
Using Robinhood to Purge Data
from Lustre File Systems

Tina M Declerck
National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory
Berkeley, CA USA

TMDeclerck@lbl.gov

Abstract— NERSC purges local scratch file systems to ensure
end user usability and availability along with file system
reliability. This is accomplished through quotas, and by
destructively purging files that are older than a specified
period. Prior large scale systems at our site utilized Lustre file
systems which were comprised of servers directly connected to
Lustre storage nodes. As such, the site had full access to the
Lustre storage nodes allowing us to develop programs using
the tools and libraries within the Lustre
environment/infrastructure. Our latest file systems are
utilizing Cray’s Sonexion Lustre storage nodes which limit
access to the underlying Lustre environment as they are
designed to be appliance-like. Since existing APIs and libraries
were no longer accessible we were required to develop new
purge mechanisms. To address this Cray has provided
Robinhood, which collects file system metadata into a database
that can be queried for either data or metadata operations
without having adverse affects on file system performance.
This paper will describe in detail how our new purge
mechanism was developed and deployed based upon the
Robinhood capabilities. In general, similar requirements exist
across sites with regard to identifying files to purge but this
paper will cover those requirements along with those specific
to NERSC’s environment. A detailed description of the
Robinhood policy engine – its capabilities, and how it is used at
our site for purging will be the primary focus of the paper. In
addition, the tools we use to tune the data obtained and ensure
the appropriate files are being purged will be highlighted. The
actual purge operation is a separate step to ensure data and
metadata are consistent before a destructive purge operation
takes place since the state of the file system may have changed
during Robinhood’s sampling period. NERSC’s defined
process for the purge operation will be thoroughly described.
As part of the purge mechanism a list of purged files is then
provided to the user in the root of their scratch directory.
Other details of the purge will also be included such as how
long the purge takes, an analysis of the data being purged and
it’s affect on overall process, as well as work done to improve
the time required to purge. Finally, a discussion of the issues
that we encountered and what was accomplished to resolve
them.

Keywords-robinhood; purge; Lustre;

I. INTRODUCTION
The National Energy Research Scientific Computing

Center (NERSC), located at Lawrence Berkeley National
Laboratory (LBNL), is the production scientific computing
facility for the United States Department of Energy (DOE)
Office of Science. NERSC provides computational resources
to support the scientific activities of over 5000 users
worldwide, resulting in huge demands for resources and
storage. Over time file systems tend to fill making them
nearly unusable. Even a nearly full file system can have an
impact on performance and usability. To ensure the scratch
file systems at NERSC can maintain reasonable
performance, we use both user based disk quotas and regular
purging to maintain the file systems at a reasonable level.
Although NERSC has been purging for many years, the
appliance-like Cray Sonexion file systems, delivered with
our Cray XC-30, Edison, don’t allow direct access to the
Lustre servers making the existing purging method unusable.
To remedy this, Cray provided a tool that uses the
Robinhood Policy Engine. NERSC’s specific requirements
make direct use of Robinhood inadequate, so additional work
was required. This paper will describe our requirements and
how they are met using both Robinhood and local code to
provide the purge capability. In addition, it will describe the
Robinhood Policy Engine, and some of the issues we have
encountered as well as any workarounds or fixes and
additional capabilities available with Robinhood.

II. REQUIREMENTS
NERSC has had a purge capability for many years,

however the storage solution provided for Edison, the Cray
Sonexions, prevent the existing solution from working.
Previously the Lustre file systems were configured on
standard servers with access to disk arrays. We therefore
had access to the Lustre metadata server (MDS) node.
Purging on these file systems is done with a local C program
using the low level file system libraries with a tool called
ne2scan. With the appliance-like Cray Sonexion file
systems, direct access to Lustre’s MDS isn’t available.

The minimum requirements for purge were provided to
Cray in the statement of work when Edison was purchased.

It required the purge capability to enable automated file
selection based on specified criteria and complete the unlink
operation on the identified files daily. The unlink rate should
be 7,500,000 per hour for files one byte to just under the file
system block size and directories. In addition, the ability to
select files based on the following attributes for all files in
the file system: file size, last status change time (ctime), last
modified time (mtime), last access time (atime), owner,
group, and pathname.

Additional considerations based on lessons learned over
years of purging add more requirements and help provide an
understanding of the configuration used and the decisions
made. Most sites understand the need to purge, but what are
the reasons for what gets purged and how purging is done?
Over time, purge policies at NERSC have changed for
various reasons. For ease of maintenance, an attempt at
keeping configurations between systems consistent is also a
consideration. These policies are in these primary areas:

• exclusions
• what to purge
• how to purge
• purge policy

Each of these will be described briefly.
First, providing the ability to exclude users, groups, or

specific directories is self-explanatory. However, initially
user and group names were provided and in some cases only
UID and GID were available so those users or group files
ended up getting purged even though the user or group name
were in the exclude lists. Now only the UID and GID are
used for exclusion lists. Directory exclusions use a full path
since multiple file systems can make it unclear otherwise.

Next, what files to purge appears on first glance to be
evident. In general, it is. Accidental purging of files due to
some special cases resulted in a couple of changes. For
instance, early on an issue came up when a user had pulled a
tar file from storage and untarred it preserving the original
timestamps resulting in those files getting purged in the next
purge cycle. That was clearly not the behavior the user
expected or wanted. Since other users could do the same
thing a solution was needed. That lead to SAFEDAYS – a
parameter that is used to preserve files for the number of
days specified if the ctime, which did get updated, was newer
than the access or modify times. The second issue resulted in
not removing directories. Some of our users will create a
directory structure that is used by all their jobs.
Unfortunately, the users do not necessarily verify the
existence of the directory prior to use, so if the directory
didn’t exist their jobs would fail. This works well with
Robinhoods default policy that also does not remove
directories.

How to purge refers to a hard requirement to verify
timestamps prior to purging. In the past the file system scan
took hours to complete so there were cases when a user’s
files were purged even though they had changed. With
Robinhood, since the data is generated from a database the
purge data list generation has been relatively fast. But there
have been cases when the data is not current either because it
is not up-to-date with the file system changelogs or

something is not working correctly, so it is still necessary to
verify the data prior to purging even though data collection is
much faster. This document will provide numbers showing
how many files have not met the criteria for purge after the
list was generated in section VII.

Finally, what is the basis for the purge policy? Our site
has chosen to purge on a daily basis to a specified age. This
provides our users with a known timeframe allowing them to
plan their data needs appropriately (of course this does lead
to a small problem with ‘touch’ where users touch files to try
to keep them from getting purged). Other options have been
to allow a file system to fill to something like 80% and then
purge, or to purge the users who are using the most space. In
the first case, the users became frustrated with the
uncertainty of file age before purging and could lead to data
that was needed getting purged. The second case is less fair
and punished the users who used the system the most.

One additional feature for our users is a list of files
purged placed in the root of the purged directory. This
provides a way for users to know what files were removed
and mostly eliminates calls to User Services about files that
disappeared.

III. ROBINHOOD POLICY ENGINE
The Robinhood Policy Engine was developed by the
Commissariat a l’energie atomique et aux energies
alternatives / a Direction des applications militaries
(CEA/DAM). It is a tool that provides the ability to manage
a file system. It uses a MySQL database and tools to scan a
file system and put the relevant information into the
database. Although Robinhood has the ability to manage
different file system types, this paper will focus on Lustre.
Once the data is in the database it can be used for various
activities like purging, reporting, auditing, accounting, etc.
Robinhood also provides the ability to provide alerts for
various things such as a file system filling up. Robinhood
was specifically developed for high performance computing
with an expectation of large file systems with lots of data
and transactions. It performs its tasks in parallel for high
performance.

One of the features in Lustre, available after version 2.0,
is a changelog that allows other “users” to see a log of
changes to files in the file system. With this capability, the
Robinhood database can be kept up-to-date by reading the
changelog and updating the database accordingly. This
means the high overhead required to scan the file systems is
not required. There are some potential issues with getting
this working if care isn’t taken. This will be covered in the
configuration section. Robinhood also has other special
capabilities for Lustre. It can track the usage by OST and
purge a specific OST. It can list files per OST and policy
criteria can be based on pools and OST index.

Robinhood’s policy engine has many capabilities to
purge using different options to specify when and how
purging is done which are defined in a configuration file.
Each file system has a separate database with it’s own
configuration defined. The configuration is defined in
sections by keyword. Within each section a keyword=value

pair is used to provide the requirements. For instance, to set
a purge to occur only when a file system is up to 80% full
and purge down to 60% full, specifying the check occur
every 6 hours (note the term “global_usage” is a keyword
other options include user_usage, group_usage, and
periodic):

Purge_Trigger
{
 trigger_on = global_usage ;
 high_threshold_pct = 80% ;
 low_threshold_pct = 60% ;
 check_interval = 6h ;
}

Ignoring specific users, directories, or files can also be

specified in a purge policy as well as identifying specifics
such as the required age of a file before it can be purged.
Directories have a separate definition section and can be
ignored or purged if they are empty for a specified period of
time. Alerts can be set up to go to an alerts log and also
emailed. Email alerts can be batched in order to reduce the
spam factor.

Robinhood provides some nice tools for accessing the
database. These include rbh-find, rbh-du, rbh-diff, and rbh-
report. rbh-find is a find like tool that can be used to access
files based on name, age, type, etc. rbh-du works like du.
rbh-diff can compare the data in the database with a scan of
the file system and can optionally either update the database
or revert the file system to match the database. rbh-report has
some pre-configured report options to provide information
about the files based on user, group, top-users, etc. For
example, this report shows a basic breakdown of the file
system:

rbh-report -f scratch1 -i
Using config file '/etc/robinhood.d/tmpfs/scratch1.conf'.
type, count, volume, min_size, max_size, avg_size
symlink, 470413, 33.30 MB, 2, 236, 74
dir, 1565317, 9.19 GB, 4.00 KB, 53.54 MB, 6.16 KB
file, 25063588, 291.37 TB, 0, 8.58 TB, 12.19 MB
fifo, 40 0, 0, 0, 0

Total: 27099727 entries, 320378342825978 bytes (291.38
TB)

More specifics about Robinhood can be found in the

tutorial2 and administrators manual1

IV. SYSTEM CONFIGURATION

A. File system Configuration
NERSC’s Edison system consists of three separate Cray

Sonexion 1600 Lustre file systems. Two file systems,
scratch1 and scratch2, are each configured with 12 Scalable
Storage Units (SSU) for a total usable capacity of 2.16 PB
each. These file systems are used for standard user scratch
data with the users distributed across them. The third file
system, scratch3, consists of 18 SSUs with a total usable
capacity of 3.24 PB. This file system services special
requests for users with a requirement for higher bandwidth

applications. Fine grain routing is used for performance to
the Cray; a flat network is used for access by the login nodes.
More specifics on the file systems can be found in Table I.
Each Object Storage Target (OST) is comprised of an 8x2
RAID6 with 3TB near-line serial attached SCSI (SAS) disks.

B. Purge Server
The purge server is a stand-alone server. It is configured
with:
4 x 8-core Sandy Bridge @ 2.40 GHz
512 GB memory
2 x 900 GB 10k disks

Operating System is SLES11 SP2.
Lustre client 2.2

TABLE I. NERSC SCRATCH FILE SYSTEM LAYOUT

 scratch1 & scratch2 scratch3

2 OSS / SSU 24 OSSs 36 OSSs

4 OST/ OSS 96 OSTs 144 OSTs

C. Other Information
The quotas, which are enabled but not enforced, are set to

5M inodes and 10TiB per user on scratch1 and scratch2.
Quotas are also enabled but not enforced on scratch3 but
access is currently unlimited. Although not enforced via the
quota configuration, the quotas are maintained by
verification at job submit time and in the job prologue. If a
user is over quota they are not allowed to submit jobs.

V. ROBINHOOD SET-UP & CONFIGURATION

A. Installing Robinhood
The Robinhood Policy Engine First Steps Tutorial

manual2 describes the installation relatively well. The
simple version is download, build, install, then configure.
The configuration consists of creating the database, creating
a configuration file and then running Robinhood. However,
a few issues hindered the initial install of Robinhood. These
have, for the most part, been resolved by some bug fixes to
the code by Cray. Additionally, getting the best performance
out of MySQL can be challenging. MySQL provides many
configuration options that can be tweaked but figuring out
which ones to tweak and how much can be difficult. In
addition, there were problems with versions of MySQL prior
to 5.5. Robinhood also provides some tuning around the
number of threads for each stage of processing. The options
used on Edison are documented here and may provide a
starting point in establishing configuration parameters should
your site decide to try to use Robinhood.

Security may be a concern for some sites. The purge
server on Edison has limited access, so is less a concern at
our site. The database has information about files and
directories that would not be typically accessible to a normal
user. In addition, because the data on the file system must be
accessible by the Robinhood Policy Engine, Robinhood must

run as root. The purge server on Edison only collects data; it
is not used for purging, so some of the potential risk is
mitigated.

Requirements:
MySQL 5.5 (recommended)
Robinhood 2.5.x

robinhood-recov-tools
robinhood-tmpfs
robinhood-adm

Of note, MySQL version 5.5 provided better results than

previous versions. Robinhood version 2.5.0-0.alpha1 is
currently installed on Edison, which has fixes provided by
Cray for some issues we ran into early on in testing. The
current version available is 2.5.1.

Table II shows the mySQL options configured to
improve database performance in the [mysql] portion of the
/etc/my.cnf configuration file. For more information on
these options see:

http://docs.oracle.com/cd/E19957-01/mysql-refman-
5.5/index.html

In addition, to allow mysql to use large pages the

following parameters in the /etc/security/limits.conf required
modification:

mysql hard memlock unlimited

mysql soft memlock unlimited

Parameters in /etc/sysctl.conf also needed tuning:

kernel.shmmax=50000000000
kernel.shmall=32534377267
vm.nr_hugepages = 50000 # 25000*2MB=50G
vm.hugetlb_shm_group = 202 # mysql group

The Robinhood configuration file is mostly self-

explanatory. The stats_interval was set to 1 min so the
options used could be verified by reviewing the logs during
scanning. The following shows some of the options that may
not be as easy to figure out from the documentation.

ListManager {
 commit_behavior = transaction;
 user_acct = disabled;
 group_acct = disabled;
 MySQL {
 innodb = enabled;
 }
}
FS_Scan {
 Nb_threads_scan = 32;
}

TABLE II. MYSQL PARAMETER CHANGES AND DESCRIPTION

innodb_flush_log_at_trx_commit
= 0	

Allows MySQL to batch updates. Although it also has the potential to lose up
to 1 sec of transaction data. Options 0, 1 (default), and 2

max_connections= 512	
 Maximum permitted number of client connections (default 151)
innodb_buffer_pool_size= 30G	
 Memory where table and index data are cached. Set to ~50% of defined

memory. NOTE: The boot option mem=70G is used on our purge server
innodb_max_dirty_pages_pct= 15
	

Defines the % of dirty pages before flushing. Default 75%.

innodb_thread_concurrency= 32	
 Keep os threads inside innoDB at or below this level (default unlimited)
innodb_log_file_size= 100M	
 Size in bytes of a log file in a log group (default 5M)
innodb_log_buffer_size= 50M	
 Size in bytes of the buffer used to write log files on disk (default 8M)
innodb_data_file_path=
ibdata1:1G:autoextend	

Paths to the individual data files and their size

large-pages	
 If available (must be turned on in the kernel) can increase performance due to
fewer TLB (translation lookaside buffer) misses

table-open-cache= 2000	
 Number of open tables for all threads (increases required number of file
descriptors)

sort-buffer-size= 32M Size of buffer allocated to do sorts
read-buffer-size= 16M Each thread that does a sequential scan allocates a buffer of this size for each

table it scans
read-rnd-buffer-size= 4M When reading rows in sorted order following a key-sorting operation, the

rows are read through this buffer to avoid disk seeks
thread-cache-size= 128 Number of threads the server should cache for reuse
query-cache-size= 40M Amount of memory allocated for caching for query results
query-cache-limit= 1M Do not cache results that are larger than this number of bytes (default 1MB)

tmp-table-size= 16M max size of internal in-memory temporary tables.
EntryProcessor {
 Nb_threads = 24;
 Max_pending_operations = 8000;
}

The Robinhood logs have 2 sections that are logged for
every interval – the “General statistics” and the
“EntryProcessor Pipeline Stats”. The log file location is
specified in the Robinhood configuration file. While testing,
check the statistics in the EntryProcessor Pipeline section for
the “Wait” count in the stage 0 line. It should be large while
scanning. Adjust the max_pending_operations and the
nb_threads in the EntryProcessor section of the configuration
file to improve performance.
The Lustre changelogs also need to be configured.
Robinhood has a script that will configure this if the MDS
and MGS are on the same host:

rbh-config enable_chglogs

Then the changelog user (usually something like ‘cl1’) will
need to be added to the Robinhood configuration file. If the
MDS and MGS are NOT on the same host, this will need to
be configured manually. The first step is to ensure all events
are enabled. This can be checked on the MGS by running:

lctl get_param mdd.*.changelog_mask
mdd.snx11111-MDT0000.changelog_mask= MARK
CREAT MKDIR HLINK SLINK MKNOD UNLNK
RMDIR RNMFM RNMTO OPEN IOCTL TRUNC SATTR
XATTR HSM MTIME CTIME

The default does not include a CLOSE event. If this is not in
the list, run:

lclt conf_param mdd.*.changelog_mask all-ATIME

Then rerun the get_param command. It should now show
output like:
mdd.snx11111-MDT0000.changelog_mask=MARK
CREAT MKDIR HLINK SLINK MKNOD UNLNK
RMDIR RNMFM RNMTO OPEN CLOSE IOCTL
TRUNC SATTR XATTR HSM MTIME CTIME

Then on the MDS the changelog consumer needs to be
registered. This requires a changelog reader id referred to in
this document as the changelog user. To create the user run:

lctl
lctl> device snx11111-MDT0000
lctl> changelog_register
snx11111-MDT0000: Registered changelog userid ‘cl1’

If multiple readers are created without a process accessing
and clearing it, or the reader id doesn’t match the one in the
Robinhood configuration file, the log will not get cleared
which can cause problems. These will be described in more

detail in the issues section. Therefore, it is important to
verify the information on the MDS by running:

lctl get_param mdd.*.changelog_users

mdd.snx11111-MDT0000.changelog_users=current
index: 7958874742

ID index
cl1 6411236842

Once the configuration is ready, start robinhood using the

init script provided in the robinhood-tmpfs rpm. This will
allow the changelog reader to start updating the database.

Although the Robinhood Policy Engine appears to be
very capable, Edison only uses Robinhood’s database and
it’s ability to obtain the changelog data from the Lustre file
systems. Additional testing is currently underway to
evaluate it’s ability to keep state with the file systems before
it’s purge capabilities will be used in production.

VI. OPERATION
Since NERSC doesn’t use all of the capabilities of the

Robinhood Policy Engine, the process required some
additional programming. This process consists of a manager
perl program, purge_mgr.pl, which controls the flow of
activities. The manager then utilizes additional programs,
commands, and configuration files to create and and purge
the files identified. Each of these steps will be described in
detail.

Robinhood was used to perform an initial scan of each
file system providing the base file system data for the
Robinhood database, using the Robinhood configuration files
in /etc/robinhood.d/tmpfs/<file system>.comf. The –f
identifies the configuration file to use. If only one
configuration file exists in the default location,
/etc/robinhood.d/tmpfs/, that option is not necessary. The
RBH_CFG_DEFAULT environment variable can also be
used to identify the configuration file. The –scan is using
the scan option and the –once says to only scan the file
system one time. The process can also be daemonized using
the –detach option.

robinhood –f scratch1 –scan –once

 The database is then kept in sync with the file system
using the Lustre changelogs as described in the Robinhood
Set-up and Configuration section. When the set up is
complete the regular purge is done. The purge_mgr.pl
program first reads the local configuration file. The purge
configuration file is fairly simple using keyword, value pairs.
It currently specifies how long data should be kept,
PURGEDAYS, the previously mentioned SAFEDAYS, and
any exclusion of directories, users, or groups. The
PURGEDAYS and SAFEDAYS are assigned variables and
the exclusions are placed in arrays.

The purge hit list is generated using the rbh-find
command from the purge_mgr.pl program.

rbh-find -f scratch1 -lsstat /scratch1/scratchdirs -atime +84 >
\ /var/log/purge/scratch1.purge.<date>

The file system is a command line option, the atime opton is
the PURGEDAYS from the configuration file and the output
file is going to a default location. The location can be
changed using a command line option if desired. The –lsstat
option provides the stat information for each file:

[file,1234,5678,2287,1379445176,1379445176,1379445061

]=/scratch1/scratchdirs/user1/file1
 ^ ^ ^ ^ ^ ^ ^
 | | | | | | |
 | | | | | | +--- mtime
 | | | | | +---- atime
 | | | | +---- ctime
 | | | +--- size in bytes
 | | +--- gid
 | +--- uid
 +-- file|dir|symlink|block|char|fifo|socket

The next step is to remove the excluded users, groups,
and directories from the list, any files that fit the
SAFEDAYS criteria, and any directories. This is
accomplished by checking each file with the information in
the arrays created when the local configuration file was read.
If there is a match the next file is read and checked against
the exclusions. If the file is ok to purge, it is added to a new
file that is also stored in the /var/log/purge directory. When
all files have been checked then the purge is run.

The purge operation is a python program provided by
Cray. Based on NERSC’s requirements, each file is checked
to ensure any of the stat data match the data in the database
prior to removing the file. This is a very good idea since
there have been instances when the data on the file system
and the database don’t match. These appear to be the result
of various configuration settings getting changed. However,
without the additional verification, files would have been
purged that should not have been. These will be described in
more detail later. The purge program has threading
capabilities and is run using the following options:

npurge.py --do-purge --num-threads=30 --log-
deleted=/var/log/purge/scratch1.purged.<date>
/var/log/purge/scratch1.purge<date>_1

The –do-purge says to actually purge versus a dry run. The
–num-threads tells how many threads to use to perform the
verification and purge, the –log-deleted will log the deleted
file to the specified location and the final option is the list of
files to purge. The output is also logged to track files that are
not purged due to a mismatch during verification.

The final step of the purge operation is to add a file to
each users scratch directory, .purged.<date>. This provides
the user with information to know why their files may have
disappeared. This has proved to be very helpful and has
reduced calls to the customer services department.

Although Robinhood has worked fairly well, there have
been a few problems. The server from where all of the

Robinhood databases for the three file systems reside hung
during a scan of all the file systems. The server couldn’t be
accessed and the server required a reboot. The scan had to be
restarted but there was no other fallout. Scans are now only
run on one file system at a time. The current configuration is
working but being monitored to ensure higher loads on the
file system won’t result in issues with either the server or the
database updates.

One of the file systems became inaccessible as the result
of the changelog filling. Some of this may have occurred
during an upgrade because the lctl set_param was used to
configure the data instead of the more permanent lctl
conf_param. Exactly what happened is uncertain. However,
one of the lessons learned is that if the changelog user
identified in the Robinhood configuration file does not match
the user on Lustre, not only are the changelogs not available
but they also will not be cleared. Although it may be
possible to attempt to clear the changelog without causing
problems, it was preferred that the file system is not being
accessed while the problem is being addressed. This means
that the changelog has to be disabled and the file system is
no longer getting updates except through a scan. To be safe,
until confidence in the state of these parameters is
established, a verification of both the changelog user and the
changelog mask has been added to the procedures after an
update. This includes verifying the changelog user id
matches what is in the Robinhood configuration file.

 During the purge operation there are times when several
files are not getting purged due to a mismatch in the
verification process. Some of these issues with the database
and the file system getting out of sync appear to be based on
lack of knowledge regarding the changelog and the events
that need to be generated. This is explained above. There
has not been sufficient time with the correct settings to
determine if there is an underlying problem or if this is all
just a parameter setting issue.

One final issue was that the rbh-find would crash when
trying to access one of the databases. It always occurred at
the same point. The bug was found and the fix has been
included in the Robinhood v2.5.

VII. STATISTICS
Following are some statistics for various tasks. With the

issues with the changelog there have been several
opportunities to get timing on file system scans both while
the system is quiet and during normal use. Timing has been
collected during scans, generating the purge hit list, and the
purge operation.

The scan operation has always been performed on a clean
database. Prior to starting the scan the changelog following
is stopped. In all cases the database was then zeroed out and
the file system was scanned using the following command
sequence:

rbh-config empty_db robinhood_scratch3
robinhood -f scratch3 --scan –once

TABLE III. ROBINHOOD SCAN TIMING

Date File System Time (sec)

4/3/14 /scratch1 22445

4/2/14 /scratch2 8853

3/31/14 /scratch3 10258

The Table III shows is the time required for a complete
rescan of the file systems. Once the scan completed and the
changelog read restarted, it took about 3 ½ hours for the
backlog of changelog entries to be processed. The read was
started approximately 24 hours after the new scan of the file
system.

Time to generate the purge list from the database is about
20 min. as shown in Table IV.

TABLE IV. PURGE LIST GENERATION TIME

Date File system Time

2/14/14 /scratch1 1101 sec

2/18/14 /scratch2 1159 sec

Purge time varied considerably based on activity. The
purge operation was completed while there was normal use
of the file systems. Table V provides information on the
purge time, rate, number of files purged, and also the number
of files that weren’t purged due to a mismatch between the
database and the file system. Changes were noticed for
almost every field, ctime, atime, mtime, gid, and size. There
was typically not a long period between the generation of the
purge hit list and the purge operation so this seems to
indicate the database not quite being in sync. See the issues
in the previous section for more information.

TABLE V. PURGE TIME

Date
File

system
Time
(sec) # Files

Rate
(files/sec)

Files
Not

Purged

2/14/14 /scratch1 4441 3,587,437 808 2054

3/30/14 /scratch1 4691 8,613,585 1836 124986

1/13/14 /scratch2 2682 5,130,053 1913 1566

2/18/14 /scratch2 5590 6,596,284 1180 3867

3/30/14 /scratch2 3183 4,891,038 1537 126586

3/31/14 /scratch3 177 87,423 494 1600

VIII. FUTURE WORK
The Robinhood database contains useful data. Collecting

more statistics on filesystem usage may provide useful
insights into better ways to handle user data.

ACKNOWLEDGMENT
Thank you to David McMillen and Frank Zago at Cray

for the initial Robinhood configuration, python purge utility,
npurge.py, and assistance with the various issues. Cray has
also provided several improvements and fixes to the
Robinhood developers.

This work was supported by the Director, Office of

Science, Office of Advance Scientific Computing Research
of the U.S. Department of Energy under contract No. DE-
AC02-05CH11231.

REFERENCES

[1] Thomas Leibovici, “Robinhood PolicyEngine Admin Guide,” V 2.5.0

Feb 12, 2014.
[2] Thomas Leibovici, “Robinhood PolicyEngine First Steps Tutorial,” V

2.5.0 Feb 13, 2014
[3] Oracle , “MySQL 5.5 Reference Manual,” 2010 sections 5.1, 7.5

