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Abstract This paper describes novel implementations of
the KLT feature tracking and SIFT feature extraction algo-
rithms that run on the graphics processing unit (GPU) and is
suitable for video analysis in real-time vision systems. While
significant acceleration over standard CPU implementations
is obtained by exploiting parallelism provided by modern
programmable graphics hardware, the CPU is freed up to run
other computations in parallel. Our GPU-based KLT imple-
mentation tracks about a thousand features in real-time at
30 Hz on 1,024 × 768 resolution video which is a 20 times
improvement over the CPU. The GPU-based SIFT imple-
mentation extracts about 800 features from 640 × 480 video
at 10 Hz which is approximately 10 times faster than an opti-
mized CPU implementation.

Keywords Visual tracking · Vehicle tracking ·
Video surveillance · Visual inspection · Vision system ·
Robot navigation

1 Introduction

Extraction and matching of salient 2D feature points in video
is important in many computer vision tasks like object detec-
tion, recognition, structure from motion and marker-less aug-
mented reality. While certain sequential tasks like structure
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from motion for video [18] require online feature point
tracking, others need features to be extracted and matched
across frames separated in time (eg. wide-baseline stereo).
The increasing programmability and computational power
of the graphics processing unit (GPU) present in modern
graphics hardware provides great scope for acceleration of
computer vision algorithms which can be parallelized [3,11,
12,14–17]. GPUs have been evolving faster than CPUs (tran-
sistor count doubling every few months, a rate much higher
than predicted by Moore’s Law), a trend that is expected
to continue in the near future. While dedicated special-pur-
pose hardware or reconfigurable hardware can be used for
speeding up vision algorithms [1,2], GPUs provide a much
more attractive alternative since they are affordable and eas-
ily available within most modern computers. Moreover with
every new generation of graphics cards, a GPU implementa-
tion just gets faster.

In this paper we present GPU-KLT, a GPU-based imple-
mentation for the popular KLT feature tracker [6,7] and GPU-
SIFT, a GPU-based implementation for the SIFT feature
extraction algorithm [10]. Our implementations are 10–20
times faster than the corresponding optimized CPU coun-
terparts and enable real-time processing of high resolution
video. Both GPU-KLT and GPU-SIFT have been imple-
mented using the OpenGL graphics library and the Cg shad-
ing language and tested on modern graphics hardware
platforms. As an application, the GPU-KLT tracker has been
used to track 2D feature points in high-resolution video
streams within a vision based large-scale urban 3D modeling
system described in [19].

Our work is of broad interest to the computer vision, image
processing and medical imaging community since many of
the key steps in KLT and SIFT are shared by other algorithms,
which can also be accelerated on the GPU. Some of these are
(a) image filtering and separable convolution, (b) Gaussian
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scale-space construction, (c) non-maximal suppression, (d)
structure tensor computation, (e) thresholding a scalar field
and (f) re-sampling discrete 2D and 3D scalar volumes. This
paper is organized as follows. Section 2 describes the basic
computational model for general purpose computations on
GPUs (GPGPU). Section 3 presents the basic KLT algorithm
followed by its GPU-based implementation and experiments
on real video and an analysis of the results obtained. Section 4
describes similar aspects of GPU-SIFT. Finally we present
our conclusions in Sect. 5.

2 GPGPU concepts

Modern programmable graphics hardware contains power-
ful coprocessors (GPUs) with a peak performance of hun-
dreds of GFLOPS which is an order of magnitude higher
than that of CPUs [21]. They are designed to independently
process streams of vertices and fragments (pixels) in par-
allel. However, their data parallel single instruction multiple
data (SIMD) architecture also provides an abstraction for per-
forming general purpose computations on GPUs (GPGPU)
and for treating the GPU as a stream processor.

In the GPGPU framework, the fully programmable vertex
and fragment processors perform the role of the computa-
tional kernels while video memory (frame-buffers, textures,
etc.) provides it with a memory model (see Fig. 1 for an
overview of the graphics pipeline implemented in hardware).
Texture mapping on the GPU is analogous to the CPU’s ran-
dom read-only memory interface while the ability to ren-
der directly into texture (off-screen rendering) provides a
memory-write mechanism. However, by virtue of its special-
ized design, the GPU has a more restricted memory model
when compared to a CPU (scatter operations i.e. random
memory writes are not allowed). Texture memory caches are
designed for speed and prevent concurrent read and write
into the same memory address. Thus distinct read and write
textures must be used. They can be swapped after each ren-
der pass making the write texture available as input and vice
versa (ping-pong rendering).

In order to implement an algorithm on the GPU, differ-
ent computational steps are often mapped to different frag-
ment programs. For each computational step, the appropriate
fragment program is bound to the fragment processor and a
render operation is invoked. The rasterization engine gener-
ates a stream of fragments and also provides a fast way of
interpolating numbers in graphics hardware. Most GPGPU
applications execute multiple fragment programs in a series
of successive off-screen rendering passes. While pixel-buf-
fers (pBuffers) exist on older graphics cards, recently frame-
buffer objects (FBOs) were introduced, providing a simple
and efficient off-screen rendering mechanism in OpenGL.
Details about GPGPU programming are available in [20,22].

Many computer vision algorithms map well into this par-
allel stream processing model. Image processing tasks which
can process multiple pixels independently (eg. convolution)
can be performed very fast by fragment programs (compu-
tation kernels) exploiting the high parallelism provided by
multiple fragment pipes (upto 24 in modern cards). A large
fraction of the GFLOPS dedicated to texture mapping in
GPUs is non-programmable. While image processing appli-
cations can sometimes leverage this by using the bilinear
interpolation of texture mapping, they also benefit from the
2D texture cache layouts designed for fast texture mapping.

Recently there has been a growing interest in the com-
puter vision community to solve important computationally
expensive problems like image registration [16], stereo and
segmentation using graphics hardware. A correlation-based
real-time stereo algorithm for the GPU was first proposed
by [11] while more complex formulation of stereo [12–14]
were implemented more recently. GPUs have been success-
fully used by [15,17] to accelerate background segmentation
in video, often used as a first step in many vision applica-
tions. A versatile framework for programming GPU-based
computer vision tasks (radial undistortion, image stitching,
corner detection, etc.) was recently introduced by [3,4] and
real-time GPU-based image processing was evaluated by [5]
under various conditions.

3 KLT tracking on GPU

3.1 The algorithm

The KLT tracking algorithm [6,7] computes displacement of
features or interest points between consecutive video frames
when the image brightness constancy constraint is satisfied
and image motion is fairly small. Assuming a local transla-
tional model between subsequent video frames, the displace-
ment of a feature is computed using Newton’s method to
minimize the sum of squared distances (SSD) within a track-
ing window around the feature position in the two images.

Let I (∗, ∗, t) represent the video frame at time t . If the
displacement of an image point (x, y) between time t and
t + ∆t , denoted by (∆x , ∆y) is small, then according to the
brightness constancy constraint,

I (x, y, t + ∆t) = I (x + ∆x, y + ∆y, t)

Let x = (x, y)T and v = (∆x,∆y)T . In the presence of
image noise r ,

I (x, t + ∆t) = I (x + d, t) + r

KLT will compute the displacement vector d that minimizes
the following error
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Fig. 1 Overview of the 3D
Graphics Pipeline. The fragment
processor and direct off-screen
rendering capability is
frequently used in GPGPU
applications

Fig. 2 Pseudo-code for the two fundamental routines in the KLT Tracking algorithm

r =
∑

W

(I (x + d, t) − I (x, t + ∆t))2

over a small image patch W . Approximating I (x + d, t) by
its Taylor expansion, one obtains the following linear system
to estimate the unknown d where G = [ ∂ I

∂x
∂ I
∂y ] is the image

gradient vector at position x.
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(1)

Tomasi later proposed a variation of the KLT equation which
uses both images symmetrically. This equation, derived in [8]
is identical to Eq. 1 except that here

G =
[

∂(I (∗, t) + I (∗, t + ∆t))

∂x

∂(I (∗, t) + I (∗, t + ∆t))

∂y

]

This symmetric version is used in our GPU implementation.

Feature to track are selected by finding image points where
a saliency or corner-ness measure

c = min

(
eig

(
∑

W

[
∂ I

∂x

∂ I

∂y

]T [
∂ I

∂x

∂ I

∂y

]))

(the minimum eigen-value of the 2×2 structure tensor matrix
obtained from gradient vectors) is a local maximum. It is
evaluated over the complete image [6,7] and a subsequent
non-maximal suppression is performed. The KLT algorithm
is described in Fig. 2.

Since the linearity assumption is only valid for a small
displacement d, a multi-resolution KLT tracker is often used
in practice for handling larger image motion. It first tracks
at coarse resolutions and then refines the result in finer reso-
lutions. Multiple iterations are performed at each resolution
for better accuracy. Due to camera motion and occlusion,
features tracks are eventually lost; hence new features must
be re-selected from time to time to maintain a roughly fixed
number of features in the tracker.
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3.2 GPU implementation details

Graphics processing unit-KLT maps various steps of the
tracking algorithm to different fragment programs. Every
video frame is uploaded to video memory where it is
smoothed and its multi-resolution pyramid of image intensity
and gradients is constructed. The tracking is done on every
frame using the image pyramids corresponding to the current
and previous frames. Feature re-selection is performed once
in every k frames to keep a roughly constant feature count in
the tracker. The value of k was set to 5 for all our experiments
but this generally depends on camera motion and the number
of lost features.

3.2.1 Implementation strategies

RGBA floating point textures were used for storage on the
GPU. This is supported on most modern GPUs. Section 3.3
discusses the precision that was required by our implementa-
tion on different hardwares. The multi-resolution image pyr-
amid and the associated gradient vectors are represented by
a set of RGBA textures where different channels are used for
the intensity and gradient magnitudes. A second set of identi-
cal image pyramid textures is needed during the construction
of the image pyramid on the GPU (as explained below). The
corner-ness map is represented by a pair of textures; one for
partial sums and the second for the final values. The feature
list table is represented by a m × n texture where m stands
for the maximum feature count while n stands for (#track-
ing iterations)× (# pyramid levels). Three other texture units
are used for computing and storing intermediate values com-
puted during tracking and computing the elements of matrix
A and vector b (refer Eq. 1).

3.2.2 Build-pyramid

The multi-resolution pyramid of the image intensity and its
gradients are computed by a series of two-pass separable
Gaussian convolutions performed in fragment programs. The
fragment program uses OpenGL’s multiple texture coordi-
nates (TEXCOORD0 …TEXCOORD7) to read a row or col-
umn of pixels. The 1D convolution filter kernel size limited
to 7, accounts for most practical values of σ . Since fragment
programs support vector operations, the blurred pixel and the
gradient magnitudes are computed simultaneously. The sec-
ond set of textures are used to store the results of the row
convolution pass and are subsequently read by the column
convolution pass. Since the tracker requires information for
only two video frames, textures for two image pyramids are
allocated and a pointer indicating the current frame alternates
between the two.

3.2.3 Track

KLT tracking performs a fixed number of tracking iterations
at each image resolution starting with the coarsest pyramid
level. Each tracking iteration constructs a linear system of
equations in two unknowns for each interest point (see Eq. 1),
A d = b and directly solves them to update the estimated
displacement. This is done in four steps by four fragment pro-
grams on the GPU. First a fragment program bilinearly inter-
polates intensity and gradient magnitudes in 7 × 7 patches
around each KLT feature in the two images and stores them
in a temporary texture. While NVIDIA provides hardware
support for bilinear interpolation of floating point textures,
a fragment program is required to do this on ATI. Various
quantities evaluated at 7 × 7 image blocks are added in two
passes; first computing partial row sums followed by a single
column sum. The second and third fragment program eval-
uates all the six elements of the matrix A and the vector b
and writes them into a different texture for the next fragment
program to use. Finally Eq. 1 is solved in closed form by the
fourth fragment program which writes the currently tracked
position into the next row in the feature table texture. The
invocation of these four fragment programs corresponds to a
single tracking iteration in the original algorithm (see Fig. 2).

At the end of (#max-iterations)× (#pyramid-levels) track-
ing iterations, the final feature positions (the last row in the
feature table texture) are read back to the CPU along with
two other values per feature - ∆ d, the final tracking update
of the iterative tracker and res, the SSD residual between
each initial and tracked image patch. An inaccurate feature
track is rejected when its ∆ d and res exceeds the respec-
tive thresholds. While KLT originally performs these tests
after every tracking iteration, GPU-KLT skips them to avoid
conditional statements in fragment programs for speed. This
however, forces it to track all N (=#max-features) features for
all the iterations. Hence GPU-KLT’s running time depends
on N and not the number of valid features being tracked.

GPU-KLT performs tracking completely on the GPU con-
trary to [3] who builds the matrices (Eq. 1) on the GPU using
fragment programs, performs a readback and then solves a
stacked linear system on the CPU. Multi-resolution, iterative
tracking is ruled out in their case due to the CPU-GPU tranfer
bottleneck. [3] also does not compare CPU and GPU imple-
mentations for accuracy and timings. Our multi-resolution,
iterative tracker handles larger image motions than [3] and
performs accurate tracking in real-time on high-resolution
video (Fig. 3).

3.2.4 Re-select-features

The KLT corner-ness map is computed in two passes. The
first pass computes the 2 × 2 structure tensor matrix at each
pixel. The values in a 7×7 window centered at every pixel are
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Fig. 3 Overview of the steps in
the GPU-KLT implementation

added using partial row sums followed by a column sum. The
minimum eigen value of the resulting matrix is stored in the
corner-ness map. During feature re-selection, the neighbor-
hood of existing features is invalidated and early Z-culling
is used to avoid computations in these image regions. Early
Z-culling works as follows. In the first pass, a binary mask
is created by rendering t × t quads (where t is the desired
minimum distance between features) for every existing valid
feature. The depth test in the graphics pipeline is disabled
while depth writing is enabled and this binary mask is loaded
into the graphics hardware’s depth buffer. In the next pass,
depth writing is disabled while the depth test is enabled. With
early Z-culling hardware support, fragments corresponding
to invalidated pixels are not even generated when the cor-
ner-ness map is being computed. Finally a corner-ness map
with sparse entries is read back to the CPU. Non-maximal
suppression is done on it to find new additional features to
track. Using the GPU for invalidating image regions before
computing the corner-ness map makes this final step on the
CPU much faster.

3.3 Results

To evaluate the performance of GPU-KLT, tests were per-
formed on various ATI (850XT, 1,800XT, 1,900XT) and
NVIDIA (7,800GTX, 7,900GTX) graphics cards. These tests
showed an improvement of one order of magnitude in speed
over a standard KLT implementation [9]. A 20× speedup

over the CPU version was observed on a ATI 1900XT, where
GPU-KLT tracks 1,000 features in 1,024 × 768 resolution
video at 30 Hz. The performance measurements are shown
in Fig. 4. The evaluation shows that currently all ATI graphic
cards outperform the tested NVIDIA graphics cards. This is
due to the precision required for solving Equation 1 within a
fragment program. The required 32 bit floating point preci-
sion is always provided by ATI cards even when the storage
textures have only 16 bit floating point precision. In contrast
to ATI, NVIDIA cards could only provide 32 bit precision
computations in the fragment programs when the allocated
textures too had 32 bit precision. This increased the memory
bandwidth during processing on NVIDIA cards and explains
their lower speeds. Furthermore, the measurements in Fig. 4
show that GPU-KLT is bandwidth limited on all tested graph-
ics cards and its computational complexity linearly depend
on the number of features as well as on the number of pixels
in the images.

Graphics processing unit-KLT was also tested qualita-
tively for tracking accuracy. This evaluation is in general
difficult to perform as it would require ground truth tracks. To
our knowledge there is no standard data set for such an evalu-
ation. Hence we compared GPU-KLT and the standard KLT
to each other. Due to the different orders of operations and
the different ALU’s in the GPU and the CPU the results are
in general not equal. We tested the tracking inside an applica-
tion for camera pose estimation [19] using the quality of the
estimated camera poses as the criteria for tracking accuracy.
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Fig. 4 GPU-KLT timings on various graphics cards (Top). A tim-
ing comparison of GPU-KLT with CPU implementations of KLT—(1)
The OpenCV tracker (http://www.intel.com/technology/computing/

opencv/) and (2) Birchfield’s KLT library [9] ran at comparable speeds
(CPU specs - 3.4 GHz PentiumD processor, 1 GB RAM) (Below)

It showed that both trackers provide in general the same qual-
ity of tracks. Thus we conclude that GPU-KLT provides an
order of magnitude of speedup over CPU implementations
while maintaining the same tracking quality. Tests were per-
formed on a wide range of video (see Figs. 5, 6). Our open
source implementation is available at http://www.cs.unc.edu/
~ssinha/Research/GPU_KLT.

4 SIFT feature extraction on GPU

4.1 The algorithm

The scale invariant feature transform (SIFT) [10] algorithm
is a popular candidate for extraction of interest points invari-
ant to translation, rotation, scaling and illumination changes
in images. It first constructs a Gaussian scale-space pyramid
from the input image while also calculating the gradients
and difference-of-gaussian (DOG) images at these scales.
Interest points are detected at the local extremas within the
DOG scale space. Once multiple keypoints have been
detected at different scales, the image gradients in the local
region around each feature point are encoded using orienta-
tion histograms and represented in the form of a rotationally

invariant feature descriptor. The details are described in [10]
(Fig. 7).

4.2 GPU implementation details

The construction of the Gaussian scale space pyramid is
accelerated on the GPU using fragment programs for sep-
arable Gaussian convolution. The intensity image, gradients
and the DOG values are stored in a RGBA texture and com-
puted in the same pass using vector operations in fragment
programs. Blending operations in graphics hardware are used
to find local extremas in the DOG pyramid in parallel at all
pixel locations. The Depth test and the Alpha test is used
to threshold these keypoints; The local principal curvatures
of the image intensity around the keypoint is inspected; this
involves computing the ratio of eigenvalues of the 2×2 struc-
ture tensor matrix of the image intensity at that point. The
keypoint locations are implicitly computed in image-sized,
binary buffers, one for each scale in the pyramid. A frag-
ment program compresses (a factor of 32) the binary bitmap
into RGBA data, which is readback to the CPU and decoded
there.

At this stage, a list of keypoints and their scales have been
retrieved. Since reading back the gradient pyramid (stored
in texture memory) to the CPU is expensive, the subsequent
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Fig. 5 Real-time tracking using
GPU-KLT on (Upper Left)
hand-held video, (Upper Right)
a zoom sequence from a
surveillance camera, (Lower
Left) video from a camera
mounted on a driving vehicle,
(Lower Right) streaming video
from a hand-held Firewire
camera

Fig. 6 GPU-KLT tracks at 30 Hz, upto 1,000 features in hi-res video captured by a camera on a driving vehicle (Left). Relative timings of the steps
of GPU-KLT (Right)

steps in SIFT are also performed on the GPU. Gradient vec-
tors near the keypoint location are Gaussian weighted and
accumulated inside an orientation histogram by another frag-
ment program. The orientation histogram is read back to the
CPU, where its peaks are detected. Computing histograms on
the GPU was found to be more expensive [3] than doing it on
the CPU following a small readback. The final step involves
computing 128 element SIFT descriptors. These consist of
a set of orientation histograms built from 16 × 16 image
patches in invariant local coordinates determined by the asso-
ciated keypoint scale, location and orientation. SIFT descrip-
tors cannot be efficiently computed completely on the GPU,
as histogram bins must be blended to remove quantization
noise. Hence we partition this step between the CPU and

the GPU. We resample each feature’s gradient vector patch,
weight them using a Gaussian mask using blending support
on the GPU. The resampled and weighted gradient vectors
are collected into a tiled texture block which is subsequently
transferred back to the CPU and then used to compute the
descriptors. This CPU-GPU partition was done to minimize
data readback from the GPU since transferring the whole
gradient pyramid back to the CPU is impractical. Moreover
texture re-sampling and blending are efficient operations on
the GPU; hence we perform those steps there. This also pro-
duces a compact tiled texture block which can be transferred
to the CPU in a single readback.

GPU-SIFT gains a large speed-up in the Gaussian scale-
space pyramid construction and keypoint localization steps.
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Fig. 7 Overview of the steps in
the GPU-SIFT implementation

Fig. 8 GPU-SIFT Examples: About 1,000 interest points were extracted in each of the above three image pairs. Some of the initial matches
(containing outliers) is shown. Features were matched despite scale, illumination and viewpoint change and image rotation
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The compressed readback of binary images containing fea-
ture positions reduces the readback data-size by a factor of
32. The feature orientation and descriptors computation is
partitioned between the CPU and GPU in a way that min-
imizes data transfer from GPU to CPU. Overall a 8–10×
speedup is observed compared to CPU versions of SIFT.

4.3 Results

GPU-SIFT was implemented in OpenGL/Cg using Pbuffers
for off-screen rendering. A texture manager allocates and
manages all the data in GPU memory within a few dou-
ble-buffered pixel buffers (PBuffers). In future we hope to
replace PBuffers with FBOs which are increasingly being
supported by the latest hardwares and drivers. Our current
GPU-SIFT implementation has been tested on NVIDIA hard-
ware (Geforce 7,800GTX and 7,900GTX cards). Figure 8
shows GPU-SIFT features extracted from image pairs con-
taining changese in scale, orientation and illumination.
Figure 9 compares timings between the CPU and GPU imple-
mentations for a range of image resolution and feature-count.
The NVIDIA 7,900GTX gave a 10× speedup over an opti-
mized CPU implementation. GPU-SIFT running on the NVI-
DIA 7,900GTX could extract about 1,000 SIFT features from
streaming 640 × 480 resolution video at an average frame-
rate of 10 Hz.

Nothing prevents GPU-SIFT from running on modern ATI
cards with the latest drivers. At the time of implementation,
we chose the NVidia / OpenGL platform which led to certain
design choices that made our software prototype incompat-
ible with ATI cards. Specifically render to rectangular tex-
ture targets OpenGL extensions (available only on NVidia)
and integer texture coordinates were used extensively. With
recent drivers supporting OpenGL 2+, GL_TEXTURE_2D
targets and identical texture coordinate arithmetic can now
be used in OpenGL on both ATI and NVidia platforms. Once
this is changed, GPU-SIFT will run on ATI cards too.

GPU-SIFT was compared to Lowe’s SIFT [10] (see Fig. 10)
by using both for robustly estimating motion models param-
eters (2D homography, epipolar geometry) from multiple
image-pairs. RANSAC-based robust algorithms were used
to remove outliers present in the initial feature matches. The
percentage of correct matches with GPU-SIFT was found
to be about 70–98% of that obtained with SIFT on a set of
20 representative image-pairs. The slightly lower stability of
GPU-SIFT features can be attributed to the following rea-
sons—(a) we build the Gaussian scale space using approx-
imate convolution kernels; (b) we do not double the image
size if this causes the Pbuffer size to exceed the maximum
texture size allowed on a particular graphics card (typically
4K×4K). Morever GPU-SIFT skips two refinement steps
that improve keypoint localization but are difficult to perform
on the GPU—(a) sub-pixel localization of maximas of DOG

Fig. 9 GPU-SIFT timings compared with an optimized CPU imple-
mentation for a range of image-sizes and feature-counts. GPU-SIFT has
a 10–12× speed-up

scale-space by fitting a local quadratic fit to the initial interest
point locations; (b) refining the orientation histogram peaks
through a quadratic fit of the three closest discrete samples.
For higher accuracy, these steps could be included but they
must be performed on the CPU. Figure 10 shows how dif-
ferent steps in the algorithm scale with varying input (image
size, feature count). As the image resolution increases, scale-
space construction and keypoint localization performed on
the GPU dominates running time while as the feature count
increases, more time is spent in computing SIFT descrip-
tors on the CPU. As more descriptors need to be computed,
the speedup due to bilinear interpolation in hardware is out-
weighted by the subsequent CPU computations. In future,
efficient strategies for computing histograms on the GPU will
be explored as this would further improve running times.

5 Conclusions

Both SIFT and KLT have been used for a wide range of
computer vision tasks ranging from structure from motion,
robot navigation, augmented reality to face recognition,
object detection and video data-mining with quite promis-
ing results. We have successfully ported these popular algo-
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Fig. 10 Timings of various
steps of the GPU-SIFT
algorithm are shown. GPU
computations scale linearly with
image size while CPU
computations scale linearly with
an increasing feature count (Top
and middle row). The
percentage of correct matches
(satisfying 2D homography,
epipolar geometry) obtained for
features extracted by GPUSIFT
and Lowe’s SIFT detectors for
20 different image pairs (Bottom
row)

rithms to the GPU. In both cases, strategies were developed
for dividing computation between the CPU and GPU in the
best possible way under the restrictions of the GPU’s compu-
tational model. Our GPU implementations which exploited
the parallelism and incredible raw processing power pro-
vided by today’s commodity graphics hardware are consider-
ably faster than optimized CPU versions. As new generation
graphics cards evolve (faster than predicted by Moore’s law),

our implementations would run even faster. This now makes
it possible to perform high quality feature tracking, inter-
est point detection and matching on high resolution video in
real-time on most modern computers without resorting to the
need for special-purpose hardware solutions.

Acknowledgements We gratefully acknowledge the support of the
Real-Time Vision group at Siemens Corporate Research, the NSF
Career award IIS 0237533 and the Packard Foundation.

123



Feature tracking and matching in video using programmable graphics hardware

References

1. Bramberger, M., Rinner, B., Schwabach, H.: An embedded smart
camera on a scalable heterogeneous multi-DSP system. In: Pro-
ceedings of the European DSP Education and Research Sympo-
sium (EDERS 2004) (2004)

2. Klupsch, S., Ernst, M., Huss, S.A., Rumpf, M., Strzodka, R.: Real
time image processing based on reconfigurable hardware acceler-
ation. In: Proceedings of IEEE Workshop Heterogeneous Recon-
figurable Systems on Chip (2002)

3. Fung, J., Mann, S.: OpenVIDIA: parallel GPU computer vision.
ACM MULTIMEDIA 2005, pp. 849–852 (2005)

4. Fung, J., Mann, S.: Computer vision signal processing on graphics
processing units. In: Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP 2004),
Montreal pp. V-93–V-96 (2004)

5. Gong, M., Langille, A., Gong, M.: Real-time image processing
using graphics hardware: a performance study. In: International
Conference on Image Analysis and Recognition, pp. 1217–1225
(2005)

6. Tomasi, C., Kanade, T.: Detection and Tracking of Point Features.
Tech. Rept. CMU-CS-91132, Carnegie Mellon University (1991)

7. Lukas, B.D., Kanade, T.: An iterative image registration technique
with an application to stereo vision. In: Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, pp. 674–679
(1981)

8. Birchfield, S.: Derivation of Kanade-Lucas-Tomasi tracking equa-
tion. unpublished notes (1997)

9. Birchfield, S.: KLT: An Implementation of the Kanade-Lucas-
Tomasi Feature Tracker. http://www.ces.clemson.edu/~stb/klt
(2005)

10. Lowe, D.G.: Distinctive image features from scale-invariant key-
points. IJCV 60(2), 91–110 (2004)

11. Yang, R., Pollefeys, M.: Multi-resolution real-time stereo on com-
modity graphics hardware. In: Conference on Computer Vision and
Pattern Recognition (CVPR) pp. 211–217 (2003)

12. Zach, C., Bischof, H., Karner, K.: Hierarchical disparity estima-
tion with programmable 3D hardware. In: WSCG (International
Conference in Central Europe on Computer Graphics, Visualiza-
tion and Computer Vision). Short Communications, pp. 275–282,
Plzen, Slowakei (2004)

13. Woetzel, J., Koch, R.: Real-time multi-stereo depth estimation
on GPU with approximative discontinuity handling. In: European
Conf. on Visual Media Production (2004)

14. Labatut, P., Keriven, R., Pons, J.-P.: A GPU implementation of level
set multiview stereo. Int. Conf. Comput. Sci. 4, 212–219 (2006)

15. Yang, R., Welch, G.: Fast image segmentation and smoothing using
commodity graphics hardware. J. Graph. Tools 7(4), 91–100 (2002)

16. Strzodka, R., Droske, M., Rumpf, M.: Image registration by a regu-
larized gradient flow—a streaming implementation in DX9 graph-
ics hardware. Computing 73(4), 373–389 (2004)

17. Griesser, A., Roeck, S.D., Neubeck, A., Gool, L.J.V.: GPU-based
foreground-background segmentation using an extended colin-
earity criterion. In: Vision, Modeling, and Visualization (VMV)
(2005)

18. Pollefeys, M., Gool, L.J.V., Vergauwen, M., Verbiest, F., Cornelis,
K., Tops, J., Koch, R.: Visual Modeling with a Hand-Held Cam-
era. IJCV 59(3), 207–232 (2004)

19. Akbarzadeh, A., Frahm, J.-M., Mordohai, P., Clipp, B., Engels, C.,
Gallup, D., Merrell, P., Phelps, M., Sinha, S., Talton, B., Wang, L.,
Yang, Q., Stewenius, H., Yang, R., Welch, G., Towles, H., Nistr,
D., Pollefeys, M.: Towards urban 3D reconstruction from video,
Invited paper. In: 3rd International Symposium on 3D Data Pro-
cessing, Visualization and Transmission (3DPVT) (2006)

20. GPGPU: General-Purpose Computation on GPUs. http://www.
gpgpu.org (2004)

21. Bjorke, K.A.: NVIDIA Corporation. Image processing using par-
allel GPU units. Proceedings of SPIE, vol. 6065 (2006)

22. Pharr, M., Fernando, R.: GPU Gems 2: Programming Techniques
for High-Performance Graphics and General-Purpose Computa-
tion. Addison-Wesley Prof, Reading (2005)

123

http://www.ces.clemson.edu/~stb/klt
http://www.gpgpu.org
http://www.gpgpu.org

	Feature tracking and matching in video using programmablegraphics hardware
	Abstract 
	Introduction
	GPGPU concepts
	KLT tracking on GPU
	The algorithm
	GPU implementation details
	Implementation strategies
	Build-pyramid
	Track
	Re-select-features
	Results
	SIFT feature extraction on GPU
	The algorithm
	GPU implementation details
	Results
	Conclusions
	Acknowledgements


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


