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Abstract 

Lattice-based digital signature has become one of the widely recognized post-quantum algorithms because of its 
simple algebraic operation, rich mathematical foundation and worst-case security, and also an important tool 
for constructing cryptography. This survey explores lattice-based digital signatures, a promising post-quantum resist-
ant alternative to traditional schemes relying on factoring or discrete logarithm problems, which face increasing risks 
from quantum computing. The study covers conventional paradigms like Hash-and-Sign and Fiat-Shamir, as well 
as specialized applications including group, ring, blind, and proxy signatures. It analyzes the versatility and security 
strengths of lattice-based schemes, providing practical insights. Each chapter summarizes advancements in schemes, 
identifying emerging trends. We also pinpoint future directions to deploy lattice-based digital signatures includ-
ing quantum cryptography.
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Introduction
As the advent of quantum computers looms ever closer, 
the super computing power it provides would cause 
threats on the security of universally used cryptographic 
schemes in various application fields by the Shor’s algo-
rithm (Shor 1999), this is based on a polynomial-time 
quantum algorithm proposed by Shor which can be used 
to factor large integers and solve discrete logarithm prob-
lem. Thus, the schemes based on the number-theoretic 
hard problems and discrete logarithm problem tend to be 
vulnerable which cover almost all public-key encryption 

wildly used on the Internet including RSA (Rivest et  al. 
1978), DSA ( National Institute of Standards and Tech-
nology 2009), and elliptic-curve cryptography (Breuil and 
Diamond 2001). For 30 years, Shor’s algorithm has been 
an example of the promise of quantum computers. Until 
Oded Regev, recently proposes a scheme (Regev 2023) 
that drastically reduces the number of gates or logical 
steps needed to factor extremely large numbers, which is 
the first substantial improvement of Shor’s algorithm in 
30 years. In principle, it could allow a smaller quantum 
computer to figure out the encryption key, or a larger 
machine to decode the encryption key more quickly. On 
the other hand, his work means that the age of quantum 
computers may come sooner. This has sparked a frenzy of 
research into post-quantum cryptography (PQC), among 
the four main areas in post-quantum research (Multivari-
ate, code-based, hash-based, and lattice-based), lattice-
based cryptography is undoubtedly the most concerned 
because it is based on the mathematically rigorous com-
putational problems which lead to reliable and verifiable. 
The computational problems CVP and SVP show the 
quantum resistance (Ajtai et al. 2001; Dinur et al. 1998) 
which makes lattice-based cryptography a promise in 
post-quantum era.

In recent years, the field of lattice-based cryptogra-
phy has experienced significant growth in theory. NIST 
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(National Institute of Standards and Technology) initi-
ated the Post-Quantum Cryptography Standardization 
Process, in which lattice-based cryptography plays a 
highly significant role. The emergence of some lattice-
based cryptographic schemes here demonstrates higher 
efficiency compared to traditional schemes based on 
RSA. In a more specific context, this implementation sur-
passes a comparable RSA implementation by an order of 
magnitude in terms of speed, affords a heightened level 
of security while demanding fewer device resources. 
Nonetheless, it will take a while before lattice-based 
schemes start to replace existing public-key cryptogra-
phy. For instance, ECC was introduced by Miller (1985) 
and Koblitz (1987), but it took nearly two decades to 
become integrated into actual secure systems. While the 
security analysis of cryptographic schemes is an essential 
consideration, the paramount challenge for lattice-based 
cryptography thus far has been its practicality.

The digital signature scheme (DSS) (Diffie and Hell-
man 2022), also called public key digital signature, is 
a method of identifying digital information similar to 
an ordinary physical handwritten signature written 
on paper, but implemented using techniques from the 
field of public key cryptography. The basic idea comes 
from Diffie and Hellman (2022), laterly, Rivest et  al. 
(1978) suggested the basic concept of basic signature 
scheme. Traditionally, the digital signature technol-
ogy uses an asymmetric algorithm to encrypt the hash 
private key (owned only by an individual) of the origi-
nal text through the hash function to generate a digital 
signature and send it to the recipient together with the 
original text. The receiver can decrypt the encrypted 
message only by using the public key of the sender, and 
then performs the hash operation on the content to 
obtain the hash value, and compares it with the hash 
value of the decrypted digital signature. If the compari-
son results are consistent, it indicates that the received 
information is complete and has not been modified dur-
ing transmission, otherwise the information must have 
been modified. More generally, each person has a pair 
of “keys” (digital identity), one of which is known only 
to her/him (private key) and the other is public (public 
key). The private key is used for signing and the pub-
lic key is used for verifying the signature. And because 
anyone can sign it claiming to be you, the public key 
must be registered with someone the recipient trusts 
(an identity authority). After registration, the identity 
authority will issue you a digital certificate. After sign-
ing the document, you send the digital certificate, along 
with the document and signature, to the recipient, who 
verifies with the authentication authority that the docu-
ment was actually issued with your key. Hence, based 

on the definition of DSS, there are many properties for 
it: publicly verifiable, transferable, non-repudiation. 
Precisely because of the properties, they are widely 
applied in fields such as identity verification, financial 
transactions, blockchain, and cryptocurrencies, and 
have been given legal validity in many countries.

In order to achieve the properties of digital signa-
tures and ensure the security of signatures, scholars 
have proposed many signature schemes in recent years. 
digital signature algorithms include RSA (Rivest et  al. 
1978; El Gamal 1985; Fiat and Shamir 1986; Guillou and 
Quisquater 1990; Ong and Schnorr 1990), Des/DSA ( 
National Institute of Standards and Technology 2009), 
elliptic curve digital signature algorithm (Washington 
2008) and finite automata digital signature algorithm. 
Special digital signatures include blind signature, proxy 
signature, group signature, undeniable signature, fair 
blind signature, threshold signature, and signature with 
message recovery function, which are closely related to 
the specific application environmentAccording to the 
basic construction of the scheme, digital signatures can 
be divided into two paradigms: Hash-and-Sign (Diffie 
and Hellman 2022; Fiat and Shamir 1986) where the 
majority of subsequent schemes are designed based on 
their basic architectures. Building upon these founda-
tional approaches, schemes are optimized and tailored 
to evolve into various specialized schemes for specific 
application scenarios such as group signatures and 
blind signatures. In this article, we only introduce lat-
tice-based (quantum-resistent) digital signatures.
Outline. The main objective of this survey is to pro-

vide a comprehensive classification for lattice-based 
digital signatures. Indeed, classifying digital signatures 
solely based on hardness assumptions or construction 
methods might seem monotonous, especially consider-
ing their crucial integration with internet applications 
within the realm of cryptography. This classification 
of the article encompasses not only the basic struc-
tures of signature schemes but also includes special-
ized schemes tailored for specific application scenarios. 
Within this, the article will provide introductions to 
key schemes under each subcategory. The ultimate 
goal of this review of lattice-based digital signature is 
not only to prepare for the arrival of the post-quantum 
era but also serves as a valuable reference for current 
research in the theory and application of digital signa-
tures. Sect. Preliminaries briefly gives some theoretical 
prerequisites. Section  Notation discusses the general 
lattice-based schemes. Section  Digital signature con-
siders the digital signatures for specialized applica-
tion scenarios. Section  Lattice makes a conclusion 
while Sect. Hardness assumptions outlines prospective 
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research areas crucial for advancing lattice-based digi-
tal signature.

Preliminaries
In this section, notation for the whole paper is introduced 
first, and then some basic concepts for digital signature, 
lattice and hardness assumption are introduced.

Notation
Throughout this paper, the following notation will be 
used in the following sections, the variations present in 
certain schemes will be discussed in the subsequent con-
tent. All vectors are denoted as bold lowercase letters 
and are represented as column vectors, while the bold 
upper case expressing the matrix. The ℓp-norm of a vec-
tor b is denoted by ‖b‖p while the default representation 
of ℓ2-norm is denoted by ‖b‖ . The prime number q ∈ N is 
defined as q ≡ 1(mod 2n) where the n is set as n = 2k ∈ N 
for k ∈ N . We denoted by Zq the finite field Z/Zq where 
the element is in the range 

[

−
q
2 ,

q
2

)

 . We define the ring 
R = Z[x]/�xn + 1� and Rq = Zq[x]/�x

n + 1� where all 
elements can be represented by polynomials of degree 
n− 1 . The notation s $

← S is used to express that an ele-
ment s is chosen uniformly at random from a set S.

Digital signature
A digital signature system consists of four symbols and 
three core components, totaling seven parts. For the four 
symbols, k ∈ N is the security parameter of whole DSS, 
and M,S ,H stand for message space, signature space 
and key space respectively. The core component of DSS is 
denoted as π = (Gen, Sign, Vrfy) where the the Gen and 
Sign are PPT  (probabilistic polynomial time) algorithms, 
and Vrfy algorithm is deterministic. For the process of a 
DSS:

•	 (pk , sk) ← Gen(1k) where the pk,  sk represent the 
public key and secret key respectively.

•	 σ ← Sign(sk,m), σ ∈ S for m is a message in M . 
We call the (m, σ) a signature.

•	 b ← Vrfy(pk, (m, σ)) , and b = 1 or 0. if b = 1 , we 
call (m, σ) an efficient signature.

For an adversary, the key aim is to forge a signature with 
the correct output under the Vrfy algorithm without 
using the secret key for signing.

In this context, digital signatures are generally catego-
rized into one-time signatures and many-time signatures. 
As the literal meaning suggests, a one-time signature is 
designed to perform only a single signing operation, imply-
ing that for each signing and verification, a new key pair 

must be generated. In contrast, many-time signatures allow 
the usage of the same key pair for signing and verifying 
multiple messages. One-time signatures are often designed 
to provide higher security; however, key management 
poses a challenge compared to many-time signatures.

There are definitions about the properties, we will use 
at follows, of digital signature:

•	 Unforgeability: Everyone except the specific partici-
pants (proxy signer, group member) can not generate 
a valid signature.

•	 Verifiability: The verifier can verify the proxy signa-
ture using the verification key of proxy signer.

	      And he can know whether the proxy signature is 
admitted by the original signer.

•	 Nonrepudiation: The proxy signer can’t deny the 
valid proxy signature signed by him.

•	 Distinguishability: The proxy signature must distin-
guishable from the normal signature.

•	 Non-frameability: An attacker cannot generate the 
signature used by an opener from a valid signature to 
expose the identity of an honest signing group mem-
ber.

•	 Tracing soundness: The opener reveals the signer of 
a signature, the attacker cannot generate a signature 
that belongs to two different group members.

•	 Identifiability: Anyone can identify the proxy signer 
from the original singer through a proxy signature.

•	 Linkability: The ability to anonymously verify 
whether two signatures havebeen signed by the same 
signer, and this is one of the most widely used appli-
cationsof ring signatures

Lattice
One of the keys for lattice-based cryptography is the 
structure for lattice. In this subsection, some basic 
knowledge and definitions for lattice will be introduced. 
We can refer Zheng et al. (2023) for more detail of lattice.

A lattice is a discrete additive subgroup of the vector 
space with a minimum distance . Given a set of linearly 
independent vectors b1,b2 . . .bn ∈ R

m as the basis of a 
lattice L . The lattice L generated by b1,b2 . . .bn is the set

The vectors b1,b2 . . .bn can be seen as column vectors, 
then the basis can be seen as a matrix B where the inte-
gers n and m are the rank and dimension of the lattice. 
The minimum distance� is defined as the length of the 
shortest non-zero vector x , ie,

(1)L(b1,b2 . . .bn) = {

n

i=1

aibi : ai ∈ Z}.
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According to the definition, it can be observed that a lat-
tice is an additive subgroup composed of discrete lattice 
points. For example, a lattice in 2-dimension generated 
by basis {(1, 1), (1,−1)} is shown in Fig. 1.

One important thing to note is that a lattice can be gen-
erated by two different sets of basis vectors.

In cryptography, besides the standard lattice structures, 
we often explore schemes based on special lattices such 
as cyclic lattices, q-ary lattices, ideal lattices, and NTRU 
lattices (Zheng and Liu 2022). These lattice structures 
frequently offer stronger security assumptions along with 
shorter public keys or signatures. For specific details, 
refer to Zheng et al. (2023).

Hardness assumptions
This section introduces some of the most commonly used 
hardness assumptions in cryptographic schemes.

Computational problems
SVP− Shortest Vector Problem . Given a lattice basis 
B ∈ Z

m×n , find a non-zero lattice vector Bx such that 
�Bx� ≤ �By� for any other y ∈ Z

n \ {0}.
CVP− Closest Vector Problem . Given a lattice basis 

B ∈ Z
m×n and a target vector t ∈ Z

m , find the x ∈ Z
n 

such that �Bx − t� is minimum.
The above two problems also have approximate relaxed 

versions with a factor γ.
Approximate SVPγ . Given a lattice basis 

B ∈ Z
m×n , find a non-zero lattice vector Bx such that 

�Bx� ≤ γ · �By� for any other y ∈ Z
n\{0}.

(2)� = min{�x�|x ∈ L, x �= 0}.

Approximate CVPγ . Given a lattice basis B ∈ Z
m×n 

and a target vector t ∈ Z
m , find the x ∈ Z

n such that 
�Bx − t� ≤ γ · �By − t� for any other y ∈ Z

n.
Apart from the precise and approximate formulations, 

it is also possible to articulate these problems as promises 
called GapSVPγ and GapCVPγ.

Average‑case lattice problems
This section will introduce two main problems, SIS (Short 
Integer Solution) and LWE (Learning With Errors), along 
with their specific variants.
SIS . Let n, m and q be positive integers and β be a posi-

tive real number smaller than q. A ∈ Z
n×m
q  is a randomly 

generated matrix following a uniform distribution and 
formed by m independent vectors ai

$
← Zq . The problem 

SISn,q,β ,m asks to find a shortest integer solution z ∈ Z
m 

such that:

LWE distribution . Let n and q be positive integers and 
let χ be a distribution over Z . For a fixed secret s ∈ Z

n
q , 

the LWE distribution As,χ = (a, b) over Z
n
q × Zq is 

defined with b = �a, s� + e mod q where a $
← Z

n
q , and the 

error (or noise) e←χ.
There are two distinct variations of the LWE problem 

which are Search LWE and Decisional LWE problems. 
The first ask to find the secret s with high probability 
while another version asking to distinguish between the 
LWE distribution and the uniform distribution.
Search LWE . Given m independent samples 

(ai, bi) ∈ Z
n
q × Zq from As,χ and ei←χ for 1 ≤ i ≤ m . The 

problem S− LWEn,q,χ ,m asks to obtain the secret s ∈ Z
n
q 

with high probability (p > 1− δ).
Decisional LWE . Given a ∈ Z

n
q and a $

← Z
n
q , s ∈ Z

n
q 

and e ∈ Zq follows the distribution χ . The problem 
D− LWEn,q,χ ,m asks to distinguish between �a, s� + e 
and uniform distribution with non-negligible probability.

After the basic definition of SIS and LWE problems, 
there are module variant for the SIS and LWE prob-
lems. The hardness assumptions are done over the ring 
Rq = Zq/�x

n + 1� . And the parameters are selected 
from the Rd

q and used to generate the MSISd,q,β ,m and 
MLWEd,q,χ ,m problems. Actually the module problems 
generalizes plain problems, simply take n = 1 and R = Z . 
Another special case which is very common in construc-
tion of cryptographic scheme where d = 1 for mod-
ule problems, these kind of variants are ring problems 
denoted by RSISq,β ,m and RLWEq,χ ,m (Lyubashevsky 
2009).

(3)Az ≡ 0 (mod q), z �= 0, �z� ≤ β .

Fig. 1  Lattice in 2-dimension space
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Hash function
A Hash Function is a pair of probabilistic polynomial-
time algorithms (Gen, H) such that (Yung and Katz 2010):

•	 Gen is a probabilistic algorithm that on input 1k out-
puts a key s.

•	 There exists a polynomial l such that H takes as 
input a key s and x ∈ {0, 1}∗ , and outputs a string 
Hs(x) ∈ {0, 1}l(k).

If Hs is defined only for inputs x ∈ {0, 1}l
′(k) , where 

l′(k) > I(k) for all k, then we say that (Gen, H) is a fixed-
length hash function for inputs of length l′.

It is worth to say that the property of collision-resistant 
is very important, and easy to see that collision-resist-
ance implies universal one-wayness.

Conventional lattice‑based schemes
For the constructions of lattice-based signatures, there 
are essentially two paradigms: Fiar-shamir or Hash-and-
sign. In this section, the conventional schemes follow the 
classification. Both paradigms will be discussed.

Hash‑and‑sign signatures
We will introduce the simplest (and coolest) techniques 
cryptography: signatures based on hash functions. The 
definition we have given above, and the most essential 
property of hash function is collision-resistant, which 
can satisfy security. Hash signatures are fast and sim-
ple, as they only require evaluating the appropriate hash 
function. From a purely computing cost point of view, 
hash signatures definitely have the ability to compete 
with ECDSA, RSA (Rivest et  al. 1978), etc., while being 
very friendly for lightweight devices. But there is a more 
complex reason for the rise of hash signatures: Most 
hash signatures are not easily affected by the Shor algo-
rithm. Of course, we’re not saying that hash signatures 
are completely resistant to quantum computing attacks. 
The most effective quantum attack on hashing is called 
the Grover algorithm (Nelsen and Chuang 2010), which 
greatly reduces the security of hashing. However, the 
security impact of this degree is far less than that of the 
Shor algorithm (the difference in the cracking time level 
is between the square and the cube), so the security of 
the signature can be guaranteed simply by increasing the 
operation content and output size of the hash function, 
such as SHA3 (Dworkin 2015).

In 1979, a mathematician Leslie Lamport invented the 
world’s first signature based on a hash function (Lamp-
ort 1979). Lamport found that by using simple hash func-
tions, or one-way functions, it was possible to build very 
powerful digital signature systems. The powerful premise 

is that the user only needs to do a signature action to 
ensure security!

We will illustrate it first for the case of sign-
ing l-bit messages(SHA256, l=256). Let f be a one-
way function. The secret key consists of 2l elements 
x1,0, x1,1, x2,0, x2,1, , x256,0, x256,1, in the range of f; Next, to 
generate the public key, we pass a random string of bits 
through H(.) Hash operation is performed to obtain the 
public key yi,0 = H(xi,0), yi,1 = H(xi,1) . These keys can be 
visualized as two-dimensional arrays:

 

•	 Now we can publish the public key(pk0, pk1) for 
everyone. For example, we can send a public key to 
a friend, embed it in a certificate, or publish it on 
Keybase.

•	 We then use the key to sign the l-bit message M. 
First we have to reproduce the message M as a sep-
arate l-bit: M1,M2, · · · ,Ml ∈ 0, 1.

•	 We fetch strings from bits 1 to l of the message M, 
one by one, corresponding to one of the keys in 
the key list. The key chosen depends on the value 
of each bit of the message we want to sign. Specifi-
cally, for i = [1, l] , if the message bit Mi = 0 in bit 
i, we select the character i ( ski,0 ) from the sk0 table 
as part of our signature. If the message bit of bit i is 
Mi = 1, we do the above process from the sk1 table. 
After doing this for each message bit, we concat-
enate the selected string to get a signature.

•	 When a user (who already knows the public key 
( pk0, pk1 ) receives the message M and the signa-
ture, she can easily verify the signature. We repre-
sent the i-th component of the signature as si , and 
the user can examine the corresponding message 
Mi and calculate the hash value H(si) . If Mi = 0, 
the hash must match the elements in the public key 
pk0 ; If Mi = 1, the hash must match the elements 
in public key pk1 . If each element in the signature is 
hashed to find the corresponding public key for the 
correct part, we say that the signature is valid.

There are two drawbacks for the Lamport one-time 
digital signature: The signature and key for the Lamport 
method is simply too large, about the thousands of bits. 
What’s more, this approach has serious security limita-
tions: each key can only be used to sign one message, 
so the Lamport method is used here as an example of 

sk =

(

sk0
sk1

)

:=

(

x1,0 x2,0 · · · x256,0
x1,1 x2,1 · · · x256,1

)

,

pk =

(

pk0
pk1

)

:=

(

y1,0 y2,0 · · · y256,0
y1,1 y2,1 · · · y256,1

)

.
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a “one- time signature”. There have been many sub-
sequent optimizations for Lamport one-time digital 
signature. To address the inability to sign multiple mes-
sages with a single key, Ralph Merkle proposed a new 
DSS based on Merkle’s tree (Merkle 1980). Roughly 
speaking, the Merkle method provides a way to col-
lect different values and represent the collected val-
ues with a “root” hash. Given this root hash, you can 
simply “prove” that an element exists in the given hash 
tree. And the size of the proof is paired with the num-
ber of leaf nodes. Merkle’s method transforms a one-
time signature into an n-order signature. Constructing 
this method is still based on some one-time signature 
method, such as the Lamport method which is still rel-
atively expensive.

Later, Robert Winternitz proposed a further upgrade 
DSS (Winternitz 1984) based on the Merkle method 
described above. In practice, this approach reduces the 
signature and public key size by a factor of four to eight, 
at the cost of increasing the time it takes to sign and ver-
ify. Winternitz’s idea came from a technique called time-
space tradeoff, which could reduce space requirements 
at the expense of increasing computing time (and vice 
versa).

 sOne limitation to all of the above methods is that they 
require signers to maintain state between signatures. In 
1980s, Goldreich and Levin (1989) pointed out that there 
is a way to create a signature that does not need to be 
maintained. Generating a short “verification tree” of one-
time public keys instead of all the keys up front. Each key 
can sign additional one-time public key at the bottom of 
the tree. If a single seed is used to generate all the private 
keys, it means that the full Merkle tree does not need to 
exist at key generation, but can be built on demand when 
new keys are generated. Each signature contains a “verifi-
cation chain” of signatures and public keys. From the root 
node to the key pair that the leaf node is actually used 
to sign. This technique allows us to build exponential 
numbers of keys in very “deep” Merkle trees (Bernstein 
et al. 2015). It is worth mentioning that Melissa et al. pro-
posed a completely different idea of Picnic (Chase et al. 
2017), based on a new non-interactive zero-knowledge 
proof system technology called ZKBoo, which is a new 
ZK proof system based on “MPC in the mind” that lets 
prover self-prove using multi-party copmputations.

At STOC 2008, Gentry et  al. (2008) rectified a flawed 
signing procedure, introducing the GPV framework for 
secure lattice-based hash-and-sign signatures. Stehlé and 
Steinfeld (2011) later enhanced this paradigm by merging 
the GPV framework with NTRU lattices. In a practical 
application, Ducas et al. (2014) instantiated the IBE part 
of the GPV framework over NTRU lattices. The 2019 Fal-
con scheme, a leading candidate in NIST’s Post-Quantum 

Cryptography Standardization Process, builds on these 
foundations, incorporating NTRU lattice (Stehlé and 
Steinfeld 2011) and Fast Fourier sampling (Ducas and 
Prest 2016) for impressive efficiency and security.

Fiat‑shamir signatures
Instead of using the Hash and Sign signature approach, 
an alternative method to construct a digital signature 
scheme involves transforming a specific type of iden-
tification scheme into a signature scheme through the 
Fiat-Shamir transformation (Abdalla et al. 2002; Fiat and 
Shamir 1986), first introduced in Shamir (1985). The Fiat-
Shamir transformation allows a typical authentication 
system with passive security can be transformed into a 
signature system under a random model. This transfor-
mation is employed to convert a zero-knowledge protocol 
into a digital signature scheme. In zero-knowledge proto-
cols, a prover aims to convince a verifier of their identity 
without revealing any specific information. This interac-
tive process involves the verifier repeatedly challenging 
the prover until convinced. However, this interactivity 
poses a problem, as bystanders cannot ensure there is no 
collusion between the parties in advance. To address this, 
the Fiat-Shamir technique enables the transformation 
of the interactive protocol into a non-interactive one. It 
achieves this by allowing the prover to compute a value 
using a random function (like a cryptographic hash func-
tion) instead of relying on the verifier to send a random 
challenge value.

Schnorr’s identification protocol (Schnorr 1990) is the 
simplest example of a zero-knowledge protocol which is 
aimed at convincing verifier that the prover knows the 
discrete logarithm x of some value h = gx without reval-
ing x. The steps are listed as Fig. 2. The hidden theory is: 
gz = gr+x·c = grgx · c = u · hc . For the non-interactive 
protocol, the above process is reduced to just two steps, 
the challenge c is now created by hashing all the public 
values {g , q, h,u} . The above two schemes are illustrated 
in Fig. 2.

After the concept of Random Oracles is proposed 
(Bellare and Rogaway 1993), the verifier in the identi-
fication scheme can be replaced by a random oracle. 
Although the Fiat-shamir transform was proposed ear-
lier, the lattice-based fiat-shamir scheme (Lyubashevsky 
2009) was not proposed until the safety and complexity 
of some related concepts were discussed (Goldwasser 
et  al. 1989; Chase and Lysyanskaya 2006). Most lattice-
based Fiat-shamir signatures follow Lyubashevsky’s “Fiat-
Shamir with aborts” paradigm (Lyubashevsky 2009), 
which ensures that the identification scheme used by 
Fiat-shamir transformation achieves honest-verifier zero-
knowledge by rejecting sampling. The Lyubashevsky 
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signature scheme constructs an identity-based signa-
ture scheme on the lattice, based on the SIS on a lattice, 
Lyubashevsky et  al. gave a quantum reduction from the 
approximate SVP (worst-case) on an ideal lattice in R to 
the search version of R-LWE. Compared with other effec-
tive schemes, the proposed scheme has advantages in 
computational complexity and security. The practicality 
of a digital signature scheme is crucial. Lyubashevsky’s 
subsequent improvements (Lyubashevsky 2012) focus 
on two key areas: Firstly, the hardness assumption transi-
tions from single ring-SIS to a combination of Ring-SIS 
and Ring-LWE(Once proposed, RLWE has become a 
frequent visitor in the construction of public key cryp-
tosystems, and the most common is the construction of 
full-homomorphic encryption). This change drastically 
reduces the size of public keys and signatures, leading 
to a notable efficiency boost. Secondly, the signing pro-
cedure now requires a more intricate rejection sampling, 
ensuring the independence of signatures from the secret. 
However, due to the high precision demanded by this 
process, which may be challenging to support in hard-
ware, both schemes require optimization for practical 
implementation. They tend to be surpassed by a series of 
highly effective and practical schemes like GLP, BLISS, 
and ring-TESLA (Güneysu et al. 2012; Ducas et al. 2013; 
Akleylek et al. 2016).

Since the introduction of cyclic and ideal lattices (Mic-
ciancio 2007), along with related computationally hard 
problems like Ring-SIS (Lyubashevsky and Micciancio 
2006; Peikert and Rosen 2006) and Ring-LWE (Lyuba-
shevsky et  al. 2010), lattice-based signature schemes 
have struck a favorable balance between signature and 
key sizes, as well as security. This work (Güneysu et  al. 
2012) presents a provably secure digital signature scheme 
based on ideal lattices and a variant of decisional Ring-
LWE called decisional compact knapsack (DCK) problem 

which means that the adversary needs to distinguish 
between the uniform random distribution over Rq ×Rq 
and the LWE distribution (a, as1 + s2) where the a is 
selected from Rq uniformly and the s1, s2 are chosen 
uniformly from Rq,k which is expanded from 

[

−
q
2 ,

q
2

)

 to 
[−k , k) . The security level which was claimed in this work 
about 100-bits, but it was estimated to be around 80 bits 
actually in Ducas et al. (2013).

Due to the absence of the algorithm for sampling from 
Gaussian distribution without requiring a large look-up 
table, the Gaussian distribution was usually avoided for 
lattice-based schemes leading to less compact as they 
could be in theory (Güneysu et al. 2012). Thus, the BLISS 
scheme (Ducas et  al. 2013) made a modification in the 
rejection sampling stage which is seen as the core part 
of Lyubashevsky’s scheme (Lyubashevsky 2012) and GLP 
scheme (Güneysu et  al. 2012) which changed the sam-
ple method from the discrete Gaussian distribution and 
uniform random to a bimodal Gaussian distribution 
while the hardness assumption of the scheme is Ring-
SIS problem. For an adversary who need to forge a sig-
nature, it is hard to obtain the secret key S from public 
parameter where AS = qI (mod 2q) because of the Ring-
SIS problem. However, despite the advantages offered by 
the Gaussian distribution, there are notable drawbacks. 
Firstly, the scheme incurs high computational costs due 
to intricate operations like exponential functions. Sec-
ondly, the Gaussian sampling process is assumed to be 
susceptible to timing attacks (Bos et  al. 2015; Dagdelen 
et al. 2014).

Many practical schemes enhance performance at the 
cost of security, resulting in a non-tight security reduc-
tion. Before ring-TESLA (Akleylek et al. 2016), predeces-
sors like TESLA (Alkim et  al. 2015) improved Bai and 
Galbraith’s work (Bai and Galbraith 2014) by tighten-
ing the security reduction process. TESLA (Alkim et al. 

Fig. 2  Schnorr’s identification protocol
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2015) introduced a standard-lattice based signature 
scheme grounded in the decisional LWE problem with 
a tight security reduction. The forking lemma (Pointch-
eval and Stern 2000), introduced by Pointcheval and 
Stern, provides either a genuine or fabricated public key 
for a hypothetical adversary. While a powerful tool for 
proving signature security, it has drawbacks: it leads to 
a non-tight security reduction and doesn’t address situ-
ations involving quantum adversaries. To bypass these 
issues, schemes like Alkim et al. (2015) and Abdalla et al. 
(2015) avoid the forking lemma and use a different proof 
idea from Katz and Wang (2003). Both schemes perform 
worse in terms of running time and key sizes compared 
to BLISS and GLP. Ring-TESLA is poised to improve 
these aspects. The scheme ring-TESLA is based on the 
Ring-LWE problem and has a good performance with 
provable security instantiation.

The three schemes mentioned above can be considered 
the most efficient and practical lattice-based Fiat-Shamir 
signatures over the past decade. In order to address the 
challenge of efficiently and securely implementing the 
Gaussian distribution, the NIST candidate scheme Dil-
ithium (Ducas et al. 2018) adopts a uniform distribution. 
This enhancement reduces the public key size by a fac-
tor of 2.5 compared to previously efficient lattice-based 
schemes using a uniform distribution, all while maintain-
ing the same security level and signature size. The main 
architecture of this scheme follows the modified version 
of the scheme (Bai and Galbraith 2014). The hardness 
assumptions of the scheme are MLWE and MSIS lattice 
problems. Besides, in order to reduce the running time of 
the procedure, small element such as x will not be stored 
during the calculation process like r + x , to achieve this 
goal, some auxiliary tools such as Decomposeq, HighBitsq 
and LowBitsq will be used to obtain the High/Low order 
bits of parameters.

As the most practical and reasonably secure schemes, 
they have high-practicability in various fields such as 
FPGAs, reconfigurable hardware, CPUs and micro-
controller. The Table  1 concludes the security level and 

rough performance (the table is concluded from the work 
(Ducas et al. 2013; Akleylek et al. 2016), The size column 
was benchmarked under different hardware environ-
ments, it should only be considered as rough suggestion) 
for the Fiat-shamir schemes mentioned above.

Based on the development of schemes in this section, 
we can draw a rough conclusion: there exists a transition 
from constructing schemes based on SIS to those based 
on LWE under certain hard assumptions. Additionally, 
the underlying hard assumptions progress from stand-
ard lattice problems to ring-based problems, and ulti-
mately to generalized module lattice problems. However, 
throughout, the common objective of all these schemes 
is to strike a balance between security and efficiency in 
order to construct a practical, efficient, and secure digital 
signature scheme.

Specialized lattice‑based schemes
Digital signatures have a wide range of applications, 
which has led to the emergence of specific types of digi-
tal signature schemes for particular scenarios. This sec-
tion introduces some types of digital signatures tailored 
for specific contexts, which may draw inspiration from or 
incorporate constructs from Conventional digital signa-
ture schemes.

Group signatures and ring signatures
The group signature is a specialized digitial signature 
scheme first proposed by Chaum and Van Heyst at the 
Eurocrypt conference in 1991 (Chaum and Van Heyst 
1991). A group signature is a type of digital signature 
where each member of the group can sign on behalf of 
the entire group in an anonymous manner. Group sig-
natures possess two fundamental properties: anonymity, 
and traceability. Anonymity means that anyone receiving 
a signed message can verify that comes from a member 
of the group without knowing the specific identity of the 
signer. Traceability signifies that the group manager can, 
when necessary, reveal the specific identity of the mem-
ber who generated a signature. The security of schemes 
mentioned in Chaum and Van Heyst (1991) are based on 
the difficulty of factoring and discrete logarithm prob-
lems for large integers which seems a bit weak in the post 
quantum era.

The group signature scheme, after being proposed, 
experienced rapid development. In 1995, a group sig-
nature scheme that allows the dynamic addition of new 
members after the setup phase named partially dynamic 
group signatures was introduced (Chen and Pedersen 
1994). However, in the provided schemes, both the public 
key size and the signature size are directly proportional 
to the number of members within the group, which is 
highly disadvantageous for groups with a large number 

Table 1  Scheme overview table

Scheme Assumption Security pk+sig size

GLP DCK 80-bits 21.5 kb

BLISS-I R-SIS 128-bits 12.6 kb

BLISS-II R-SIS 128-bits 12 kb

BLISS-III R-SIS 160-bits 13 kb

BLISS-IV R-SIS 192-bits 13.5 kb

ring-TESLA-I R-LWE 80-bits 36.5 kb

ring-TESLA-II R-LWE 128-bits 36 kb

Dilithium MLWE, MSIS 128-bits 15 kb
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of members. Therefore, in 1997, a CS97 group signature 
scheme was proposed, which is independent of both sig-
nature and group public key size with respect to the num-
ber of group members (Camenisch and Stadler 1997), 
along with the ACJT group signature scheme introduced 
in 2000 (Camenisch and Stadler 1997; Ateniese et  al. 
2000), still rely on traditional classical number theory 
problems. However, in 2000, reference Kim et al. (2001) 
first introduced a fully dynamic group signature where 
group members can actively choose to leave the group or 
group administrators can choose to revoke group mem-
bers and then in 2003, the BMW model was introduced 
(Bellare et al. 2003), providing a theoretical definition for 
static group signatures. Until 2010, Gordon and Katz, 
among others, introduced the first lattice-based group 
signature scheme (Gordon et  al. 2010). This marked 
the fusion of group signatures with lattice theory. The 
scheme was built upon the BMW model and further 
integrated zero-knowledge proof techniques and lattice 
theory. However, this scheme had long key and signature 
lengths. Subsequently, many efforts were made to reduce 
the key and signature lengths, but most of these schemes 
lacked mechanisms for adding or revoking members. 
It wasn’t until 2016 when Bootle et  al. proposed a fully 
dynamic signature scheme with strict security defini-
tions (Bootle et al. 2016). However, this scheme was not 
based on lattice-based group signatures. Also in 2016, 
another paper (Libert et  al. 2016) constructed a lattice-
based group signature scheme with an adding mecha-
nism, but the joining process was overly complex and 
time-consuming, and it did not support the revocation 
of group members. In 2017, reference Ling et  al. (2017) 
constructed a lattice-based fully dynamic group signa-
ture with both adding and revocation mechanisms using 
a Merkle’s hash tree. However, it suffered from long 
update times. Subsequent research papers still did not 
fully address the issues of complexity and lengthy update 
times in the joining and revocation processes. Therefore, 
lattice-based fully dynamic group signatures continue to 
hold research value.

We selected a range of lattice-based group signa-
ture schemes, some of which are static, some partially 
dynamic, and others fully dynamic. We compared their 
adherence to the signature size, group public key size, 
and secret key size in Table 2 as well as security proper-
ties mentioned above together with blind signatures and 
proxy signatures in Table 4 in the Conclusion section.

For the static group signature scheme, the first pro-
posal for lattice-based group signatures, was introduced 
(Gordon et al. 2010) in 2010. It is based on the hard prob-
lem of LWE and provides security properties such as 
Anonymity and Traceability. The signature size and the 
number of group members are linearly related, with the 
signature size being O(�2N ) , the Group Public-key size 
being O(�2N ) , and the Signing-key size being O(�2) . In 
reference Laguillaumie et al. (2013), improvements were 
made to the signature size, constraining the relationship 
between signature size and the number of group mem-
bers to logarithmic terms. Specifically, the signature size 
is O(�logN ) , the Group Public-key size is O(�2logN ) , and 
the Signing-key size is O(�2) . This scheme is based on 
the hard problems of LWE and SIS and provides secu-
rity properties of full anonymity and traceability. Fur-
thermore, in the paper from 2020, denoted as Luo and 
Jiang (2020), a scheme based on the RLWE and RSIS 
hard problems was introduced. It still maintains security 
properties like Anonymity and Traceability. In terms of 
signature size, significant improvements were made to 
achieve constant relationships. The corresponding sizes 
are O(�log3N ) for the signature size, O(�log2N ) for the 
Group Public-key size, and O(�log2N ) for the Signing-
key size.

In 2016, Libert et  al. constructed a Lattice-based par-
tially dynamic group signature (Libert et al. 2016) based 
on the LWE and SIS problems. However, in terms of 
security, it only satisfies anonymity and does not meet the 
requirements for traceability and non-frameability. Con-
cerning the relationship between signature size and the 
number of group members, it follows a logarithmic pat-
tern. The signature size is O(�logN ) , the group public-key 

Table 2  The signature size, key sizes and Relationship between signature and N for schemes

Scheme Relationship sig size gpk size sk size

 Gordon et al. (2010) Linear O(�2N) O(�2N) O(�2)

 Laguillaumie et al. (2013) Logarithmic O(�logN) O(�2 logN) O(�2)

 Luo and Jiang (2020) Constant O(�log3N) O(�log2N) O(�log2N)

 Libert et al. (2016) Logarithmic O(�logN) O(�2 logN) O(�)

 Ling et al. (2018) Constant O(�) O(�) O(�)

 Xie et al. (2019) Linear O(N) O(N) O(�)

 Sun et al. (2019) Logarithmic O(�+ log�logN) O(�+ log�logN) O(�+ log�logN)
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size is O(�2N ) , and the signing-key size is O(�) . In 2018, 
a lattice-based partially dynamic signature scheme based 
on RLWE and RSIS was proposed (Ling et  al. 2018). 
This scheme achieves full anonymity, traceability, and 
non-frameability, with both signature size and key size 
being constant. All three sizes are O(�).Regarding lattice-
based fully dynamic group signatures.Based on the LWE 
and SIS, one scheme was proposed (Xie et al. 2019) that 
achieves full anonymity, traceability, and non-frameabil-
ity. However, it does not satisfy tracing soundness, and 
the signature size increases linearly with the number of 
group members. Another article based on RLWE and 
RSIS improved upon this (Sun et al. 2019), and it also sat-
isfies tracing soundness in terms of security. The sizes fol-
low a logarithmic relationship, all being O(�+ log�logN ) . 
In a reference from 2021 (Abhilash and Amberker 2021), 
a scheme based on LWE and SIS was proposed that 
improved the size to constant terms, namely O(�) , O(�2) , 
and O(�) respectively. However, it does not meet the 
requirement of tracing soundness in terms of security. 
We can observe that subsequent schemes have consist-
ently aimed to reduce the size of both group signatures 
and group keys. This reduction has progressed from lin-
ear relationships to logarithmic ones, and in some cases, 
even to constant sizes. Some schemes may compromise 
certain security attributes, while others manage to strike 
a balance. Therefore, the challenge of minimizing the size 
of group signatures and keys while maintaining security 
remains an important area of research for the future.

Ring signature, as a special form of group signature, 
was proposed by Rivest and others in 2001 (Rivest et al. 
2001), addressing the issue of achieving anonymous digi-
tal signatures. What sets it apart from group signatures 
is that in ring signatures, there is no group manager. 
Verification of the signature does not disclose the specific 
members’ identities. As the combination of ring signa-
tures and threshold signatures which means a signature 
can only be generated only when the number of cooper-
ating members in the signing process reaches a threshold 
value. In 2002, Bresson et al. introduced the first thresh-
old ring signature based on threshold concepts (Bresson 
et  al. 2002). In 2005, Awasthi et  al. proposed identity-
based ring signatures and proxy ring signature schemes 
(Awasthi and Lal 2005). In 2008, a weakly linkable ring 
signature scheme that allows for selective linkability was 
introduced (Jeong et  al. 2008). Subsequently, the num-
ber of ring signature schemes in post-quantum cryptog-
raphy, resistant to quantum attacks, started to increase. 
In 2012, the first threshold ring signature scheme based 
on multivariate cryptography was introduced by Pet-
zoldt et al. (2013). In 2018, Baum et al. proposed a link-
able ring signature scheme based on the SIS and LWE 
problems (Baum et al. 2018). In 2021, a lattice-based and 

identity-based linkable ring signature scheme utilizing 
trapdoors and rejection sampling techniques was intro-
duced, reducing time overhead (Tang et al. 2021).

As ring signatures are a special form of group signature, 
their definitions and security properties are essentially 
consistent with the aforementioned content. Linkabil-
ity is the opposite of unlinkability, refers to the ability to 
anonymously verify whether two signatures have been 
signed by the same signer, and this is one of the most 
widely used applications of ring signatures which estab-
lish connections between different signatures, enabling 
them to be audited or traced when necessary. Scheme 
(Baum et al. 2018) is based on the lattice-based RSIS hard 
problem, while reference Tang et  al. (2021) is based on 
the NTRU SIS problem. Ring signatures can be applied 
in various fields such as vehicular networks, medical 
data sharing, anonymous voting, and many others. Lat-
tice-based ring signatures that are resistant to quantum 
attacks are still in the developmental stage. Furthermore, 
efficiency issues arise when the group size becomes too 
large. Constructing more efficient ring signature schemes 
remains a challenge.

Blind signatures
In order to improve the lack of security in automatic pay-
ment systems, Chaum (1983) proposed a new crypto-
graphic concept, blind signature, in 1982. Blind signature 
scheme consists of the interaction process between a user 
and a signer, that is, the user first performs a blind trans-
formation to mask the original message, and then sends 
the transformed message to the signer to sign with the 
public key. In the end, the user performs a reverse trans-
formation to obtain the signature corresponding to the 
original message. This signature scheme ensures that the 
signer does not know which messages have been signed, 
and the signer cannot track which signature was obtained 
by which signing process.

As a result, blind signature, by virtue of its blindness 
and unforgeability, is widely used in fields such as e-vot-
ing (Shao et al. 2021; Cruz and Kaji 2017), e-cash (Li et al. 
2017; Aboud and Al-Fayoumi 2007), and so on, where the 
privacy of the message provider needs to be protected. 
Taking the goal first envisioned by Chaum (1983) for 
automated payment systems as an example, a blind sig-
nature scheme enables a payment system to have the fol-
lowing properties: Inability of third parties to determine 
payee, time or amount of payments made by an individ-
ual; Ability of individuals to provide proof of payment, or 
to determine the identity of the payee under exceptional 
circumstances; Ability to stop using of payments media 
reported stolen.
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In 1994, Camenisch et al. (1995) first proposed a blind 
signature scheme based on the discrete logarithm prob-
lem. The paper presents two completely new schemes, 
one derived from a variant of DSA (Wang and Hou 2019) 
and the other based on the Nyberg Rueppel’s signature 
scheme (Nayak et  al. 2017). Due to the early introduc-
tion of this scheme, its accuracy and efficiency have not 
been estimated and analyzed in the paper. But since 
then, many blind signature schemes based on discrete 
logarithm problem or integer factorization problem have 
emerged. For example, in 1995, Harn (1995) also gave a 
blind signature scheme based on the discrete logarithm 
problem, and proposed the definition of strong blind 
signature, which led to further discussion and develop-
ment of blind signature schemes. Meanwhile, the formal 
security definition of blind signature was proposed by 
Pointcheval and Stern (1996) in 1996, which states that 
the security of blind signature includes blindness and 
one-more unforgeability.

With the emergence and development of quantum 
computers, the security of blind signature schemes 
based on classical number theory problems is signifi-
cantly reduced, which brings great challenges to this 
field. However, among the post-quantum cryptosystems, 
lattice-based cryptosystems have unique advantages. 
Ajtai (1996) once pointed out that the random instances 
of lattice problem have the same difficulty as the worst-
case instances, which is also the biggest advantage of 
lattice-based cryptosystems compared with other crypto-
systems. Moreover, there is no quantum algorithm that 
can solve the lattice problem, so lattice-based cryptogra-
phy has a broad application prospect. Due to the above 
theoretical advantages of lattice-based cryptosystems, 
scholars at home and abroad have begun to study lattice-
based blind signature schemes to defend against quan-
tum attacks.

In 2010, Rückert (2010) proposed the first lattice-
based blind signature scheme, which introduced Lyuba-
shevsky’s filtering technique (Lyubashevsky 2009), and 
also adopted the reject sampling algorithm based on the 
Fiat-Shamir construction to terminate the signing pro-
cess when the output may leak the private key or the 
initial message. It has quasi-linear complexity, security 
and unforgeability in random oracle model depending 
on ISVP problem. In the same year, Wang et  al. (2010) 
optimized the blind signature algorithm using a preimage 
sampling function, so that the blind signature scheme can 
be implemented through only two rounds of interactions, 
which performs better than Rückert’s scheme (Rückert 
2010) and satisfies both blindness and unforgeability. 
In 2012, Gu et  al. (2012) devised an ID-based signature 
scheme from lattices and gave its blind signature version, 
which ensures that the scheme has unforgeability and 

blindness in the random oracle model, while generating 
shorter private keys and signatures. In 2017, Gao et  al. 
(2017) proposed two ID-based blind signature schemes 
from lattices, which were built in the random oracle 
model and the standard model respectively. Both signa-
ture construction schemes were proved to be unforge-
able and unconditionally blind against selective identity 
and chosen message attack (SID-CMA). In the same year, 
Tang et al. (2017) also proposed an ID-based blind signa-
ture scheme in the standard model. In this scheme, the 
basis delegation algorithm is used to generate the corre-
sponding private key according to the user identity, and 
the forward sampling algorithm is used to sign the mes-
sage. The scheme satisfies one-more unforgeability and 
security depending on SIS problem. In 2018, Zhu et  al. 
(2018) proposed an ID-based blind signature scheme 
on NTRU lattice, which mainly uses a reject sampling 
theorem instead of constructing a trapdoor, as a way to 
ensure that the scheme has security in the random ora-
cle model with the advantages of confidentiality, integrity 
and non-repudiation. However, a security vulnerability 
was found in this scheme by Singh and Padhye (2020) in 
2020 and an improved scheme was given. Later in 2021, 
Li et  al. (2021) proposed a lattice-based blind signa-
ture scheme on blockchain system, which uses bimodal 
Gaussian distribution and reject sampling to sign, which 
has blindness and one-more unforgeability in the random 
oracle model and improves the probability of successful 
signing. In 2022, Lyubashevsky et  al. (2022) proposed a 
two-round optimal lattice-based blind signature scheme. 
The scheme used Gaussian-generated secret keys and a 
one-time signature system, which can generates signa-
tures with the length of 150 KB. The scheme seems to be 
the most efficient blind signature candidate at present.

With the continuous development of blind signature 
technology, its related extension concepts and composite 
technical schemes have been widely promoted. In 1996, 
Abe and Fujisaki introduced the concept of partially blind 
signature (Abe and Fujisaki 1996). Partially blind signa-
ture allows the signer to embed public information in 
the signature that has been negotiated with the user in 
advance and that cannot be removed or illegally modi-
fied. Therefore, partially blind signature can be regarded 
as a general form of blind signature. Due to the broad 
application prospects of partially blind signature in the 
fields of e-cash and e-voting, it has been widely con-
cerned by scholars. In 1998, Lysyanskaya and Ramzan 
(1998) proposed the concept of group blind signature, 
which skillfully combined blind signature with group 
signature, and could be applied to the scenarios such as 
multi-bank development of e-cash. In 2000, Lin and Jan 
(2000) proposed proxy blind signature for the first time 
by combining proxy signature and blind signature. These 
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concepts have enriched the usage scenarios of blind sig-
nature and made blind signature play an important role.

Many landmark schemes have emerged during the 
development of blind signatures, and the following is 
a detailed description of blind signature schemes, tak-
ing the (Rückert 2010) scheme, which first proposed the 
concept of lattice-based blind signature, and the scheme 
designed by Wang et  al. (2010) as examples. In Rückert 
(2010), the time complexity and space complexity of this 
scheme on the ideal lattice are both close to the current 
optimal, which are O(n). It also shows that the execution 
time of each algorithm step of the proposed scheme is 
shorter when the lattice dimension is higher, and it is even 
and significantly less than the running time of the other 
two schemes. From the aspect of security, the scheme is 
statistically blind and that it is one-more unforgeability 
unless the collision problem Col(H(R, m), D) is easy.

Subsequently, Wang et al. (2010) constructed a 2-round 
lattice-based blind signature scheme, using the preim-
age sampling function proposed by Gentry et al. (2008), 
which is a further optimization of R ̈uckert’s scheme. In 
terms of efficiency, the results show that this scheme 
outperforms R ̈uckert’s scheme in the number of interac-
tions rounds and the size of the signature. In addition, 
R ̈uckert’s scheme uses commitment to ensure that the 
message is blind to the signer when the signature fails, 
whereas the proposed scheme can effectively prevent the 
signature from failing, thus allowing the adoption of a 
secure hash function instead of commitment to further 
simplify user operations. As for the security, the pro-
posed blind signature scheme is blind and unforgeable 
under the SIS problem, and relevant proof is given.

There is a table conclude the basic information for four 
lattice-based blind signature schemes (Table 3).

Proxy signatures
The concept of proxy signature was first introduced 
by Mambo et  al. (1996) in 1996. The motivation of the 
proposal of proxy signature is to implement secure del-
egation of signature authority, that is, by introducing 
a proxy signer that can sign on behalf of the original 
signer, and the proxy cannot forge the signature of the 

original signer. According to the degree of authorization 
of signature, proxy signature can be classified into fully 
authorized (Kim et al. 2001), partial proxy and proxy with 
certificates. In the fully authorized mode, the original 
signer directly gives the secret key used for signing to the 
proxy signer, and the proxy signer uses the secret key to 
sign messages. However, since the original signature and 
the proxy signature cannot be distinguished, the signa-
ture scheme does not satisfy the non-repudiation.

In 2002, Shum and Wei (2002) proposed a proxy signa-
ture scheme based on the discrete logarithm problem, in 
which the identity of the proxy signer is hidden by alias, 
and only the alias authority can reveal his identity. In 
addition, there are many proxy signature schemes based 
on traditional mathematical problems, such as schemes 
based on the discrete logarithm problem (Li et al. 2003; 
Hwang and Chen 2003) and schemes based on the inte-
ger factorization problem (Shao 2003), both released in 
2003.

In the post-quantum era, the focus has shifted towards 
research on quantum-secure proxy signature schemes, 
as traditional public key cryptosystems are now vulner-
able. In 2010, Jiang et  al. (2010) introduced a lattice-
based proxy signature scheme using the bonsai tree 
model (Cash et al. 2012). It builds upon the GPV signa-
ture scheme by Gentry et al. (2008), which relies on a set 
of preimage sampleable trapdoor functions. However, a 
drawback of this scheme is that it leaves the proxy unpro-
tected, allowing the original signer to forge the proxy 
signer’s signature. In response, Xia et al. (2011) proposed 
a lattice-based proxy signature scheme in 2011, utilizing 
trapdoor functions with preimage sampling and the bon-
sai tree model. Its security is based on the complexity of 
the average-case small integer solution and inhomogene-
ous small integer solution. While the public and secret 
keys in this scheme are larger compared to those based 
on factoring or discrete logarithm problems, it only 
requires linear operations on small integers. To address 
the issue of varying key sizes in proxy signature schemes 
based on the Bonsai tree principle, Yu (2013) introduced 
a scheme in 2013 with controllable signature length. This 
scheme employs a fixed-dimension lattice-based delega-
tion algorithm to generate the proxy key and utilizes a 
preimage sampling function to construct the proxy sig-
nature scheme. Its security is founded on the difficulty 
of the small integer solution problem and the short-
est vector problem from lattices. In the same year, Kim 
et  al. (2013) similarly developed a provably-secure ID-
based proxy signature scheme based on lattice problems, 
employing a fixed-dimensional lattice-based delegation 
technique. Notably, this scheme is the first to offer pro-
tection for the proxy in the adaptive security model. In 
2014, Li et  al. (2014) put forward a lattice-based proxy 

Table 3  The signature size, security model and move for 
schemes

Scheme sig size Security Model Move unforgeability

Rückert (2010) 
(n=2048)

(n+m)logq Random Oracle 4 YES

Wang et al. (2010) mlogq Random Oracle 2 YES

Gao et al. (2017) mlogq Standard Model 2 YES

Tang et al. (2017) mlogq Standard Model 2 YES
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signature scheme that is provably secure in the stand-
ard model. It primarily relies on the preimage sampling 
algorithm, with existential unforgeability proven under 
adaptive chosen message attack based on the small inte-
ger solution (SIS) problem in the standard model. Also 
in 2014, Jiang et al. (2014) constructed a proxy signature 
scheme using trapdoor-free signature and small-norm 
matrix transfer technology, relying on the small integer 
solution problem for security. While this scheme reduces 
the size of the secret key and proxy signature, it does not 
provide a proof of public verifiability for its proxy author-
ization. To address this, Lu et  al. (2016) introduced the 
concept of authorization certificates in 2016 to enhance 
the scheme proposed by Jiang et al. (2014). They added a 
revocation list to enable the revocation of proxy authori-
zation within its validity period. Experimental results 
demonstrate that the scheme improves both efficiency 
and security compared to the original one. Later, based 
on the rejection sampling technique of Lyu12 signature, 
Yang et  al. (2015) proposed a lattice-based proxy signa-
ture scheme without a trapdoor, providing a formal secu-
rity proof of unforgeability in the random oracle model.

Since proxy signature can realize secure signature del-
egation, it has a wide range of application scenarios, such 
as the signing of certificates in e-commerce, the distribu-
tion of e-checks or e-cash, and so on. With the develop-
ment of technology, according to different requirements, 
people combine the advantages of proxy signature and 
other several types of signature system, and construct 
many new signatures, such as proxy multi-signature, 
blind proxy signature, proxy blind signature, threshold 
proxy signature, proxy signature with forward security, 
identity-based proxy signature, designated-verifier proxy 
signature and so on. Among them there is a mobile proxy 
signature, which can move autonomously in different 
execution environments. Therefore, it can be utilized for 
online sales in e-commerce.

In 1997, Kim, Park and Won revisited proxy signature 
and proposed two new types of proxy signature, called 
partial delegation with warrant and threshold delegation 
(Kim et  al. 2013), where the partial delegation has fast 
processing speed and is appropriate for the restricting 
documents to be signed. In 2014, Zhang and Ma (2014) 
proposed an identity-based proxy blind signature from 
lattices by combining proxy signature with blind signa-
ture. Proxy blind signature scheme is a special form of 
blind signature that allows the proxy signer to sign on 
behalf of the original signer without knowing the content 
of the message.The new scheme is proved to be strongly 
unforgeable under the standard hardness assumption of 
the short integer solution problem (SIS) and the inho-
mogeneous small integer solution problem (ISIS). In 
2018, Zhu et al. (2018) proposed an identity-based proxy 

signature scheme based on number theorem research 
unit (NTRU) lattice, which is proved secure in the ran-
dom oracle. In comparison, the size of signature and key 
generated by this scheme are small. In 2021, Xie et  al. 
(2021) proposed a forward-secure lattice-based proxy 
signature scheme. As the name implies, the scheme has 
forward security, but the scheme needs to improve its 
security at the cost of efficiency.

Overview
The overview Table  4 we provided for lattice-based 
digital signatures offers a visual comparison of different 
scheme properties. It’s a valuable reference for research-
ers and practitioners to select the right scheme for spe-
cific scenarios. Proxy signature schemes, designed for 
delegation, may trade off some security properties like 
unforgeability. This emphasizes the importance of a bal-
anced approach between security and practicality in their 
design. In essence, this table serves as a helpful guide for 
understanding and applying lattice-based digital signa-
tures effectively.

According to the performance of the scheme men-
tioned in table, the schemes with the highest perfor-
mance and optimal behavior have been summarized 
without considering property constraints. In static group 
signatures, Ling et  al. (2019) achieves the smallest sig-
nature and public key sizes and exhibits the best per-
formance. Simultaneously, in partially dynamic group 
signatures, Kansal et al. (2020) achieves the best perfor-
mance by sacrificing anonymity properties. As for more 
practical full dynamic group signatures, Sun and Liu 
(2020) enhances the work of Sun et  al. (2019), reaching 
the optimal performance level. Regarding blind signa-
tures, Tang et  al. (2017) and Wang et  al. (2010) respec-
tively serve as the optimal solutions under the Standard 
Model and Random Oracle. The recently introduced Xie 
et  al. (2021) in 2021 also theoretically demonstrates the 
best performance in proxy signature.

Conclusion
This survey systematically explores the digital signature 
technology based on lattice cryptography. It introduces 
key schemes within the two paradigms of Hash-and-sign 
in traditional digital signatures, while also covering spe-
cialized digital signatures such as group signatures, ring 
signatures, blind signatures, and proxy signatures, along 
with their specific use cases in practical applications.

Firstly, group signatures and ring signatures offer signif-
icant advantages in protecting the privacy of group mem-
bers. They allow group members to remain anonymous 
when signing documents while ensuring the validity of 
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the signature. This technology plays a crucial role in sce-
narios such as internal corporate decision-making and 
online voting. Ring signatures find widespread use in 
blockchain applications, ensuring transaction anonymity 
and traceability. Blind signature technology has unique 
advantages in information transmission and authentica-
tion. It permits the sender to obtain a signature without 
revealing their identity, which is of practical significance 
in scenarios like online voting and digital cash. Proxy sig-
natures are a special form of signature that allows one 
entity to sign a document on behalf of another entity 
while maintaining the validity of the signature. They are 
essential in authorization and legal document scenarios.

In addition to these focal areas of research, there exist 
other specialized signature schemes for specific applica-
tion requirements, such as multi-signatures, timed sig-
natures, and aggregate signatures. However, these, along 
with the aforementioned specialized digital signature 
schemes, are constructed based on the two paradigms 
mentioned in the paper. The evolution of these two para-
digms exhibits a trend shifting from standard lattices to 
cyclic lattices, ideal lattices, and the hardness assump-
tions transitioning from standard SIS and LWE to Ring-
SIS and Ring-LWE, and further evolving towards more 
flexible module problems.

As mentioned earlier, one of the primary challenges 
faced by lattice-based digital signature schemes is how 
to enhance their usability without compromising secu-
rity. This is a central consideration in many schemes dis-
cussed earlier. In addition, the lack of unified standards 
hinders the widespread adoption of these schemes. The 
Post-Quantum Cryptography Standardization Process 
conducted by NIST has made significant progress in this 
regard, with Falcon (Fouque et  al. 2018) and Dilithium 
(Ducas et  al. 2018), mentioned in the document, being 
two of the three ongoing standardization candidates. 
Furthermore, among the seven cryptographic candidates 
proposed by NIST, five are based on lattice cryptogra-
phy. This underscores the paramount importance of lat-
tice cryptography in the post-quantum cryptography 
era. With the development of quantum computing tech-
nology, traditional cryptographic algorithms face severe 
challenges. However, lattice-based schemes exhibit 
strong resistance to quantum computing, providing a reli-
able solution for future digital security. It demonstrates 
immense potential and prospects in ensuring digital com-
munication security and protecting privacy. As technol-
ogy continues to advance, and research delves deeper into 
this field, we firmly believe that it will play an increasingly 
pivotal role in the future of information security.

Future work
With the continuous development of the field of cryptog-
raphy, there are still many directions in the area of lat-
tice-based digital signatures that need to be explored and 
improved. In the direction of homomorphic signatures, 
future research can focus on improving the performance 
and security of homomorphic signatures. In the direction 
of secure multi-party computation and privacy protec-
tion, combining homomorphic signatures (Zheng et  al. 
2023) with secure multi-party computation to achieve 
collaborative computation while protecting data privacy 
is of great significance.

Additionally, there is also a significantly important 
new idea, which is the integration of quantum cryptog-
raphy (Zeng 2006) with classical cryptography. Research-
ers can explore how to combine quantum cryptography 
and post-quantum cryptography to create more robust 
security solutions. This may include integrating quan-
tum key distribution with classical encryption algorithms 
to enhance overall security (Wang et al. 2021). With the 
rapid development of quantum computing technology, 
post-quantum cryptography, as an extension of tradi-
tional cryptography, plays a crucial role in safeguarding 
communication security in the era of quantum comput-
ing. However, as the potential threat of quantum com-
puting becomes more evident, traditional cryptographic 
algorithms may become vulnerable. In this scenario, 
quantum cryptography has emerged as a new research 
focus.

In comparison, post-quantum cryptography is an 
extension based on traditional classical cryptography, 
thus its security is established on the difficulty of classical 
mathematical problems. Quantum cryptography, on the 
other hand, is based on the principles of quantum phys-
ics, achieving unprecedented levels of security through 
techniques like quantum key distribution. For instance, 
measurements on quantum states lead to their alteration, 
immediately detecting any unauthorized interception. 
This enables quantum cryptography to provide unparal-
leled security. Similarly, within the field of quantum cryp-
tography, there is also the area of quantum signatures. A 
significant feature of quantum signatures is that, before 
the signer sends the signature state, they cannot deter-
mine the specific content of the signature. As a result, 
they cannot repudiate their own signature. Additionally, 
any unauthorized interception leads to an alteration of 
the signature state, immediately detected.

In summary, quantum cryptography represents a novel 
means of security assurance, providing robust protec-
tion for communications in the era of quantum com-
puting. It particularly demonstrates immense potential 
in safeguarding privacy and ensuring communication 
security. With the continuous advancement of quantum 
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technology, we can expect significant progress in the 
research and implementation of quantum cryptography in 
the future.
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