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Abstract—The high number of Distributed Denial of 
Service (DDoS) attacks executed against a lot of nations has 
demanded innovative solutions to guarantee reliability and 
availability of internet services in the cyberspace. In this sense, 
different methods have been used to analyze network traffic 
for denial of service attacks, such as statistical analysis, data 
mining, machine learning and others. However, few of them 
explore hidden recurrence patterns in nonlinear network 
traffic and none of them explores it together with the Adaptive 
Clustering. This work proposes a new method, called 
DDoSbyRQA, which uses the Recurrence Quantification 
Analysis (RQA) based on the extraction of network traffic 
dynamic features and the combination with an Adaptive 
Clustering Algorithm (A-Kmeans) to detect DDoS attacks. The 
experiments were made by using the CAIDA and UCLA 
databases and it has demonstrated the ability of the method to 
increase the accuracy of DDoS detection and to real-time 
applicability. 
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I. INTRODUCTION 
Keeping the internet services is critical during conflicts 

and crises when nations need to be able to send information 
and to be increasingly resilient to the challenges that cyber 
conflict can provide. The ability to use and deploy Intrusion 
Detection Systems (IDS) to the networks can be crucial for 
enabling communication, especially in a hostile environment. 
The DDoS can stop the ability to maintain communication 
between interested actors. Military or civilian areas can be 
impaired and to lose the freedom to continue fighting in the 
cyberspace, putting at risk the security of a region or country. 

Detection of DDoS can be an excellent solution to 
recover the security of a nation's cyberspace. For this to 
happen, it necessarily has mechanisms that can indicate in 
real time a possible attack and enable actions to be taken in a 
timely manner, because only in this way the success of the 
mitigation process may be satisfactory. 

To detect DDoS attacks, different techniques are used. 
From [1], the detection techniques could be aggregated in at 
least four relevant methods: statistical-based, data mining-
based, knowledge-based and machine learning-based. 
However, as noted in [2], many of them still have limitations 
and their quality of service can be affected due to an 
excessive number of false alerts. The existence of traffic with 
nonlinear dynamic behavior instead of just stationary 
behavior can be one of these limiting factors [3]. The 
network traffic contains properties as self-similarities [4], 
long-range dependence [5] and recurrence [3]. 

The Recurrence Quantification Analysis (RQA) [6] is a 
mathematic technique that allows analyzing the behavior of a 
nonlinear signal that repeats itself over a specific period. In 
the network security field, RQA already has been applied in 

other works [3, 7, 8]. However, in the current paper, we have 
changed the way that it is applied. To provide better results 
on DDoS attack detection this paper explores RQA to extract 
knowledge from dynamic features of the network traffic in a 
combination with an adaptive clustering method. The 
Adaptive Clustering method (A-Kmeans) [9], which 
automatically calculates the number of clusters rather than a 
fixed amount of these, is combined with RQA, which 
extracts dynamic features of a set of network flow attributes 
selected to effective express DDoS behavior [10].  

Using RQA it is possible to extract various dynamic 
features of specific behaviors for each system called 
Recurrence Quantification Measures (RQM). Examples of 
RQMs are Recurrence Ratio (RR), Determinism (DET), 
Entropy (ENTR), Trend (TREND), Laminarity (LAM), 
among others. Developing the RQA over these RQMs allows 
us to obtain an analysis focused on the dynamic features of 
the traffic rather than an analysis focused on, for example, 
traffic statistical variability.  

This work proposes the DDoSbyRQA, a new method for 
DDoS attack detection that combines the RQA based on 
extracting dynamic features (RQMs) with an adaptive 
clustering to classify DDoS network traffic (TCP Flood, 
UDP Flood, and ICMP Flood). Applied on CAIDA and 
UCLA databases, the DDoSbyRQA demonstrates the power 
of this combination. As result, we get a more accurate 
method when comparing to similar methods. In this way, the 
main contributions of this work are: (1) to demonstrate that 
the use of RQA can be applied on DDoS detection not only 
to analyze adopted network flow attributes but the dynamic 
features of them; (2) to demonstrate that an adaptive 
clustering method (A-Kmeans), which automatically 
calculates the number of clusters, can be a good partner of 
the RQA to increase the efficiency of DDoS detection 
method; and (3) to demonstrate that the method can be used 
in real time to take an effective action during DDoS attacks. 

The remainder of this paper is organized as it follows: 
Section II presents related works and Section III presents a 
theoretical review of the RQA. Section IV presents details of 
the implementation of the proposed DDoSbyRQA method 
and Section V presents our experiments and results. Finally, 
Section VI presents the work conclusions. 

II. RELATED WORKS 
The traditional idea to characterize and detect DDoS 

attacks is to do attribute extraction based on network traffic 
behavior and construct an analysis of their behavior. For 
example, in [11] the authors propose a method to detect 
DDoS attacks using a classifier based on a decision tree 
algorithm (C 4.5). The authors use sixteen attributes to 
describe a normal network traffic pattern behavior. However, 
the rate of false positives is incremented when network 



traffic increases [11], denoting a less effective method in 
situations in which there is increased flow on normal 
network traffic. Also, the choice of network traffic attributes 
did not consider important features for DDoS, since the 
chosen attributes do not contemplate the variance of the 
packets size and variance of the time arrival packets (time 
among received packets). These variances tend to zero 
during a DDoS attack [10].  

In [12], the authors present a method for detection of 
DDoS attacks that explores different classifiers - the Apriori 
algorithm, FCM and K-Means clustering-, demonstrating 
that the combination of multiple classifiers can improve the 
accuracy of detection. From these works, it is easy to 
comprehend that the performance of a detector depends on 
extracted attributes and the chosen classifier. Different from 
the others, our work explores these factors when applying 
RQA combined with a self-adapter classifier (A-Kmeans) on 
a set of attributes of network traffic that could effectively 
characterize a DDoS attack. 

The RQA was used in other works [3, 7, 8]. In [3] the 
authors demonstrate that RQA can be applied to offer 
qualitative and quantitative observations on detecting 
anomalous events in complex traffic (nonlinear). They 
suggested that the network traffic exposes itself to the 
omnipresent properties of self-similarity and long-range 
dependence, which are correlations in a wide range of time 
scales. In [7] the authors focus on demonstrating the visual 
analysis of Recurrence Quantification Measures (RQM) in 
Recurrence Plots (RP) and their power on detecting 
anomalies. Visual tools like web recurrence plot 
(http://www.recurrence-plot.tk/glance.php) and graphical 
API of the Weka data mining tool were used to conclude if 
changes visually indicate a DDoS attack or not. In [8] the 
authors extend the work performed in [7] to demonstrate that 
RQA can be applied to detect DDoS on VoIP networks but 
they maintain the empirical analysis based on visual tools of 
Recurrence Plots (RP). They did not consider the need for 
alert generation automatically and in real time. Differently 
from the above works, our approach looks to attributes and to 
a method that automatically analyzes the dynamic features 
(RQMs) over Recurrence Plots (RP). In addition, we also 
explore the use of Adaptive Clustering (A-Kmeans) in 
combination with RQA. 

In [10], it is presented a method that characterizes DDoS 
attacks from seven attributes extracted directly from the 
network traffic. According to the authors, from these 
attributes, a classifier can effectively distinguish this kind of 
attacks. They have used the K-NN algorithm [13], which is a 
similarity-based supervised learning algorithm that makes 
the classification based on the nearest neighbor rule. The 
choice of k neighbor is fixed and determined by the 
researcher. However, the use of a classifier to operate 
directly on the attribute time series can be a significant 
limiter for obtaining a good efficiency of the DDoS detection 
method. In addition, manually setting the algorithm number 
of neighbors is a challenge and a limiter. In [14] the authors 
performed a combination of Wavelet Transform (WT) and 
RQA and clustering algorithm to classify the traffic. The 
used clustering method was the K-Means clustering, which 
has a predefined fixed number of clusters, and the use of 
wavelet preprocessing is a time consuming phase. 
Differently, adopting the set of attributes proposed in [10] 
our work explores the combination of RQA and Adaptive 

Clustering (A-Kmeans [9]) showing that it does not need a 
fixed number of clusters and get better results than non-
adaptive one. 

III. RECURRENCE QUANTIFICATION ANALYSIS (RQA) 
RQA corresponds to the construction of the Recurrence 

Plots (RP), a visual graph of recurrence quantification of a 
given Time Series (TS), and its interpretation. The RP (see 
example in Fig. 1) was proposed in [15] as a technique of 
nonlinear dynamic analysis systems and provides a behavior 
visualization of the space trajectory of multidimensional 
phases [8]. In practice, RP is a two-dimensional square array 
that represents the evolution of dynamic system states and 
that is populated by black and white dots. The black dots 
indicate recurrence, namely the states of the dynamical 
system for these orbiting points in regions near each other in 
the trajectory of the phase space. Such regions are called the 
Recurrence Areas. A black dot marked at the coordinate (i, j) 
of the RP represents the recurrence of system states at time i 
and j [16, 6]. In other words, considering the RPs of Fig. 1, 
generated in the testing phase of this work, each state of the 
Average Packet Size (AVG_PAC_SIZE) in each moment (i) is 
compared with all other states in each moment (j, j + 1, ..., 
n). In case of recurrence, a black dot will be marked from 
each result of each comparison; otherwise, it will be a white 
dot. Now (i + 1) its state will again be compared with all 
other states (j, j + 1, ..., n) and so on until the end of the time 
series for each used attribute. The result is a square matrix of 
black and white dots that indicates the recurrence of the 
interesting attribute. 

Given a network traffic time series X{xi}, where i = 1, 
2,..., n [16, 17], the traffic system states can be expressed by 
Xj (see Equation (1)). In (1), m is the embedded dimension 
(represents how many delays are used in relation to the initial 
time series) and τ is the duration of the delay (time to wait 
between states). Note that n is the total number of samples in 
X and N is the number of states.  

( 1)[ , ,..., ], 1,2,...,j j j j mX x x x j Nτ τ+ + += =       (1) 

After collecting the traffic from pre-defined attributes, 
the RP is built to each one according to (2).  

( || ||)ij i jR x xθ ε= − −                      (2) 

Fig. 1. RP of the Average Packet Size time series in one normal traffic. The 
axes correspond to the number of traffic system states considered in RQA, 
i.e., the RP demonstrates the recurrence over N states of the TS.  



Rij corresponds to an element of the recurrence matrix 
(RP), where ε is the adopted threshold called Recurrence 
Radius, xi and xj are the states of the system in the m-
dimensional phase space under analysis, N is the number of 
states considered and θ is the decision function defined in 
(3). According to (3), if the distance between the states xi and 
xj is smaller than the threshold ε, then the value of θ(ε) is 1 
and there is a black dot in position (i, j) of RP; otherwise, the 
value of θ(ε) is 0 and there is a white dot (i, j) in RP.  

                   0( || || 0
1( || || 0( ( )) { i j

i j

x x
x xf ε

εθ ε − − ≤
− − >=                (3) 

It's to highlight that the ε is an important parameter in the 
RQA. This radius corresponds to a threshold that defines the 
recurrent points on the RP and it depends on each type of 
system that is being analyzed and their objectives [16]. The 
literature does not provide a specific method to establish the 
ideal Recurrence Radius to define recurrence points, taking it 
to be adjusted according to the type of application.  

Despite RP allows visual analysis of recurrence, this type 
of analysis is human-based and can lead to different 
interpretations. Thus, to obtain more precision to the 
analysis, Recurrence Quantification Measures (RQM) [16] 
can quantify the behavior structures in the RP. RQMs can be 
computed and analyzed by algorithms. From [16], the main 
RQMs are Recurrence Ratio (RR), Determinism (DET), 
Average Length of the Diagonal Lines (L), Maximum 
Length of the Diagonal Lines (Lmax), Shannon Entropy 
(ENTR), Trend (TREND), Laminarity (LAM), Average 
Length of Vertical Structures (TT) and Maximum Length of 
Vertical Structures (Vmax). 

The RQA can be applied in the analysis of short non-
stationary series. However, compared to other techniques of 
nonlinear dynamic analysis, one of the main advantages 
offered by RQA is to enable the analysis of anomalies in 
non-stationary system minimizing the bias in the analysis 
when occurring overloads in parameters of the sampling 
system. 

IV. THE DDOSBYRQA METHOD 
This section presents the DDoSbyRQA anomaly detection 

method. It can distinguish between network traffic due to 
DDoS attacks vs. benign traffic. Fig. 2 shows the architecture 
of the detection solution, where the Attack Detection Module 
highlights the main functionalities of the proposed method. 

 
   Fig. 2. The architecture of the attack detection by DDoSbyRQA method. 

In general, the DDoSbyRQA is supported by a Packet 
Capture Module, which collects data on the network, and by 
an Attribute Extraction Module, which selects desired 
attributes for RQA. The Attack Detection Module 
encapsulates the method that combines the RQA and 
Adaptive clustering (A-Kmeans) to detect DDoS attacks. The 
Subsections A, B and C detail each module of the 
architecture and Subsection D presents the algorithm that 
implements the DDoSbyRQA method. 

A. Packet Capture Module 
The packet capture module is a module that corresponds 

to a network sniffer. It selects the inbound traffic to a 
network under analysis by DDoSbyRQA. After captured, the 
data is sent to the Attribute Extraction Module.  

B. Attribute Extraction Module 
The extraction of attributes corresponds to the phase of 

selection network attributes that potentially provide relevant 
information to the problem of interest (DDoS detection). 

For detection of DDoS attacks, the RQA application 
requires attributes that characterize the anomalies of interest 
in a time series. From [10], it is known that seven attributes 
are enough to identify DDoS attacks. They are illustrated in 
Table I.  

The function of the Attribute Extraction Module is to 
extract these seven attributes from network traffic and send 
them to the Attack Detection Module. The result value of 
each attribute corresponds to statistical values extracted from 
network traffic flow at each second, as described in Table I. 
At each sixty seconds, a new time series is formed and sent 
to the detection module. Thus, the output of this module is 
seven time series, one for each attribute described in Table I, 
at each minute. 

TABLE I.  ATTRIBUTES USED BY RQA. ADAPTED FROM [10] 

Attributes used by RQA 
Attributes Description 

N_PAC  Number of packets  
N_BYTES Number of bytes   
AVG_PAC_SIZE The average packets size   
VAR_T_PAC The variance of the time arrival packets  
VAR_S_PAC The variance of the packets size 
R_PAC Total packets rate 
R_BYTES Total bytes rate 

C. Attack Detection Module 
The Attack Detection Module is the central module of the 

proposed solution (see Fig. 2). It is composed of (i) the RQA 
Module and by (ii) Decision Module centered in an adaptive 
clustering classifier. 

1) RQA Module: It is important to highlight that in the 
RQA module the method also extracts dynamic features 
(RQMs) of the network traffic (for example, Entropy), 
which aim to enable the recurrence analysis through RPs. 

This module is responsible by the RQA and RQMs 
computing and analyzing on the RPs. Each attribute 
received through Attribute Extraction Module is represented 
in RQA Module by a time series (60 seconds) modeled by 
samples held in equidistant periods. Every time series, one 
for each attribute that expresses DDoS attacks or normal 
traffic (Table I), result on Recurrence Plots with its RQMs 
extracted mathematically. From each time series, one RP is 



built, as defined in Section III. After the formation of the 
RP, three dynamic features are extracted: Recurrence Ratio 
(RR), Entropy (ENTR) and Determinism (DET). These 
features correspond to RQMs used in DDoSbyRQA for 
DDoS detection. Our goal is to analyze anomaly occurrences 
over these RQMs and not over network traffic statistical 
attributes. 

To extract the dynamic features from each network 
attribute, the quantification calculations (calculation of RR, 
DET and ENTR) applied to the RP in DDoSbyRQA are 
made as follows. 

 
a) Recurrence Ratio (RR): Measures the density of 

recurrence points on the RP. See (4) for RR computation. 
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b) Determinism (DET): The ratio between the number 
of recurrence points that makes the diagonal structures and 
all points of recurrence. 
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In (5), P(l) is the number of recurrence points for each 
diagonal formed and l is the RP diagonal length. 

c) Shannon Entropy (ENTR): Represents the frequency 
distribution of the lengths of the diagonal lines. 
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Through these 21 dynamic features (3 for each of the 7 
attributes), the RQA Module forms a set of data to express 
through the recurrence properties the network behavior. This 
set is then forwarded to the Decision Module to be clustered 
and classified. 

2) Decision Module: the Decision Module has the 
function of classifying the set of dynamic features received 
from RQA Module. The data is first partitioned by similarity 
(clusters) and then classified as a DDoS attack (anomalous) 
or not (no anomalous). 

In order to avoid the difficulty of defining the optimal 
number of clusters, the DDoSbyRQA method applies the A-
Kmeans algorithm [9]. This algorithm works on a set of 21 
RQMs derived from the values of Entropy, Determinism 
and Recurrence Ratio of seven network attribute (see Table 
I). The A-Kmeans automatically calculates the number of 
clusters (value of "k" is automatic) and compares each of 
them with pre-set thresholds during training phase with the 
normal traces databases.  

The decision of the module is then centered on the 
calculation of centroids (central points of each cluster) of 
the set of dynamic features (RQMs) received from the RQA 
Module. If the majority of the formed clusters are classified 
as anomalous, then the traffic will be classified as a DDoS 
attack. 

In short, the Decision Module is also enhanced with an 
adaptive clustering method to provide more flexibility in the 
calculation of the number of clusters used to classify the 
traffic. The A-Kmeans does it automatically. The automatic 

calculation improves the minimization of accuracy errors of 
the classifier. For example, in K-means [14] method the 
researcher determines the number of clusters. 

D. DDoSbyRQA Algorithm 
The following steps detail the algorithm that implements 

the DDoSbyRQA method.  

Entry: time series traffic (seven attributes).  

Output: an indication of DDoS attack or normal traffic.  

Step 1: for each traffic series X (one for each of the seven 
attributes), to calculate the dynamic features (Recurrence 
Ratio, Entropy and Determinism) as described on subsection 
IV.C. This process is illustrated in (8), (9) and (10). 

Step 2: to group the 21 dynamic features (from Step 1) to 
describe the dynamic patterns of network traffic behavior 
synthesized in F in (11).  

                          ]},,{[ nnn DETENTRRF =                  (11) 

Step 3: from A-Kmeans algorithm, it builds groups of 
dynamic characteristics in F within different clusters and 
classifies the traffic behavior as a DDoS attack (the majority 
of clusters anomalous) or Normal. 

V. EXPERIMENTS AND RESULTS 
This section presents the experiments setup (subsection 

A), the tests and results of DDoSbyRQA (subsection B), 
including the False Positive (FP) rates comparison with other 
methods (subsection C), and finally it demonstrates the 
performance tests (subsection D). 

A. Experiments Setup 
The experiments setup is twofold organized: first the 

choice of the dataset and then the setup of DDoSbyRQA 
operational parameters. 

Doing real experiments with the DDoS attack is a 
challenge and the performance on laboratory needs good 
databases. Some authors [17, 18] have used databases like 
CAIDA 2008 [19] and CAIDA 2007 [20] to characterize 
normal traffic and DDoS attack traffic. In addition, UCLA 
CSD database [21] is well known and contains interesting 
datasets with and without attacks. The CAIDA 2007 
database contains 1 hour of DDoS attacks (ICMP Flood and 
TCP Flood) divided into files of type "pcap" sanitized with 5 
minutes each. The CAIDA 2008 database contains 16 hours 
of traffic without attack divided into files of type "pcap" 
sanitized with 1 hour each. The data was collected for sixteen 
days on the network in Chicago and San Jose, in the United 
States. The database UCLA CSD contains traces of 1 hour of 
DDoS attacks (UDP Flood) and traffic traces without attacks 
collected on ten different days. Assuming these databases 
contain workloads to test the DDoSbyRQA, the experiments 
in this paper used these three databases. 

From these datasets, seven attributes were extracted as 
described in Table I, resulting in a time series X for each 

)()()()( __4_3_2_1 PACTVARPACAVGBYTESNPACN XfFXfFXfFXfF ==== (8) 
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attribute of interest. Thus, the experiments were arranged in 
two phases, one for training and other for tests. In the 
training phase was used the normal traffic (without DDoS 
attacks) and in the testing phase was used the anomalous 
traffic (with DDoS attacks). In the training phase, the goal of 
the experiment was to calibrate the threshold values of the 
DDoSbyRQA method. To a correct method operation, it was 
important to identify the behavior of each dynamic features 
(RQMs) in traces with and without attacks. To characterize 
the normal traffic, the experiments in this phase used 62 
minutes of traces from CAIDA 2008 database and 152 
minutes of traces from UCLA CSD database. All these traces 
without attacks. To characterize anomalous traffic, were used 
only data sets with traces containing DDoS attacks, one with 
66 minutes from CAIDA 2007 database and other with 56 
minutes from UCLA CSD database. 

The DDoSbyRQA method was setup to work with time 
series corresponding to a sample of 60 seconds, containing a 
network traffic attribute to each one. Thus, without loss of 
generality we chose to set the duration of delay (τ) to one 
second and the embedded dimension (m) to 60. According to 
the experiments performed in [14, 15], in this work the RPs 
was generated with Recurrence Radius (ε) set to rate of 10%. 
Of course, these parameters of RQA could differ, but to 
demonstrate the power of the method we decided to fix the 
threshold ε (RQA most influencer parameter) on a value 
already used on similar works. The parameters τ and m have 
less influence on RQA [14] and thus our choice followed the 
chosen TS structure. 

B. Testing and Results 
The first test step was to evaluate the significance of the 

adopted MQRs. We highlighted the chosen MQRs derived 
from [14], a previous work on network anomaly detection 
with RQA. To be significant, a MQR must present different 
behavior to normal (training) and abnormal (testing) traces. 
Fig. 3 illustrates the results of the training phase for the 
dynamic features RR of the AVG_PAC_SIZE (one of the 
seven selected attributes). The analysis of dynamic features 
of other attributes follows the same methodology and its 
demonstration was removed to eliminate redundancy. In Fig. 
3, the RR for the training dataset is shown to be stationary, 
with RR level around 25% (line 2). For the testing dataset, 
containing only traces with attacks, the stationary behavior 
still remains observable, but the level of RR was increased 
(line 1) to almost twice the observed in series without attack. 
These results demonstrate the feasibility of thresholds 
adoption to distinguish between normal traffic and DDoS 
attacks using the dynamic features (RQMs).  

The second test step was to evaluate the accuracy of the 
DDoSbyRQA. Table II (TCP flood / ICMP flood) and Table 
III (UDP flood) present the results of the testing phase. The 
experiment evaluated the proportion of True Positives (TP), 
False Positives (FP) and the resulting Accuracy (AC), with 
the accuracy defined as follows. 

For purposes of comparison were conducted tests with (i) 
K-Means algorithms, (ii) RQA + K-Means, (iii) A-Kmeans, 
and (iv) RQA + A-Kmeans. The latter corresponds to the 
DDoSbyRQA method. The goal of these tests was to allow 
the evaluation of the impact of the RQA and Adaptive 
Clustering inclusion. These tests also considered two 
datasets: a dataset merging of databases CAIDA 2007 and 
CAIDA 2008 (see results in Table II) and other merging 
datasets from databases UCLA CSD Normal and UCLA 
CSD with DDoS (see results in Table III). 

When comparing the results, in both cases (containing 
attacks and without attacks), showed in Tables II and III, it 
was possible to observe an improvement of the efficiency of 
classifiers when applied in conjunction with RQA. The True 
Positives (TP) when the RQA is associated with K-Means 
classifier improved more than 13% (13.88% for CAIDA 
dataset and 18.15% for UCLA CSD dataset) and more than 
19% when associated with the A-Kmeans (20.03% for 
CAIDA dataset and 19.69% for UCLA CSD dataset). 
According to values in Tables III and IV, the reduction of the 
False Positives (FP) was also significant. As a result, with 
both datasets, there was an increase in the accuracy of 
classifiers when in conjunction with RQA, reaching an 
improvement of 10.54% for A-Kmeans on CAIDA dataset. 
The tests also demonstrated the association of RQA and A-
Kmeans provided a more effective result when compared 
with RQA + K-Means. This result demonstrates the 
effectiveness of adaptive clustering proposed by 
DDoSbyRQA method. With CAIDA dataset the accuracy 
was improved by 12.42% and with UCLA CSD dataset the 
accuracy was improved by 8.62%, demonstrating better 
results in DDoS detection. 

TABLE II.  RESULTS FOR CAIDA 2007/2008  (TCP/ICMP FLOOD) 

ALGORITHM AC (%) TP (%) FP (%) 
K-Means 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

70,96 
 

69,23 
 

28,33 
 RQA+K-Means  85,99 83,08 13,54 

A-Kmeans 85,96 75,35 12,31 
RQA+A-Kmeans 98,41 95,38 1,54 

TABLE III.  RESULTS FOR UCLA CSD NORMAL / DDOS  (UDP FLOOD) 

ALGORITHM AC (%) TP (%) FP (%) 
K-Means  84,34 60,63 11,25 
RQA+K-Means 88,26 78,78 10,48 
A-Kmeans 94,23 74,24 4,54 
RQA+A-Kmeans 96,88 93,93 3,03 

C. Comparison with other methods 
The Table IV demonstrates that the False Positive (FP) 

rates of other similar DDoS detection methods are higher 
than the DDoSbyRQA method. It can be seen that the 
DDoSbyRQA method has an excellent performance when 
compared with others. Our method gets 1.54% of FP (see 
Table II) and the best other get 2.40% (see Table IV). 

TABLE IV.  FP RATES TO DDOS DETECTION METHOD CITED 

REFERENCES METHOD FP 
 [11] C 4.5 (Decision Tree) 2,40 

[12] Apriori+ FCM + K-Means 2,45 
[13] KNN 8,11 
[14] RQA+TW+ K-Means 8,91 
[17] Centroid-Based Rules 3,23 

Fig. 3. Recurrence Ratio for Average Packet Size (AVG_PAC_SIZE). 



D. Performance test 
The performance test of the DDoSbyRQA was executed 

on an Intel® Core ™ i7 4510U CPU 2.60GHz with 8 cores 
and 8GB of memory. The operating system was the Debian 
GNU / Linux 7 with kernel 3.2.0-4-amd64. The compiler 
used was the GNU C Compiler, version 4.7.2-5. The 
presented execution times represent the average of 20 
executions. 

The experiments measure three algorithm times. The time 
spent (i) to extract network traffic statistical attributes from 
data collected of a 60 seconds traffic window; (ii) to compute 
the Recurrence Plot graph and its Recurrence Quantification 
Measures; and (iii) to make a decision with the adaptive 
classifier. Table V shows the results of the performance test. 
The results demonstrate that the DDoSbyRQA can decide in 
less than one second. This performance result enables the 
proposed method to be applied in real time applications that 
operate over network traffic statistics collected with time 
windows higher than one second. 

TABLE V.  PERFORMANCE TEST RESULTS OF THE DDOSBYRQA. 

DDoSbyRQA step Average Execution 
Time (ms) 

Extraction of network traffic attributes 285  
Computation of RP and its RQMs 324 
Adaptive clustering and decision 325 

Total 934 

VI. FINAL CONSIDERATIONS 
In this paper, we discussed how DDoS detection on 

computer network could overcome many of the limitations 
and security challenges posed to cyberspace during conflicts 
and crisis that are exploited for adversary nations. To avoid 
important damages in the communication system of any 
country this paper presented an effective way to detect DDoS 
attacks in order to react accurately and quickly. 

The effectiveness of anomaly-based DDoS detection 
methods has been a challenge for designers of detection 
algorithms. Thus, the use of RQA combined with A-Kmeans 
technique came as a new option to improve the quality of 
service of these algorithms. Until now in the context of 
detecting anomalies in network traffic, the RQA has been 
explored with limitations. This work has contributed 
evaluating it in conjunction with a small and known group of 
network traffic attributes and an Adaptive Clustering 
algorithm (A-Kmeans). 

This work showed that from only seven network traffic 
attributes, which characterize DDoS, it is possible to extract 
relevant dynamic features (RQMs) that allows increasing the 
accuracy of DDoS detection. This method also aimed the 
anomaly detection with RQMs, making possible to overcome 
the negative influence of variability in traffic attributes that 
could lead to erroneous detections. We highlight that it is 
possible because the RQA looks for recurrence domain 
instead of a traffic domain. 

The work experiments have shown that the use of the 
RQA increases the accuracy in identifying DDoS attacks 
mainly by two facts. First, the method classifies dynamic 
features of recurrence instead of traffic attributes (the tests 
evaluated classifiers with and without the RQA). The benefit, 
in this case, was an increment of up to 10.54% in the 
accuracy of detection. It is important to note that this result is 

associated with a significant increase in true positives and 
decrease in false positives. Second, without sudden 
variations in traffic, the method allows observing changes in 
behavioral patterns of recurrence that assist the classifiers to 
correctly generate clusters. With normal abrupt changes (not 
caused by DDoS attacks) the method allows observing the 
regularity of recurrence behavior. 

The work also demonstrated that the use of A-Kmeans 
algorithm, an adaptive clustering algorithm that 
automatically calculates the number of clusters, fits well with 
DDoS detection based on RQA and that it improves the 
accuracy when combined with RQA. The improvement in 
detection accuracy was by 8.62% when compared with a 
non-adaptive cluster algorithm (K-Means). The worst 
performance of K-Means clustering reflects the difficulty of 
calibrating a non-adaptive cluster, which can be observed by 
the variability of accuracy when explored with two databases 
of different characteristics. 

Not only effective for DDoS detection, the proposed 
DDoSbyRQA method can also be explored in other contexts 
of network behavioral analysis and other types of cybernetic 
attacks, mainly by its characteristic to enable the analysis in 
the domain of recurrence while minimizing the negative 
influence of variability that causes deviations in the analysis 
of traditional traffic statistics. 

REFERENCES 
[1] M. Gyanchandani, J. L. Rana, and R. N. Yadav, “Taxonomy of 

Anomaly Based Intrusion Detection System: A Review,” In: 
International Journal of Scientific and Research Publications, v.2, 
n.12, 2012. 

[2] A. S. Raut, and K. R. Singh, “Anomaly Based Intrusion Detection-A 
Review,” Int. J. on Network Security, vol. 5, 2014. 

[3] F. Palmieri, and U. Fiore, “Network anomaly detection through 
nonlinear analysis,” Computers & Security, 29(7), pp. 737–755, 2010. 

[4] W. Willinger, V. Paxson, and M. S. Taqqu, “Self-similarity and heavy 
tail: structural modeling of network traffic,” A Practical Guide to 
Heavy Tails: Statistical Techniques and Applications, ISBN: 0-8176-
3951-9, pp. 27-53, BirkhRăuser, Boston, USA, 1998. 

[5] M. Grossglauser, and J. C. Bolot, “On the relevance of long-range 
dependence in network traffic,” IEEE/M Transactions on Networking, 
7(5): pp. 629-640, 1999. 

[6] C. L. Webber, and N. Marwan, “Recurrence Quantification Analysis: 
Theory and Best Practices,” Springer series: Understanding Complex 
Systems. Springer International Publishing, Cham Switzerland, 2015. 

[7] N. Jeyanthi, J. Vinithra, S. Sneha, R. Thandeeswaran, and N.C.S.N. 
Iyengar, “A Recurrence Quantification Analytical Approach to Detect 
DDoS Attacks,” In: Computational Intelligence and Communication 
Networks (CICN), Washington, DC, USA, pp. 58-62, 2011. 

[8] N. Jeyanthi, R. Thandeeswaran, and J. Vinithra, “RQA based 
approach to detect and prevent DDoS attacks in VoIP networks,” In: 
Cybernetics and Information Technologies. v.14, n.1, pp. 11-24, 
2014. 

[9] S. K. Bhatia, “Adaptive K-Means Clustering. American Association 
for Artificial Intelligence,” Copyright. Palo Alto, California 94303 
USA. Copyright, 2004. 

[10] T. T. Oo, and T. Phyu, “A Statistical Approach to Classify and 
Identify DDoS Attacks using UCLA Dataset,”  International Journal 
of Advanced Research in Computer Engineering & Technology 
(IJARCET), vol. 2, Issue 5, 2013. 

[11] Y. C. Wu, H. R. Tseng, W. Yang,  and R. H. Jan, “DDoS detection 
and traceback with decision tree and grey relational analysis,” 
International Journal of Ad Hoc and Ubiquitous Computing, 7, pp. 
121–136, 2011. 

[12] R. Zhong, and G. Yue, “DDoS detection system based on data 
mining,” Proceedings of the 2nd International Symposium on 
Networking and Network Security, Jinggangshan, China, 2-4 April, 
pp. 062–065. Academy Publisher, 2010. 



[13] H. Nguyen, and Y. Choi, “Proactive Detection of DDoS Attacks 
Utilizing k-NN Classifier in an Anti-DDoS Framework,” International 
Journal of Electrical and Electronics Engineering, vol. 4, nº 4, 2010. 

[14] J. Yuan, R. Yuan, and X. Chen, “Network Anomaly Detection based 
on Multi-scale Dynamic Characteristics of Traffic,” INT J COMPUT 
COMMUN, ISSN 1841-9836, 9(1), pp. 101-112, 2014. 

[15] J. P. Eckmann, S. O. Kamphorst and D. Ruelle, “Recurrence plots of 
dynamical systems. Europhys,” Lett, 56 (5), pp. 973-977, 1987. 

[16] N. Marwan, and C.L. Webber Jr, “Mathematical and computational 
foundations of recurrence quantifications,” In: Recurrence 
Quantification Analysis: Theory and Best Practices. Springer Series: 
Understanding Complex Systems. Springer International Publishing, 
Cham, Switzerland, pp. 1-41, 2015. 

[17] W. Bhaya, and M.E. Manaa, “The Proactive DDoS Attack Detection 
Approach Using Data Mining Cluster Analysis,” Journal of Next 
Generation Information Technology (JNIT), vol. 5, no. 4, 2014. 

[18] M. Suresh, and R. Anitha, ”Evaluating Machine Learning Algorithms 
for Detecting DDoS Attacks,” In 4th international Conference on 
Advances in Network Security and Applications (CNSA), pp. 441-
452, 2011. 

[19] “The CAIDA UCSD Anonymized Internet Traces 2008,” Access in 
05 may 2015 11:12h,  https://data.caida.org/datasets/passive-2008/ 

[20] “The CAIDA "DDoS Attack 2007" Dataset,” Access in 15 may 2015 
11:12h,  https://data.caida.org/datasets/security/ddos-20070804/ 

[21] “UCLA CSD packet traces,”  
http://www.lasr.cs.ucla.edu/ddos/traces/public/usc 

 

 
 

http://www.lasr.cs.ucla.edu/ddos/traces/public/usc

	I. Introduction
	II. Related Works
	III. Recurrence Quantification Analysis (RQA)
	IV. The DDoSbyRQA Method
	A. Packet Capture Module
	B. Attribute Extraction Module
	C. Attack Detection Module
	1) RQA Module: It is important to highlight that in the RQA module the method also extracts dynamic features (RQMs) of the network traffic (for example, Entropy), which aim to enable the recurrence analysis through RPs.
	This module is responsible by the RQA and RQMs computing and analyzing on the RPs. Each attribute received through Attribute Extraction Module is represented in RQA Module by a time series (60 seconds) modeled by samples held in equidistant periods. E...
	To extract the dynamic features from each network attribute, the quantification calculations (calculation of RR, DET and ENTR) applied to the RP in DDoSbyRQA are made as follows.
	a) Recurrence Ratio (RR): Measures the density of recurrence points on the RP. See (4) for RR computation.
	b) Determinism (DET): The ratio between the number of recurrence points that makes the diagonal structures and all points of recurrence.
	c) Shannon Entropy (ENTR): Represents the frequency distribution of the lengths of the diagonal lines.

	2) Decision Module: the Decision Module has the function of classifying the set of dynamic features received from RQA Module. The data is first partitioned by similarity (clusters) and then classified as a DDoS attack (anomalous) or not (no anomalous).
	In order to avoid the difficulty of defining the optimal number of clusters, the DDoSbyRQA method applies the A-Kmeans algorithm [9]. This algorithm works on a set of 21 RQMs derived from the values of Entropy, Determinism and Recurrence Ratio of seve...
	The decision of the module is then centered on the calculation of centroids (central points of each cluster) of the set of dynamic features (RQMs) received from the RQA Module. If the majority of the formed clusters are classified as anomalous, then t...
	In short, the Decision Module is also enhanced with an adaptive clustering method to provide more flexibility in the calculation of the number of clusters used to classify the traffic. The A-Kmeans does it automatically. The automatic calculation impr...

	D. DDoSbyRQA Algorithm

	V. Experiments and Results
	A. Experiments Setup
	B. Testing and Results
	C. Comparison with other methods
	D. Performance test

	VI. Final Considerations
	References


