
Amazon Aurora
High Availability and
Disaster Recovery Features
for Global Resilience

Notices
Customers are responsible for making their own independent assessment
of the information in this document. This document: (a) is for informational
purposes only, (b) represents current AWS product offerings and practices,
which are subject to change without notice, and (c) does not create any
commitments or assurances from AWS and its affiliates, suppliers, or
licensors. AWS products or services are provided “as is” without warranties,
representations, or conditions of any kind, whether express or implied. The
responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any
agreement between AWS and its customers.

© 2024 Amazon Web Services, Inc. or its affiliates. All rights reserved.

2

3

Table of Contents

Abstract and introduction 04

Abstract 04

Are you well-architected? 04

Introduction 05

Aurora architecture and HA and DR features 07
Achieving HA and DR in a single Region 12

Extending HA and DR across multiple Regions 12

Monitoring your HA and DR environment 13
Monitoring Aurora events 14

Best practices 15
Define RTO and RPO 15

Define HA and DR strategy to align with RTO and RPO 15

Document and test HA and DR procedures 16

Regularly test and review HA and DR procedures 16

Common HA and DR use cases and design patterns 17

Maintaining availability during patching or upgrades and disruptive schema changes 26

Conclusion 30

Contributors 31

Further reading 32

Abstract and introduction
Abstract
Amazon Aurora is a fully managed relational database designed for
unparalleled high performance and availability at global scale with full
MySQL and PostgreSQL compatibility. Aurora provides managed high
availability (HA) and disaster recovery (DR) capabilities in and across AWS
Regions. In this whitepaper, explore Aurora HA and DR capabilities and
discover design patterns that enable the development of globally resilient
applications. Learn how to establish single Region and cross-Region
HA and DR using Aurora features, including Multi-AZ deployments and
Amazon Aurora Global Database.

Are you well-architected?
The AWS Well-Architected Framework helps you understand the pros and
cons of the decisions you make when building systems in the cloud. The
six pillars of the framework allow you to learn architectural best practices
for designing and operating reliable, secure, efficient, cost-effective, and
sustainable systems. Using the AWS Well-Architected Tool, available at no
charge in the AWS Management Console, you can review your workloads
against these best practices by answering a set of questions for each pillar.

In Disaster Recovery of Workloads on AWS: Recovery in the Cloud, we
describe a collection of customer-proven best practices for designing well-
architected DR workloads.

For more expert guidance and best practices for your cloud architecture—
reference architecture deployments, diagrams, and whitepapers—refer to
the AWS Architecture Center.

4

https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/well-architected-tool/
https://console.aws.amazon.com/wellarchitected
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-workloads-on-aws.html
https://aws.amazon.com/architecture/

Introduction
Aurora is a relational database management system (RDBMS) built for the
cloud with full MySQL and PostgreSQL compatibility. Aurora gives you the
performance and availability of commercial-grade databases at one-tenth
the cost. Aurora is a fully managed database that automates aspects of
database management, such as high availability (HA), disaster recovery
(DR), replication, scaling, backup and restore, and monitoring. In this paper
we will discuss the HA and DR capabilities of Aurora, and how you can take
advantage of common architectural patterns to achieve single-Region and
multi-Region HA and DR.

NOTE: All features, functionality, and architecture patterns in this
whitepaper apply to both Aurora MySQL and Aurora PostgreSQL,
unless otherwise specified.

Before we start exploring the HA and DR features of Aurora, let’s
understand what high availability and disaster recovery mean.

5

High availability
Availability is a commonly used metric to quantitatively measure resiliency. A workload’s
availability is measured as the percentage of time it’s available for use. The percentage is
calculated over a period of time such as a month or a year (available for use time / total
time), for example, 99.99% (four nines).

A highly available database is able to ensure an agreed level of operational performance in
the event of issues such as a hardware, software, or network failure, with little to no manual
intervention. HA is traditionally achieved by creating a replica of the primary database on an
isolated piece of hardware separate from the source database.1 In an event of a disruption,
the replica is promoted and assumes the role of a new primary database. Application
connectivity can be managed by using methods such as a virtual IP (VIP), Domain Name
System (DNS) redirection, or a proxy layer.2 Detection of a disruption can be achieved by
monitoring the health of the primary database using a combination of methodologies like a
quorum voting system and a heartbeat.3

Disaster recovery
HA and DR are completely separate, yet equally important, facets of a highly resilient
database architecture. DR is an organization’s method of regaining access and functionality
of its IT infrastructure after a natural or human disaster. DR policies can require manual
intervention, such as running scripts, changing endpoints, and resizing infrastructure.

DR usually involves more than just the database layer. For example, after a large natural
disaster, an entire data center might become unavailable. In such situations, DR procedures
can be executed to restore the database and applications to continue operations, for
example, in a different, unaffected AWS Region. DR procedures typically include a robust
backup strategy. Backups allow databases to recover to a specific point in time, before the
disaster occurred.

When designing DR procedures, two important factors to consider are Recovery Time
Objective (RTO) and Recovery Point Objective (RPO). RTO and RPO are driven by business
requirements for a specific application and its underlying database. Different applications
and workloads within organizations, and even in the same department, can have differing
RTO and RPOs.

RPO is the maximum acceptable amount of time since the last data recovery point. This
determines what is considered an acceptable loss of data between the last recovery point
and the interruption of the database. For example, if you define an RPO of 15 minutes, in the
event of disaster you could lose up to 15 minutes of data, but not more.

RTO is the maximum acceptable delay between the interruption of the database and
restoration of the service. This determines what is considered an acceptable time window
when the database is unavailable. For example, if you determine that your application’s RTO
is 5 minutes, your DR strategy should allow your application (including the database and
other application components) to return to service in no more than 5 minutes.

1 HA is a characteristic of a system that aims to ensure an agreed level of operational performance, usually uptime, for a higher than

normal period.

2 A proxy, such as an Amazon RDS Proxy is an intermediary service that allows your applications to pool and share database connections

to improve the applications’ ability to scale. With a proxy service, you can handle unpredictable surges in database traffic and create

connections at a fast rate, avoiding oversubscribing connections. It also reduces failover times in an HA configuration by removing

dependency on DNS.

3 A quorum voting system is used by distributed systems to enforce consistent operations. A well-formed quorum obtains minimum

votes, to determine whether a transaction can be allowed or not. A heartbeat is a signal generated by a system at predetermined

intervals to let its partner know it’s working normally. Heartbeat is a commonly used technique for synchronization in highly available

systems.

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

6

https://aws.amazon.com/rds/proxy/

Aurora architecture and HA
and DR features
Distributed storage
The architecture of Aurora is built from the ground up to be highly
available and resilient to failures. The storage subsystem in Aurora is
distributed and purpose built for use with Aurora. Aurora replicates new
writes six ways across three Availability Zones. The distributed storage
ensures your data can survive the rare occurrence of a full Availability
Zone failure plus an additional concurrent storage node failure in
a different Availability Zone (AZ+1 failure). This distributed storage
architecture is also able to automatically scale and self-heal from issues
such as node failures and fill in missing writes by using a peer-to-peer
protocol between storage nodes.

7

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Concepts.RegionsAndAvailabilityZones.AvailabilityZones

It is worth noting that while the Aurora distributed storage subsystem provides enhanced
durability, it does not make your database highly available by itself. HA options for an
Aurora database (DB) cluster are discussed later in this paper.

The architecture of Aurora decouples compute resources from its storage, which allows
compute and storage subsystems to independently recover from failures. In a single
Region, an Aurora DB cluster can be deployed as a Single-AZ (SAZ) configuration, or
a Multi-AZ (MAZ) configuration. A SAZ Aurora DB cluster is made up of a single writer
instance, which accepts both read and write requests.

Aurora Single-AZ architecture example

Application A

Region 1

AZ1

Cluster endpoint

Data copiesData copies

Writer

W
ritesRe

ad
s

W
rit

es
W

rites

Cluster volume

Amazon Aurora DB cluster

Data copies

Reader endpoint

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

8

A MAZ Aurora DB cluster is made up of a writer DB instance and at least one (and up to 15)
reader DB instances. A reader DB instance acts as a low-lag read replica and can only accept
read requests. A MAZ Aurora DB cluster configuration is a fully managed, single Region,
HA option. A MAZ Aurora DB cluster configuration requires a writer DB instance and one
or more reader DB instances in a different Availability Zone than the writer DB instance.
When deployed as a MAZ configuration, Aurora offers a 99.99% (four nines) uptime SLA.
An Aurora DB cluster provides a cluster (or writer) endpoint that always connects to the
current writer DB instance and accepts both read and write requests. Aurora DB clusters
also provide a reader endpoint that connects to the reader DB instance. If there is more
than one reader DB instance, Aurora acts as a load balancer for all available reader DB
instances.

When a MAZ architecture is used, Aurora automatically detects disruption in the writer
DB instance and fails over to one of the designated failover targets. A failover target can
be one of the reader DB instances in the DB cluster. If you have more than one reader
DB instance, a priority order can be assigned to reader DB instances using a configurable
parameter value (0 to 15). The reader DB instance with the highest priority (value 0)
is chosen as the first failover target. After a successful failover, applications that try to
reconnect using the writer endpoint are automatically redirected to the newly promoted
writer DB instance. Hence, applications don’t have to make any changes to reconnect to
the database after a failover. The failover can take up to 60 seconds to complete, and
any requests submitted by the application during and before failover will fail, so the
application will have to retry those requests. The failover times can be further improved by
using Amazon Relational Database Service (Amazon RDS) Proxy, which can automatically
connect to the new DB instance while preserving application connections. When failovers
occur, Amazon RDS Proxy directly routes requests to the new DB instance. This reduces
failover times for Aurora databases by up to 66%.

Application A

Region 1

Cluster endpoint

Reader Reader Writer

W
rites

Re
ad

s

Re
ad

s

Re
ad

s

Writ
es

Writes

Reader endpoint

AZ1 AZ2 AZ3

Amazon Aurora DB cluster

Data copiesData copies

Cluster volume

Data copies

Aurora Multi-AZ architecture example

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

9

https://aws.amazon.com/rds/aurora/sla/
https://aws.amazon.com/rds/proxy/

Aurora also supports use of an advanced Java database connectivity (JDBC) wrapper in the
AWS JDBC Driver. The wrapper is complementary to existing open source JDBC. It aims to
extend the functionality of the driver to enable applications to take full advantage of the
features of clustered databases such as Aurora. The AWS JDBC Driver does not directly
connect to any database, but it enables support of AWS and Aurora functionality on top of
an underlying JDBC driver of the user’s choice, such as PostgreSQL JDBC Driver or MySQL
JDBC Driver. The AWS JDBC Driver is designed to understand when a failover occurs and
coordinate with the Aurora cluster to provide minimal downtime and allow connections to
be very quickly restored in the event of a DB instance failure.

Aurora offers fully managed backups. You can configure Aurora to automatically back up
your Aurora DB cluster by configuring a backup retention period between 1 day and 35
days. Once configured, Aurora automatically and continuously backs up your DB cluster.
If you want to retain data beyond the backup retention period, you can take a snapshot
of the data in your Aurora cluster volume. Note that Aurora DB cluster snapshots don’t
expire and you must take care to delete them if they are no longer needed. You can restore
an Aurora database to any time during this configured backup retention period using a
point-in-time restore (PITR). You can also use AWS Backup to manage backups of Aurora
DB clusters.

Aurora Global Database
Aurora also offers Amazon Aurora Global Database, which allows an Aurora DB cluster
to span multiple Regions. Aurora Global Database asynchronously replicates your data,
with a typical latency of less than 1 second, while leaving your database fully available
to serve application workload. An Aurora Global Database can be set up across as many
as five secondary Regions. Each replicated secondary Region can have up to 15 reader
DB instances of their own. This architecture provides a massive read scale of up to five
secondary Regions and up to 90 reader DB instances. Aurora Global Database enables fast
local reads with low latency in each Region, and provides DR from Region-wide outages.
If your primary Region suffers an outage, you can promote one of the secondary Regions
to take read/write responsibilities. An Aurora DB cluster can typically recover in a minute,
even in the event of a complete Regional outage. This typically provides your application
with an effective RPO of 1 second and RTO of 1 minute, providing a strong foundation for
global business continuity for your Aurora DB cluster.

An Aurora Global Database gives you the ability to quickly plan for and recover from
a Regional outage. There are two different approaches to failover depending on the
scenario: Aurora Global Database Switchover and Aurora Global Database Failover. A
Global Database Switchover requires all participating DB clusters across Regions to be
available. You can invoke a Global Database Switchover to switch primary and secondary
cluster roles. Common use cases are cross-Region DR testing to meet compliance and
carry out operational maintenance. Using the Global Database Switchover feature,
you can switch over to one of the secondary Regions in a few quick steps using the
SwitchoverGlobalCluster API or the switchover-global-cluster CLI operation.
Note that this feature automatically reverses the replication flow after a switchover to a
secondary Region. The Global Database Switchover feature also allows for a switchover to
the original primary Region. Additionally, Global Database Switchover can be used for use
cases such as regional rotations for a follow-the-sun operational model.

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

10

https://github.com/awslabs/aws-advanced-jdbc-wrapper
https://github.com/pgjdbc/pgjdbc
https://github.com/mysql/mysql-connector-j
https://github.com/mysql/mysql-connector-j
https://aws.amazon.com/blogs/database/introducing-the-advanced-jdbc-wrapper-driver-for-amazon-aurora/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Backups.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Backups.html#Aurora.Managing.Backups.Restore
https://docs.aws.amazon.com/aws-backup/latest/devguide/whatisbackup.html
https://aws.amazon.com/rds/aurora/global-database/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Concepts.RegionsAndAvailabilityZones.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_SwitchoverGlobalCluster.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/switchover-global-cluster.html

Global Database Failover is a cross-Region database failover process that can be
initiated from one of the secondary Regions in the case of an outage, such as a Regional
or a service outage. You can start Global Database Failover using the console, the
FailoverGlobalCluster API, or the failover-global-cluster CLI operation and
specifying the AllowDataLoss parameter. Global Database Failover promotes the chosen
secondary Region DB cluster to a primary and reinitializes all available secondary Regions
in the Aurora Global Database topology using a snapshot of the new primary Region DB
cluster. When the old primary Region recovers from the outage, Aurora adds this Region
back to the Aurora Global Database by restoring a snapshot of the current primary
Region DB cluster. Additionally, Aurora takes a snapshot to preserve pre-failover data.
Aurora Global Database replication is asynchronous, so a Global Database Failover has
the potential of losing data that was not replicated to the secondary Region at the time
of failover. For a detailed discussion on Global Database Failover and Global Database
Switchover, please consult the Aurora user guide.

Aurora PostgreSQL Global Database offers a managed RPO mechanism that lets you
plan and enforce your RPO for an Aurora Global Database configuration. Aurora Global
Database also offers a write-forwarding feature, which can be used to forward writes from
a secondary Region to the primary Region.

Aurora also offers managed Blue/Green Deployments that can be used to reduce downtime
for disruptive operations such as major and minor version database upgrades, testing new
database and application features, and schema maintenance or changes. Aurora offers
a zero-downtime patching (ZDP) feature that can greatly reduce application downtime
during minor version patching. ZDP attempts, on a best-effort basis, to preserve client
connections through Aurora minor version upgrades. If ZDP completes successfully,
application sessions are preserved and the database engine restarts while the upgrade is
in progress. The database engine restart can cause a drop in throughput, lasting for a few
seconds to approximately 1 minute.

Aurora Global Database architecture example

Cluster
endpoint

Reader

Storage

Outbound replication

Reader Writer

AZ1 AZ2 AZ3

Reader
endpoint

Application A Application B

Primary
Region

Storage

In
bo

un
d

re
pl

ic
at

io
n Reader Reader

AZ1 AZ2

Reader
endpoint

Secondary
Region 1

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

11

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_FailoverGlobalCluster.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/failover-global-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-manage-recovery
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments-overview.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.ZDP.html

Achieving HA and DR in a single Region
Aurora provides fully managed automatic backups, enabling a single Region DR
strategy aligned with business and compliance requirements. For long-term retention
needs, options include using AWS Backup for manual snapshots with centralized policy
management or exporting DB cluster snapshot data to Amazon S3 buckets: a background
process that does not impact active cluster performance.

To architect Aurora for HA within a single Region, deploy a MAZ DB cluster configuration.
MAZ DB cluster configuration comprises one writer DB instance and at least one reader
DB instance provisioned across separate Availability Zones to provide failover redundancy,
offering a 99.99% (four nines) uptime SLA. The MAZ configuration automatically detects
and mitigates failures, such as those affecting the writer instance, by failing over to a
designated reader and promoting it as the new primary. Applications can seamlessly
connect without reconfiguration to the newly promoted instance using the cluster and
reader endpoints. In case of a DB instance failure, the underlying instance is automatically
replaced after failover in a MAZ setup, whereas a SAZ configuration can experience several
minutes of downtime while a new instance becomes available.

Extending HA and DR across multiple Regions
A common cross-Region DR pattern with higher RTO and RPO tolerance involves
configuring snapshot backups in secondary Regions. These backups, immune to primary
Region disruptions, enable recovery strategies in the event of a primary Region failure by
deploying the secondary Region backups.

Aurora Global Database offers a more robust business continuity and DR solution
compared to the standard HA provisions of a single Region Aurora DB cluster deployment.
The decoupled architecture design of Aurora allows a single DB cluster to span multiple
Regions while facilitating low-latency local reads, providing resilience against Region-
wide outages and making Aurora an ideal multi-Region solution for extending HA and DR
strategies.

Aurora Global Database facilitates quick RTO in the order of minutes through its Global
Database Failover capability, enabling failover to a secondary Region in case of primary
Region failure. For scenarios like Regional rotations, follow-the-sun applications, or
DR drills, the Global Database Switchover option can be used when both primary and
secondary Regions are available and operational.

Finally, Aurora Global Database supports a headless configuration for secondary Regions,
wherein the secondary cluster contains only the Aurora storage volume without any DB
instances. In addition to serving as a cost-control measure, it allows you to secure backups
against primary Region failures as part of your DR strategy. Prior to promotion, you can
attach a DB instance to the secondary Region cluster. As an alternative, you have the
option to provision an Aurora Serverless v2 instance in the secondary Region, which offers
a cost-effective deployment solution. We recommend weighing trade-offs between RTO
and cost savings if you are considering a headless configuration approach.

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

12

https://docs.aws.amazon.com/aws-backup/latest/devguide/whatisbackup.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-export-snapshot.html
https://aws.amazon.com/rds/aurora/sla/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.AuroraHighAvailability.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-failover
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-failover
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-disaster-recovery.managed-failover
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-getting-started.html#aurora-global-database-attach.console.headless

Monitoring your HA
and DR environment
Aurora offers various observability tools, including Amazon CloudWatch
Logs, enhanced monitoring, and Amazon RDS Performance Insights,
to monitor the health, availability, and performance of DB clusters. Key
CloudWatch metrics to monitor single Region Aurora DB clusters include:

AuroraReplicaLag
CPUUtilization
DatabaseConnections
NetworkThroughput
NetworkTransmitThroughput
NetworkReceiveThroughput
StorageNetworkThroughput
StorageNetworkTransmitThroughput
StorageNetworkReceiveThroughput

See Metrics Reference for Aurora and Monitoring Tools for additional
metrics and tools for monitoring your Aurora DB clusters. Key CloudWatch
metrics to monitor your Aurora Global Databases across Regions include:

AuroraGlobalDBDataTransferBytes
AuroraGlobalDBProgressLag
AuroraGlobalDBReplicatedWriteIO
AuroraGlobalDBReplicationLag
AuroraGlobalDBRPOLag

NOTE: The AuroraGlobalDBRPOLag is applicable only to user transactions.
The AuroraGlobalDBProgressLag also includes health check transactions,
so when applications are idle, you can still see some lag from health
checks, which can be helpful to diagnose network issues if there is low
or no user activity.

In addition, for Aurora PostgreSQL–based Global Databases, you can use
two functions:

aurora_global_db_status
Shows the lag times of the Global Database secondary DB clusters.

aurora_global_db_instance_status
Lists all secondary DB instances for both the primary DB cluster and
secondary DB clusters.

See Monitoring Aurora PostgreSQL–based Aurora Global Databases
to learn more about how to use these functions.

13

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/metrics-reference.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/MonitoringOverview.html#MonitoringOverview.tools
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-monitoring.html#aurora-global-database-monitoring.postgres

Monitoring Aurora events
The generation of an Amazon RDS event indicates a change in the Aurora environment.
For example, Aurora generates an event when a DB cluster is patched. Aurora delivers
events to Amazon CloudWatch Events and Amazon EventBridge in near real time. Amazon
RDS groups events into categories that you can subscribe to and be notified from when
an event in that category occurs. See Working with Amazon RDS Event Notification in the
Aurora user guide for more details.

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

14

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Events.html

Best practices
Define RTO and RPO
DR strategy is driven by well-defined business requirements. The initial
step involves defining your RPO and RTO for each specific workload.
You can further classify workloads into tiers, with stricter service levels
such as lower RTO and RPO for mission-critical tier-one workloads and
progressively relaxed constraints for lower tiers, taking into account the
associated cost implications. It is crucial to align RTO and RPO targets with
business priorities, as more stringent recovery objectives often entail trade-
offs such as higher operational costs.

Define HA and DR strategy to align with RTO and RPO
HA strategy:
Create a MAZ Aurora DB cluster to serve as a highly available Aurora
deployment in a single Region, backed by the Aurora uptime SLA of
99.99% (four nines). In addition, you can add Aurora readers to serve as
failover targets, ready to take over in case the writer instance fails. This
failover process is automatic and managed by Aurora.

DR strategy:
Once RTO and RPO are defined, you should establish retention periods for
automatic backups that align with defined RTO and RPO. The retention
period for automatic backups determines how far back in time you can
restore your Aurora DB cluster. By default, Aurora retains automatic
backups for 1 day, but you can configure the backup retention period for
up to 35 days. The longer the retention period, the more historical data
you have available for restoration, which directly impacts the RTO. You
might also need longer-term retention of manual snapshots based on your
DR strategy. Furthermore, you can achieve an additional layer of resiliency
by maintaining backup copies in separate Regions and accounts. AWS
Backup streamlines this process, enabling lifecycle management of manual
snapshots and centralized backup plan configuration.

15

https://aws.amazon.com/backup/
https://aws.amazon.com/backup/

Document and test HA and DR procedures
Thoroughly document your HA and DR procedures. HA and DR processes like automated
backups, backup window, maintenance window, and failover configuration are documented
in the Aurora Database Administrator’s Handbook. You can also test the fault tolerance of
your Aurora DB clusters by using fault injection queries. However, it is important to create
a runbook with all relevant details like location of scripts, what data points to gather,
and which procedures to run in which order. These details need to be documented and
clearly communicated in the event of a disaster. Once documented, test the procedure by
conducting regular DR drills. Update runbooks as necessary.

Regularly test and review HA and DR procedures
Workload profiles change, and that change can impact the effectiveness of your current
HA and DR procedures. Implement a process to regularly test your HA and DR procedures
to validate their effectiveness and identify any areas of improvement. For example, the
database might have grown in size, which makes the backup and recovery take longer than
the initial design, and you would need to account for the additional time.

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

16

https://docs.aws.amazon.com/whitepapers/latest/amazon-aurora-mysql-db-admin-handbook/amazon-aurora-mysql-db-admin-handbook.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Managing.FaultInjectionQueries.html

Common HA and DR use
cases and design patterns
Use case: your multi-Region applications want read/write capabilities
through the DR Region
In addition to serving low-latency reads closer to users across multiple
Regions, your applications running in secondary Regions might require
write capabilities to the database. As an example, write forwarding can
reduce latency for globally distributed applications by allowing users in
distant locations to write to a nearby secondary Region reader instance
instead of directly writing to the primary Region.

Design pattern: write forwarding with global read replicas
•	 Use the Aurora Global Database DR reader DB instance for local reads,

enhancing performance based on user proximity rather than solely for
passive DR.

•	 Write forwarding enables the application to direct writes to the local
reader DB instance. This direct writing transparently handles session
and transactional context and enforces consistency between writes
and subsequent reads.

•	 The primary DB cluster serves as the authoritative source, where data
changes are initially applied at the storage layer and subsequently
replicated to secondary DB clusters within the Aurora Global Database.

•	 This architecture simplifies application development by allowing writes
to be directed to any Aurora Global Database remote DB cluster.

17

Aurora Global Database write-forwarding example

See Using Write Forwarding in an Aurora Global Database in the Aurora user guide for
more details.

Use case: you want to save costs on DR
If you are looking for a cost-effective multi-Region resilience strategy with subsecond
RPO lag, the Aurora Global Database headless clusters pattern allows for secondary
Regions to only contain storage volumes without DB instances. This approach is suitable
for DR scenarios with RTO exceeding the timeframe required to provision DB instances in
secondary Regions, usually up to 10 minutes.

Design pattern: Aurora Global Database headless clusters
•	 A headless secondary Aurora Global Database is devoid of any DB instances, in contrast

with the primary Region’s cluster composition of one writer instance, one or more
replicas, and a cluster volume representing the primary data.

•	 In this configuration, secondary Regions contain only the cluster volume representing
the data in the secondary cluster, with Aurora replicating data across Regions using low-
latency dedicated infrastructure over the AWS backbone.

•	 This headless cluster approach can reduce operational costs for an Aurora Global
Database, as the decoupled storage and compute architecture removes compute charges
for secondary Regions without provisioned DB instances.

Aurora Global Database headless cluster example

See Creating a Headless Aurora DB Cluster in a Secondary Region in the Aurora user guide
for more details.

Reader

Storage

Outbound replication

Reader Writer

AZ1 AZ2 AZ3

Application B

Primary
Region

Storage

In
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 1

1. Writes to
read endpoint

3. Writes are
committed

2. Writes are
forwarded to

writer in
primary
Region

4. Updates
are replicated
to secondary

Region

Reader

Storage

Outbound replication

Reader Writer

AZ1 AZ2 AZ3

Application A

Primary
Region

Storage

In
bo

un
d

re
pl

ic
at

io
n

Secondary
Region 1

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

18

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-getting-started.html#aurora-global-database-attach.console.headless

Use case: you want to cap maximum RPO loss
In certain scenarios, such as network- or workload-induced events, replication from primary
to secondary clusters can experience delays, potentially leading to an increase in RPO
lag. This design pattern addresses the need to mitigate RPO lag escalation in secondary
clusters for applications requiring enhanced data protection.

Design pattern: managed RPO

NOTE: This architecture pattern applies
only to Aurora PostgreSQL Global Database.

•	 Aurora PostgreSQL–based Global Database allows RPO management with the
rds.global_db_rpo parameter.

•	 Aurora monitors the AuroraGlobalDBRPOLag metric, ensuring at least one cluster
meets the target RPO window.

•	 Transactions on the primary cluster are committed if any secondary cluster’s RPO lag
time is within the target.

•	 If all secondary clusters exceed the RPO target, transactions are blocked on the
primary cluster until one catches up, ensuring RPO compliance.

The RPO is set (rds.global_db_rpo= 20 sec). The RPO lag is okay in both secondary Regions.

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 1

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 2

Reader

Storage

Outbound replication

Reader Writer

AZ1 AZ2 AZ3

Application A

Primary
Region

RPO lag:
15 seconds

RPO lag:
10 seconds

RPO:
Set parameter rds.global_db_rpo = 20 (seconds)
Valid RPO values range from 20 seconds to up to 2,147,483,647 seconds

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

19

The RPO lag is still okay in one of the secondary Regions, so write traffic continues

The lag exceeds the RPO in both secondary Regions, so write traffic is paused in the primary Region

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 1

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 2

Reader

Storage

Outbound replication

Reader Writer

AZ1 AZ2 AZ3

Application A

Primary
Region

RPO lag:
25 seconds

RPO lag:
10 seconds

RPO:
Set parameter rds.global_db_rpo = 20 (seconds)
Valid RPO values range from 20 seconds to up to 2,147,483,647 seconds

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 1

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 2

Reader

Storage

Outbound replication

Reader Writer

AZ1 AZ2 AZ3

Application A

Primary
Region

RPO lag:
35 seconds

RPO lag:
22 seconds

RPO:
Set parameter rds.global_db_rpo = 20 (seconds)
Valid RPO values range from 20 seconds to up to 2,147,483,647 seconds

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

20

Lag in one of the secondary Regions is back within the limit, so writes are resumed

Use case: you need to meet regulatory compliance
requirements for your DR tests
Enterprises often adopt a standard practice of regularly rotating primary systems across
Regions. This not only guarantees procedural completeness and accuracy but also ensures
staff readiness for DR scenarios. Global Database Switchover supports use cases with DR
drills, primary database rotation, or reverting to a previous primary Region without
cluster recreation.

Design pattern: Global Database Switchover
•	 Global Database Switchover facilitates routine relocation of the primary cluster of

an Aurora Global Database to different Regions, suitable for controlled scenarios like
operational maintenance and planned procedures.

•	 For instance, a financial institution with branch offices in various locations might employ
this approach to rotate the primary cluster quarterly among designated secondary
Regions.

•	 During the switchover, the primary cluster in the current primary Region transitions to
a read-only state, while storage volumes synchronize across the secondary Region to
ensure zero data loss (RPO = 0).

•	 The chosen secondary cluster is promoted to the primary role, the replication topology
is maintained, and DB instances across all Regions restart, resulting in temporary
unavailability not exceeding single-digit minutes in duration.

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 1

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 2

Reader

Storage

Outbound replication

Reader Writer

AZ1 AZ2 AZ3

Application A

Primary
Region

RPO lag:
35 seconds

RPO:
Set parameter rds.global_db_rpo = 20 (seconds)
Valid RPO values range from 20 seconds to up to 2,147,483,647 seconds

RPO lag:
15 seconds

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

21

Aurora Global Database architecture example with three Regions

Upon switchover, secondary Region 1 is promoted as the new primary Region.

Writes are stopped in the old primary Region while the secondary Regions catch up (RPO=0).

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 1

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 2

Reader

Storage

Outbound replication

Reader Writer

AZ1 AZ2 AZ3

Application A

Primary
Region

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 1

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 2

Reader

Storage

Outbound replication

Reader Writer

AZ1 AZ2 AZ3

Application A

Primary
Region

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

22

Writes become available in the new primary Region and replication topology is maintained

See Performing Global Database Switchover for Aurora Global Databases in the Aurora
user guide for more details.

Use case: you need to rapidly recover from a Region failure
In rare cases, an Aurora Global Database might encounter an unforeseen outage in its
primary Region, rendering the primary cluster and its writer DB instance unavailable
while stopping replication. In such situations, the Global Database Failover design pattern
minimizes downtime and data loss.

Design pattern: Global Database Failover
(“Region Disaster” scenarios)
•	 Take applications offline to prevent writes from being sent to the primary cluster.
•	 Check lag times for all secondary Aurora DB clusters and choose the secondary Region

with the least replication lag (AuroraGlobalDBRPOLag); the secondary Region will
help minimize data loss with the current failed primary Region.

•	 Reconfigure the application to direct all write operations to the newly promoted Aurora
DB cluster, updating endpoint references accordingly. Redirect write operations in
Amazon RDS Proxy if applicable.

•	 Aurora automatically adds back the old primary Region to the Aurora Global Database
as a secondary Region when it becomes available again. Thus, the original topology of
your global cluster is maintained. See Performing Managed Failovers for Aurora Global
Databases in the Aurora user guide for more details

StorageO
ut

bo
un

d
re

pl
ic

at
io

n

Writer Reader

AZ1 AZ2

Primary
Region

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 2

Reader

Storage

Inbound replication

Reader Reader

AZ1 AZ2 AZ3

Application A

Secondary
Region 1

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

23

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-disaster-recovery.managed-failover
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-failover.managed-unplanned
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-failover.managed-unplanned

Aurora Global Database architecture example with three Regions

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 1

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 2

Reader

Storage

Outbound replication

Reader Writer

AZ1 AZ2 AZ3

Application A

Primary
Region

Upon failover, writes are stopped in the primary Region. A secondary cluster in one of the secondary Regions

with the least replication lag is identified (secondary Region 1, in this example).

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 1

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 2

Application A

Primary
Region

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

24

When failover completes, secondary Region 1 gets promoted as the new primary Region.

Application A now points to the DB cluster endpoint in the new primary Region.

Storage

Application A

Primary Region

Writer Reader

AZ1 AZ2

When the old primary Region becomes available again, Aurora automatically adds back

the old primary to the Global Database topology as a seondary Region

StorageO
ut

bo
un

d
re

pl
ic

at
io

n

Writer Reader

AZ1 AZ2

Primary
Region

StorageIn
bo

un
d

re
pl

ic
at

io
n

Reader Reader

AZ1 AZ2

Secondary
Region 2

Reader

Storage

Inbound replication

Reader Reader

AZ1 AZ2 AZ3

Application A

Secondary
Region 1

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

25

Maintaining availability during
patching or upgrades and
disruptive schema changes
Planned downtime, often necessitated by maintenance tasks like version
upgrades, patching, and schema changes, can vary in duration from
minutes to days. Employing a database replica for these tasks, followed by
redirecting production traffic to the promoted replica, mitigates downtime.
However, replication setup, promotion, and switchover can be complex
and error-prone, especially at scale. Aurora blue/green deployment offers a
managed solution, significantly simplifying replication.

Blue/Green Deployments on Aurora
•	 Blue/Green Deployments on Aurora facilitate the creation of

synchronized staging environments mirroring production environments.
•	 The production (blue) environment and the replicated (green)

environment are kept in sync with logical replication using
replication logs.

•	 The green environment can be quickly promoted to production with
no data loss, blocking writes on both environments during switchover
to ensure synchronization.

•	 Production traffic redirection to the newly promoted green
environment results in a short downtime, usually under a minute, but
downtime can be longer depending on your workload. Once switchover
is complete, the names and endpoints in the blue environment are
assigned to the newly promoted green environment, requiring no
changes to your application.

26

Production environment

Region 1

Production
application

Amazon
Aurora

Writer
(auroradb-
instance-1)

AZ1

Amazon
Aurora

Reader
(auroradb-
instance-3)

AZ3

Amazon
Aurora

Reader
(auroradb-
instance-2)

AZ2

Replication

Reader
endpoint

Read
access

Read
access

Cluster endpoint

Read/write access

Reader
endpoint

Replication

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

27

Production and staging environment

Region 1

Logical replication

Production
application

Amazon
Aurora

Writer
(auroradb-
instance-1)

AZ1

Amazon
Aurora

Reader
(auroradb-
instance-3)

AZ3

Amazon
Aurora

Reader
(auroradb-
instance-2)

AZ2

Replication

Reader
endpoint

Read
access

Read
access

Cluster endpoint

Read/write access

Reader
endpoint

Replication

Testing
application

Amazon
Aurora

Writer
(auroradb-instance
-1-green-abc123)

AZ1

Amazon
Aurora

Reader
(auroradb-instance
-3-green-abc123)

AZ3

Amazon
Aurora

Reader
(auroradb-instance
-2-green-abc123)

AZ2

Replication

Reader
endpoint

Read
access

Read
access

Cluster endpoint

Read/write access

Reader
endpoint

Replication

Production environment (blue)

Amazon Aurora DB cluster (auroradb)

Staging environment (green)

Amazon Aurora DB cluster (auroradb-green-abc123)

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

28

Newly promoted and previous production environment

See Using Amazon RDS Blue/Green Deployments for Database Updates in the
Aurora user guide for more details.

Region 1

Production
application

Amazon
Aurora

Writer
(auroradb-
instance-1)

AZ1

Amazon
Aurora

Reader
(auroradb-
instance-3)

AZ3

Amazon
Aurora

Reader
(auroradb-
instance-2)

AZ2

Replication

Reader
endpoint

Read
access

Read
access

Cluster endpoint

Read/write access

Reader
endpoint

Replication

Amazon
Aurora

Writer
(auroradb-instance
-1-old1)

AZ1

Amazon
Aurora

Reader
(auroradb-instance
-3-old1)

AZ3

Amazon
Aurora

Reader
(auroradb-instance
-2-old1)

AZ2

Replication

Reader
endpoint

Cluster endpoint

Reader
endpoint

Replication

Newly promoted production environment

Amazon Aurora DB cluster (auroradb)

Previous production environment

Amazon Aurora DB cluster (auroradb-old1)

Abstract and introduction

Aurora architecture
and HA and DR features

Abstract

Are you well-architected?

Achieving HA and DR
in a single Region

Extending HA and DR across
multiple Regions

Monitoring
Aurora events

Define HA and DR strategy to
align with RTO and RPO

Regularly test and review
HA and DR procedures

Define RTO and RPO

Conclusion

Introduction

Monitoring your HA
and DR environment

Best practices

Document and test HA and
DR procedures

Common HA and DR use
cases and design patterns

Maintaining availability
during patching or upgrades
and disruptive schema
changes

Contributors

Further reading

Document revisions

29

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments.html

Conclusion
Relational databases are crucial components of highly available
applications. Aurora, a high-throughput RDBMS, maintains availability and
durability in cloud-scale environments. Business-critical workloads can use
MAZ Aurora clusters to enhance uptime and mitigate availability events.
Aurora Global Database extends this capability and facilitates robust DR
solutions by enabling globally distributed applications with minimal RTO,
RPO, and low-latency reads across Regions.

To get started today, see the Aurora user guide and Working with Aurora
Global Database.

30

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_AuroraOverview.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html

Contributors
Contributors to this document include:

•	 Aditya Samant
Principal RDS and Aurora Database Solutions Architect, AWS

•	 Shayon Sanyal
Principal RDS and Aurora Database Solutions Architect, AWS

31

Further reading
For additional information, refer to:

•	 AWS Architecture Center
•	 Disaster Recovery of Workloads on AWS: Recovery in the Cloud
•	 Guidance for Disaster Recovery Using Amazon Aurora

32

https://aws.amazon.com/architecture/
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-workloads-on-aws.html?did=wp_card&trk=wp_card
https://aws.amazon.com/solutions/guidance/disaster-recovery-using-amazon-aurora/

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

