

3. Evaluate: scale the system down by an order of magnitude and use DieCast to explore

the parameter space.

Each physical machine in our testbed is a dual-core 2.3-GHz Intel Xeon with 4 GB

RAM. Note that since the DiskSim integration only works with fully virtualized VMs, for a

92

fair evaluation it is required that even the baseline system run on VMs—ideally the baseline

would be run on physical machines directly (for the para-virtualized setup, we have evaluated

DieCast with physical machines as the baseline. We refer the reader to our technical report

[55] for details). We configure DiskSim to emulate a Seagate ST3217 disk drive. For the

baseline, DiskSim runs as usual (no requests are scaled) and with DieCast, we scale each

request as described in Section 5.3.

We configure each virtual machine with 256 MB RAM and run Debian Etch on Linux

2.6.17. Unless otherwise stated, the baseline configuration consists of 40 physical machines

hosting a single VM each. We then compare the performance characteristics to runs with

DieCast on four physical machines hosting 10 VMs each, scaled by a factor of 10. We

use ModelNet for the network emulation, and appropriately scale the link characteristics for

DieCast. For allocating CPU, we use our modified Credit CPU scheduler as described in

Section 5.3.

6.2 BitTorrent

We begin by using DieCast to evaluate BitTorrent [7] — a popular P2P application.

For our baseline experiments, we run BitTorrent (version 3.4.2) on a total of 40 physical

machines, each hosting a single virtual machine. We configure the machines to communicate

across a ModelNet-emulated dumbbell topology (Figure 6.1), with varying bandwidth and

latency values for the access link (A) from each client to the dumbbell and the dumbbell

link itself (C). We vary the total number of clients, the file size, the network topology, and

the version of the BitTorrent software. We use the distribution of file download times across

all clients as the metric for comparing performance. The aim here is to observe how closely

DieCast-scaled experiments reproduce behavior of the baseline case for a variety of scenarios.

The first experiment establishes the baseline where we compare different configurations

of BitTorrent sharing a file across a 10-Mbps dumbbell link and constrained access links of

10 Mbps. All links have a one-way latency of 5 ms. We run a total of 40 clients (with half

on each side of the dumbbell). Figure 6.2 plots the cumulative distribution of transfer times

across all clients for different file sizes (10 MB and 50 MB). We show the base case using

solid lines and use dashed lines to represent the DieCast-scaled case. With DieCast scaling,

the distribution of download times closely matches the behavior of the original system. For

instance, well-connected clients on the same side of the dumbbell as the randomly chosen

seeder finish more quickly than the clients that must compete for scarce resources across the

93

Bottleneck�Link�(C)Clients
Acce

ss�L
ink�(A

)

Clients

Access�Link�(A)

Figure 6.1: Topology for BitTorrent experiments

0 20 40 60 80 100 120 140 160
Time to complete since start of experiment (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

10 MB 50 MB

1-Gbps Bottleneck

Baseline
Diecast

Figure 6.2: Performance with varying file sizes.

dumbbell.

Having established a reasonable baseline, we next consider sensitivity to changing

system configurations. We first vary the network topology by leaving the dumbbell link un-

constrained (1 Gbps) with results in Figure 6.2. The graph shows the effect of removing the

bottleneck on the finish times compared to the constrained dumbbell-link case for the 50-MB

file: all clients finish within a small time difference of each other as shown by the middle

pair of curves. Next, we consider the behavior of a newer BitTorrent implementation (ver-

sion 4.4.0) and retain the same topology from the baseline experiment (i.e., bottleneck link

of 10-Mbps capacity). Figure 6.3 also shows these results. It shows two pairs of curves,

with each pair corresponding to one of protocols in both the scaled and unscaled case. Once

94

0 20 40 60 80 100 120 140 160
Time to complete since start of experiment (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

v4.4.0

1-Gbps Bottleneck

Baseline
Diecast

Figure 6.3: Varying topology and version.

again, the DieCast-scaled version of the experiment performs nearly identically to the baseline

configuration.

Next, we consider the effect of varying the total number of clients. Using the topology

from the baseline experiment we repeat the experiments for 80 and 200 simultaneous BitTorrent

clients. Figure 6.4 shows the results. The curves for the baseline and DieCast-scaled versions

almost completely overlap each other for 80 clients (left pair of curves) and show minor

deviation from each other for 200 clients (right pair of curves). Note that with 200 clients,

the bandwidth contention increases to the point where the dumbbell bottleneck becomes less

important.

So far we have only considered cases where the test harness had enough resources such

that scaling the system by the number of VMs on a single physical machine was sufficient. That

is, we could run 10 VMs each on the four physical machines with a TDF of 10, to match the

resource capacity of the 40 physical machines in the original system. However, if the machines

in the test harness are less capable, then a scaling factor of 10 might not suffice. Similarly, if

the machines in the test harness are significantly more powerful, then fewer machines could

be used to support the 40 VMs.

This next experiment demonstrates the flexibility of DieCast to reproduce system per-

formance under a variety of resource configurations starting with the same baseline. Figure 6.5

shows that in addition to matching 1:10 scaling using 4 physical machines hosting 10 VMs

95

0 100 200 300 400 500
Time to complete since start of experiment (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

80 clients

200 clients

Baseline
DieCast

Figure 6.4: Varying number of clients.

each, we can also match an alternate configuration of 8 physical machines, hosting five VMs

each with a dilation factor of five. This experiment demonstrates that even if it is necessary to

vary the number of physical machines available for testing, it may still be possible to find an

appropriate scaling factor to match performance characteristics. This graph also has a fourth

curve, labeled “No DieCast”, corresponding to running the experiment with 40 VMs on four

physical machines, each with a dilation factor of 1—disk and network are not scaled (thus

match the baseline configuration), and all VMs are allocated equal shares of the CPU. This

corresponds to the approach of simply multiplexing a number of virtual machines on physical

machines without using DieCast. The graph shows that the behavior of the system under such

a naïve approach varies widely from actual behavior.

The above experiment clearly demonstrates that regular multiplexing fails to provide

the resource equivalence required for testing distributed systems. However, it is not clear if

all of the mechanisms in DieCast are necessary. In particular, it is tempting to establish the

minimal possible set of mechanisms that would be able to accurately recreate a given target

system. For instance, is it the case that the disk I/O scaling is always required, or can we

eliminate it (making the system much simpler) without sacrificing accuracy?

Our final experiment establishes the need for disk scaling in systems where disk I/O

dominates. For the baseline, we configure 10 physical machines hosting a single VM each

(TDF 1) to download a 50-MB file using BitTorrent. Each machine has a direct connection

96

0 20 40 60 80 100 120 140 160 180
Time to complete since start of experiment (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

No DieCast

Baseline
DieCast TDF 10
DieCast TDF 5
No DieCast

Figure 6.5: Different configurations.

to every other physical machine, that is, they create a mesh network. We do this to minimize

any network routing overheads. Each link is 100 Mbps and one way latency of 1 ms. We

measure the time taken to download the file averaged across all clients as well as the standard

deviation. In the wide-area setting, the one way latency increases to 100 ms. We next repeat

the experiment (both LAN and WAN settings) under a dilation factor of 10: all 10 VMs are

running on a single physical machine, with CPU and network resources scaled appropriately.

However, we do not scale disk I/O requests. Finally, we repeat the experiment with all resources

(including disk I/O) scaled appropriately. For each experiment, we report the mean and standard

deviation across the download times of the clients.

Table 6.1 shows that when disk I/O is not scaled in the LAN setting, the clients

experience a 20% deviation from the baseline. The same experiment, when performed in a

wide-area setting, reveals that the importance of disk scaling diminishes as network latencies

begin to dominate. However, note that despite the lack of disk I/O scaling, the deviations from

baseline are modest (compared to the pure I/O workload from Figure 5.14). As the experiment

above demonstrates, systems with wide-area latencies are typically unaffected by disk scaling

since network latencies are the dominant bottlenecks.

With DieCast, we have taken an approach of broad applicability over minimalism.

The set of mechanisms in DieCast are able to accurately replicate a wide variety of systems.

While it is possible that a subset of these mechanisms are sufficient for a given workload, we

97

Table 6.1: Time taken (in seconds) to download a 50 MB file averaged across ten BitTorrent

clients. Disk I/O scaling matters more in systems with significant disk I/O. In particular, if

network latencies dominates, the impact of disk scaling diminishes.

Configuration Baseline Disk not scaled Disk scaled
LAN setting 47.71 (15.47) 38.67 (8.09) 47.67 (13.68)
WAN setting 74.98 (4.76) 73.03 (4.06) 71.35 (4.68)

strongly believe that the effort required to identify the precise, minimal set of mechanisms that

is adequate in a specific case is not justified. In all subsequent experiments, all of the resource

scaling mechanisms, including disk I/O scaling, are active.

6.3 RUBiS

Next, we investigate DieCast’s ability to scale a fully functional Internet service. We

use RUBiS [37]—an auction site prototype designed to evaluate scalability and application

server performance. We chose RUBiS because of the following reasons:

• its source code is freely available;

• it ships with a highly configurable workload generator;

• it offers sufficient complexity in terms of distributed component interaction to demon-

strate our ability to scale complex network services; and

• it has been used by other researchers to approximate realistic Internet Services [42, 37,

32].

We use the PHP implementation of RUBiS running Apache as the web server and

MySQL as the database. For consistent results, we re-create the database and pre-populate it

with 100,000 users and items before each experiment. We use the default read-write transaction

table for the workload that exercises all aspects of the system such as adding new items, placing

bids, adding comments, viewing and browsing the database. The RUBiS workload generators

warm up for 60 seconds, followed by a session run time of 600 seconds and ramp down for

60 seconds.

We emulate a topology of 40 nodes consisting of 8 database servers, 16 web servers

and 16 workload generators as shown in Figure 6.6. A 100-Mbps network link connects

98

Wide

Link

Area

16�Workload�Generators

4�DB

8�Web

Servers

4�DB

8�Web

Servers

Wide

Link
Area

Figure 6.6: RUBiS setup.

two replicas of the service spread across the wide-area at two sites. Within a site, 1-Gbps

links connect all components. For reliability, half of the web servers at each site use the

database servers in the other site. The communication patterns between the web servers and

the database servers have been setup to model real life scenarios (avoid correlated failures,

network partitioning etc.) as well as exercise the network. There is one load generator per web

server and all load generators share a 100-Mbps access link. Each system component (servers,

workload generators) runs in its own Xen VM.

We now evaluate DieCast’s ability to predict the behavior of this RUBiS configuration

using fewer resources. Figures 6.7a and 6.7b compare the baseline performance with the scaled

system for overall system throughput and average response time (across all client-webserver

combinations) on the Y-axis as a function of number of simultaneous clients (offered load)

on the X-axis. In both cases, the performance of the scaled service closely tracks that of the

baseline. We also show the performance for the “No DieCast” configuration: regular VM

multiplexing with no DieCast-scaling. Without DieCast to offset the resource contention,

the aggregate throughput drops with a substantial increase in response times. Interestingly, for

one of our initial tests, we ran with an unintended mis-configuration of the RUBiS database:

99

0 1000 2000 3000 4000 5000 6000 7000
Total system load (User sessions)

0

10000

20000

30000

40000

50000

60000
A

gg
re

ga
te

th
ro

ug
hp

ut
(re

qu
es

ts/
m

in
)

Baseline
DieCast
No DieCast

(a) Throughput

0 1000 2000 3000 4000 5000 6000 7000
Total system load (User sessions)

0

1000

2000

3000

4000

5000

6000

7000

8000

Re
sp

on
se

tim
e

(m
s)

Baseline
DieCast
No DieCast

(b) Response time

Figure 6.7: Comparing RUBiS application performance: Baseline vs. DieCast.

100

0 200 400 600 800 1000
Time since start of experiment (s)

0

20

40

60

80

100

CP
U

us
ed

(%
)

DB server

0

20

40

60

80

100
CP

U
us

ed
(%

)

Web server

0

20

40

60

80

100

CP
U

us
ed

(%
)

Client

Baseline
DieCast

Figure 6.8: CPU profile.

the workload had commenting-related operations enabled, but the relevant tables were missing

from the database. This setup led to an approximately 25% error rate with similar timings

in the responses to clients in both the baseline and DieCast configurations. Thus, for this

experiment DieCast did not mask misconfigurations that were present in the original system.

These types of configuration errors are one example of the types of testing that we wish to

enable with DieCast.

Next, Figures 6.8 and 6.9 compare CPU and memory utilizations for both the scaled

and unscaled experiments as a function of time for the case of 4800 simultaneous user sessions:

we pick one node of each type (database server, web server, load generator) at random from the

baseline, and use the same three nodes for comparison with DieCast. One important question

is whether the average performance results in earlier figures hide significant incongruities in per-

request performance. Here, we see that resource utilization in the DieCast-scaled experiments

closely tracks the utilization in the baseline on a per-node and per-tier (client, web server,

database) basis. Similarly, Figure 6.10 compares the network utilization of individual links in

the topology for the baseline and DieCast-scaled experiment. We sort the links by the amount

of data transferred per link in the baseline case. This graph demonstrates that DieCast closely

tracks and reproduces variability in network utilization for various hops in the topology. For

101

0 200 400 600 800 1000 1200
Time since start of experiment (s)

0

20

40

60

80

100

M
em

or
y

ut
ili

za
tio

n
(%

)

DB server

Web server

Client

Baseline
DieCast

Figure 6.9: Memory profile.

0 10 20 30 40 50 60 70 80 90
Hop ID

10−1

100

101

102

103

104

D
at

a
tra

ns
fe

rr
ed

(M
B)

Baseline
DieCast

Figure 6.10: Network profile.

102

Clients
(C)

Load�Balancer�(LB)

Database
Backend�(DB)

Application
Servers�(AS)

Front-end
Servers
(FS)

Figure 6.11: Architecture of Isaac.

instance, hops 86 and 87 in the figure correspond to access links of clients and show the

maximum utilization, whereas individual access links of Webservers are moderately loaded.

6.4 Exploring DieCast Accuracy

While we were encouraged by DieCast’s ability to scale RUBiS and BitTorrent, they

represent only a few points in the large space of possible network service configurations, for

instance, in terms of the ratios of computation to network communication to disk I/O. Hence, we

built Isaac, a configurable multi-tier network service to stress the DieCast methodology on a

range of possible configurations. Figure 6.11 shows Isaac’s architecture. Requests originating

from a client (C) travel to a unique front-end server (FS) via a load balancer (LB). The FS

makes a number of calls to other services through application servers (AS). These application

servers in turn may issue read and write calls to a database back end (DB) before building

a response and transmitting it back to the front end server, which finally responds to the

client. Both the AS and the FS might do arbitrarily long computations (implemented by

computing SHA-1 hashes repeatedly) on the results obtained from the individual services they

103

0 100 200 300 400 500 600 700
Time since start of experiment (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
re

qu
es

ts
co

m
pl

et
ed

Baseline
DieCast

Figure 6.12: Request completion time.

communicate with before returning a response to the client.

Isaac is written in Python and allows configuring the service to a given interconnect

topology, computation, communication, and I/O pattern. A configuration describes, on a per-

request class basis, the computation, communication, and I/O characteristics across multiple

service tiers. In this manner, we can configure experiments to stress different aspects of a

service and to independently push the system to capacity along multiple dimensions. We use

MySQL for the database tier to reflect a realistic transactional storage tier. It is worth noting

here that the aim of Isaac is not to capture a realistic or representative Internet service. Instead,

Isaac aims to capture the architectural complexity of multi-tier Internet services and, at the

same time, lets us reason about the limits of DieCast when subject to extreme conditions for

one particular configuration of an Internet service.

For our first experiment, we configure Isaac with four DBs, four ASs, four FSs and

28 clients. The clients generate requests, wait for responses, and sleep for some time before

generating new requests. Each client generates 20 requests and each such request touches five

ASs (randomly selected at run time) after going through the FS. Each request from the AS

involves 10 reads from and 2 writes to a database each of size 1KB. The database server is also

chosen randomly at runtime. Upon completing its database queries, each AS computes 500

SHA-1 hashes of the response before sending it back to the FS. Each FS then collects responses

from all five AS’s and finally computes 5,000 SHA-1 hashes on the concatenated results before

104

DB AS FS
Different Tiers

0

20

40

60

80

100

Ti
m

e
Sp

en
ti

n
Ea

ch
Ti

er
(%

)

Figure 6.13: Tier-breakdown.

replying to the client. In later experiments, we vary both the amount of computation and I/O

to quantify sensitivity to varying resource bottlenecks

We perform this 40-node experiment both with and without DieCast. In all cases,

performance of the DieCast-scaled system matched closely with the baseline case. We omit

these results in favor of presenting some more interesting scenarios. Rather, we run a more

complex experiment where a subset of the machines fail and then recover. Our goal is to show

that DieCast can accurately match application performance before the failure occurs, during

the failure scenario, and the application’s recovery behavior. After 200 seconds, we fail half

of the database servers (chosen at random) by stopping MySQL servers on the corresponding

nodes. As a result, client requests accessing failed databases will not complete, slowing the

rate of completed requests. After one minute of downtime, we restart the MySQL server and

soon after we expect to see the request completion rate to regain its original value.

Figure 6.12 shows fraction of requests completed on the Y-axis as a function of time

since the start of the experiment on the X-axis. DieCast closely matches the baseline appli-

cation behavior with a dilation factor of 10. We also compare the percentage of time spent in

each of the three tiers of Isaac averaged across all requests. Figure 6.13 shows that in addition

to the end-to-end response time, DieCast closely tracks the system behavior on a per-tier basis.

For instance, we see that the database backend is the bottleneck in this experiment as each

request spends approximately 80% of its time in this TIER.

105

0 200 400 600 800 1000 1200 1400 1600
Time since start of experiment (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
re

qu
es

ts
co

m
pl

et
ed

CPU stress

100-KB writes

No DieCast stress-CPU

No DieCast stress-DB

Baseline
DieCast

Figure 6.14: Stressing database and CPU.

Encouraged by the results of the previous experiment, we next attempt to saturate

individual components of Isaac to explore the limits of DieCast’s accuracy. In other words,

we want to examine if the DieCast approach breaks down if the system under test is subject

to high levels of resource utilization. First, we evaluate DieCast’s ability to scale network

services when database access dominates per-request service time. Figure 6.14 shows the

completion time for requests, where each service issues a 100-KB (rather than 1-KB) write to

the database with all other parameters remaining the same. The larger requests translate to a

total of 1 MB of database writes for every request from a client. resulting in roughly 140 KBps

of disk I/O at each of the database servers (the maximum throughput for the simulated disk is

approximately 750 KBps). Even for these larger data volumes, DieCast faithfully reproduces

system performance. While for this workload, we are able to maintain good accuracy, the

evaluation of disk dilation summarized in Figure 5.14 in the previous chapter suggests that there

will certainly be points where disk dilation inaccuracy will affect overall DieCast accuracy.

Next, we evaluate DieCast accuracy when one of the components in our architecture

saturates the CPU. Specifically, we configure our front-end servers such that prior to sending

each response to the client, they compute SHA-1 hashes of the response 500,000 times to

artificially saturate the CPU of this tier. The results of this experiment are also shown in

Figure 6.14. We are encouraged overall as the system does not significantly diverge even to

the point of CPU saturation. For instance, the CPU utilization for nodes hosting the FS in

106

this experiment varied from 50− 80% for the duration of the experiment and even under such

conditions DieCast closely matched the baseline system performance. The “No DieCast”

lines plot the performance of the configurations where we stress the database and the CPU

independently, under regular VM multiplexing (without DieCast-scaling). As with BitTorrent

and RUBiS, we see that without DieCast, the test infrastructure fails to predict the performance

of the baseline system.

This completes our evaluation of the DieCast approach across three widely varying

workloads in a range of scenarios. Encouraged by these results we present our experience with

deploying DieCast in a real-world setting in the next section.

6.5 Commercial System Evaluation

While we are encouraged by DieCast’s accuracy for the applications we considered in

the previous sections, all of the experiments were designed by us and were largely academic in

nature. To understand the generality of our system, we consider its applicability to a large-scale

commercial system.

Panasas [16] builds scalable storage systems targeting Linux cluster computing envi-

ronments. It supplies solutions to numerous government agencies and research organizations,

oil and gas companies, media companies and several commercial HPC enterprises. A core

component of Panasas’s products is the PanFS parallel filesystem (henceforth referred to

as PanFS): an object-based cluster filesystem that presents a single, cache coherent unified

namespace to clients.

To meet customer requirements, Panasas must ensure its systems can deliver appropri-

ate performance under a range of client access patterns. Unfortunately, it is often impossible

to create a test environment that reflects the setup at a customer site. Since Panasas has sev-

eral customers with very large super-computing clusters and limited test infrastructure at its

disposal, its ability to perform testing at scale is severely restricted by hardware availability;

exactly the type of situation DieCast targets. For example, the Los Alamos National Lab has

deployed PanFS with its Roadrunner peta-scale super computer [17]. The Roadrunner system

is designed to deliver a sustained performance level of one petaflop at an estimated cost of $90

million. Because of the tremendous scale and cost, Panasas cannot replicate this computing

environment for testing purposes.

107

Porting Time Dilation. In evaluating our ability to apply DieCast to PanFS, we encountered
one primary limitation. PanFS clients use a Linux kernel module to communicate with the

PanFS server. The client-side code runs on recent versions of Xen , and hence DieCast

supported them with no modifications. However, the PanFS server runs in a custom operating

system derived from an older version of FreeBSD that does not support Xen. The significant

modifications to the base FreeBSD operating system made it impossible to port PanFS to a

more recent version of FreeBSD that does support Xen. Ideally, it would be possible to simply

encapsulate the PanFS server in a fully virtualized Xen VM. However, recall that this requires

virtualization support in the processor which was unavailable in the hardware Panasas was

using. Even if we had the hardware, Xen did not support FreeBSD on fully-virtualized VMs

until recently due to a well-known bug [10]. Thus, unfortunately we could not easily employ

the existing time dilation techniques with PanFS on the server side. However, since we believe

DieCast concepts are general and not restricted to Xen, we took this opportunity to explore

whether we could modify the PanFS OS to support DieCast, without any virtualization

support.

Implementing time dilation requires, among other things, slowing down the passage

of time, slowing down the rate of interrupts, and uniformly scaling any external time sources

that could “leak” information about the real time to the OS. To implement time dilation in the

PanFS kernel, we scale the various time sources (such as the PIT and the TSC register), and

consequently, the wall clock. The TDF can be specified at boot time as a kernel parameter. As

before, we need to scale down resources available to PanFS such that its perceived capacity

matches the baseline.

Recall that time dilation uniformly scales the amount of resources perceived to be

available to the OS. Hence, when running under dilation, PanFS would perceive a uniformly

faster network, disk and CPU. However, our goal is to evaluate the performance of a non-

dilated PanFS system against a large number of clients. We therefore need to ensure that the

dilated PanFS server perceives similar resource characteristics as the non-dilated server. This

requires mechanisms analogous to those described in Chapter 5. Note that it is much more

critical to preserve the disk I/O characteristics in a high performance storage system than in

other applications. Without any kind of disk scaling, the dilated file servers would perceive a

much faster local disk, thus affecting the client perceived latency.

For disk dilation, we were faced by the complication that multiple hardware and soft-

ware components interact in PanFS to service clients. For performance, there are several

108

parallel data paths and many operations are either asynchronous or cached. Accurately imple-

menting disk dilation would require accounting for all of the possible code paths as well as

modeling the disk drives with high fidelity. In an ideal implementation, if the physical service

time for a disk request is s and the TDF is t, then the request should be delayed by time

(t − 1)s such that the total physical service time becomes t × s, which under dilation would

be perceived as the desired value of s.

Unfortunately, the Panasas operating system only provides coarse-grained kernel timers.

Consequently, sleep calls with small durations tend to be inaccurate. Using a number of

micro-benchmarks, we determined that the smallest sleep interval that could be accurately

implemented in the PanFS operating system was 1 ms.

This limitation affects the way disk dilation can be implemented. For I/O intensive

workloads, the rate of disk requests is high. At the same time, the service time of each

request is relatively modest. In this case, delaying each request individually is not an option,

since the overhead of invoking sleep dominates the injected delay and gives unexpectedly large

slowdowns. Thus, we chose to aggregate delays across some number of requests whose service

time sums to more than 1 ms and periodically inject delays rather than injecting a delay for

each request. Another practical limitation is that it is often difficult to accurately bound the

service time of a disk request. This is a result of the various I/O paths that exist: requests can

be synchronous or asynchronous, they can be serviced from the cache or not and so on.

While we realize that this implementation is imperfect, it works well in practice and can

be automatically tuned for each workload. A perfect implementation would have to accurately

model the low-level disk behavior and improve the accuracy of the kernel sleep function.

Because operating systems and hardware will increasingly support native virtualization, we

feel that our simple disk dilation implementation targeting individual PanFS workloads is

reasonable in practice to validate our approach.

For scaling the network, we use Dummynet [89], which ships as part of the PanFS
OS. However, there was no mechanism for limiting the CPU available to the OS, or to slow the

disk. The PanFS OS does not support non work-conserving CPU allocation. Further, simply

modifying the CPU scheduler for user processes is insufficient because it would not throttle

the rate of kernel processing. For CPU dilation, we had to modify the kernel as follows.

We created a CPU-bound task, (idle), in the kernel and we statically assigned it the highest

scheduling priority. We scale the CPU by maintaining the required ratio between the run times

of the idle task and all remaining tasks. If the idle task consumes sufficient CPU, it is

109

64K 1M 2M 4M 16M
Block sizes

50

100

150

200

250

300

350

400

450

Th
ro

ug
hp

ut
(M

B/
s)

MPI-IO

IOZone

Baseline Read
Baseline Write
DieCast Read
DieCast Write

Figure 6.15: Validating DieCast on PanFS.

removed from the run queue and the regular CPU scheduler kicks in. If not, the scheduler

always picks the idle task because of its priority.

Validation We first wish to establish DieCast accuracy by running experiments on bare

hardware and comparing them against DieCast-scaled virtual machines. We start by setting

up a storage system consisting of a PanFS server with 20 disks of capacity 250 GB each (5

TB total storage). We evaluate two benchmarks from the standard bandwidth test suite used

by Panasas. The first benchmark involves 10 clients (each on a separate machine) running

IOZone [11]. The second benchmark uses the Message Passing Interface (MPI) across 100

clients (again, on separate machines) [54].

For DieCast scaling, we repeat the experiment with our modifications to the PanFS
server configured to enforce a dilation factor of 10. Thus, we allocate 10% of the CPU to the

server and dilate the network using Dummynet to 10% of the physical bandwidth and 10 times

the latency (to preserve the bandwidth-delay product). On the client side, we have all clients

running in separate virtual machines (10 VMs per physical machine), each receiving 10% of

the CPU with a dilation factor of 10.

Figure 6.15 plots the aggregate client throughput for both experiments on the Y-axis

as a function of the data block size on the X-axis. Circles mark the read throughput while

triangles mark write throughput. We use solid lines for the baseline and dashed lines for the

110

Table 6.2: Aggregate read/write throughputs from the IOZone benchmark with block size 16

MB. PanFS performance scales gracefully with larger client populations.

Aggregate Throughput Number of clients
10 250 1000

Write 370 MB/s 403 MB/s 398 MB/s
Read 402 MB/s 483 MB/s 424 MB/s

DieCast-scaled configuration. For both reads and writes, DieCast closely follows baseline

performance, never diverging by more than 5% even for unusually large block sizes.

Scaling With sufficient faith in the ability of DieCast to reproduce performance for real-

world application workloads we next aim to push the scale of the experiment beyond what

Panasas can easily achieve with their existing infrastructure.

We are interested in the scalability of PanFS as we increase the number of clients

by two orders of magnitude. To achieve this, we design an experiment similar to the one

above, but this time we fix the block size at 16 MB and vary the number of clients. We use

10 VMs each on 25 physical machines to support 250 clients to run the IOZone benchmark.

We further scale the experiment by using 10 VMs each on 100 physical machines to go up

to 1000 clients. In each case, all VMs are running at a TDF of 10. The PanFS server also

runs at a TDF of 10 and all resources (CPU, network, disk) are scaled appropriately. Table 6.2

shows that the performance of PanFS with increasing client population. Interestingly, we find

relatively little increase in throughput as we increase the client population. Upon investigating

further, we found that a single PanFS server configuration is limited to 4 Gb/s (500 MB/s) of

aggregate bisection bandwidth between the servers and clients (including any IP and filesystem

overhead). While our network emulation accurately reflected this bottleneck, we did not catch

the bottleneck until we ran our experiments.

We would like to emphasize that prior to our experiment, Panasas had been unable to

perform experiments at this scale. This limitation is in part due to the fact that such a large

number of machines might not be available at any given time for a single experiment. Further,

even if machines are available, blocking a large number of machines results in significant

resource contention because several other smaller experiments are then blocked on availability

of resources. Our experiments demonstrate that DieCast can leverage existing resources to

work around these types of problems.

111

6.6 DieCast Usage Scenarios

DieCast is not a panacea for testing large-scale networked services. In this section,

we discuss DieCast’s applicability and limitations for testing large-scale network services in

a variety of environments.

DieCast aims to reproduce the performance of an original system configuration and

is well suited for predicting the behavior of the system under a variety of workloads. Further,

because the test system can be subject to a variety of realistic and projected client access

patterns, DieCast may be employed to verify that the system can maintain the terms of

service level agreements (SLA).

DieCast runs in a controlled and partially emulated network environment. Thus, it

is relatively straightforward to consider the effects of revamping a service’s network topology

(e.g., to evaluate whether an upgrade can alleviate a communication bottleneck). DieCast can

also systematically subject the system to failure scenarios. For example, system architects may

develop a suite of fault-loads to determine how well a service maintains response times, data

quality, or recovery time metrics. Similarly, because DieCast controls workload generation

it is appropriate for considering a variety of attack conditions. For instance, it can be used

to subject an Internet service to large-scale Denial-of-Service (DoS) attacks. DieCast may

enable evaluation of various DOS mitigation strategies or software architectures.

Many difficult-to-isolate bugs result from system configuration errors (e.g., at the OS,

network, or application level) or inconsistencies that arise from “live upgrades” of a service.

The resulting faults may only manifest as errors in a small fraction of requests and even

then after a specific sequence of operations. Operator errors and mis-configurations [83, 85]

are also known to account for a significant fraction of service failures. We attempt to run

the exact software configuration of the original system and may even run a network service

while undergoing its own upgrade process.DieCast makes it possible to capture the effects of

mis-configurations and upgrades before a service goes live.

At the same time, DieCast will not be appropriate for certain service configurations.

As discussed earlier, DieCast is unable to scale down the memory or storage capacity of

a service. Services that rely on multi-petabyte data sets or saturate the physical memories

of all of their machines with little to no cross-machine memory/storage redundancy may not

be suitable for DieCast testing. If system behavior depends heavily on the behavior of the

processor cache, and if multiplexing multiple VMs onto a single physical machine results

in significant cache pollution, then DieCast may under-predict the performance of certain

112

application configurations. One possible exception is if the service itself can be modified to

utilize less data. For instance, for certain services it may be possible to perform the same

amount of I/O and computation over a smaller amount of data (on disk or in memory). In

this case, the exact data responses may not be comparable to the original service but the

performance and failure responses may be.

DieCast may change the fine-grained timing of individual events in the test system.

Hence, DieCast may not be able to reproduce certain race conditions or timing errors in the

original service. Some bugs, such as memory leaks, will only manifest after running for a

significant period of time. Given that we inflate the amount of time required to carry out a

test, it may take too long to isolate these types of errors using DieCast.

Multiplexing multiple virtual machines onto a single physical machine, running with

an emulated network, and dilating time will introduce some error into the projected behavior

of target services. This error has been small for the network services and scenarios we evaluate

in this dissertation. In general however, DieCast’s accuracy will be service and deployment-

specific. We have not yet established an overall limit to DieCast’s scaling ability. In separate

experiments not reported in this dissertation, we have successfully run with scaling factors of

100. However, in these cases, the limitation of time itself becomes significant. Waiting 10

times longer for an experiment to configure is often reasonable, but waiting 100 times longer

may become difficult.

Some services employ a variety of custom hardware, such as load balancing switches,

firewalls, and storage appliances. In general, it may not be possible to scale such hardware

in our test environment. Depending on the architecture of the hardware, one approach is

to wrap the various operating systems for such cases in scaled virtual machines. Another

approach is to run the hardware itself and to build custom wrappers to intercept requests and

responses, scaling them appropriately. A final option is to run such hardware unscaled in the

test environment, introducing some error in system performance. Our work with PanFS shows

that it is feasible to scale unmodified services into the DieCast environment with relatively

little work on the part of the developer.

Finally, we would like to emphasize that there is nothing special or fundamental about

1/10 scaling. DieCast can just as well be used for other scaling factors. We focus on 1/10

scaling for this work merely to demonstrate the feasibility of the approach.

Applications with coarse grained timing requirements may tolerate higher time dila-

tion factors, while time sensitive applications might experience performance degradation. In

113

general, components of the system that can not be perfectly scaled by DieCast—such as low

level caching effects or memory access latencies—might impact DieCast accuracy at higher

scaling factors.

We stated earlier that this dissertation explores alternative mechanisms for resource

multiplexing in virtual machines and the applications they enable. The past few chapters

presented one such mechanism — time dilation — and the innovative applications it enables,

particularly in scalable network emulation and large-scale system testing. But time dilation

only attacks the issue of vertical scalability. For a framework like DieCast, the ability to

support more and more virtual machines on a single physical machine is extremely important.

Addressing horizontal scalability is thus important as an important problem in its own right, and

also important for supporting other applications like DieCast or regular server consolidation.

Another important issue that we have deliberately avoided thus far is the issue of

scaling memory. Recall that time dilation only scales up resources that have a time-based

component. Static resources such as main memory capacity or hard-drive capacity are not

scaled. Thus, co-located VMs in a DieCast-scaled system are still limited in the amount of

memory they have. This severely limits the applicability of DieCast— either the test harness

should be retrofitted with additional memory, or the application should not hit a memory

bottleneck while running in the memory-constrained VMs.

The above problems are related: if we can scale main memory capacity, we can support

more VMs per physical machines, thus increasing horizontal scalability. We address this issue

in the following chapters.

Chapter 6, in part, is a reprint of the material as it appears in Proceedings of USENIX

Symposium on Networked Systems Design and Implementation (NSDI) 2008. Gupta, Diwaker;

Vishwanath, Kashi V.; Vahdat, Amin. The dissertation author was the primary investigator

and author of this paper.

Chapter 7

Harnessing Memory Redundancy
Across Virtual Machines

Section 1.3.2 described how main memory was the primary bottleneck in increasing

the horizontal scalability of VM multiplexing. In this chapter, we present the design and

implementation of Difference Engine, our system to more efficiently manage system memory

across virtual machines. Difference Engine can support a given number of VMs using

far fewer memory than that would otherwise be required, thereby freeing memory to create

additional VMs.

7.1 Architecture

The key insight behind Difference Engine is that virtual machine environments

present unique opportunities for memory sharing. Before describing these opportunities, let

us first refresh how the VMM manages system memory. Xen and other platforms that support

fully virtualized guests use a mechanism called “shadow page tables” to manage guest OS

memory [110]. The guest OS has its own copy of the page table that it manages believing that

they are the hardware page tables, though in reality it is just a map from the guest’s virtual

memory to its notion of physical memory. This map is called the virtual-to-physical map or the

V2P map. In addition, Xen maintains a map from the guest’s notion of physical memory to the

machine memory (P2M map). The shadow page table is a cache of the results of composing

the V2P map with the P2M map, mapping guest virtual memory directly to machine memory.

Loosely, it is the virtualized analog to a software TLB. The shadow page table enables quick

114

115

Page�1

Page�2

Page�3

Identical�to�
Page�3

Similar�to
Page�2

Identical�to
Page�3

Similar�to
Page�2

Guest�

Virtual

Guest�

Physical
Machine

Memory

VM�1

VM�2

Page�1

Page�2

Page�3

Page�1

Page�2

Page�3

Identical�to
Page�3

Similar�to
Page�2

(a) Initial

Identical�to
Page�3

Similar�to
Page�2

Guest�
Physical

Machine
Memory

Page�1

Page�2

Page�3

Page�1

Page�2

Page�3

Similar�to
Page�2

VM�1

VM�2

(b) Whole-page sharing

Identical�to
Page�3

Similar�to
Page�2

Guest�

Physical
Machine

Memory

Page�1

Page�2

Page�3

Page�1

Page�2

Page�3

VM�1

VM�2

(c) Patching

Identical�to
Page�3

Similar�to
Page�2

Guest�
Physical

Machine
Memory

Page�1

Page�2

Page�3

Page�2

Page�3

VM�1

VM�2

(d) Compression

Figure 7.1: The three different memory conservation techniques employed by Difference

Engine: whole-page sharing, page patching, and compression. In this example, five physical

pages are stored in less than three machine memory pages for a savings of roughly 50%.

116

page translation and look-ups, and more importantly, can be used directly by the CPU.

The idea behind Difference Engine is that there might be memory pages within a

VM or even across VMs that have similar content. The goal is to exploit these commonalities

to represent the original set of pages using a smaller number of physical pages. Difference

Engine uses three distinct mechanisms that work together to realize the benefits of memory

sharing, as shown in Figure 7.1. In this example, two VMs have allocated five pages total,

each initially backed by distinct pages in machine memory (Figure 7.1a). Once the pages

are allocated, Difference Engine runs in the background to reduce the amount of machine

memory used to store the pages. For brevity, we only show how the mapping from guest

physical memory to machine memory changes; the guest virtual to guest physical mapping

remains unaffected.

First, for identical pages across the VMs, we store a single copy and create references

that point to the original. In Figure 7.1b, one page in VM-2 is identical to one in VM-1.

For pages that are similar, but not identical, we store a patch against a reference page and

discard the redundant copy. In Figure 7.1c, the second page of VM-2 is stored as a patch to

the second page of VM-1. Finally, for pages that are unique and infrequently accessed, we

compress them in memory to save space. In Figure 7.1d, the remaining private page in VM-1

is compressed. The actual machine memory footprint is now less than three pages, down from

five pages originally.

In all three cases, Difference Engine must select candidate pages that are less likely

to be accessed in the future, for efficiency. We achieve this goal using a global clock that

scans memory in the background, identifying pages that have not been recently used. In

addition, reference pages for sharing or patching must be found quickly without introducing

performance overhead. Difference Engine uses full-page hashes and hash-based fingerprints

to identify good candidates. Finally, we implement a demand paging mechanism to push VM

pages to/from secondary storage in Domain-0 to support memory oversubscription.

7.1.1 Page Sharing

Difference Engine’s implementation of content-based page sharing is similar to those

in earlier systems [110]. We walk through memory looking for identical pages. As we scan

memory, we hash each page and index it based on its hash value. Identical pages hash to the

same value and a collision indicates that a potential matching page has been found. However,

there is a non-zero probability that non-identical pages hash to the same value. To guard against

117

this, we perform a byte-by-byte comparison to ensure that the pages are indeed identical before

sharing them.

Upon identifying target pages for sharing, we reclaim one of the pages and update

the virtual memory to point at the shared copy. Both mappings are marked read-only, so that

writes to a shared page cause a page fault that will be trapped by the VMM. The VMM returns

a private copy of the shared page to the faulting VM and updates the virtual memory mappings

appropriately. If no VM refers to a shared page, the VMM reclaims it and returns it to the

free memory pool.

7.1.2 Patching

Traditionally, the goal of page sharing has been to eliminate redundant copies of

identical pages, considering both intra-VM and inter-VM pages. Difference Engine considers

further reducing the memory required to store similar pages by constructing patches that

represent a page as the difference relative to a reference page. To motivate this design decision,

we provide an initial study into the potential savings due to sub-page sharing, both within and

across virtual machines. First, we define the following two heterogeneous workloads, each

involving three 512-MB virtual machines:

• Mixed-1: Windows XP SP1 hosting RUBiS [37]; Debian 3.1 compiling the Linux kernel;

Slackware 10.2 compiling Vim 7.0 followed by a run of the lmbench benchmark [14].

• Mixed-2: Windows XP SP1 running Apache 2.2.8 hosting approximately 32,000 static

web pages crawled from Wikipedia, with httperf running on a separate machine re-

questing these pages; Debian 3.1 running the SysBench database benchmark [18] using

10 threads to issue 100,000 requests; Slackware 10.2 running dbench [98] with 10 clients

for six minutes followed by a run of the IOZone benchmark [11].

We designed these workloads to stress the memory saving mechanisms since oppor-

tunities for identical page sharing are reduced. Our choice of applications was guided by the

VMmark benchmark [80] and the vmbench suite [78]. In this first experiment, for a variety of

configurations — number of VMs, allocations, types of applications — we suspend the VMs

after completing a benchmark, and consider a static snapshot of their memory to determine

the number of pages required to store the images using various techniques. Table 7.1 shows

the results of our analysis for the Mixed-1 workload.

118

Table 7.1: Effectiveness of page sharing across three 512-MB VMs running Windows XP,

Debian and Slackware Linux using 4-KB pages.

Pages Initial After Sharing After Patching
Unique 191,646 191,646
Sharable (non-zero) 52,436 3,577
Zero 149,038 1

Total 393,120 195,224 88,422
Reference 50,727 50,727
Patchable 144,497 37,695

The first column breaks down these 393,120 pages into three categories: 149,038 zero

pages (i.e., the page contains all zeros), 52,436 sharable pages (the page is not all zeros, and

there exists at least one other identical page), and 191,646 unique pages (no other page in

memory is exactly the same). The second column shows the number of pages required to

store these three categories of pages using traditional page sharing. Each unique page must

be preserved; however, we only need to store one copy of a set of identical pages. Hence,

the 52,436 non-unique pages contain only 3,577 distinct pages — implying there are roughly

fourteen copies of every non-unique page. Furthermore, only one copy of the zero page is

needed, saving 149,037 pages. In total, the 393,120 original pages can be represented by

195,224 distinct pages — a 50% savings.

The third column depicts the additional savings available if we consider sub-page

sharing. Using a cut-off of 2 KB for the patch size (i.e., we do not create a patch if it will take

up more than half a page), we identify 144,497 distinct pages eligible for patching. We store

the 50,727 remaining pages as is and use them as reference pages for the patched pages. For

each of the similar pages, we compute a patch using Xdelta [76] at a low compression setting.

The patches are stored in the standard VCDiff format [64] The average patch size is 1,070 bytes,

allowing them to be stored in 37,695 4-KB pages, saving 106,802 pages. In sum, sub-page

sharing requires only 88,422 pages to store the memory for all VMs instead of 195,224 for

full-page sharing or 393,120 originally — an impressive 77% savings, or almost another 50%

over full-page sharing. We note that this was the least savings in our experiments; the savings

from patching are even higher in most cases. Further, a significant amount of page sharing

actually comes from zero pages and, therefore, depends on their availability. For instance,

the same workload when executed on 256-MB VMs yields far fewer zero pages. Alternative

mechanisms to page sharing become even more important in such cases.

119

One of the principal complications with sub-page sharing is identifying candidate

reference pages. Difference Engine uses a parametrized scheme to identify similar pages

based upon the hashes of several 64-byte portions of each page. In particular, the scheme

HashSimilarityDetector (k, s) hashes the contents of (k ·s) 64-byte blocks at randomly chosen

locations on the page, and then groups these hashes together into k groups of s hashes each. We

use each group as an index into a hash table. In other words, higher values of s capture local

similarity while higher k values incorporate global similarity. Hence, HashSimilarityDetector
(1, 1) will choose one block on a page and index that block; pages are considered similar if

that block of data matches. HashSimilarityDetector (1, 2) combines the hashes from two

different locations in the page into one index of length two. HashSimilarityDetector (2, 1)

instead indexes each page twice: once based on the contents of a first block, and again based

on the contents of a second block. Pages that match at least one of the two blocks are chosen

as candidates.

For each scheme, the number of candidates, c, specifies how many different pages the

hash table tracks for each signature. With one candidate, we only store the first page found

with each signature; for larger values, we keep multiple pages in the hash table for each index.

When trying to build a patch, Difference Engine computes a patch between all matching

pages and chooses the best one. Note that since the HashSimilarityDetector(k, s) scheme

looks at k hash table entries, the total number of candidates considered is actually (k · c).
Figure 7.2 shows the effectiveness of this scheme for various parameter settings on

the two workloads described above. On the X-axis, we have parameters in the format (k, s), c,

and on the Y-axis we plot the total savings from patching after all identical pages have been

shared. We use the following definition of savings (we factor in the memory used to store the

shared and patched/compressed pages):

(
1− Total memory actually used

Total memory allocated to VMs

)
× 100

For both the workloads, HashSimilarityDetector (2, 1) with one candidate does sur-

prisingly well. There is a substantial gain due to hashing two distinct blocks in the page

separately, but little additional gain by hashing more blocks. Combining blocks does not help

much, at least for these workloads. Furthermore, storing more candidates in each hash bucket

also produces little gain. Hence, Difference Engine indexes a page by hashing 64-byte blocks

at two fixed locations in the page (chosen at random) and using each hash value as a separate

index to store the page in the hash table. To find a candidate similar page, the system computes

120

(1,
1,1

)
(1,

1,2
)

(1,
1,8

)
(2,

1,1
)

(2,
1,2

)
(2,

1,8
)

(4,
1,1

)
(4,

1,2
)

(4,
1,8

)
(1,

2,1
)

(1,
2,2

)
(1,

2,8
)

(2,
2,1

)
(2,

2,2
)

(2,
2,8

)0

5

10

15

20

25

30

35

40

Sa
vi

ng
s

(%
)

Mixed-1
Mixed-2

Figure 7.2: Effectiveness of the similarity detector for varying number of indices, index length

and number of candidates. All entries use a 18-bit hash.

hashes at the same two locations, looks up those hash table entries, and chooses the better of

the (at most) two pages found there.

Our current implementation uses 18-bit hashes to keep the hash table small to cope

with the limited size of the Xen heap. In general though, larger hashes might be used for

improved savings and fewer collisions. Our analysis indicates, however, that the benefits from

increasing the hash size are modest. For example, using HashSimilarityDetector (2, 1) with

one candidate, a 32-bit hash yields a savings of 24.66% for Mixed-1, compared to a savings

of 20.11% with 18-bit hashes.

7.1.3 Compression

Finally, for pages that are not significantly similar to other pages in memory, we

consider compressing them to reduce the memory footprint. Compression is useful only if

the compression ratio is reasonably high, and, like patching, if selected pages are accessed

infrequently, otherwise the overhead of compression/decompression will outweigh the benefits.

We identify candidate pages for compression using a global clock algorithm (Section 7.2.2),

assuming that pages that have not been recently accessed are unlikely to be accessed in the

near future.

Difference Engine supports multiple compression algorithms, currently LZO and

121

WKdm as described in [111]; We invalidate compressed pages in the VM and save them in a

dynamically allocated storage area in machine memory. When a VM accesses a compressed

page, Difference Engine decompresses the page and returns it to the VM uncompressed. It

remains there until it is again considered for compression.

7.1.4 Paging Machine Memory

While Difference Engine will deliver some (typically high) level of memory savings,

in the worst case our debts get called simultaneously and the VMs actually require all of their

allocated memory. Setting aside sufficient physical memory to account for this case prevents

using the memory saved by Difference Engine to create additional VMs. Not doing so,

however, may result in temporarily overshooting the physical memory capacity of the machine

and cause a system crash. We therefore require a demand-paging mechanism to supplement

main memory by writing pages out to disk in such cases.

A good candidate page for swapping out would likely not be accessed in the near

future — the same requirement as compressed/patched pages. In fact, Difference Engine also

considers compressed and patched pages as candidates for swapping out. Once the contents of

the page are written to disk, the page can be reclaimed. When a VM accesses a swapped out

page, Difference Engine fetches it from disk and copies the contents into a newly allocated

page that is mapped appropriately in the VM’s memory.

Since disk I/O is involved, swapping in/out is an expensive operation. Further, a

swapped page is unavailable for sharing or as a reference page for patching. Therefore, swap-

ping should be an infrequent operation. Difference Engine implements the core mechanisms

for paging, and leaves policy decisions — such as when and how much to swap — to user-

space tools. We describe our reference implementation for swapping and the associated tools

in Section 7.2.6.

Figure 7.3 summarizes the different states a page can be in and how they are related.

We now describe our implementation based on the Xen VMM.

7.2 Implementation

We have implemented Difference Engine on top of Xen 3.0.4 in roughly 14,500 lines

of code. An additional 20,000 lines come from ports of existing patching and compression

algorithms (Xdelta, LZO, WKdm) to run inside Xen. Another 2,500 lines derive from the work

122

Regular

Shared

Patch Compressed

LR
U
�c
an

di
da

te
A
cc

es
s

C
o
W

Id
en

ti
ca

l

LRU
�Candidate

A
ccess

Swapped

Acce
ss

LRU�ca
ndidate

Figure 7.3: The page-state transition diagram.

Table 7.2: Memory consumed by Difference Engine data structures for identifying memory

sharing opportunities. These are the fixed costs only, and do not include per-VM overhead for

data structures such as shadow page tables. All memory is allocated from Xen’s heap, which

is under 12 MB in size.

Size Component
1.76 MB Page sharing hash table
1.00 MB Page similarity hash table

by Kloster et al. [68] to implement page sharing. Modifications outside the Xen hypervisor

are tiny in comparison: around 130 modified lines in ioemu and control tools in Domain-0,
and no modifications required to the Linux kernel or elsewhere.

7.2.1 Modifications to Xen

Difference Engine relies on manipulating P2M maps and the shadow page tables to

interpose on page accesses. For simplicity, we do not consider any pages mapped by Domain-
0 (the privileged, control domain in Xen), which, among other things, avoids the potential for

circular page faults. Our implementation method gives rise to two slight complications.

123

Real Mode

On x86 hardware, when the OS starts booting on bare metal, the x86 real-mode paging

is disabled. This configuration is required because the OS needs to obtain some information

from the BIOS for the boot sequence to proceed. When executing under Xen, this requirement

means that paging is disabled during the initial stages of the boot process, and shadow page

tables are not used until paging is turned on. Instead, the guest employs a direct P2M map

as the page table. Hence, a VM’s memory is not available for consideration by Difference

Engine until paging has been turned on within the guest OS.

I/O Support

To support unmodified operating system requirements for I/O access, the Xen hyper-

visor must emulate much of the underlying hardware that the OS expects (such as the BIOS

and the display device). Xen has a software I/O emulator based on Qemu [28]. A per-VM

user-space process in Domain-0 known as ioemu performs all necessary I/O emulation. The

ioemu must be able to read and write directly into the guest memory, primarily for efficiency.

For instance, this enables the ioemu process to DMA directly into pages of the VM, instead of

having to DMA locally and then copying data to the VM or flipping ownership of the DMA’d

pages to the VM. By virtue of executing in Domain-0, the ioemu may map any pages of the

guest OS in its address space.

By default, ioemu maps the entire memory of the guest into its address space for

simplicity. Recall, however, that Difference Engine explicitly excludes pages mapped by

Domain-0. Thus, ioemu will nominally prevent us from saving any memory at all, since

every VM’s address space will be mapped by its ioemu into Domain-0. Our initial prototype
addressed this issue by modifying ioemu to map a small, fixed number (16) of pages from each

VM at any given time. While simple to implement, this scheme suffered from the drawback

that, for I/O-intensive workloads, the ioemu process would constantly have to map VM pages

into its address space on demand, leading to undesirable performance degradation. To address

this limitation, we implemented a dynamic aging mechanism in ioemu — VM pages are

mapped into Domain-0 on demand, but not immediately unmapped. Every ten seconds, we

unmap VM pages which were not accessed during the previous interval. To measure the

real-world impact of our modification, we measured the throughout of a 580-MB scp transfer

between two VMs. Table 7.3 shows that our current implementation is almost as fast as the

original implementation, while making VM pages available for processing by the Difference

124

Table 7.3: Throughout of scp between two VMs for various ioemu mapping strategies.

Mapping strategy Throughput
Original (all pages) 2.84 MB/s
16 pages at a time 0.91 MB/s
Aging 2.75 MB/s
Difference Engine (dynamic aging) 2.47 MB/s

Engine.

Block Allocator

Patching and compression may result in compact representations of a page that are

much smaller than the page size. We wrote a custom block allocator for Difference Engine

to efficiently manage storage for patched and compressed pages. Our block allocator is loosely

modeled after the slab allocator [29]. The allocator acquires pages from the domain heap (from

which memory for new VMs is allocated) on demand, and returns pages to the heap when no

longer required.

When the VMM starts, all of the pages in memory are regular pages. As time pro-

gresses, pages might be chosen for sharing or compression or patching. The block allocator

does not acquire any memory until the first page is selected by the global clock for processing.

The storage backend grows dynamically on demand. The allocator acquires memory

at page granularity; we divide each newly created page into fixed size blocks. The block size

of a particular page is determined by the request that led to that page’s creation. The allocator

searches through the storage area for any page for that block size with a free block; if there is

no such page, it allocates a new page with that block size. A nice side effect of this scheme

is that there is no need to estimate or predict how many pages of each block size the allocator

should maintain. This mechanism naturally converges to the actual distribution.

To minimize internal fragmentation, the block allocator manages blocks of various

sizes. Block sizes are powers of two, ranging from 64 bytes to 2048 bytes (half a page). Each

block stores 16 bytes of meta data, including the page type (patched or compressed), owner

domain and page frame number. Each acquired page is divided into equal sized blocks. To

keep track of pages containing blocks of a given size, we create stub domains, each of which

owns pages of a particular block size. These stub domains are just container structures and

are not scheduled by the VMM.

When the allocator receives a request for a block of a given size, it examines the last

125

page of the corresponding stub domain. If the page is full, or if the domain owns no pages,

a new page is allocated to it from the domain heap. Otherwise, the next free block found is

returned to the callee. We also keep track of the number of used blocks in each page. When

this drop to zero, the page can be returned to the domain heap. A nice side effect of this

scheme is that we eliminate the need to estimate or predict how many pages of each block size

the allocator should maintain. This mechanism naturally converges to the actual distribution.

If a free block is found, it is returned to the callee. Each page has some associated

meta-data to keep track of free blocks. In particular, we leverage the type count associated with

each page in the page_info data structure to store the number of used blocks in a page. Once

the type count drops to zero, the page can be freed from the storage back end and returned to

domain heap.

To find a free block within a page we perform a linear scan. To keep track of pages

of different block sizes, we utilize existing infrastructure in Xen. In particular, we create stub

domains, each of which owns pages of a particular block size. These stub domains are just

containers for data structures and are not really scheduled as real VMs by the system. To find

pages of a particular block size, we just scan the pages belonging to the stub domain for that

particular page size.

7.2.2 Clock

Difference Engine implements a not recently used (NRU) policy [99] to select can-

didate pages for sharing, patching, compression and swapping out. On each invocation, the

clock scans a portion of the memory, checking and clearing the referenced (R) and modified

(M) bits on pages. Thus pages with the R/M bits set must have been referenced/modified since

the last scan. The rate at which memory we scan memory is a configurable parameter. We

ensure that successive scans of memory are separated by at least four seconds in the current

implementation to give domains a chance to reset the R/M bits on frequently accessed pages.

In the presence of multiple VMs, the clock scans a small portion of each VM’s memory in

turn for fairness. The interface exported by the clock is simple: return a list of pages (of some

maximum size) that have not been accessed in some time.

In OSes running on bare metal, the R/M bits on page table entries are typically updated

by the processor. Xen structures the P2M map exactly like the page tables used by the hardware,

however since the processor doesn’t actually use the P2M map as a page table, the R/M bits

are not updated automatically. Xen structures the P2M map exactly like the page tables used

126

by the hardware1. Since the processor does not actually use the P2M as a page table, the

accessed and dirty bits are not automatically updated. We modify Xen’s shadow page table

code to set these bits when creating readable or writable page mappings. Unlike conventional

operating systems, where there may be multiple sets of page tables that refer to the same set

of pages, in Xen there is only one P2M map per domain, and so each guest page corresponds

unambiguously to one P2M entry and one set of R/M bits.

Using the R/M bits, we can annotate each page with its “freshness”:

• Recently modified (C1): The page has been written to since the last scan. [M,R=1,1]

• Not recently modified (C2): The page has been accessed since the last scan, but not

modified. [M,R=1,0]

• Not recently accessed (C3): The page has not been accessed at all since the last scan.

[M,R=0,0]

• Not accessed for an extended period (C4): The page has not been accessed in the past

few scans.

Note that the existing two R/M bits are not sufficient to classify C4 pages — we extend

the clock’s “memory” by leveraging two additional bits in the page table entries to identify such

pages. These bits are updated when a page is classified as C3 in consecutive scans. Together,

these four annotations enable a clean separation between mechanism and policy, allowing us to

explore different points in the policy space. The default policy of Difference Engine operates

as follows. C1 pages are ignored; C2 pages are considered for sharing and to be reference

pages for patching, but can not be patched or compressed themselves; C3 pages can be shared

or patched; C4 pages are eligible for everything, including compression and swapping.

We consider sharing first since it delivers the most memory savings in exchange for a

small amount of meta data. We consider compression last because once a page is compressed,

there is no opportunity to benefit from future sharing or patching of that page. An alternate,

more aggressive policy might treat all pages as if they were in state C4 (not accessed in a

long time) — in other words, proactively patch and compress pages. Initial experimentation

indicates that while the contribution of patched and compressed pages does increase slightly,
1The P2M table is almost never directly used by the hardware. However, when a guest runs with paging

disabled, the appropriate semantics can be achieved by setting the hardware’s page table base register to point at
the P2M table. So as not to confuse the hardware, we use the same bit positions for our dirty and accessed bits
as the hardware page tables, even though the majority of the time these bits will not be updated by the hardware
since loading the P2M as the page table will be rare.

127

it does not yield a significant net savings. We also considered a policy that selects pages

for compression before patching. Initial experimentation with the workloads in Section 8.4.2

shows that this policy performs slightly worse than the default in terms of savings, but incurs

less performance overhead since patching is more resource intensive. We suspect that it may

be a good candidate policy for heterogeneous workloads with infrequently changing working

sets, but do not explore it further here.

7.2.3 Page Sharing

Difference Engine uses the SuperFastHash [60] function to compute digests for each

scanned page and inserts them along with the page frame number into a hash table. The

implementation of this code is based upon the code of Kloster et al. [68]. Ideally, the hash

table should be sized so that it can hold entries for all of physical memory. The hash table

is allocated out of Xen’s heap space, which is quite limited in size: the code, data, and heap

segments in Xen must all fit in a 12-MB region of memory. Changing the heap size requires

pervasive code changes in Xen, and will likely break the application binary interface (ABI) for

some OSes. We therefore restrict the size of the page-sharing hash table so that it can hold

entries for only 1/5 of physical memory. Hence Difference Engine processes memory in

five passes (we refer the reader to [68] for details). In our test configuration, this partitioning

results in a 1.76-MB hash table. We divide the space of hash function values into five intervals,

and only insert a page into the table if its hash value falls into the current interval. A complete

cycle of five passes covering all the hash value intervals is required to identify all identical

pages.

7.2.4 Page Similarity Detection

The goal of the page similarity component is to find pairs of pages with similar content,

and, hence, make candidates for patching. We implement a simple strategy for finding similar

pages based on hashing short blocks within a page, as described in Section 7.1.2. Specifically,

we use the HashSimilarityDetector (2, 1) described there, which hashes short data blocks

from two locations on each page, and indexes the page at each of those two locations in a

separate page similarity hash table, distinct from the page sharing hash table described above.

We use the 1-candidate variation, where at most one page is indexed for each block hash value.

Recall that the clock makes a complete scan through memory in five passes. The page

sharing hash table is cleared after each pass, since only pages within a pass are considered for

128

sharing. However, two similar pages may appear in different passes if their hash values fall in

different intervals. Since we want to only consider pages that have not been shared in a full

cycle for patching, the page similarity hash table is not cleared on every pass. This approach

also increases the chances of finding better candidate pages to act as the reference for a patch.

The page similarity hash table may be cleared after considering every page in memory

— that is, at the end of each cycle of the global clock. We do so to prevent stale data from

accumulating: if a page changes after it has been indexed, we should remove old pointers to it.

Since we do not trap on write operations, it is simpler to just discard and rebuild the similarity

hash table.

Only the last step of patching — building the patch and replacing the page with it

— requires a lock. We perform all earlier steps (indexing and lookups to find similar pages)

without pausing any domains. Thus, the page contents may change after Difference Engine

indexes the page, or after it makes an initial estimate of patch size. This situation is fine since

the goal of these steps is to find pairs of pages that will likely patch well. An intervening page

modification will not cause a correctness problem, only a patch that is larger than originally

intended.

7.2.5 Compression

Compression operates similarly to patching — in both cases the goal is to replace a

page with a shorter representation of the same data. The primary difference is that patching

makes use of a reference page, while a compressed representation is self-contained.

There is one important interaction between compression and patching: once we com-

press a page, the page can no longer be used as a reference for a later patched page. A naive

implementation that compresses all non-identical pages as it goes along will almost entirely

prevent page patches from being built. Compression of a page should be postponed at least

until all pages have been checked for similarity against it. A complete cycle of a page sharing

scan will identify similar pages, so a sufficient condition for compression is that no page should

be compressed until a complete cycle of the page sharing code finishes. We make the definition

of “not accessed for an extended period” in the clock algorithm coincide with this condition

(state C4). As mentioned in Section 7.2.2, this is our default policy for page compression.

129

ioemu-1

ioemu-2

VM-1

VM-2

Xen

handler-1

handler-2
Memory
Monitor

swapd

Event���Channel

Figure 7.4: Architecture of the swap mechanism.

7.2.6 Paging Machine Memory

Recall that any memory freed by Difference Engine cannot be used reliably without

supplementing main memory by secondary storage. That is, when the total allocated memory

of all VMs exceeds the system memory capacity, some pages will have to be swapped to disk.

Note that this ability to over-commit memory is useful in Xen independent of other Difference

Engine functionality, and has been designed accordingly.

Since the Xen VMM does not handle any I/O (all I/O is delegated to Domain-0) and
is not aware of any devices, it is not possible to build swap support directly in the hypervisor.

Further, since Difference Engine supports unmodified OSes, we cannot expect any support

from the guest OS. Figure 7.4 shows the design of our swap implementation guided by these

constraints. A single Swap Daemon (swapd) running as a user process in Domain-0 manages

the swap space. For each VM in the system, swapd creates a separate thread to handle swap-in

requests. Swapping out is initiated by swapd, when one of the following occurs:

• the memory utilization in the system exceeds some user configurable threshold (the

HIGH_WATERMARK). Pages are swapped out until a user configurable threshold of free

memory is attained (the LOW_WATERMARK). A separate thread (the memory_monitor)

tracks system memory.

• a swap out notification is received from Xen via an event channel. This allows the

hypervisor to initiate swapping if more memory is urgently required (for instance, when

creating a private copy of a shared page). The hypervisor indicates the amount of free

memory desired.

• a swap out request is received from another process. This allows other user-space tools

130

(for instance, the VM creation tool) to initiate swapping in order to free memory. We

currently employ XenStore [24] for such communication, but any other IPC mechanism

can be used.

Note that swapd always treats a swap out request as a hint. It will try to free pages,

but if that is not possible — if no suitable candidate page was available, for instance, or if the

swap space became full — it continues silently. A single flat file of configurable size is used

as the back-end storage for the swap space.

To swap out a page, swapd makes a hypercall into Xen, where a victim page is

chosen by invoking the global clock. If the victim is a compressed or patched page, we first

reconstruct it. We pause the VM that owns the page and copy the contents of the page to a

page in Domain-0’s address space (supplied by swapd). Next, we remove all entries pointing

to the victim page in the P2M and M2P maps, and in the shadow page tables, and mark the

page as swapped out in the corresponding page table entry. Meanwhile, swapd writes the page

contents to the swap file and inserts the corresponding byte offset in a hash table keyed by

<Domain ID, guest page frame number>. Finally, we free the page, return it to the domain

heap, and reschedule the VM.

When a VM tries to access a swapped page, it incurs a page fault and traps into Xen.

We pause the VM and allocate a fresh page to hold the swapped in data. We populate the

P2M and M2P maps appropriately to accommodate the new page. Xen dispatches a swap-in

request to swapd containing the domain ID and the faulting page frame number. The handler

thread for the faulting domain in swapd receives the request and fetches the location of the

page in the swap file from the hash table. It then copies the page contents into the newly

allocated page frame within Xen via another hypercall. At this point, swapd notifies Xen, and

Xen restarts the VM at the faulting instruction.

This implementation leads to two interesting interactions between ioemu and swapd.

First, recall that ioemu can directly write to a VM page mapped in its address space. Mapped

pages might not be accessed until later, so a swapped page can get mapped or a mapped page

can get swapped out without immediate detection. To avoid unnecessary subsequent swap ins,

we modify ioemu to ensure that pages to be mapped will be first swapped in if necessary and

that mapped pages become ineligible for swapping. Also note that control must be transferred

from Xen to swapd for a swap in to complete. This asynchrony allows a race condition where

ioemu tries to map a swapped out page (so Xen initiates a swap in on its behest) and proceeds

with the access before the swap in has finished. This race can happen because both processes

131

must run in Domain-0 in the Xen architecture. As a work around, we modify ioemu to block

if a swap in is still in progress inside swapd using shared memory between the processes for

the required synchronization.

While implementing swap support in Xen was a necessity for Difference Engine and

a valuable learning experience, we are nonetheless inclined to conclude that the current I/O

architecture for fully-virtualized domains is not amenable for an efficient swap implementation.

Ideally, swapping in should be an atomic process, not an asynchronous one. Making all the

necessary modifications was difficult and likely brittle to updates to the underlying Xen code.

Chapter 7, in part, is a reprint of the material as it appears in Proceedings of USENIX

Symposium on Operating System Design and Implementation (OSDI) 2008. Gupta, Diwaker;

Lee, Sangmin; Vrable, Michael; Savage, Stefan; Snoeren, Alex C.; Varghese, George; Voelker,

Geoffrey M.; Vahdat, Amin. The dissertation author is the primary investigator and author of

this paper.

Chapter 8

Difference Engine Evaluation

We first present micro-benchmarks to evaluate the cost of individual operations and

the performance of the global clock. We then consider each mechanism in isolation to gain a

better understanding of the trade-offs involved. Next, we evaluate whole-system performance:

for a range of workloads, we measure memory savings and the impact on application per-

formance. We quantify the contributions of each Difference Engine mechanism, and also

present head-to-head comparisons with the VMware ESX server. We consider several different

configurations to quantify the memory savings when subjected to a broad range of workload

mixes. Finally, we demonstrate how our memory savings can be used to boost the aggregate

system performance. Unless otherwise mentioned, all experiments are run on dual-processor,

dual-core 2.33-GHz Intel Xeon machines and the page size is 4 KB.

8.1 Cost of Individual Operations

Before quantifying the memory savings provide by Difference Engine, we measure

the overhead of various functions involved. We obtain these numbers by enabling each mech-

anism in isolation (thus if page sharing is being benchmarked, patching and compression are

disabled), and running the custom micro-benchmark described in Section 8.3. To benchmark

paging, we disabled all three mechanisms and forced eviction of 10,000 pages from a single

512-MB VM. We then ran a simple program in the VM that touches all memory to force pages

to be swapped in.

Table 8.1 shows the overhead imposed by the major Difference Engine operations.

As expected, collapsing identical pages into a copy-on-write shared page (share_page) and

132

133

Table 8.1: CPU overhead of different functions.

Function Mean execution time (µs)
share_pages 6.2
cow_break 25.1
compress_page 29.7
uncompress 10.4
patch_page 338.1
unpatch 18.6
swap_out_page 48.9
swap_in_page 7151.6

recreating private copies (cow_break) are relatively cheap operations, taking approximately 6

and 25 µs, respectively. Perhaps more surprising, however, is that compressing a page on our

hardware is fast, requiring slightly less than 30 µs on average. Patching, on the other hand, is

almost an order of magnitude slower: creating a patch (patch_page) takes over 300 µs. This

time is primarily due to the overhead of finding a good candidate base page and constructing

the patch. Both decompressing a page and re-constructing a patched page are also fairly fast,

taking 10 and 18 µs respectively.

Swapping out takes approximately 50 µs. However, this does not include the time to

actually write the page to disk. This is intentional: once the page contents have been copied

to user-space, they are immediately available for being swapped in; and the actual write to the

disk might be delayed because of file system and OS buffering in Domain-0. Swapping in, on

the other hand, is the most expensive operation, taking approximately 7 ms. There are a few

caveats, however. First, swapping in is an asynchronous operation and might be affected by

several factors, including process scheduling within Domain-0; it is not a tight bound. Second,

swapping in might require reading the swapped out page from disk, and the seek time will

depend on the size of the swap file, among other things.

8.2 Clock Performance

The performance of applications running with Difference Engine depends upon

how effectively we choose idle pages to compress or patch. Patching and compression are

computationally-intensive, and the benefits of this overhead last only until the next access to

the page. Reads are free for shared pages, but not so for compressed or patched pages. The

clock algorithm is intended to only consider pages for compression/patching that are not likely

134

100 101 102 103 104 105 106 107

Life time (ms)
0

20

40

60

80

100

Pa
ge

s
(%

ag
e)

RUBiS
Kernel Compile
Mixed Workload

Figure 8.1: Lifetime of patched and compressed pages for three different workloads. Our NRU

implementation works well in practice.

to be accessed again soon; here we evaluate how well it achieves that goal.

For three different workloads, we trace the lifetime of each patched and compressed

page. The lifetime of a page is the time between when it was patched/compressed, and the

time of the first subsequent access (read or write). The workloads range from best case ho-

mogeneous configurations (same OS, same applications) to a worst case, highly heterogeneous

mix (different OSes, different applications). The RUBiS and kernel compile workloads use

four VMs each (Section 8.4.1). We use the Mixed-1 workload described earlier (Section 7.1.2)

as the heterogeneous workload.

Figure 8.1 plots the cumulative distribution of the lifetime of a page: the X-axis shows

the lifetime (in ms) in log scale, and the Y-axis shows the fraction of compressed/patched pages.

A good clock algorithm should give us high lifetimes, since we would like to patch/compress

only those pages which will not be accessed in the near future. As the figure shows, almost

80% of the victim pages have a lifetime of at least 10 seconds, and roughly 50% have a lifetime

greater than 100 seconds. This is true for both the homogeneous and the mixed workloads,

indicating that our NRU implementation works well in practice.

135

50 100 150 200 250 300 350 400 450 500
Time (s)

0

20

40

60

80

100

Sa
vi

ng
s

(%
)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(a) Sharing

50 100 150 200 250 300 350 400 450 500
Time (s)

0

20

40

60

80

100

Sa
vi

ng
s

(%
)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(b) Patching

50 100 150 200 250 300 350 400 450 500
Time (s)

0

20

40

60

80

100

Sa
vi

ng
s

(%
)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(c) Compression

Figure 8.2: Workload: Identical pages. Performance with zero pages is very similar. All

mechanisms exhibit similar gains.

136

50 100 150 200 250 300 350 400 450 500
Time (s)

0

20

40

60

80

100

Sa
vi

ng
s

(%
)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(a) Sharing

50 100 150 200 250 300 350 400 450 500
Time (s)

0

20

40

60

80

100

Sa
vi

ng
s

(%
)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(b) Patching

50 100 150 200 250 300 350 400 450 500
Time (s)

0

20

40

60

80

100

Sa
vi

ng
s

(%
)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(c) Compression

Figure 8.3: Workload: Random pages. None of the mechanisms perform very well, with

sharing saving the least memory.

137

50 100 150 200 250 300 350 400 450 500
Time (s)

0

20

40

60

80

100

Sa
vi

ng
s

(%
)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(a) Sharing

50 100 150 200 250 300 350 400 450 500
Time (s)

0

20

40

60

80

100

Sa
vi

ng
s

(%
)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(b) Patching

50 100 150 200 250 300 350 400 450 500
Time (s)

0

20

40

60

80

100

Sa
vi

ng
s

(%
)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(c) Compression

Figure 8.4: Workload: Similar pages with 95% similarity. Patching does significantly better

than compression and sharing.

138

8.3 Techniques in Isolation

To understand the individual contribution of the three techniques, we first quantify the

performance of each Difference Engine mechanism in isolation. We deployed Difference

Engine on three machines running Debian 3.1 on a VM. Each machine is configured to use a

single mechanism—one machine uses just page sharing, one uses just compression, and one

just patching. We then subject all the machines to the same workload and profile the memory

utilization.

To help distinguish the applicability of each technique to various page contents, we

choose a custom workload generator that manipulates memory in a repeatable, predictable

manner over off-the-shelf benchmarks. This enables fairer comparison across different appli-

cation/OS mixes, as well as normalizes against any benchmark specific peculiarities. Further,

most benchmarks are designed to test specific sub systems or applications (web server, database

etc) and so are not particularly suited for our micro-benchmarks. Our workload generator runs

in four phases. First it allocates pages of a certain type. To exercise the different mechanisms

in predictable ways, we consider four distinct page types: zero pages, random pages, identical

pages and similar-but-not-identical pages. Second, it reads all the allocated pages. Third, it

makes several small writes to all the pages. Finally, it frees all allocated pages and exits. After

each step, the workload generator idles for some time, allowing the memory to stabilize. For

each run of the benchmark, we spawn a new VM and start the workload generator within it.

At the end of each run, we destroy the container VM and again give memory some time to

stabilize before the next run. We ran benchmarks with varying degrees of similarity, where

similarity is defined as follows: a similarity of 90% means all pages differ from a base page

by 10%, and so any two pages will differ from each other by at most 20%. Here, we present

the results for 95%-similar pages, but the results for other values are similar.

Each VM image is configured with 256 MB of memory. Our workload generator

allocates pages filling 75% (192 MB) of the VM’s memory. The stabilization period is a

function of several factors, particularly the period of the global clock. For these experiments,

we used a sleep time of 80 seconds between each phase. During the write step, the workload

generator writes a single constant byte at 16 fixed offsets in the page. As a result, identical

pages remain identical after the write phase. For each configuration, we monitor the memory

savings over time as the run proceeds. On each of the time series graphs, the significant events

during the run are marked with a vertical line. These events are: (1) begin and (2) end of the

allocation phase, (3) begin and (4) end of the read phase, (5) begin and (6) end of the write

139

phase, (7) begin and (8) end of the free phase, and (9) VM destruction.

Figure 8.2 shows the memory savings as a function of time for each mechanism for

identical pages (we omit results with zero pages – they are essentially the same as identical

pages). Note that while each mechanism achieves similar savings, the crucial difference is that

reads are free for page sharing. With compression/patching, even a read requires the page to

be reconstructed, leading to the sharp decline in savings around event (3) and (5).

At the other extreme are random pages. Intuitively, none of the mechanisms should

work very well since the opportunity to share memory is scarce. Figure 8.3 demonstrates

this: once the pages have been allocated, none of the mechanisms are able to share more than

15–20% memory. Page sharing does the worst, managing a meager 5% at best.

From the perspective of page sharing, similar pages are no better than random pages.

However, patching should take advantage of sub-page similarity across pages. Figure 8.4 shows

the memory savings for the workload with pages of 95% similarity. Note how similar the graphs

for sharing and compression look for similar and random pages. Patching, on the other hand,

does substantially better, extracting up to 55% savings. Since we search for candidate pages

online, often times the match found is sub optimal, which explains why patching does not do

even better.

8.4 Real-world Applications

Armed with a concrete understanding of the performance of each individual technique,

we now present the performance of Difference Engine on a variety of workloads. We seek

to answer two questions. First, how effective are the memory-saving mechanisms at reducing

memory usage for real-world applications? Second, what is the impact of those memory-

sharing mechanisms on system performance? Since the degree of possible sharing depends on

the software configuration, we consider several different cases of application mixes.

To put our numbers in perspective, we also do head-to-head comparisons with VMware

ESX server for three different workload mixes. We run ESX Server 3.0.1 build 32039 on a

Dell PowerEdge 1950 system. Note that even though this system has two 2.3-GHz Intel Xeon

processors, our VMware license limits our usage to a single CPU. Hence, while doing the

comparison, we restrict Xen (and, hence, Difference Engine) to use a single CPU for fairness.

We also ensure that the OS images used with ESX match those used with Xen, especially the

file system and disk layout. Note that we are only concerned with the effectiveness of the

memory sharing mechanisms—not in comparing the application performance across the two

140

hypervisors. Further, we configure ESX to use its most aggressive page sharing settings where

it scans 10,000 pages/second (default 200); we configure Difference Engine similarly.

8.4.1 Base Scenario: Homogeneous VMs

In our first set of benchmarks, we test the base scenario where all VMs on a machine

run the same OS and applications. This scenario is common in cluster-based systems where

several services are replicated to provide fault tolerance or load balancing. Our expectation

is that significant memory savings are available and that most of the savings will come from

page sharing.

On a machine running standard Xen, we start from 1 to 6 VMs, each with 256 MB

of memory and running RUBiS [37] — an e-commerce application designed to evaluate ap-

plication server performance — on Debian 3.1. We use the PHP implementation of RUBiS;

each instance consists of a web server (Apache) and a database server (MySQL). Two distinct

client machines generate the workload, each running the standard RUBiS workload generator

simulating 100 user sessions. The benchmark runs for roughly 20 minutes. The workload gen-

erator reports several metrics at the end of the benchmark, in particular the average response

time and the total number of requests served.

We then run the same set of VMs with Difference Engine enabled. Figures 8.5a

and 8.5b show that both the total number of requests and the average response time remain

unaffected while delivering 65–75% memory savings in all cases. In Figure 8.5c, the bars

indicate the average memory savings over the duration of the benchmark. Without memory

sharing, memory requirements naturally grow linearly with the number of VMs. Each bar

also shows the individual contribution of each mechanism. Note that in this case, the bulk

of memory savings comes from page sharing. Recall that Difference Engine tries to share

as many pages as it can before considering pages for patching and compression, so sharing is

expected to be the largest contributor in most cases, particularly in homogeneous workloads.

Interestingly, even with a single virtual machine, almost 70% memory can be saved. We

emphasize that these savings are while the benchmark is running: on an otherwise idle system

(or a stable system with little I/O activity), Difference Engine consistently achieves more

than 80% savings.

Next, we conduct a similar experiment where each VM compiles the Linux kernel

(version 2.6.18). Since the working set of VMs changes much more rapidly in a kernel

compile, as many files are being read and written, we expect less memory savings compared

141

1 2 4 6
Number of VMs

0

20000

40000

60000

80000

100000

120000

#
Re

qu
es

ts

Baseline
DE

(a) Total requests handled

1 2 4 6
Number of VMs

0

50

100

150

200

250

300

Re
sp

on
se

tim
e

(m
s)

Baseline
DE

(b) Average response time

1 2 4 6
Number of VMs

0

10

20

30

40

50

60

70

Sa
vi

ng
s

(%
)

Shared
Patched
Compressed

(c) Average and maximum savings

Figure 8.5: Difference Engine performance with homogeneous VMs running RUBiS

142

1 2 4 6
Number of VMs

0

200

400

600

800

1000

Co
m

pi
le

tim
e

Baseline
DE

(a) Compile Time

1 2 4 6
Number of VMs

0

5

10

15

20

25

30

35

40

45

Sa
vi

ng
s

(%
)

Shared
Patched
Compressed

(b) Savings

Figure 8.6: Difference Engine performance with homogeneous VMs compiling the Linux

kernel.

143

0 200 400 600 800 1000 1200
Time (s)

0

20

40

60

80

100

Sa
vi

ng
s

(%
)

ESX aggressive

DE TotalDE Shared
DE Patched
DE Compressed

Figure 8.7: Four identical VMs executing dbench. For such homogeneous workloads, both

Difference Engine and ESX eventually yield similar savings, but DE extracts more savings

while the benchmark is in progress.

to the RUBiS workload. As before, we measure the time taken to finish the compile and the

memory savings for varying number of virtual machines. Figures 8.6a and 8.6b plot the time

taken for the kernel compile (averaged across all VMs) and the memory savings in each case.

First, note that compared to RUBiS memory savings are lower, but still significant. And the

amount of memory we can save increases as we increase the number of VMs. Secondly, in all

cases, we incur a performance penalty of at most 5–10%. For such an I/O intensive workload,

we find the memory savings (during the workload) impressive. Again, shared pages contribute

most to the savings.

We next compare Difference Engine performance with the VMware ESX server. We

set up four 512-MB virtual machines running Debian 3.1. Each VM executes dbench [98] for

ten minutes followed by a stabilization period of 20 minutes. Figure 8.7 shows the amount

of memory saved as a function of time. First, note that eventually both ESX and Difference

Engine reclaim roughly the same amount of memory (the graph for ESX plateaus beyond 1200

seconds). However, while dbench is executing, Difference Engine delivers approximately 1.5

times the memory savings achieved by ESX. As before, the bulk of Difference Engine savings

come from page sharing for the homogeneous workload case.

144

0 200 400 600 800 1000 1200 1400 1600
Time (s)

0

10

20

30

40

50

60

70

Sa
vi

ng
s

(%
)

DE Total

ESX aggressive

DE Shared
DE Patched
DE Compressed

Figure 8.8: Memory savings for Mixed-1. Difference Engine saves up to 45% more memory

than ESX.

8.4.2 Heterogeneous OS and Applications

Given the increasing trend towards virtualization, both on the desktop and in the data

center, we envision that a single physical machine will host significantly different types of

operating systems and workloads. While smarter VM placement and scheduling will mitigate

some of these differences, there will still be a diverse and heterogeneous mix of applications

and environments, underscoring the need for mechanisms other than page sharing. We now

examine the utility of Difference Engine in such scenarios, and demonstrate that significant

additional memory savings result from employing patching and compression in these settings.

Figures 8.8 and 8.9 show the memory savings as a function of time for the two

heterogeneous workloads—Mixed-1 and Mixed-2 described in Section 7.1.2. We make the

following observations. First, in steady state, Difference Engine delivers a factor of 1.6-

2.5 more memory savings than ESX. For instance, for the Mixed-2 workload, with a factor

of 2 more memory savings, Difference Engine could host the three VMs allocated 512

MB of physical memory each in approximately 760 MB of machine memory; ESX would

require roughly 1100 MB of machine memory. The remaining, significant, savings come from

patching and compression. And these savings come at a small cost. Table 8.2 summarizes the

performance of the three benchmarks in the Mixed-1 workload. The baseline configuration is

145

0 200 400 600 800 1000 1200 1400 1600
Time (s)

0

10

20

30

40

50

60

70

Sa
vi

ng
s

(%
)

DE Total

ESX aggressive

DE Shared
DE Patched
DE Compressed

Figure 8.9: Memory savings for Mixed-2. Difference Engine saves almost twice as much

memory as ESX.

Table 8.2: Application performance under Difference Engine for the heterogeneous workload

Mixed-1 is within 7% of the baseline.

Kernel
Compile
(sec)

Vim compile,
lmbench (sec)

RUBiS
requests

RUBiS
response
time(ms)

Baseline 670 620 3149 1280
DE 710 702 3130 1268

regular Xen without Difference Engine. In all cases, performance overhead of Difference

Engine is within 7% of the baseline. For the same workload, we find that performance under

ESX with aggressive page sharing is also within 5% of the ESX baseline with no page sharing.

8.4.3 Increasing Aggregate System Performance

Difference Engine goes to great lengths to reclaim memory in a system, but eventu-

ally this extra memory needs to actually get used in a productive manner. One can certainly

use the saved memory to create more VMs, but does that increase the aggregate system per-

formance?

To answer this question, we created four VMs with 650 MB of RAM each on a

physical machine with 2.8 GB of free memory (excluding memory allocated to Domain-

146

600 800 1000 1200 1400 1600
Total offered load (# clients)

50000

100000

150000

200000

250000
To

ta
lr

eq
ue

sts
ha

nd
le

d
Baseline 4 VMs
DE 5 VMs
DE 6 VMs
DE 7 VMs

(a) Total requests handled

600 800 1000 1200 1400 1600
Total offered load (# clients)

0

500

1000

1500

2000

2500

3000

3500

4000

Re
sp

on
se

tim
e

(m
s)

Baseline 4 VMs
DE 5 VMs
DE 6 VMs
DE 7 VMs

(b) Average response time

Figure 8.10: Up to a limit, Difference Engine can help increase aggregate system performance

by spreading the load across extra VMs.

147

0). For the baseline (without Difference Engine), Xen allocates memory statically. Upon

creating all the VMs, there is clearly not enough memory left to create another VM of the

same configuration. Each VM hosts a RUBiS instance. For this experiment, we used the Java

Servlets implementation of RUBiS, with Apache Tomcat as the servlet container. There are

two distinct client machines per VM to act as workload generators.

The goal is to increase the load on the system to saturation. The solid lines in Figures

8.10a and 8.10b show the total requests served and the average response time for the baseline,

with the total offered load marked on the X-axis. Note that beyond 960 clients, the total number

of requests served plateaus at around 180,000 while the average response time increases sharply.

Upon investigation, we find that for higher loads all of the VMs have more than 95% memory

utilization and some VMs actually start swapping to disk (within the guest OS). Using fewer

VMs with more memory (for example, 2 VMs with 1.2 GB RAM each) did not improve the

baseline performance for this workload.

Next, we repeat the same experiment with Difference Engine, except this time we

utilize reclaimed memory to create additional VMs. As a result, for each data point on the

X-axis, the per VM load decreases, while the aggregate offered load remains the same. We

expect that since each VM individually has lower load compared to the baseline, the system

will deliver better aggregate performance. The remaining lines in Figures 8.10a and 8.10b

show the performance with up to three extra VMs. Clearly, Difference Engine enables

higher aggregate performance and better response time compared to the baseline. However,

beyond a certain point (two additional VMs in this case), the overhead of managing the extra

VMs begins to offset the performance benefits: Difference Engine has to effectively manage

4.5 GB memory on a system with 2.8 GB RAM to support 7 VMs. In each case, beyond

1400 clients, the VMs working set becomes large enough to invoke the paging mechanism:

we observe between 5000 pages (for one extra VM) to around 20,000 pages (for three extra

VMs) being swapped out, of which roughly a fourth get swapped back in.

We expect that in general Difference Engine will improve system utilization and ag-

gregate performance for many workloads; validating this on other applications is part of future

work. In particular, a tool like DieCast would clearly benefit from Difference Engine: the

efficiency of a DieCast-scaled system depends on the multiplexing factor used. Difference

Engine can deliver higher multiplexing factors without sacrificing performance. In fact, Dif-

ference Engine is even better suited to run under time dilation, since any overheads due to

the mechanisms of Difference Engine would be masked by the slow time-frame within the

148

guest OS.

Chapter 8, in part, is a reprint of the material as it appears in Proceedings of USENIX

Symposium on Operating System Design and Implementation (OSDI) 2008. Gupta, Diwaker;

Lee, Sangmin; Vrable, Michael; Savage, Stefan; Snoeren, Alex C.; Varghese, George; Voelker,

Geoffrey M.; Vahdat, Amin. The dissertation author is the primary investigator and author of

this paper.

Chapter 9

Conclusions

Virtualization offers a potent demonstration of two broad principles of computer sci-

ence: better abstractions and layers of indirection. A virtual machine provides a software

abstraction for a real physical machine, effectively providing an application-like higher level

interface. This compact, isolated abstraction enables several new and interesting applications.

Likewise, by decoupling the real hardware from the machine interface visible to the OS,

virtualization provides increased flexibility in provisioning resources.

Recent years have witnessed an explosive growth in the interest and use of virtual-

ization. The adoption of virtual machines is motivated primarily by server consolidation: by

aggregating multiple services on a fewer physical machines, organizations can reduce power

and cooling costs and increase resource utilization levels. However, virtualization is becoming

increasingly more compelling for the new and interesting applications it enables, in security,

intrusion detection, testing and development, backup and disaster recovery and so on.

The central thesis of this dissertation is that the ability to efficiently multiplex VMs

is critical to realizing many of the benefits of virtualization — both for supporting existing

applications such as server consolidation, and for enabling new classes of applications. As we

discussed in Chapter 1, conventional mechanisms of resource multiplexing lead to resource

partitioning: VMs on the same physical machine share the underlying resources. This limits

not only the number of VMs that can be supported on a single physical machine (horizontal

scalability), but also the resources available to individual VMs (vertical scalability).

We address the scalability of multiplexing along both these dimensions. We show

that by making more efficient use of machine memory, we can improve horizontal scalability,

doubling the number of supported VMs in some cases. Critically, we demonstrate these benefits

149

150

at a negligible performance overhead. To address vertical scalability, we present mechanisms

to increase the perceived resource capacity of individual VMs. More importantly, we show that

this enables novel and interesting applications in scalable network emulation and large-scale

testing. For instance, we show that is possible to evaluate protocols on a 100-Gbps wide-area

link using 1-Gbps hardware. Similarly, we demonstrate that a given testing infrastructure can

be used to accurately replicate and test systems that are an order of magnitude larger.

We present some directions for future research below and conclude the chapter with

a discussion of the limitations of the approaches proposed in this dissertation and a summary

of our contributions.

9.1 Future Work

This dissertation presents several interesting avenues for future work. We highlight the

salient ones below.

9.1.1 Infrastructure Optimization

One of the challenges of using virtual machines in a data center environment is deciding

how place the VMs among the available physical machines — note that this includes the initial

placement when the VM is created, as well as any subsequent migrations. Several placement

strategies are possible: for instance, VMs running CPU intensive workloads might be spread

uniformly across the data center to minimize hotspots; alternatively, VMs might be placed for

smooth heat dissipation in the data center in order to minimize the cooling costs. Similarly,

a system like Difference Engine would benefit the most if similar VMs are physically co-

located, where similarity is in terms of the contents of the VM’s memory.

Consider how such a placement strategy might work. We want to establish the similar-

ity of the memory contents among all pairs of VMs in the data center and use that to guide the

placement and migration decisions. Bear in mind that the memory contents might be changing

over time, and that each VM might be allocated gigabytes of memory. Concretely, we require:

• a compact and efficient representation of a VM’s memory contents: it is infeasible to

transport hashes of 1-GB worth of memory pages over the network, for instance; and

• a mechanism to quickly compare above mentioned representations to estimate similarity

across VMs and use it to guide placement and migration policies.

151

We outline a preliminary sketch for such a scheme, based on min-wise independent

permutations [31]. The key insight is that min-wise hashes can be used to construct compact

fingerprints incrementally, and these fingerprints are a close approximation of page-wise simi-

larity among VMs. For the discussion below, we only consider identical pages for computing

similarity, but it is easy to extend the algorithm to take into account similarity at sub-page

granularity.

Let A and B denote the list of pages (including duplicates) belonging to VMA and

VMB respectively. We wish to measure the similarity S, defined as follows:

S =
|A ∪B|
|A|+ |B|

S captures the total number of distinct pages required to support the two VMs, should

they be co-located. Let A′ and B′ denote the set of distinct pages belonging to above mentioned

VMs. Define the quantity M as follows:

M =
|A′ ∩B′|
|A′ ∪B′|

M is the quantity that the min-wise hash based signatures approximate. Specifically,

we consider a family of min-wise independent hash functions h1, . . . , hk. The signature for

each VM then is simply the set of pages which when hashed with the corresponding hash

function yield the minimum hash value for that function across all the pages. We can compute

M in an online manner as follows. Recall that the NRU clock in Difference Engine walks

through pages in physical memory. For each page that the clock encounters, we update the

signature for the VM that owns the page as follows. For each of the hash functions h1, . . . , hk,

if the computed hash value is less than the current minimum hash value, we record this page

as the new minimum.

Thus we can compute M in an online manner. We then wish to compute S, without

actually computing the set union |A∪B|. Let CA and CB denote the fraction of distinct pages

in the two VMs, |A′|/|A| and |B′|/|B| respectively. Further, assume that both the VMs have

the same amount of allocated memory (same number of pages, N). Then we have:

152

CA + CB

2
× 1

1 +M
=

(|A′|
|A| +

|B′|
|B|

)
× |A

′ ∪B′|
|A′|+ |B′|

=
(|A′|+ |B′|

N

)
× |A

′ ∪B′|
|A′|+ |B′|

=
|A′ ∪B′|

2N

=
|A ∪B|
|A|+ |B| = S

The last step follows from the fact that the set union discards duplicate pages, and

therefore |A′ ∪B′| is identical to |A ∪B|. Thus, knowing M , one can quickly compute S.

The algorithm then is to compute M for each VM locally, and communicate only the

min-wise hash signatures to a central site. S can then be quickly computed and pair-wise

comparisons can be made to determine similarity. Note that since M is a vector, clustering

algorithms can also be used to quickly group similar VMs together.

9.1.2 Exploiting Improved Hardware Support

Several engineering challenges addressed in this dissertation could be simplified with

improving hardware support for virtualization. For instance, the global clock in Difference

Engine uses the shadow page table mechanism (in software) to track infrequently used pages.

Newer hardware from both Intel and AMD implement the shadow page table functionality in

hardware, thus allowing for a more efficient implementation.

Likewise, one of the benefits of Difference Engine is that it can support a given set

of VMs using lesser memory. In the near future, memory hardware will provide the capability

to selectively turn off idle banks. Thus, using Difference Engine one could compress the

existing VMs onto a fewer memory banks and the remaining could then be shut down to save

power.

The general direction here is that as hardware support for virtualization improves, we

should exploit it to optimize existing features and add new ones. The next generation of I/O

devices — network interface cards, hard drive controllers, PCI bus controllers and so on —

will all have virtualization support built in.

9.1.3 Scaling Low-level Subsystems

Time dilation uniformly speeds up all time-based subsystems such as the CPU and

disk/network bandwidth. For resource equivalence, specially with DieCast, we need fine-

153

grained, independent knobs to control the precise resources visible to any individual VM, such

that after time dilation, the perceived resource capacity matches some given target configuration.

However, the mechanisms presented in this dissertation only cover the first-order, high-

level resources such as CPU and network. Under time dilation, the low-level subsystems such

as the PCI bus and the memory bus will also appear faster. Conversely, we need mechanisms

to control the exact behavior of these low-level resources as perceived by a VM in order to

guarantee resource equivalence at this granularity.

However, this is a much more challenging problem than scaling the network or the

disk, for example. Interposing on each memory request in order to artificially delay it (like

we did for disk I/O) is prohibitive in software. This has not been a concern so far because

most applications are resilient to such low level timing issues. The dominant latencies usually

lie elsewhere in the system and our mechanisms appropriately manage those, hence the vast

majority of applications are still valid targets for time dilation and DieCast.

9.2 Limitations

Virtual machines are the building block for the work in this dissertation. But one can

question the necessity of virtualization itself for the ideas presented in this dissertation. In

other words, do we lose anything if all the functionality is moved from the hypervisor into the

operating system?

First, note virtualization is clearly indispensable in certain situations. Virtual machines

are an attractive mechanism to run legacy software on newer, unsupported hardware. Similarly,

virtualization is critical for supporting binary blobs of software that can no longer be updated

for changing hardware. But the question we are posing is not about the utility of virtualization

itself, but about the efficacy of virtualization as a vehicle for implementing time dilation,

DieCast and Difference Engine.

For instance, as we have discussed earlier, it is possible to implement time dilation

directly inside an operating system. Similarly, the mechanisms used by Difference Engine—

such as in-memory page compression and page patching — can be implemented directly in the

operating system’s virtual memory subsystem. However, there are two distinct disadvantages

in doing so:

1. Operating system specific implementations lead to duplication of code and effort, since

each supported OS must be modified independently. It further violate transparency with

154

respect to time dilation, since the OS can now clearly differentiate between the real time

frame and the dilated time frame. Finally, the source code of the OS might simply be

unavailable for modification.

2. An OS specific implementation would lack visibility into the global state of the system.

Thus, page patching mechanisms within an OS would not be able to exploit similar pages

in another co-located VM.

On the other hand, an OS specific implementation can make smarter decisions since it

has better knowledge of the system state. For instance, right now the NRU clock in Difference

Engine makes decisions based on shadow page table accesses. But these decisions might be

in conflict with the local page replacement policies within a guest OS. Similarly, maintaining

transparency incurs higher cost as well — trapping and emulating the RDTSC instruction for

time dilation or maintaining the per-page state for the operation of the NRU clock are examples

of operations that could be significantly sped up if the OS could be involved. In general, OS

specific modifications usually result in better performance, since virtualization will always

introduce some overhead.

It is unclear whether these trade-offs can always be balanced in the general case and the

question of whether the functionality should reside in the OS or the VMM still remains open.

It is instructive to note that while virtual machine monitors started out as extremely thin layers

of software, contemporary hypervisors are approaching operating systems in terms of the size

of their code base, functionality and complexity. For instance, the Xen VMM already does

some basic memory management, protection, resource allocation and scheduling. Given this

trend, it is not unimaginable that in the near future, hypervisors would evolve into yet another

operating system, where the resource principles are virtual machines instead of processes. This

further complicates the quest for the perfect interface between the VMM and the OS. I believe

that a hybrid approach offers the best promise: OS specific code should be responsible for

implementing all the local functionality (such as patching pages within the same OS), with

appropriate interfaces at the VMM–OS layer for communicating global information (such as

cross-VM sharing).

Apart from the limitation of virtualization as a platform, time dilation (and thus

DieCast) and Difference Engine have limitations of their own. We discussed some of

the limitations of time dilation and DieCast in Sections 4.3 and 6.6 respectively. Broadly

speaking, all the limitations of DieCast stem from the fact that we can not accurately scale

all resources at arbitrarily fine-grained granularities. For instance, consider an original system

155

with ten physical machines. On a DieCast-scaled system, these ten machines would be encap-

sulated as VMs running on fewer physical machines. Clearly, the disk accesses on the machines

in the test harness would be completely different than the disk accesses on the machines in the

original system — completely sequential I/O on the local disks in the original system might

appear as random I/O to the disks in the test harness, since each disk might be multiplexed

across several VMs. Consequently, the failure characteristics of the DieCast-scaled system —

such as the mean time to failure (MTTF) for a single disk — will not be the same as those

in the original system. Similarly, we currently do not scale low-level subsystems such as the

memory bus or the PCI bus. Consequently, memory accesses in a DieCast-scaled system will

appear faster than those in the original system. Nonetheless, the vast majority of applications

are impervious to such low-level timing issues and are valid targets for DieCast.

Difference Engine has limitations of a very different nature. We have implemented

Difference Engine entirely in the VMM which has the advantage that no guest OS modifica-

tions are required and the VMM can leverage global knowledge for making decisions. At the

same time, since Difference Engine expects no OS co-operation and thus has no visibility

in a guest OS’s internal state, the decisions it makes could be sub-optimal. As we mentioned

above, the virtualization layer introduces some non-zero overhead as well. A more interesting

limitation arises from the way Difference Engine is used: presumably the memory saved

by Difference Engine will be used to create additional VMs. Thus the memory saved is

useful only if it can actually accommodate additional VMs. Clearly then, marginal savings

in memory are less useful. That is, the saved memory can be used only if the savings are

non-trivial. This is a function of the size of the initial VMs, the amount of savings delivered,

as well as the size of the additional VMs to be created. It is not hard to see that there will be

many cases where memory will be saved, but can not be used.

Despite these limitations, we believe that our approaches to address horizontal and

vertical scalability have significant value. Addressing the above mentioned limitations remains

part of future work. We next summarize the contributions of this dissertation.

9.3 Summary

We began this dissertation by describing the two dimensions of scalable multiplexing:

horizontal scalability refers to the limit on the number of VMs that can be supported on a

single physical machine, and vertical scalability refers to the limit on the resources visible

to an individual VM. Our claim was that addressing scalability along these two dimensions

156

not only benefits existing applications of virtualization such as server consolidation, but also

enables several novel and interesting applications that were not possible earlier.

Recall that scaling a system vertically in this context requires increasing the resources

available to it. However, there is a hard limit: once the underlying physical resources are

exhausted, we can not make any further resources available to a VM. We took the alternate

approach of increasing the perceived resource capacity instead. Time dilation essentially trades

off time for other resources in the system. This seemingly trivial operation yields some very

interesting results, because it allows us to increase system capacity beyond the capacity of the

underlying hardware.

Consider that researchers spend a great deal of effort speculating about the impacts

of various technology trends. Indeed, the systems community is frequently concerned with

questions of scale: what happens to a system when bandwidth increases by X , latency by

Y , CPU speed by Z, etc. One challenge to addressing such questions is the cost or avail-

ability of emerging hardware technologies. Experimenting at scale with communication or

computing technologies that are either not yet available or prohibitively expensive is a signifi-

cant limitation to understanding interactions of existing and emerging technologies. Similarly,

testing large network services remains difficult because of their scale and complexity. Ideally,

a comprehensive evaluation would require running a test system identically configured to and

at the same scale as the original system — but this might not be technically or economically

feasible. Such testing should enable finding performance anomalies, failure recovery problems,

and configuration errors under a variety of workloads and failure conditions before triggering

corresponding errors during live runs.

Time dilation enables empirical evaluation of protocols and applications at speeds and

capacities not currently available from production hardware. In particular, we show that time

dilation enables faithful emulation of network links several orders of magnitude greater than

physically feasible on commodity hardware. The technique’s power is its ability to probe future

scenarios using today’s hardware and network protocol stacks. We have shown that under a

variety of network conditions and transport protocols, time dilation yields accurate results.

Further, we are able to independently scale CPU and network bandwidth, allowing researchers

to experiment with radically new balance points in computation to communication ratios of

new technologies.

We leverage time dilation to device a methodology and framework called DieCast, to

enable system testing to more closely match both the configuration and scale of the original

157

system. We show how to multiplex multiple virtual machines, each configured identically to

a node in the original system, across individual physical machines. We then dilate individual

machine resources, including CPU cycles, network communication characteristics, and disk

I/O, to provide the illusion that each VM has as much computing power as corresponding

physical nodes in the original system. By trading time for resources, we enable more realistic

tests involving more hosts and more complex network topologies than would otherwise be

possible on the underlying hardware. While our approach does add necessary storage and

multiplexing overhead, an evaluation with a range of network services, including a commercial

filesystem, demonstrates our accuracy and the potential to significantly increase the scale and

realism of testing network services.

Thus, our mechanisms for vertical scalability enable several useful applications. How-

ever, one of the primary limitations of time dilation is that it does not scale static resources

such as main memory capacity. This limits the utility of DieCast as well, since the main

memory limits the number of VMs that can be created on a single physical machine and hence

affects the scaling factor that a DieCast-scaled system can use. This brings us to the issue of

horizontal scalability. Note that scaling a system horizontally would enable more aggressive

server consolidation, which is independently useful for many other applications.

Earlier work shows that substantial memory savings are available from harvesting

identical pages across virtual machines when running homogeneous workloads. In this disser-

tation, we show that there are significant additional memory savings available from locating

and patching similar pages and in-memory page compression. We presented the design and

evaluation of Difference Engine to demonstrate the potential memory savings available from

leveraging a combination of whole page sharing, page patching, and compression. Specifically,

Difference Engine provides:

1. algorithms to quickly identify candidate pages for patching,

2. demand paging to support over-subscription of total assigned physical memory, and

3. a clock mechanism to identify appropriate target machine pages for sharing, patching,

compression and paging.

Our performance evaluation shows that Difference Engine delivers an additional

factor of 1.6–2.5 more memory savings than VMware ESX Server for a variety of workloads,

with minimal performance overhead. Significantly, Difference Engine is able to save more

than 50% memory even for heterogeneous workloads. We further demonstrate how this saved

158

memory can be used for creating additional VMs in support of increased aggregate system

capacity.

Overall, our techniques establish that there exist alternative, more scalable approaches

to resource multiplexing in virtual machines that scale both horizontally and vertically. To-

gether, these mechanisms have the potential to increase the utility of a given infrastructure by

an order of magnitude or more. While many challenges still remain, we believe that this work

establishes the importance and relevance of efficient multiplexing for realizing the potential of

virtualization.

Bibliography

[1] http://en.wikipedia.org/wiki/History_of_CP/CMS.

[2] http://www.idc.com/getdoc.jsp?containerId=prUS20778407.

[3] http://newsroom.cisco.com/images/2008/features/chart_virtulization_

091608.jpg.

[4] http://www.vmware.com/technology/virtual-infrastructure.html.

[5] http://www.claunia.com/qemu/.

[6] http://aws.amazon.com/ec2.

[7] BitTorrent. http://www.bittorrent.com.

[8] Credit Scheduler. http://wiki.xensource.com/xenwiki/CreditScheduler.

[9] Dow Jones Plunge Fueled by Overwhelmed Computers. http://slashdot.org/

article.pl?sid=07/02/28/1416236.

[10] FreeBSD Bootloader Stops with Btx Halted in HVM Domu. http://bugzilla.

xensource.com/bugzilla/show_bug.cgi?id=622.

[11] IOZone Filesystem Benchmark. http://www.iozone.org/.

[12] Linux Advanced Routing and Traffic Control. http://www.lartc.org.

[13] Linux TCP Tuning Guide. http://www-didc.lbl.gov/TCP-tuning/linux.html.

[14] Lmbench - Tools for Performance Analysis. http://www.bitmover.com/lmbench/.

[15] Net:Netem. http://www.linuxfoundation.org/en/Net:Netem.

[16] Panasas. http://www.panasas.com.

[17] Panasas ActiveScale Storage Cluster Will Provide I/O for World’s Fastest Computer.
http://panasas.com/press_release_111306.html.

[18] Sysbench: A System Performance Benchmark. http://sysbench.sourceforge.net/.

[19] Tcpdump/libpcap Public Repository. http://www.tcpdump.org.

159

http://en.wikipedia.org/wiki/History_of_CP/CMS
http://www.idc.com/getdoc.jsp?containerId=prUS20778407
http://newsroom.cisco.com/images/2008/features/chart_virtulization_091608.jpg
http://newsroom.cisco.com/images/2008/features/chart_virtulization_091608.jpg
http://www.vmware.com/technology/virtual-infrastructure.html
http://www.claunia.com/qemu/
http://aws.amazon.com/ec2
http://www.bittorrent.com
http://wiki.xensource.com/xenwiki/CreditScheduler
http://slashdot.org/article.pl?sid=07/02/28/1416236
http://slashdot.org/article.pl?sid=07/02/28/1416236
http://bugzilla.xensource.com/bugzilla/show_bug.cgi?id=622
http://bugzilla.xensource.com/bugzilla/show_bug.cgi?id=622
http://www.iozone.org/
http://www.lartc.org
http://www-didc.lbl.gov/TCP-tuning/linux.html
http://www.bitmover.com/lmbench/
http://www.linuxfoundation.org/en/Net:Netem
http://www.panasas.com
http://panasas.com/press_release_111306.html
http://sysbench.sourceforge.net
http://www.tcpdump.org

160

[20] Teragrid. http://www.teragrid.org.

[21] The Network Simulator – Ns-2. http://www.isi.edu/nsnam/ns/.

[22] Tokyo Stock Exchange Stops Trading Amid Wave of Selling. http://www.usatoday.
com/money/world/2006-01-18-tokyo-ap_x.htm.

[23] VMware Appliances. http://www.vmware.com/vmtn/appliances.

[24] Xenstore. http://wiki.xensource.com/xenwiki/XenStore.

[25] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthitacharoen. Per-
formance Debugging for Distributed Systems of Black Boxes. In Proceedings of the
Symposium on Operating Systems Principles, pages 74-89, Bolton Landing, New York,
October 2003.

[26] AMD. Amd64 Secure Virtual Machine Architecture Reference Manual.
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_

docs/33047.pdf.

[27] E. Bugnion, S. Devine, and M. Rosenblum. Disco: Running Commodity Operating
Systems on Scalable Multiprocessors. In Proceedings of the Symposium on Operating
Systems Principles, pages 143-156, Saint Malo, France, October 1997.

[28] F. Bellard. Qemu, a Fast and Portable Dynamic Translator. In Proceedings of the
USENIX Annual Technical Conference, Anaheim, California, April 2005.

[29] J. Bonwick. The Slab Allocator: An Object-caching Kernel Memory Allocator. In
Proceedings of the USENIX Summer Technical Conference, pages 87-98, Boston, Mas-
sachusetts, June 1994.

[30] A. Z. Broder. Identifying and Filtering Near-duplicate Documents. In Proceedings of the
Symposium on Combinatorial Pattern Matching, pages 1-10, London, United Kingdom,
2000.

[31] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise Independent
Permutations (extended Abstract). In Proceedings of the ACM Symposium on Theory of
Computing, pages 327-336, Dallas, Texas, May 1998.

[32] J. M. Blanquer, A. Batchelli, K. Schauser, and R. Wolski. Quorum: Flexible Quality of
Service for Internet Services. In Proceedings of the Symposium on Networked System
Design and Implementation, pages 159-174, Boston, Massachusetts, May 2005.

[33] L. A. Barroso, J. Dean, and U. Hölzle. Web Search for a Planet: The Google Cluster
Architecture. In IEEE Micro, 23(2):22-28, 2003.

[34] P. T. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for Request
Extraction and Workload Modelling. In Proceedings of the Symposium on Operating
System Design and Implementation, pages 259-272, San Francisco, California, December
2004.

http://www.teragrid.org
http://www.isi.edu/nsnam/ns/
http://www.usatoday.com/money/world/2006-01-18-tokyo-ap_x.htm
http://www.usatoday.com/money/world/2006-01-18-tokyo-ap_x.htm
http://www.vmware.com/vmtn/appliances
http://wiki.xensource.com/xenwiki/XenStore
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33047.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33047.pdf

161

[35] P. T. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the Art of Virtualization. In Proceedings of the
Symposium on Operating Systems Principles, pages 164-177, Bolton Landing, New
York, October 2003.

[36] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield. Remus:
High Availability via Asynchronous Virtual Machine Replication. In Proceedings of
the Symposium on Networked System Design and Implementation, pages 161–174, San
Francisco, California, 2008.

[37] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance and Scalability of EJB
Applications. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 246-261, Seattle, Washing-
ton, 2002.

[38] Y.-C. Cheng, U. Hölzle, N. Cardwell, S. Savage, and G. M. Voelker. Monkey See,
Monkey Do: A Tool for TCP Tracing and Replaying. In Proceedings of the USENIX
Annual Technical Conference, pages 87-98, Boston, Massachusetts, June 2004.

[39] J. S. Chase, D. C. Anderson, P. N. Thakar, A. Vahdat, and R. P. Doyle. Managing
Energy and Server Resources in Hosting Centres. In Proceedings of the Symposium on
Operating Systems Principles, pages 103-116, Banff, Canada, October 2001.

[40] K. C. Claffy, G. C. Polyzos, and H.-W. Braun. Application of Sampling Methodologies
to Network Traffic Characterization. In Proceedings of the SIGCOMM Conference, pages
194-203, San Francisco, California, September 1993.

[41] M. E. Crovella and A. Bestavros. Self-similarity in World Wide Web Traffic: Evidence
and Possible Causes. In IEEE/ACM Transactions on Networking, 5(6):835–846, 1997.

[42] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: Problem De-
termination in Large, Dynamic Internet Services. In Proceedings of the Symposium on
Operating System Design and Implementation, Boston, Massachusetts, December 2002.

[43] R. J. Creasy. The Origin of the Vm/370 Time-sharing System. In IBM Journal of
Research and Development, 25(5), 1981.

[44] F. Douglis. The Compression Cache: Using on-line Compression to Extend Physical
Memory. In Proceedings of the USENIX Winter Technical Conference, pages 519-529,
San Diego, California, January 1993.

[45] F. Douglis and A. Iyengar. Application-specific Delta-encoding via Resemblance De-
tection. In Proceedings of the USENIX Annual Technical Conference, pages 113-126,
San Antonio, Texas, June 2003.

[46] J. Dike. A User-mode Port of the Linux Kernel. In ALS’00: Proceedings of the 4th
annual Linux Showcase & Conference, USENIX Association, 2000.

[47] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. Revirt: Enabling
Intrusion Analysis through Virtual-machine Logging and Replay. In Proceedings of the

162

Symposium on Operating System Design and Implementation, pages 211–224, Boston,
Massachusetts, December 2002.

[48] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (bvt) Scheduling: Supporting
Latency-sensitive Threads in a General-purpose Schedular. In Proceedings of the Sym-
posium on Operating Systems Principles, pages 261-276, Kiawah Island, South Carolina,
December 1999.

[49] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M. Vahdat. Model-based Resource
Provisioning in a Web Service Utility. In Proceedings of the USENIX Symposium on
Internet Technologies and Systems, Seattle, Washington, March 2003.

[50] R. S. de Castro, A. P. d. Lago, and D. D. Silva. Adaptive Compressed Caching: Design
and Implementation. In Symposium on Computer Architecture and High Performance
Computing, 2003.

[51] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration. http://www.globus.
org/alliance/publications/papers/ogsa.pdf, 2002.

[52] S. Floyd. Highspeed TCP for Large Congestion Windows. IETF Request for Comments
3649, December 2003.

[53] S. Floyd and E. Kohler. Internet Research Needs Better Models. In SIGCOMM Computer
Communications Review, 33(1):29-34, 2003.

[54] T. M. Forum. Mpi: A Message Passing Interface. In Proceedings of the ACM/IEEE
conference on Supercomputing, Portland, Oregon, 1993.

[55] D. Gupta, K. V. Vishwanath, and A. Vahdat. Diecast: Testing Distributed Systems
with an Accurate Scale Model. University of California, San Diego, Technical Report
CS2007-0910, 2007.

[56] R. Goldberg. Architectural Principles for Virtual Computer Systems. Ph.D. Thesis,
Harvard University, 1972.

[57] F. E. Gillett. X86 Virtualization Adopters Hit the Tipping Point. http://www.

forrester.com/Research/Document/Excerpt/0,7211,43892,00.html.

[58] G. R. Ganger and contributors. The DiskSim Simulation Environment. http://www.

pdl.cmu.edu/DiskSim/index.html.

[59] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly Durable, Decentralized
Storage Despite Massive Correlated Failures. In Proceedings of the Symposium on
Networked System Design and Implementation, pages 143–158, Boston, Massachusetts,
May 2005.

[60] P. Hsieh. Hash Functions. http://www.azillionmonkeys.com/qed/hash.html.

[61] Intel. Intel Virtualization Technology. http://www.intel.com/technology/

computing/vptech/index.htm.

http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.forrester.com/Research/Document/Excerpt/0,7211,43892,00.html
http://www.forrester.com/Research/Document/Excerpt/0,7211,43892,00.html
http://www.pdl.cmu.edu/DiskSim/index.html
http://www.pdl.cmu.edu/DiskSim/index.html
http://www.azillionmonkeys.com/qed/hash.html
http://www.intel.com/technology/computing/vptech/index.htm
http://www.intel.com/technology/computing/vptech/index.htm

163

[62] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons,
Chapter 12, 1991.

[63] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Performance. IETF
Request for Comments 1323, May 1992.

[64] D. Korn, J. MacDonald, J. Mogul, and K. Vo. The VCDiff Generic Differencing and
Compression Data Format. IETF Request for Comments 3284, June 2002.

[65] D. Katabi, M. Handley, and C. E. Rohrs. Congestion Control for High Bandwidth-
delay Product Networks. In Proceedings of the SIGCOMM Conference, pages 89-102,
Pittsburgh, Pennsylvania, August 2002.

[66] P. Kulkarni, F. Douglis, J. D. LaVoie, and J. M. Tracey. Redundancy Elimination Within
Large Collections of Files. In Proceedings of the USENIX Annual Technical Conference,
pages 59-72, Boston, Massachusetts, June 2004.

[67] T. Kelly. Scalable Tcp: Improving Performance in Highspeed Wide Area Networks. In
SIGCOMM Computer Communications Review, 33(2):83-91, 2003.

[68] J. F. Kloster, J. Kristensen, and A. Mejlholm. On the Feasibility of Memory Sharing.
Master’s Thesis, Aalborg University, 2006.

[69] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and J. R. Lorch.
Subvirt: Implementing Malware with Virtual Machines. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 314–327, 2006.

[70] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging Operating Systems with Time-
traveling Virtual Machines. In Proceedings of the USENIX Annual Technical Conference,
Anaheim, California, April 2005.

[71] R. Love. Linux Kernel Development. Novell Press, 2005.

[72] S. Low. Connectix Ram Doubler Information. http://www.lowtek.com/maxram/rd.
html, 1996.

[73] K. P. Lawton. Bochs: A Portable Pc Emulator for Unix/x. In Linux J., page 7, Specialized
Systems Consultants, Inc., Seattle, WA, USA, 1996.

[74] T. V. Lakshman and U. Madhow. The Performance of TCP/IP for Networks with High
Bandwidth-delay Products and Random Loss. In IEEE/ACM Transactions on Network-
ing, 5(3):336-350, 1997.

[75] J. Mogul. Emergent (mis) Behavior vs. Complex Software Systems. In Proceedings
of the European Conference on Computer Systems, pages 293–304, Leuven, Belgium,
April 2006.

[76] J. MacDonald. Xdelta. http://www.xdelta.org.

[77] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making Scheduling “cool”:
Temperature-aware Workload Placement in Data Centers. In Proceedings of the USENIX
Annual Technical Conference, Anaheim, California, April 2005.

http://www.lowtek.com/maxram/rd.html
http://www.lowtek.com/maxram/rd.html
http://www.xdelta.org

164

[78] K.-T. Moeller. Virtual Machine Benchmarking. Diploma Thesis, System Architecture
Group, University of Karlsruhe, Germany, 2007.

[79] U. Manber and S. Wu. Glimpse: A Tool to Search through Entire File Systems. In
Proceedings of the USENIX Winter Technical Conference, pages 23-32, San Francisco,
California, January 1994.

[80] V. Makhija, B. Herndon, P. Smith, L. Roderick, E. Zamost, and J. Anderson. Vmmark: A
Scalable Benchmark for Virtualized Systems. VMware, Technical Report TR 2006-002,
2006.

[81] J. C. Mogul. TCP Offload is a Dumb Idea Whose Time Has Come. In Proceedings of
the Workshop on Hot Topics in Operating Systems, Lihue, Hawaii, May 2003.

[82] L. I. M., M. Derek, B. Richard, R. Timothy, B. P. T., E. David, F. Robin, and H. E. The
Design and Implementation of an Operating System to Support Distributed Multimedia
Applications. In IEEE Journal of Selected Areas in Communications, 1996.

[83] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and T. D. Nguyen. Understanding
and Dealing with Operator Mistakes in Internet Services. In Proceedings of the Sym-
posium on Operating System Design and Implementation, pages 61-76, San Francisco,
California, December 2004.

[84] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott. Proactive Fault Tolerance
for HPC with Xen Virtualization. In Proceedings of the International Conference on
Supercomputing, Seattle, Washington, 2007.

[85] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why Do Internet Services Fail, and
What Can Be Done About It? In Proceedings of the USENIX Symposium on Internet
Technologies and Systems, Seattle, Washington, March 2003.

[86] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir. Experiences Building PlanetLab.
In Proceedings of the Symposium on Operating System Design and Implementation,
Seattle, Washington, November 2006.

[87] R. Pan, B. Prabhakar, K. Psounis, and D. Wischik. Shrink: A Method for Scaleable Per-
formance Prediction and Efficient Network Simulation. In Proceedings of the IEEE In-
ternational Conference on Computer Communications, San Francisco, California, March
2003.

[88] G. J. Popek and R. P. Goldberg. Formal Requirements for Virtualizable Third Generation
Architectures. In Proceedings of the Symposium on Operating Systems Principles, page
121, Yorktown Heights, New York, October 1973.

[89] L. Rizzo. Dummynet: A Simple Approach to the Evaluation of Network Protocols. In
SIGCOMM Computer Communications Review, 27(1):31-41, 1997.

[90] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod. Using the SimOS Machine
Simulator to Study Complex Computer Systems. In ACM Transactions on Modeling and
Computer Simulation, 7(1):78-103, 1997.

165

[91] P. Ranganathan, P. Leech, D. Irwin, and J. Chase. Ensemble-level Power Management
for Dense Blade Servers. In Proceedings of the International Symposium on Computer
Architecture, 2006.

[92] R. Ricci, C. Alfeld, and J. Lepreau. A Solver for the Network Testbed Mapping Problem.
In SIGCOMM Computer Communications Review, 33(2):65-81, 2003.

[93] G. F. Riley. The Georgia Tech Network Simulator. In Proceedings of the ACM SIG-
COMM Workshop on Models, Methods and Tools for Reproducible Network Research,
pages 5-12, Karlsruhe, Germany, 2003.

[94] J. S. Robin and C. E. Irvine. Analysis of the Intel Pentium’s Ability to Support a Secure
Virtual Machine Monitor. In Proceedings of the USENIX Security Symposium, pages
10-10, Denver, Colorado, 2000.

[95] M. Stahlman. Does Google Have a Million Servers? http://www.gartner.com/

DisplayDocument?doc_cd=149024.

[96] B. K. Szymanski, A. Saifee, A. Sastry, Y. Liu, and K. Madnani. Genesis: A System for
Large-scale Parallel Network Simulation. In Proceedings of the Workshop on Parallel
and Distributed Simulation, pages 89-96, Washington, D.C., 2002.

[97] F. B. Schneider. Implementing Fault-tolerant Services Using the State Machine Ap-
proach: A Tutorial. In ACM Computing Surveys, 22(4):299–319, 1990.

[98] A. Tridgell. Emulating Netbench. http://samba.org/ftp/tridge/dbench/.

[99] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, 2007.

[100] I. C. Tuduce and T. Gross. Adaptive Main Memory Compression. In Proceedings of
the USENIX Annual Technical Conference, pages 255–289, Anaheim, California, April
2005.

[101] B. Urgaonkar, P. J. Shenoy, and T. Roscoe. Resource Overbooking and Application
Profiling in Shared Hosting Platforms. In Proceedings of the Symposium on Operating
System Design and Implementation, pages 239–254, Boston, Massachusetts, December
2002.

[102] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. S. Chase, and D. Becker.
Scalability and Accuracy in a Large-scale Network Emulator. In Proceedings of the
Symposium on Operating System Design and Implementation, Boston, Massachusetts,
December 2002.

[103] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren, G. M. Voelker, and
S. Savage. Scalability, Fidelity, and Containment in the Potemkin Virtual Honeyfarm.
In Proceedings of the Symposium on Operating Systems Principles, pages 148-162,
Brighton, United Kingdom, October 2005.

[104] VMware. ESX Server 3 Configuration Guide. http://www.vmware.com/pdf/vi3_

35/esx_3/r35/vi3_35_25_3_server_config.pdf.

http://www.gartner.com/DisplayDocument?doc_cd=149024
http://www.gartner.com/DisplayDocument?doc_cd=149024
http://samba.org/ftp/tridge/dbench/
http://www.vmware.com/pdf/vi3_35/esx_3/r35/vi3_35_25_3_server_config.pdf
http://www.vmware.com/pdf/vi3_35/esx_3/r35/vi3_35_25_3_server_config.pdf

166

[105] VMware. Timekeeping in VMware Virtual Machines. http://www.vmware.com/pdf/
vmware_timekeeping.pdf.

[106] VMware. VMware P2V Assistant. http://www.vmware.com/products/p2v/.

[107] A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. Hand. Parallax: Managing Storage
for a Million Machines. In Proceedings of the Workshop on Hot Topics in Operating
Systems, Santa Fe, New Mexico, May 2005.

[108] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Performance in the Denali Isolation
Kernel. In Proceedings of the Symposium on Operating System Design and Implemen-
tation, Boston, Massachusetts, December 2002.

[109] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,
C. Barb, and A. Joglekar. An Integrated Experimental Environment for Distributed
Systems and Networks. In Proceedings of the Symposium on Operating System Design
and Implementation, Boston, Massachusetts, December 2002.

[110] C. A. Waldspurger. Memory Resource Management in VMware ESX Server. In Pro-
ceedings of the Symposium on Operating System Design and Implementation, Boston,
Massachusetts, December 2002.

[111] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The Case for Compressed Caching in
Virtual Memory Systems. In Proceedings of the USENIX Annual Technical Conference,
pages 101-116, Monterey, California, June 1999.

[112] P. R. Warkhede, S. Suri, and G. Varghese. Fast Packet Classification for Two-dimensional
Conflict-free Filters. In Proceedings of the IEEE International Conference on Computer
Communications, pages 1434-1443, Anchorage, Alaska, April 2001.

[113] L. Xu, K. Harfoush, and I. Rhee. Binary Increase Congestion Control (BiC) for Fast
Long-distance Networks. In Proceedings of the IEEE International Conference on Com-
puter Communications, Hong Kong, China, March 2004.

http://www.vmware.com/pdf/vmware_timekeeping.pdf
http://www.vmware.com/pdf/vmware_timekeeping.pdf
http://www.vmware.com/products/p2v/

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract of the Dissertation
	Introduction
	Scalable Network Emulation
	Large-Scale Testing
	Challenges
	Vertical Scalability
	Horizontal Scalability

	Contributions
	Time Dilation
	DieCast
	Difference Engine

	Organization

	Background and Related Work
	Virtualization Concepts
	Virtualization Benefits
	Xen Overview
	Virtual Machine Multiplexing
	Network Simulation and Emulation
	Testing Large Systems
	Real-World Testing
	Detecting Performance Anomalies
	Modeling Internet Services

	Memory Management
	Page Sharing
	Delta Encoding
	Memory Compression

	A Framework for Large Scale Testing
	Overview
	Choosing the Scaling Factor
	Cataloging the Original System
	Workload Generation
	Network Emulation
	Configuring the Virtual Machines
	Summary

	Time Dilation
	Concept
	Implementation
	Time Flow in Xen
	Modifications to the Xen hypervisor
	Modifications to XenoLinux
	Support for OS Diversity
	Time Dilation on Other Platforms

	Limitations
	Pervasiveness and Fidelity
	Timer Interrupts
	Uniformity: Outside the Dilation Envelope

	Validation
	Methodology
	Hardware Validation
	Single Flow Packet-Level Behavior

	Applications
	Protocol Evaluation
	High-bandwidth Applications

	Resource Scaling in a Dilated Time Frame
	Network Scaling
	CPU Scaling
	Three CPU Schedulers in Xen
	Scheduler CPU Allocation Accuracy
	Validation

	Disk Scaling

	DieCast Evaluation
	Methodology
	BitTorrent
	RUBiS
	Exploring DieCast Accuracy
	Commercial System Evaluation
	DieCast Usage Scenarios

	Harnessing Memory Redundancy Across Virtual Machines
	Architecture
	Page Sharing
	Patching
	Compression
	Paging Machine Memory

	Implementation
	Modifications to Xen
	Clock
	Page Sharing
	Page Similarity Detection
	Compression
	Paging Machine Memory

	Difference Engine Evaluation
	Cost of Individual Operations
	Clock Performance
	Techniques in Isolation
	Real-world Applications
	Base Scenario: Homogeneous VMs
	Heterogeneous OS and Applications
	Increasing Aggregate System Performance

	Conclusions
	Future Work
	Infrastructure Optimization
	Exploiting Improved Hardware Support
	Scaling Low-level Subsystems

	Limitations
	Summary

	Bibliography

