
HPC Containers in Use 
 

Jonathan Sparks 
SC and Clusters R&D 

Cray Inc. 
Bloomington, MN, USA 

e-mail: jsparks@cray.com 
 
 

Abstract— Linux containers in the commercial world are 
changing the landscape for application development and 
deployments. Container technologies are also making inroads 
into HPC environments, as exemplified by NERSC’s Shifter 
and LBL’s Singularity. While the first generation of HPC 
containers offers some of the same benefits as the existing open 
container frameworks, like CoreOS or Docker, they do not 
address the cloud/commercial feature sets such as virtualized 
networks, full isolation, and orchestration. This paper will 
explore the use of containers in the HPC environment and 
summarize our study to determine how best to use these 
technologies in the HPC environment at scale. 

Keywords- Shifter; HPC; Cray; container; virtualization; 
Docker; CoreOS 

I.  INTRODUCTION 
ontainers seem to have burst onto the infrastructure 
scene for good reason. Due to fast startup times, 
isolation, a low resource footprint, and encapsulation of 

dependencies, they are rapidly becoming the tool of choice 
for large, sophisticated application deployments. To meet 
the increasing demand for computational power, containers 
are now being deployed on HPC systems. 

Virtualization technologies have become very popular in 
recent years, such as Xen [1] and KVM [2]. These 
hypervisor-based virtualization solutions bring several 
benefits, including hardware independence, high 
availability, isolation, and security. They have been widely 
adopted in industry computing environments. For example, 
Amazon Elastic Cloud (EC2) [2] uses Xen and Google’s 
Compute Engine [4] utilizes KVM. However, their adoption 
is still constrained in the HPC context due to inherent VM 
performance overheads and system dependencies, especially 
in terms of I/O [5]. 

On the other hand, lightweight container-based 
virtualizations, such as Linux-VServer [6] and Linux 
Containers (LXC) [7] or Docker [8], have attracted 
considerable attention recently. Containers share the host’s 
resources and provide process isolation, making the 
container-based solution a more efficient competitor to the 
traditional hypervisor-based solution. It is anticipated that 
the container-based solution will continue to grow and 
influence the direction of virtualized computing. 

This paper will demonstrate that container-based 
virtualization is a powerful technology in HPC 

environments. This study uses several different container 
technologies and applications to evaluate the performance 
overhead, deployment, and isolation techniques for each. 
Our focus is on traditional HPC use cases and applications; 
more general use cases have been covered by previous 
work, such as that by Lucas Chaufournier [17].  

This paper is organized as follows: Section II provides an 
overview of virtualization techniques; Section III presents 
the different container runtime environments; Section IV 
describes the motivation behind our study; Section V 
presents the experiments performed in order to evaluate both 
application performance and the system overhead incurred in 
hosting the environment; Section VI presents related work. 
Conclusions and future work are presented in Section VII. 

II. VIRTUALIZATION 
In this section we provide some background on the two 

types of virtualization technologies that we study in this 
paper.  

A. Hardware Virtualization 
Hardware virtualization involves virtualizing the 

hardware on a server and creating virtual machine instances 
(VMs) that provide the abstraction of a physical machine 
(see Figure 1a). Hardware virtualization involves running a 
hypervisor, also referred to as a virtual machine monitor 
(VMM), on the bare-metal server. The hypervisor emulates 
virtual hardware such as the CPU, memory, I/O, and 
network devices for each virtual machine. Each VM then 
runs an independent operating system and applications on 
top of that OS. The hypervisor is also responsible for 
multiplexing the underlying physical resources across the 
resident VMs. 

Modern hypervisors support multiple strategies for 
resource allocation and sharing of physical resources. 
Physical resources may be strictly partitioned (dedicated) to 
each VM or shared in a best-effort manner. The hypervisor 
is also responsible for isolation. Isolation among VMs is 
provided by trapping privileged hardware accesses by the 
guest operating system and performing these operations in 
the hypervisor on its behalf. 

 

C 



 
Figure 1. Hypervisor and container-based virtualization 

 

B. Container-base Virtualization 
Container-based virtualization involves virtualizing the 

operating system rather than the physical hardware (Figure 
1b). OS-level virtualizations are also referred to as 
containers. Each container encapsulates a group of 
processes that are isolated from other containers or 
processes on the system. The host OS kernel is responsible 
for implementing the container environment, isolation, and 
resources. This infrastructure allocates CPUs, memory, and 
network I/O to each container. 

Containers provide lightweight virtualization since they 
do not run their own OS kernels like VMs, but instead rely 
on the underlying host kernel for OS services. In some 
cases, the underlying OS kernel may emulate a different OS 
kernel version to processes within a container. This is a 
feature often used to support backward OS compatibility or 
to emulate different OS APIs such as in Solaris zones [10].  

OS virtualization is not a new technology, and many OS 
virtualization techniques exist including Solaris Zones, 
BSD-jails [28], and Linux LXC (Figure 2). The recent 
emergence of Docker, a container platform similar to LXC 
but with a layered file system and added software 
engineering benefits like building and debugging, has 
renewed interest in container-based virtualization. 
 

 
Figure 2. Container technology 

 
Linux containers in particular employ two key features: 

control groups and namespaces. 

Control groups are a kernel mechanism for controlling 
the resource allocation to process groups [11]. Cgroups 
exist for each major resource group type: CPU, memory, 
network, block I/O, and devices. The resource allocation for 
each of these can be controlled individually, allowing the 
complete resource limits for a process or a process group to 
be specified.  

Namespaces provide an abstraction for a kernel resource 
that makes it appear to the container that it has its own 
private, isolated instance of the resource [12]. In Linux, 
there are namespaces for isolating process IDs, user IDs, file 
system mount points, networking interfaces, IPC, and host 
names.  

 

C. Containers in HPC 
Implementing existing enterprise container solutions in 

HPC systems will require modifications to the software 
stack. HPC systems traditionally already have resource 
management and job scheduling systems in place, so the 
container runtime environments will need to integrate into 
the existing system resource manager. The container 
infrastructure should follow the core concepts of containers. 
That is, to abstract the application from the host’s software 
stack, but be able to access host-level resources when 
necessary, notably the network and storage. Unfortunately, 
modifying core components of the host to support 
containers introduces a portability problem. Standard 
resource managers provide the interfaces required to 
orchestrate a container runtime environment on the system. 

A resource manager such as Moab/Torque on Cray 
systems utilizes scripts that are the core of the job execution, 
and these job scripts have the responsibility for configuring 
the environment and passing the required information at 
process start. In our experiments we use Cray ALPS as the 
application launcher to start both parallel MPI applications 
and serial workloads. 

III. CONTAINER RUNTIME ENVIRONMENTS 
In this section, we describe the container environments 

used in our experiments and certain common container 
attributes pertinent to this study. For the purposes of this 
paper, we defined container environments to be the tools 
used to create, manage, and deploy a container. We used 
two container environments used by the general community: 
runC [8] and rkt [9]; and two from HPC  ⎯ Shifter [18] and 
Singularity [19]. 

A. runC 
The command-line utility runC executes applications 

packaged according to the Open Container Initiative (OCI) 
format [25] and is a compliant implementation of the Open 
Container Initiative specification. 

The program, runC, integrates well with existing process 
supervisors to provide a container runtime environment for 
applications. It can be used with existing resource 



management tools, and the container will be executed as a 
child of the supervisor process. 

Containers are configured using the notion of bundles. A 
bundle for a container is defined as a directory that includes 
a specification file named config.json and a root file system. 

 

B. rkt 
The application container engine rkt is the container 

manager and execution environment for Linux systems. 
Designed for security, simplicity, and compatibility within 
cluster architectures, rkt discovers, verifies, fetches, and 
executes application containers with pluggable isolation. 
This container engine can run the same container with 
varying degrees of protection, from lightweight, OS-level 
namespace and capability isolation to heavier, VM-level 
hardware virtualization. 

The command-line primary interface is a single 
executable rather than a daemon process. The command-line 
utility leverages this design to easily integrate with existing 
init systems like systemd, as well as with advanced cluster 
orchestration environments, like SLURM and Kubernetes. 
rkt implements a modern, open, standard container format, 
the App Container (appc) [26], but can also execute other 
container images like those created with Docker. 

C. Singularity 
Singularity is a lightweight, non-invasive, easily 

implementable container infrastructure that supports 
existing workflows and focuses on application portability 
and mobility. 

With Singularity you can build containers based on your 
host or predefined operating system and define the 
execution environment. Processes inside the container can 
be single binaries or a group of binaries, scripts, and data. 

 

D. Shifter 
Shifter is a software package that allows user-created 

images to run at NERSC. These images can be Docker 
images or other formats. Using Shifter, you can create an 
image with your desired operating system and easily install 
your software stacks and dependencies. If you make your 
image in Docker, it can also be run at any other computing 
center that is Docker-friendly. Shifter also comes with 
improvements in performance, especially for shared 
libraries. Shifter can leverage its volume-mounting 
capabilities to provide local disk-like functionality and IO 
performance 
 

E. Container Common Attributes 
This section describes the common attributes to expect 

of all container runtime environments. 
 

1) Host Level Access: The ability to accesses the host-
level resources from within the container.  Typically these 
are the host’s network interfaces, either TCP/IP or Cray 
Aries native interface.  

2) Privileged Operations: All jobs need to be run by the 
user and as the user. The system workload managers will 
enforce this policy. If the container runtime requires root or 
elevated status, then special system configuration must be 
applied. 

3) Runtime Environment Pass-through: A common 
workflow on Cray systems allows the user to select different 
programming environments at runtime via the modules 
command [20], to either select programming tools or 
versions of libraries. Typically, this encompasses modifying 
or adding to the user’s environment which is then exported 
by the batch system to the compute engine. For containers 
we need to inherit these values to ensure the correct 
operation. 
 

IV. MOTIVATION 
There have already been several studies focused on the 

performance of general container-based solutions [13-14]. 
The results indicate that the container-based application can 
deliver near-native performance for HPC applications.  This 
study looks at different container runtimes, two from open-
source and two currently being used in HPC data centers. It 
also considers how these different container-based solutions 
can integrate into existing infrastructures and still yield 
almost native performance.  

We decided to measure the container start times, 
application performance, and the overall complexity of 
integration into an existing infrastructure. 

This study motivated us to answer a set of challenging 
questions: Can we improve the application container 
performance to deliver near-native performance for the 
different container runtime environments? What are the 
fundamental performance barriers when running MPI 
applications within a container? Can we propose a new 
design to overcome the bottleneck and significantly improve 
application performance on such container-based HPC 
systems? 

V. EXPERIMENTS 
This section studies the performance and isolation of the 
different container-based runtime environments. We 
performed several experiments using a set of containerized 
MPI and serial applications running on Cray systems. All 
applications running within containers require host-native 
access to the Cray Aries network and to a shared file system 
(Lustre).  

Two methods were used to build images for the 
experiments. Figure 3 illustrates the two different methods 
used: MPICH-ABI and Hybrid-container builds.

 



 
Figure 3. HPC container models 

 
 
 

 
Figure 4. Container execution overhead 

 
 

1) MPICH-ABI Method 
MPICH-ABI compatibly defines a standard for 

interoperability between MPI vendors. An application can 
compile against one implementation, such as MPICH and 
execute using another interface such as Cray MPI, which 
supports the MPICH ABI interface [21]. At runtime the 
LD_LIBRARY_PATH environment variable is set to the 
Cray MPI version of the MPICH-ABI library and its 
dependencies in order to replace the MPI libraries in the 
image. 

This method allows an application compiled with 
MPICH for a TCP network to make use of the Aries 
network and get native performance. For the experiments 

done here, the shared libraries were copied to a shared file 
system (Lustre) and mounted into the container at runtime. 

2) Hybrid-Container Method 
This method takes advantage of using prebuilt 

applications, using a container to provide isolation for the 
host environment. This mode of operation requires the 
container to share the host’s file system in order to execute 
the binary and to read configuration files.  

A. Container Execution Overhead 
To compare container execution overhead, we measured 

the difference in application startup as compared to standard 
CLE. We measured how long it takes to start up a simple 

0.00	
2.00	
4.00	
6.00	
8.00	
10.00	
12.00	
14.00	
16.00	
18.00	
20.00	

2	 4	 8	 16	 32	 64	

Se
co
nd
s	

Number	of	nodes	

Container	Execution	Overhead	
Execution	time	of	/bin/true	

CLE	

Shifter	

rkt	

runC	w/	Lustre	

Singularity	

runC	w/	tmpfs	



application as a function of the container runtime 
environment and at different node counts. 

Figure 4 illustrates launching the /bin/true binary 
(essentially a no-op) using different container runtimes at 
different scales. As the number of nodes increases, both 
Shifter and Singularity perform well, whereas runC had the 
largest startup cost due to the fact that a complete image 
must be copied to the node prior to execution. As with the 
Docker architecture, each node requires its own image store 
in which to store the images and container data. rkt also 
took longer, due in part to having to create a per-node 
instance of the container in tmpfs. In this case, the actual 
image data could be pre-fetched, leading to a lower 
execution time than runC. 

In the standard CLE case, we can see a slight increase in 
execution time as the node count increases. This is to be 
expected as this system was configured with Resource 
Utilization Reporting (RUR), which adds some per-node 
overhead. 

The use of runC resulted in node failures when the 
container was stopped; this was traced to a kernel bug in the 
umount VFS layer of the kernel. Unfortunately, this 
prevented further analysis of runC and the rest of the study 
continued using the three remaining container runtimes. 

 

VI. PERFORMANCE OVERHEAD ON HPC APPLICATIONS 
This section presents an analysis of the performance 

overhead in container-based systems for HPC applications. 
For that, we conducted experiments using the NAS Parallel 
Benchmark (NPB) benchmark suite [23]. NPB is derived 
from computational fluid dynamic (CFD) applications and 
consists of kernels  (IS, EP, CG, MG, FT) and three pseudo-
applications (BT, SP, LU).  

The first experiment uses a single node environment to 
evaluate the performance overhead of the container system. 
Figure 5 shows the results for each NPB benchmark using 
the Cray MPI implementation. In all cases, the different 
container runtimes performed almost identically.  Not only 
did the different container runtimes produce the same 
results, but when compared to native CLE, the performance 
was also the same. 

When evaluating multinode environments, the influence 
of the network is the primary metric to be discussed since 
the network has a direct impact on performance. Figure 6 
illustrates performance of the NPB benchmarks on 256 
nodes. As with the single node case, the performance of 
container benchmarks is similar to that of native CLE. 

 
Typically, containers are isolated from the host. One 

important exception to this rule is when using the Cray 
Aries network. Getting the best performance for an MPI 
application running within a container on a Cray system 
requires access to hugepages [24].  

To illustrate the effect of hugepages on application 
performance, Quantum ESPRESSO [27] was run with and 
without hugepage support, shown in Figures 7 and 8. When 
using hugepages, the performance matches native CLE.   

 

VII. RELATED WORK 
Several papers have explored container use in HPC 

environments. As presented by Bahls [13], container HPC 
applications using the MPICH-ABI method can get good 
performance on Cray XC40™ systems. Xavier [15] 
concludes it is possible to get good HPC performance using 
commodity cluster hardware/software.  

 



 
Figure 5. NPB single node results 

 

 
Figure 6. NPB multinode results 

 



 
Figure 7. Quantum ESPRESSO without hugepage support 

 

 
Figure 8. Quantum ESPRESSO with hugepage support 

 
 
 
Our results also demonstrate that it’s possible to get 

good container performance if the infrastructure and 
application can use host-level resources, regardless of the 
container runtime environment. In our case, using the host 
network, native MPI libraries, and kernel level interfaces 
resulted in near-native performance.  

As discussed in other research studies using standard 
clusters [15-16], the major limitation of container 

technology is its ability to handle I/O intensive applications. 
By allowing access to host-level resources, we reduce this 
bottleneck. 

 

VIII. CONCLUSION AND FUTURE 
Container-based computing is a new technology that is 

being adopted at a remarkable rate in the enterprise data 
center. The flexibility and productivity gains are 

0.00	

50.00	

100.00	

150.00	

200.00	

250.00	

300.00	

350.00	

36	 72	 108	 144	 180	 216	 252	 288	

Ex
ec
ut
io
n	
ti
m
e	
(s
ec
s)
	

cores	

Execution	time	of	Quantum	ESPRESSO	
6.0	/	Broadwell	

CLE	

Shifter	non-hugepages	

0.00	

50.00	

100.00	

150.00	

200.00	

250.00	

300.00	

350.00	

36	 72	 108	 144	 180	 216	 252	 288	

Ex
ec
ut
io
n	
ti
m
e	
(s
ec
s)
	

cores	

Execution	time	of	Quantum	ESPRESSO	
6.0	/	Broadwell	

CLE	

Shifter	hugepages	



revolutionary for software development and deployment. 
While this technology is still in development in HPC, 
customers are now requesting the ability to execute 
containers at scale on HPC systems.  

During this investigation, we showed the performance 
characteristics and demonstrated that we can achieve almost 
native performance if the environment is properly 
configured. While each of the runtimes delivered nearly the 
same performance, actual startup costs varied wildly 
depending on the container environment and how the image 
was staged.  

Each container runtime environment presented a 
different set of configuration parameters: HPC variants 
employed a simpler set of parameters and a deployment 
mode, whereas the open source variants have a 
comprehensive set of configuration and runtime options. 

For future work, we plan to investigate a common 
workload manager interface to different container runtime 
environments and provide an alternate API to orchestrate 
containers as well as a batch interface. 

 

ACKNOWLEDGMENT 
The author would like to acknowledge the following 

people for their assistance and insights during this research: 
Stephen Behling, Pierre Carrier, Steve Warren, Kim 
McMahon, Sung-Eun Choi, and Brad Chamberlain from 
Cray, and Douglas Jacobsen and Richard Shane Canon from 
NERSC, Lawrence Berkeley National Laboratory. 

 

REFERENCES 
 

[1] Xen, http://www.xen.org 
[2] Kernel-based Virtual Machine (KVM), http://www.linux-kvm.org 
[3] Amazon EC2 http://aws.amazon.com/ec2 
[4] Google Compute Engine (GCE), https://cloud.google.com/cpompute 
[5] J.Liu. “Evaluating Standard-Based Self-Virtualizing Devices: A 

Performance Study on 10 GbE NICs with SR-IOV Support”, in 
Proceeding of 2010 IEEE International Symposium Parallel & 
Distributed Processing (IPDPS). IEEE, 2010, pp. 1-12 

[6] Linux virtualization for GNU/Linux systems, http://linux-vserver.org 

[7] LXC (Linux Containers), https://linuxcontainers.org 
[8] Docker container platform, https://www.docker.com 
[9] CoreOS container infrastructure, https://coreos.com 
[10] Oracle solaris Zones 

https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones
.htm#OPCUG426 

[11] Linux Cgroups, https://www.kernel.org/doc/Documentation/cgroup-
v1/cgroups.txt 

[12] Linux Namespaces, http://man7.org/linux/man-
pages/man7/namespaces.7.html 

[13] Donald Bahls, “Evaluating Shifter for HPC applications”, presented 
at the Cray User Group., London, UK., 2016  

[14] D. Jacobsen, S. Canon, “Contain this, unleashing Docker for HPC,” 
presented at the Cray User Group., Chicago, IL., 2015  

[15] Miguel Gomes Xavier, Marcelo Veiga Neves, Fabio Diniz Rossi, 
Tiago C. Ferreto, Timoteo Lange, Cesar A. F. De Rose, “Performance 
evaluation of container-based virtualization for high performance 
computing environments”, Pontifical Catholic University of Rio 
Grande do Sul (PUCRS) Porto Alegre, Brazil., 2013 

[16] J. Zhang, X. Lu and D. K. Panda, "High performance MPI library for 
container-based HPC cloud on InfiniBand clusters," 2016 45th 
International Conference on Parallel Processing (ICPP), Philadelphia, 
PA, 2016, pp. 268-277. 

[17] Lucas Chaufournier, Prateek Sharma, Prashant Shenoy, Y.C. Yay, 
“Containers and virtual machines at scale: a comparative study”, 
Middleware '16 Proceedings of the 17th International Middleware 
Conference, Trento, Italy, December 12 - 16, 2016 

[18] Shifter, https://www.nersc.gov/research-and-development/user-
defined-images 

[19] Singularity, http://singularity.lbl.gov 
[20] Modules - Software Environment Management, 

http://modules.sourceforge.net 
[21] MPICH ABI Compatibility Initiative, https://www.mpich.org/abi/ 
[22] runC, https://github.com/opencontainers/runc 
[23] NAS Parallel Benchmarks, 

https://www.nas.nasa.gov/publications/npb.html 
[24] Huge Pages – The Linux Kernel Archives, 

https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt 
[25] Open Container Initiative, https://www.opencontainers.org 
[26] App Container Specification, 

https://github.com/appc/spec/blob/master/SPEC.md 
[27] Quantum ESPRESSO, http://www.quantum-espresso.org 
[28] BSD-Jails, https://www.freebsd.org/doc/handbook/jails.html 
 
 
 

 


