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to conceive of a scenario in which the world economy’s doubling time shortens 
to mere weeks that does not involve the creation of minds that are much faster 
and more efficient than the familiar biological kind. However, the case for tak-
ing seriously the prospect of a machine intelligence revolution need not rely on 
curve-fitting exercises or extrapolations from past economic growth. As we shall 
see, there are stronger reasons for taking heed.

Great expectations

Machines matching humans in general intelligence—that is, possessing com-
mon sense and an effective ability to learn, reason, and plan to meet complex 
information-processing challenges across a wide range of natural and abstract 
domains—have been expected since the invention of computers in the 1940s. At 
that time, the advent of such machines was often placed some twenty years into 
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Figure 1  Long-term history of world GDP. Plotted on a linear scale, the history of the world 
economy looks like a flat line hugging the x-axis, until it suddenly spikes vertically upward. (a) Even 
when we zoom in on the most recent 10,000 years, the pattern remains essentially one of a single 
90° angle. (b) Only within the past 100 years or so does the curve lift perceptibly above the zero-
level. (The different lines in the plot correspond to different data sets, which yield slightly different 
estimates.6)
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12   |   past developments and present capabilities

Table 1  Game-playing AI

Checkers Superhuman Arthur Samuel’s checkers program, originally 
written in 1952 and later improved (the  
1955 version incorporating machine learning), 
becomes the first program to learn to play 
a game better than its creator.37 In 1994, 
the program CHINOOK beats the reigning 
human champion, marking the first time a 
program wins an official world championship 
in a game of skill. In 2002, Jonathan Schaeffer 
and his team “solve” checkers, i.e. produce a 
program that always makes the best possible 
move (combining alpha-beta search with a 
database of 39 trillion endgame positions). 
Perfect play by both sides leads to a draw.38

Backgammon Superhuman 1979: The backgammon program BKG by 
Hans Berliner defeats the world champion—
the first computer program to defeat (in an 
exhibition match) a world champion in any 
game—though Berliner later attributes the 
win to luck with the dice rolls.39

1992: The backgammon program TD-
Gammon by Gerry Tesauro reaches 
championship-level ability, using temporal 
difference learning (a form of reinforcement 
learning) and repeated plays against itself to 
improve.40

In the years since, backgammon programs 
have far surpassed the best human players.41

Traveller TCS Superhuman in 
collaboration 
with human42

In both 1981 and 1982, Douglas Lenat’s 
program Eurisko wins the US championship 
in Traveller TCS (a futuristic naval war game), 
prompting rule changes to block its unortho-
dox strategies.43 Eurisko had heuristics for 
designing its fleet, and it also had heuristics 
for modifying its heuristics.

Othello Superhuman 1997: The program Logistello wins every 
game in a six-game match against world 
champion Takeshi Murakami.44

Chess Superhuman 1997: Deep Blue beats the world chess 
champion, Garry Kasparov. Kasparov claims 
to have seen glimpses of true intelligence and 
creativity in some of the computer’s moves.45 
Since then, chess engines have continued to 
improve.46

Crosswords Expert level 1999: The crossword-solving program Prov-
erb outperforms the average crossword-
solver.47
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2012: The program Dr. Fill, created by Matt 
Ginsberg, scores in the top quartile among 
the otherwise human contestants in the 
American Crossword Puzzle Tournament. 
(Dr. Fill’s performance is uneven. It completes 
perfectly the puzzle rated most difficult 
by humans, yet is stumped by a couple of 
nonstandard puzzles that involved spelling 
backwards or writing answers diagonally.)48

Scrabble Superhuman As of 2002, Scrabble-playing software sur-
passes the best human players.49

Bridge Equal to the 
best

By 2005, contract bridge playing software 
reaches parity with the best human bridge 
players.50

Jeopardy! Superhuman 2010: IBM’s Watson defeats the two all-time-
greatest human Jeopardy! champions, Ken 
Jennings and Brad Rutter.51 Jeopardy! is a tel-
evised game show with trivia questions about 
history, literature, sports, geography, pop 
culture, science, and other topics. Questions 
are presented in the form of clues, and often 
involve wordplay.

Poker Varied Computer poker players remain slightly 
below the best humans for full-ring Texas 
hold ’em but perform at a superhuman level 
in some poker variants.52

FreeCell Superhuman Heuristics evolved using genetic algorithms 
produce a solver for the solitaire game 
FreeCell (which in its generalized form is NP-
complete) that is able to beat high-ranking 
human players.53

Go Very strong 
amateur level

As of 2012, the Zen series of go-playing pro-
grams has reached rank 6 dan in fast games 
(the level of a very strong amateur player), 
using Monte Carlo tree search and machine 
learning techniques.54 Go-playing programs 
have been improving at a rate of about 1 dan/
year in recent years. If this rate of improve-
ment continues, they might beat the human 
world champion in about a decade.

Table 1  Continued

machine, one would seem to have penetrated to the core of human intellectual 
endeavor.”55 This no longer seems so. One sympathizes with John McCarthy, who 
lamented: “As soon as it works, no one calls it AI anymore.”56

There is an important sense, however, in which chess-playing AI turned out 
to be a lesser triumph than many imagined it would be. It was once supposed, 
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offering of an introductory course in artificial intelligence at Stanford Uni
versity in the fall of 2011, organized by Sebastian Thrun and Peter Norvig. Some 
160,000 students from around the world signed up to take it (and 23,000 com-
pleted it).75

Expert opinions about the future of AI vary wildly. There is disagreement about 
timescales as well as about what forms AI might eventually take. Predictions 
about the future development of artificial intelligence, one recent study noted, 
“are as confident as they are diverse.”76

Although the contemporary distribution of belief has not been very carefully 
measured, we can get a rough impression from various smaller surveys and infor-
mal observations. In particular, a series of recent surveys have polled members 
of several relevant expert communities on the question of when they expect 
“human-level machine intelligence” (HLMI) to be developed, defined as “one 
that can carry out most human professions at least as well as a typical human.”77 
Results are shown in Table 2. The combined sample gave the following (median) 
estimate: 10% probability of HLMI by 2022, 50% probability by 2040, and 90% 
probability by 2075. (Respondents were asked to premiss their estimates on the 
assumption that “human scientific activity continues without major negative 
disruption.”)

These numbers should be taken with some grains of salt: sample sizes are quite 
small and not necessarily representative of the general expert population. They 
are, however, in concordance with results from other surveys.78

The survey results are also in line with some recently published interviews with 
about two-dozen researchers in AI-related fields. For example, Nils Nilsson has 
spent a long and productive career working on problems in search, planning, 
knowledge representation, and robotics; he has authored textbooks in artificial 
intelligence; and he recently completed the most comprehensive history of the 
field written to date.79 When asked about arrival dates for HLMI, he offered the 
following opinion:80

10% chance: 2030
50% chance: 2050
90% chance: 2100

Table 2  When will human-level machine intelligence be attained?81

10% 50% 90%

PT-AI 2023 2048 2080

AGI 2022 2040 2065

EETN 2020 2050 2093

TOP100 2024 2050 2070

Combined 2022 2040 2075
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Judging from the published interview transcripts, Professor Nilsson’s probabil-
ity distribution appears to be quite representative of many experts in the area—
though again it must be emphasized that there is a wide spread of opinion: there 
are practitioners who are substantially more boosterish, confidently expecting 
HLMI in the 2020–40 range, and others who are confident either that it will 
never happen or that it is indefinitely far off.82 In addition, some interviewees 
feel that the notion of a “human level” of artificial intelligence is ill-defined or 
misleading, or are for other reasons reluctant to go on record with a quantitative 
prediction.

My own view is that the median numbers reported in the expert survey do 
not have enough probability mass on later arrival dates. A 10% probability of 
HLMI not having been developed by 2075 or even 2100 (after conditionalizing on 
“human scientific activity continuing without major negative disruption”) seems 
too low.

Historically, AI researchers have not had a strong record of being able to pre-
dict the rate of advances in their own field or the shape that such advances would 
take. On the one hand, some tasks, like chess playing, turned out to be achiev-
able by means of surprisingly simple programs; and naysayers who claimed that 
machines would “never” be able to do this or that have repeatedly been proven 
wrong. On the other hand, the more typical errors among practitioners have 
been to underestimate the difficulties of getting a system to perform robustly on 
real-world tasks, and to overestimate the advantages of their own particular pet 
project or technique.

The survey also asked two other questions of relevance to our inquiry. One 
inquired of respondents about how much longer they thought it would take to 
reach superintelligence assuming human-level machine is first achieved. The 
results are in Table 3.

Another question inquired what they thought would be the overall long-term 
impact for humanity of achieving human-level machine intelligence. The answers 
are summarized in Figure 2.

My own views again differ somewhat from the opinions expressed in the sur-
vey. I assign a higher probability to superintelligence being created relatively soon 
after human-level machine intelligence. I also have a more polarized outlook on 
the consequences, thinking an extremely good or an extremely bad outcome to 
be somewhat more likely than a more balanced outcome. The reasons for this will 
become clear later in the book.

Table 3  How long from human level to superintelligence?

Within 2 years after HLMI Within 30 years after HLMI

TOP100 5% 50%

Combined 10% 75%
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Small sample sizes, selection biases, and—above all—the inherent unreliability 
of the subjective opinions elicited mean that one should not read too much into 
these expert surveys and interviews. They do not let us draw any strong conclu-
sion. But they do hint at a weak conclusion. They suggest that (at least in lieu of 
better data or analysis) it may be reasonable to believe that human-level machine 
intelligence has a fairly sizeable chance of being developed by mid-century, and 
that it has a non-trivial chance of being developed considerably sooner or much 
later; that it might perhaps fairly soon thereafter result in superintelligence; and 
that a wide range of outcomes may have a significant chance of occurring, includ-
ing extremely good outcomes and outcomes that are as bad as human extinc-
tion.84 At the very least, they suggest that the topic is worth a closer look.
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Figure 2  Overall long-term impact of HLMI.83
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for a century (cf. Figure 3). It is plausible, however, that compared with brute-force 
replication of natural evolutionary processes, vast efficiency gains are achievable 
by designing the search process to aim for intelligence, using various obvious 
improvements over natural selection. Yet it is very hard to bound the magnitude 
of those attainable efficiency gains. We cannot even say whether they amount to 
five or to twenty-five orders of magnitude. Absent further elaboration, therefore, 
evolutionary arguments are not able to meaningfully constrain our expectations 
of either the difficulty of building human-level machine intelligence or the time-
scales for such developments.

There is a further complication with these kinds of evolutionary considera-
tions, one that makes it hard to derive from them even a very loose upper bound 
on the difficulty of evolving intelligence. We must avoid the error of inferring, 
from the fact that intelligent life evolved on Earth, that the evolutionary processes 
involved had a reasonably high prior probability of producing intelligence. Such 
an inference is unsound because it fails to take account of the observation selec-
tion effect that guarantees that all observers will find themselves having origi-
nated on a planet where intelligent life arose, no matter how likely or unlikely it 
was for any given such planet to produce intelligence. Suppose, for example, that 
in addition to the systematic effects of natural selection it required an enormous 
amount of lucky coincidence to produce intelligent life—enough so that intelligent 
life evolves on only one planet out of every 1030 planets on which simple replicators 
arise. In that case, when we run our genetic algorithms to try to replicate what nat-
ural evolution did, we might find that we must run some 1030 simulations before 
we find one where all the elements come together in just the right way. This seems 
fully consistent with our observation that life did evolve here on Earth. Only by 

Figure 3  Supercomputer performance. In a narrow sense, “Moore’s law” refers to the obser-
vation that the number of transistors on integrated circuits have for several decades doubled 
approximately every two years. However, the term is often used to refer to the more general 
observation that many performance metrics in computing technology have followed a similarly fast 
exponential trend. Here we plot peak speed of the world’s fastest supercomputer as a function 
of time (on a logarithmic vertical scale). In recent years, growth in the serial speed of processors 
has stagnated, but increased use of parallelization has enabled the total number of computations 
performed to remain on the trend line.16
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steps, the construction of a basic virtual reality or a robotic embodiment with 
an audiovisual input channel and some simple output channel is relatively 
easy. Simple yet minimally adequate I/O seems feasible already with present 
technology.23)

There is good reason to think that the requisite enabling technologies are 
attainable, though not in the near future. Reasonable computational models 
of many types of neuron and neuronal processes already exist. Image recogni-
tion software has been developed that can trace axons and dendrites through 
a stack of two-dimensional images (though reliability needs to be improved). 
And there are imaging tools that provide the necessary resolution—with a 
scanning tunneling microscope it is possible to “see” individual atoms, which 
is a far higher resolution than needed. However, although present knowledge 
and capabilities suggest that there is no in-principle barrier to the develop-
ment of the requisite enabling technologies, it is clear that a very great deal of 
incremental technical progress would be needed to bring human whole brain 
emulation within reach.24 For example, microscopy technology would need 
not just sufficient resolution but also sufficient throughput. Using an atomic-
resolution scanning tunneling microscope to image the needed surface area 
would be far too slow to be practicable. It would be more plausible to use a 
lower-resolution electron microscope, but this would require new methods for 

Figure 4  Reconstructing 3D neuro-
anatomy from electron microscope 
images. Upper left: A typical electron 
micrograph showing cross-sections 
of neuronal matter—dendrites and 
axons. Upper right: Volume image of 
rabbit retinal neural tissue acquired 
by serial block-face scanning electron 
microscopy.21  Individual 2D images 
have been stacked into a cube (with a 
side of approximately 11 µm). Bottom: 
Reconstruction of a subset of the 
neuronal projections filling a volume 
of neuropil, generated by an auto-
mated segmentation algorithm.22
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Table 4  Capabilities needed for whole brain emulation

Scanning Pre-processing/fixation Preparing brains appropriately, 
retaining relevant microstruc-
ture and state

Physical handling Methods of manipulating fixed 
brains and tissue pieces before, 
during, and after scanning

Imaging Volume Capability to scan entire brain 
volumes in reasonable time 
and expense

Resolution Scanning at sufficient resolution 
to enable reconstruction

Functional information Ability for scanning to detect 
the functionally relevant prop-
erties of tissue

Translation Image processing Geometric 
adjustment

Handling distortions due to 
scanning imperfections

Data interpolation Handling missing data

Noise removal Improving scan quality

Tracing Detecting structure and 
processing it into a consistent 
3D model of the tissue

Scan 
interpretation

Cell type identification Identifying cell types

Synapse identification Identifying synapses and their 
connectivity

Parameter estimation Estimating functionally relevant 
parameters of cells, synapses, 
and other entities

Databasing Storing the resulting inventory 
in an efficient way

Software model 
of neural system

Mathematical model Model of entities and their 
behavior

Efficient 
implementation

Implementation of model

Simulation Storage Storage of original model and 
current state

Bandwidth Efficient interprocessor 
communication

CPU Processor power to run 
simulation

Body simulation Simulation of body enabling 
interaction with virtual environ-
ment or actual environment 
via robot

Environment simulation Virtual environment for virtual 
body
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34   |   paths to superintelligence

While it appears ultimately feasible to produce a high-fidelity emulation, it 
seems quite likely that the first whole brain emulation that we would achieve if 
we went down this path would be of a lower grade. Before we would get things to 
work perfectly, we would probably get things to work imperfectly. It is also pos-
sible that a push toward emulation technology would lead to the creation of some 
kind of neuromorphic AI that would adapt some neurocomputational principles 
discovered during emulation efforts and hybridize them with synthetic methods, 
and that this would happen before the completion of a fully functional whole 
brain emulation. The possibility of such a spillover into neuromorphic AI, as we 
shall see in a later chapter, complicates the strategic assessment of the desirability 
of seeking to expedite emulation technology.

How far are we currently from achieving a human whole brain emulation? One 
recent assessment presented a technical roadmap and concluded that the prereq-
uisite capabilities might be available around mid-century, though with a large 
uncertainty interval.27 Figure 5 depicts the major milestones in this roadmap. The 
apparent simplicity of the map may be deceptive, however, and we should be care-
ful not to understate how much work remains to be done. No brain has yet been 
emulated. Consider the humble model organism Caenorhabditis elegans, which 
is a transparent roundworm, about 1 mm in length, with 302 neurons. The com-
plete connectivity matrix of these neurons has been known since the mid-1980s, 
when it was laboriously mapped out by means of slicing, electron microscopy, and 

Figure 5  Whole brain emulation roadmap. Schematic of inputs, activities, and milestones.28
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of a human brain depends on a delicate orchestration of many factors, especially 
during the critical stages of embryo development—and it is much more likely that 
this self-organizing structure, to be enhanced, needs to be carefully balanced, 
tuned, and cultivated rather than simply flooded with some extraneous potion.

Manipulation of genetics will provide a more powerful set of tools than psy-
chopharmacology. Consider again the idea of genetic selection: instead of trying 
to implement a eugenics program by controlling mating patterns, one could use 
selection at the level of embryos or gametes.38 Pre-implantation genetic diagnosis 
has already been used during in vitro fertilization procedures to screen embryos 
produced for monogenic disorders such as Huntington’s disease and for predis-
position to some late-onset diseases such as breast cancer. It has also been used for 
sex selection and for matching human leukocyte antigen type with that of a sick 
sibling, who can then benefit from a cord-blood stem cell donation when the new 
baby is born.39 The range of traits that can be selected for or against will expand 
greatly over the next decade or two. A strong driver of progress in behavioral 
genetics is the rapidly falling cost of genotyping and gene sequencing. Genome-
wide complex trait analysis, using studies with vast numbers of subjects, is just 
now starting to become feasible and will greatly increase our knowledge of the 
genetic architectures of human cognitive and behavioral traits.40 Any trait with 
a non-negligible heritability—including cognitive capacity—could then become 
susceptible to selection.41 Embryo selection does not require a deep understand-
ing of the causal pathways by which genes, in complicated interplay with environ-
ments, produce phenotypes: it requires only (lots of) data on the genetic correlates 
of the traits of interest.

It is possible to calculate some rough estimates of the magnitude of the gains 
obtainable in different selection scenarios.42 Table 5 shows expected increases 
in intelligence resulting from various amounts of selection, assuming complete 
information about the common additive genetic variants underlying the narrow-
sense heritability of intelligence. (With partial information, the effectiveness of 
selection would be reduced, though not quite to the extent one might naively 

Table 5  Maximum IQ gains from selecting among a set of embryos43 

Selection IQ points gained

1 in 2 4.2

1 in 10 11.5

1 in 100 18.8

1 in 1000 24.3

5 generations of 1 in 10 < 65 (b/c diminishing returns)

10 generations of 1 in 10 < 130 (b/c diminishing returns)

Cumulative limits (additive variants optimized 
for cognition)

100 + (< 300 (b/c diminishing returns))

9780199678112-Bostrom.indb   37 03/05/14   2:50 PM



40   |  p
a

t
h

s
 t

o
 s

u
p

e
r

in
t

e
l

l
ig

e
n

c
e

Table 6  Possible impacts from genetic selection in different scenarios52

Adoption /  
technology

“IVF+”  
Selection of 1 of 2 embryos  
[4 points]

“Aggressive IVF”  
Selection of 1 of 10 embryos  
[12 points]

“In vitro egg”  
Selection of 1 of 100 embryos  
[19 points]

“Iterated embryo 
selection”  
[100+ points]

“Marginal fertility 
practice”
~ 0.25% adoption

Socially negligible over one 
generation. Effects of social 
controversy more important 
than direct impacts.

Socially negligible over one 
generation. Effects of social 
controversy more important 
than direct impacts.

Enhanced contingent form 
noticeable minority in highly 
cognitively selective positions.

Selected dominate ranks of 
elite scientists, attorneys, 
physicians, engineers. Intel-
lectual Renaissance?

“Elite advantage”
10% adoption

Slight cognitive impact in 1st 
generation, combines with 
selection for non-cognitive 
traits to perceptibly advantage 
a minority.

Large fraction of Harvard 
undergraduates enhanced.  
2nd generation dominate  
cognitively demanding  
professions.

Selected dominate ranks of 
scientists, attorneys, physicians, 
engineers in 1st generation.

“Posthumanity”53

“New normal”
> 90% adoption

Learning disability much less 
frequent among children.  
In 2nd generation, population 
above high IQ thresholds  
more than doubled.

Substantial growth in educa-
tional attainment, income.  
2nd generation manyfold 
increase at right tail.

Raw IQs typical for eminent 
scientists 10+ times as common 
in 1st generation. Thousands of 
times in 2nd generation.

“Posthumanity”
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a reproductive context (not least because of still-unresolved difficulties in getting 
the epigenetics right).54 But once this technology has matured, an embryo could 
be designed with the exact preferred combination of genetic inputs from each 
parent. Genes that are present in neither of the parents could also be spliced in, 
including alleles that are present with low frequency in the population but which 
may have significant positive effects on cognition.55

One intervention that becomes possible when human genomes can be synthe-
sized is genetic “spell-checking” of an embryo. (Iterated embryo selection might 
also allow an approximation of this.) Each of us currently carries a mutational 
load, with perhaps hundreds of mutations that reduce the efficiency of various 
cellular processes.56 Each individual mutation has an almost negligible effect 
(whence it is only slowly removed from the gene pool), yet in combination such 
mutations may exact a heavy toll on our functioning.57 Individual differences in 
intelligence might to a significant extent be attributable to variations in the num-
ber and nature of such slightly deleterious alleles that each of us carries. With gene 
synthesis we could take the genome of an embryo and construct a version of that 
genome free from the genetic noise of accumulated mutations. If one wished to 
speak provocatively, one could say that individuals created from such proofread 
genomes might be “more human” than anybody currently alive, in that they would 
be less distorted expressions of human form. Such people would not all be carbon 
copies, because humans vary genetically in ways other than by carrying different 
deleterious mutations. But the phenotypical manifestation of a proofread genome 
may be an exceptional physical and mental constitution, with elevated function-
ing in polygenic trait dimensions like intelligence, health, hardiness, and appear-
ance.58 (A loose analogy could be made with composite faces, in which the defects 
of the superimposed individuals are averaged out: see Figure 6.)

Figure 6  Composite faces as a metaphor for spell-checked genomes. Each of the central pic-
tures was produced by superimposing photographs of sixteen different individuals (residents 
of Tel Aviv). Composite faces are often judged to be more beautiful than any of the individual 
faces of which they are composed, as idiosyncratic imperfections are averaged out. Analogously, 
by removing individual mutations, proofread genomes may produce people closer to “Platonic 
ideals.” Such individuals would not all be genetically identical, because many genes come in multiple 
equally functional alleles. Proofreading would only eliminate variance arising from deleterious 
mutations.59
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Box 5
  Continued

Table 7  Some strategically significant technology races

United 
States

Soviet 
Union

United 
Kingdom

France China India Israel Pakistan North 
Korea

South 
Africa

Fission bomb 1945 1949 1952 1960 1964 1974 1979? 1998 2006 1979?

Fusion bomb 1952 195311 1957 1968 1967 1998 ? — — —

Satellite launch 
capability

1958 1957 1971 1965 1970 1980 1988 — 1998?12 —13

Human launch 
capability

1961 1961 — — 2003 — — — — —

ICBM14 1959 1960 196815 1985 1971 2012 2008 —16 2006 —17

MIRV18 1970 1975 1979 1985 2007 201419 2008?
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superpower while completely lacking skills in other areas. This is more plau-
sible if there exists some particular technological domain such that virtuosity 
within that domain would be sufficient for the generation of an overwhelmingly 
superior general-purpose technology. For instance, one could imagine a special-
ized AI adept at simulating molecular systems and at inventing nanomolecular 
designs that realize a wide range of important capabilities (such as computers 
or weapons systems with futuristic performance characteristics) described by 
the user only at a fairly high level of abstraction.7 Such an AI might also be able 
to produce a detailed blueprint for how to bootstrap from existing technology 
(such as biotechnology and protein engineering) to the constructor capabilities 
needed for high-throughput atomically precise manufacturing that would allow 
inexpensive fabrication of a much wider range of nanomechanical structures.8  

Table 8  Superpowers: some strategically relevant tasks and correspond-
ing skill sets

Task Skill set Strategic relevance

Intelligence 
amplification

AI programming, cognitive 
enhancement research, 
social epistemology devel-
opment, etc.

•  �System can bootstrap its intelligence

Strategizing Strategic planning, forecast-
ing, prioritizing, and analysis 
for optimizing chances of 
achieving distant goal

•  �Achieve distant goals
•  �Overcome intelligent opposition

Social 
manipulation

Social and psychological 
modeling, manipulation, 
rhetoric persuasion

•  �Leverage external resources by 
recruiting human support

•  �Enable a “boxed” AI to persuade its 
gatekeepers to let it out

•  �Persuade states and organizations to 
adopt some course of action

Hacking Finding and exploiting 
security flaws in computer 
systems

•  �AI can expropriate computational 
resources over the Internet

•  �A boxed AI may exploit security holes 
to escape cybernetic confinement

•  �Steal financial resources
•  �Hijack infrastructure, military robots, 

etc.

Technology 
research

Design and modeling of 
advanced technologies (e.g. 
biotechnology, nanotechnol-
ogy) and development paths

•  �Creation of powerful military force
•  �Creation of surveillance system
•  �Automated space colonization

Economic 
productivity

Various skills enabling 
economically productive 
intellectual work

•  �Generate wealth which can be used 
to buy influence, services, resources 
(including hardware), etc.
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Seed AI

Pre-criticality Recursive self-improvement Covert preparation Overt implementation

AI Research
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Hacking /  Socia l

E xpansion

Construction

Str ike

Escape

Figure 10  Phases in an AI takeover scenario.

improving. An intelligence explosion results—a rapid cascade of recursive self-
improvement cycles causing the AI’s capability to soar. (We can thus think of 
this phase as the takeoff that occurs just after the AI reaches the crossover point, 
assuming the intelligence gain during this part of the takeoff is explosive and 
driven by the application of the AI’s own optimization power.) The AI develops 
the intelligence amplification superpower. This superpower enables the AI to 
develop all the other superpowers detailed in Table 8. At the end of the recursive 
self-improvement phase, the system is strongly superintelligent.

	 3	 Covert preparation phase

Using its strategizing superpower, the AI develops a robust plan for achieving its 
long-term goals. (In particular, the AI does not adopt a plan so stupid that even 
we present-day humans can foresee how it would inevitably fail. This criterion 
rules out many science fiction scenarios that end in human triumph.10) The plan 
might involve a period of covert action during which the AI conceals its intel-
lectual development from the human programmers in order to avoid setting off 
alarms. The AI might also mask its true proclivities, pretending to be cooperative 
and docile.

If the AI has (perhaps for safety reasons) been confined to an isolated computer, 
it may use its social manipulation superpower to persuade the gatekeepers to let it 
gain access to an Internet port. Alternatively, the AI might use its hacking super-
power to escape its confinement. Spreading over the Internet may enable the AI 
to expand its hardware capacity and knowledge base, further increasing its intel-
lectual superiority. An AI might also engage in licit or illicit economic activity to 
obtain funds with which to buy computer power, data, and other resources.
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cosmic endowment

Figure 11  Schematic illustration of some possible trajectories for a hypothetical wise singleton. 
With a capability below the short-term viability threshold—for example, if population size is too 
small—a species tends to go extinct in short order (and remain extinct). At marginally higher 
levels of capability, various trajectories are possible: a singleton might be unlucky and go extinct or 
it might be lucky and attain a capability (e.g. population size, geographical dispersion, technological 
capacity) that crosses the wise-singleton sustainability threshold. Once above this threshold, a 
singleton will almost certainly continue to gain in capability until some extremely high capability 
level is attained. In this picture, there are two attractors: extinction and astronomical capability. 
Note that, for a wise singleton, the distance between the short-term viability threshold and the 
sustainability threshold may be rather small.15

Box 7  How big is the cosmic endowment?

Consider a technologically mature civilization capable of building sophisticated 
von Neumann probes of the kind discussed in the text. If these can travel at 
50% of the speed of light, they can reach some 6×1018 stars before the cosmic 
expansion puts further acquisitions forever out of reach. At 99% of c, they could 
reach some 2×1020 stars.16 These travel speeds are energetically attainable using a 
small fraction of the resources available in the solar system.17 The impossibility of 
faster-than-light travel, combined with the positive cosmological constant (which 
causes the rate of cosmic expansion to accelerate), implies that these are close to 
upper bounds on how much stuff our descendants acquire.18

If we assume that 10% of stars have a planet that is—or could by means of 
terraforming be rendered—suitable for habitation by human-like creatures, and 
that it could then be home to a population of a billion individuals for a billion years 
(with a human life lasting a century), this suggests that around 1035 human lives 
could be created in the future by an Earth-originating intelligent civilization.19

There are, however, reasons to think this greatly underestimates the true 
number. By disassembling non-habitable planets and collecting matter from the 

continued
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whom. If you looked more closely, studying the morphology of the two brains 
under a microscope, this impression of fundamental similarity would only be 
strengthened: you would see the same lamellar organization of the cortex, with 
the same brain areas, made up of the same types of neuron, soaking in the same 
bath of neurotransmitters.1

Despite the fact that human psychology corresponds to a tiny spot in the space 
of possible minds, there is a common tendency to project human attributes onto 
a wide range of alien or artificial cognitive systems. Yudkowsky illustrates this 
point nicely:

Back in the era of pulp science fiction, magazine covers occasionally depicted a sentient 
monstrous alien—colloquially known as a bug-eyed monster (BEM)—carrying off an 
attractive human female in a torn dress. It would seem the artist believed that a non-
humanoid alien, with a wholly different evolutionary history, would sexually desire human 
females. . . . Probably the artist did not ask whether a giant bug perceives human females 
as attractive. Rather, a human female in a torn dress is sexy—inherently so, as an intrin-
sic property. They who made this mistake did not think about the insectoid’s mind: they 
focused on the woman’s torn dress. If the dress were not torn, the woman would be less 
sexy; the BEM does not enter into it.2

An artificial intelligence can be far less human-like in its motivations than a 
green scaly space alien. The extraterrestrial (let us assume) is a biological crea-
ture that has arisen through an evolutionary process and can therefore be 
expected to have the kinds of motivation typical of evolved creatures. It would 
not be hugely surprising, for example, to find that some random intelligent alien 
would have motives related to one or more items like food, air, temperature, 
energy expenditure, occurrence or threat of bodily injury, disease, predation, 
sex, or progeny. A member of an intelligent social species might also have moti-
vations related to cooperation and competition: like us, it might show in-group 
loyalty, resentment of free riders, perhaps even a vain concern with reputation 
and appearance.

Figure 12  Results of anthropomorphizing alien motivation. Least likely hypothesis: space aliens 
prefer blondes. More likely hypothesis: the illustrators succumbed to the “mind projection fallacy.” 
Most likely hypothesis: the publisher wanted a cover that would entice the target demographic.
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Tripwires

A tripwire is a mechanism that performs diagnostic tests on the system (possibly 
without its knowledge) and effects a shutdown if it detects signs of dangerous 
activity. Programmers can then scrutinize recordings of the suspicious activity 
at their leisure, and make changes to the AI’s code base or environment before 
restarting it. If they find that the problem is sufficiently deep-rooted, they could 
decide to abort the entire project.

Tripwires differ from incentive methods in that they do not rely on the system 
being aware of the consequences of engaging in forbidden activities. Tripwires are 

Table 9  Different kinds of tripwires

Type of monitoring Description and examples

Behavior Detectors could be placed around a boxed AI to detect at-
tempts to breach the containment. For example, detectors 
could intercept attempts at radio communication or at accessing 
internal computational resources intended to be off limits. An 
“Ethernet port of Eden” could be installed: an apparent connec-
tion to the internet that leads to a shutdown switch.

Ability Automated capability testing could be performed at frequent 
intervals to determine the AI’s skill in various domains. If either 
the rate of improvement is unexpectedly high or the AI attains 
a level of competence that brings it close to the potential danger 
zone, the system could be slowed down or paused, in order to 
allow the programmers to monitor further developments more 
closely.

Content The AI’s internal processes could be monitored for suspicious 
activity. For example, any change to the AI’s representation of 
its final values might trigger an automatic shutdown and review. 
The AI’s resource use and algorithmic methods may also be also 
be monitored for unexpected patterns.

More ambitiously, the AI’s beliefs, plans, subgoals, and 
justifications may be continuously scrutinized, to ensure they 
conform to the programmers’ expectations. Such monitoring of 
the AI’s intentional states would enable a particularly powerful 
form of content monitoring: the scanning of the AI’s cogni-
tive processes for a conception of deception—that vulnerable 
moment when an unfriendly AI first forms the intention to 
conceal its true intentions.21

Content monitoring that requires that the AI’s intentional 
states be transparent to the programmers or to an automatic 
monitoring mechanism may not be feasible for all kinds of AI 
architectures. (Some neural networks, for instance, are opaque, 
as they represent information holistically and in ways that do 
not necessarily match up with human concepts.) This may be a 
reason to avoid using such architectures.
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applicable. Conversely, if superintelligence is first achieved along some non-AI 
path, then many of the other motivation selection methods are inapplicable. Even 
so, views on how likely augmentation would be to succeed do have strategic rele
vance insofar as we have opportunities to influence which technology will first 
produce superintelligence.

Synopsis

A quick synopsis might be called for before we close this chapter. We distinguished 
two broad classes of methods for dealing with the agency problem at the heart of 
AI safety: capability control and motivation selection. Table 10 gives a summary.

Table 10  Control methods

Capability control

Boxing methods The system is confined in such a way that it can affect the exter-
nal world only through some restricted, pre-approved channel. 
Encompasses physical and informational containment methods.

Incentive methods The system is placed within an environment that provides ap-
propriate incentives. This could involve social integration into 
a world of similarly powerful entities. Another variation is the 
use of (cryptographic) reward tokens. “Anthropic capture” is 
also a very important possibility but one that involves esoteric 
considerations.

Stunting Constraints are imposed on the cognitive capabilities of the 
system or its ability to affect key internal processes.

Tripwires Diagnostic tests are performed on the system (possibly without 
its knowledge) and a mechanism shuts down the system if dan-
gerous activity is detected.

Motivation selection

Direct specification The system is endowed with some directly specified motivation 
system, which might be consequentialist or involve following a 
set of rules.

Domesticity A motivation system is designed to severely limit the scope of 
the agent’s ambitions and activities.

Indirect normativity Indirect normativity could involve rule-based or consequential-
ist principles, but is distinguished by its reliance on an indirect 
approach to specifying the rules that are to be followed or the 
values that are to be pursued.

Augmentation One starts with a system that already has substantially human or 
benevolent motivations, and enhances its cognitive capacities to 
make it superintelligent.
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Table 11  Features of different system castes

Oracle A question-answering system

Variations: Domain-limited oracles (e.g. 
mathematics); output-restricted oracles 
(e.g. only yes/no/undecided answers, 
or probabilities); oracles that refuse to 
answer questions if they predict the 
consequences of answering would meet 
pre-specified “disaster criteria”; multiple 
oracles for peer review

•  �Boxing methods fully applicable
•  �Domesticity fully applicable
•  �Reduced need for AI to understand human intentions and interests (com-

pared to genies and sovereigns)
•  �Use of yes/no questions can obviate need for a metric of the “usefulness” or 

“informativeness” of answers
•  �Source of great power (might give operator a decisive strategic advantage)
•  �Limited protection against foolish use by operator
•  �Untrustworthy oracles could be used to provide answers that are hard to 

find but easy to verify
•  �Weak verification of answers may be possible through the use of multiple 

oracles

Genie A command-executing system

Variations: Genies using different “extrapo-
lation distances” or degrees of following 
the spirit rather than letter of the com-
mand; domain-limited genies; genies-with-
preview; genies that refuse to obey com-
mands if they predict the consequences 
of obeying would meet pre-specified 
“disaster criteria”

•  �Boxing methods partially applicable (for spatially limited genies)
•  �Domesticity partially applicable
•  �Genie could offer a preview of salient aspects of expected outcomes
•  �Genie could implement change in stages, with opportunity for review at each 

stage
•  �Source of great power (might give operator a decisive strategic advantage)
•  �Limited protection against foolish use by operator
•  �Greater need for AI to understand human interests and intentions (compared 

to oracles)
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Sovereign A system designed for open-ended 
autonomous operation

Variations: Many possible motivation 
systems; possibility of using preview and 
“sponsor ratification” (to be discussed in 
Chapter 13)

•  �Boxing methods inapplicable
•  �Most other capability control methods also inapplicable (except, possibly, 

social integration or anthropic capture)
•  �Domesticity mostly inapplicable
•  �Great need for AI to understand true human interests and intentions
•  �Necessity of getting it right on the first try (though, to a possibly lesser extent, 

this is true for all castes)
•  �Potentially a source of great power for sponsor, including decisive strategic 

advantage
•  �Once activated, not vulnerable to hijacking by operator, and might be de-

signed with some protection against foolish use
•  �Can be used to implement “veil of ignorance” outcomes (cf. Chapter 13)

Tool A system not designed to exhibit goal-
directed behavior

•  �Boxing methods may be applicable, depending on the implementation
•  �Powerful search processes would likely be involved in the development and 

operation of a machine superintelligence
•  �Powerful search to find a solution meeting some formal criterion can produce 

solutions that meet the criterion in an unintended and dangerous way
•  �Powerful search might involve secondary, internal search and planning 

processes that might find dangerous ways of executing the primary search 
process

Table 11  Continued
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Box 10 F ormalizing value learning

Introducing some formal notation can help us see some things more clearly. 
However, readers who dislike formalism can skip this part.

Consider a simplified framework in which an agent interacts with its environ-
ment in a finite number of discrete cycles.13 In cycle k, the agent performs action 
yk, and then receives the percept xk. The interaction history of an agent with 
lifespan m is a string y1x1y2x2 . . . ymxm (which we can abbreviate as yx1:m or yx≤m). 
In each cycle, the agent selects an action based on the percept sequence it has 
received to date.

Consider first a reinforcement learner. An optimal reinforcement learner 
(AI-RL) is one that maximizes expected future rewards. It obeys the equation14

y r r P yx yx yk k m
x yx

m k k

k k m

= ( )∑arg max +…+ |
+ :

≤ <yk

1

(( ).

The reward sequence rk, . . . , rm is implied by the percept sequence xk:m, since 
the reward that the agent receives in a given cycle is part of the percept that the 
agent receives in that cycle.

As argued earlier, this kind of reinforcement learning is unsuitable in the pre-
sent context because a sufficiently intelligent agent will realize that it could secure 
maximum reward if it were able to directly manipulate its reward signal (wire-
heading). For weak agents, this need not be a problem, since we can physically 
prevent them from tampering with their own reward channel. We can also con-
trol their environment so that they receive rewards only when they act in ways 
that are agreeable to us. But a reinforcement learner has a strong incentive to 
eliminate this artificial dependence of its rewards on our whims and wishes. Our 
relationship with a reinforcement learner is therefore fundamentally antagonis-
tic. If the agent is strong, this spells danger.

Variations of the wireheading syndrome can also affect systems that do not 
seek an external sensory reward signal but whose goals are defined as the at-
tainment of some internal state. For example, in so-called “actor–critic” systems, 
there is an actor module that selects actions in order to minimize the disapproval 
of a separate critic module that computes how far the agent’s behavior falls short 
of a given performance measure. The problem with this setup is that the actor 
module may realize that it can minimize disapproval by modifying the critic or 
eliminating it altogether—much like a dictator who dissolves the parliament and 
nationalizes the press. For limited systems, the problem can be avoided simply 
by not giving the actor module any means of modifying the critic module. A suf-
ficiently intelligent and resourceful actor module, however, could always gain ac-
cess to the critic module (which, after all, is merely a physical process in some 
computer).15

Before we get to the value learner, let us consider as an intermediary step 
what has been called an observation-utility maximizer (AI-OUM). It is obtained 
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Box 10   Continued

by replacing the reward series (rk + . . . + rm) in the AI-RL with a utility function 
that is allowed to depend on the entire future interaction history of the AI:

y = U yx P yx | yx yk y
x yx

≤m ≤m <k kk

k k+ m

arg max
1:

( ) ( )∑ ..

This formulation provides a way around the wireheading problem because a 
utility function defined over an entire interaction history could be designed to 
penalize interaction histories that show signs of self-deception (or of a failure on 
the part of the agent to invest sufficiently in obtaining an accurate view of reality).

The AI-OUM thus makes it possible in principle to circumvent the wireheading 
problem. Availing ourselves of this possibility, however, would require that we 
specify a suitable utility function over the class of possible interaction histories—a 
task that looks forbiddingly difficult.

It may be more natural to specify utility functions directly in terms of possible 
worlds (or properties of possible worlds, or theories about the world) rather 
than in terms of an agent’s own interaction histories. If we use this approach, we 
could reformulate and simplify the AI-OUM optimality notion:

y = U w P w |Eyy
w

arg max ( ) ( ).∑
Here, E is the total evidence available to the agent (at the time when it is making 
its decision), and U is a utility function that assigns utility to some class of possible 
worlds. The optimal agent chooses the act that maximizes expected utility.

An outstanding problem with these formulations is the difficulty of defining 
the utility function U. This, finally, returns us to the value-loading problem. To en-
able the utility function to be learned, we must expand our formalism to allow for 
uncertainty over utility functions. This can be done as follows (AI-VL):16

y = P w |Ey U w P U | wy
w u

arg max ( ) ( ) ( ( ) ).∈
∈ ∈

Y
W U
∑ ∑ 

Here, (.) is a function from utility functions to propositions about utility func-
tions. (U) is the proposition that the utility function U satisfies the value criterion 
expressed by  .17

To decide which action to perform, one could hence proceed as follows: First, 
compute the conditional probability of each possible world w (given available evi-
dence and on the supposition that action y is to be performed). Second, for each 
possible utility function U, compute the conditional probability that U satisfies the 
value criterion   (conditional on w being the actual world). Third, for each pos-
sible utility function U, compute the utility of possible world w. Fourth, combine 
these quantities to compute the expected utility of action y. Fifth, repeat this pro-
cedure for each possible action, and perform the action found to have the highest 

continued
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Box 10   Continued

expected utility (using some arbitrary method to break ties). As described, this 
procedure—which involves giving explicit and separate consideration to each 
possible world—is, of course, wildly computationally intractable. The AI would 
have to use computational shortcuts that approximate this optimality notion.

The question, then, is how to define this value criterion  .18 Once the AI has an 
adequate representation of the value criterion, it could in principle use its general 
intelligence to gather information about which possible worlds are most likely to 
be the actual one. It could then apply the criterion, for each such plausible pos-
sible world w, to find out which utility function satisfies the criterion    in w. One 
can thus regard the AI-VL formula as a way of identifying and separating out this 
key challenge in the value learning approach—the challenge of how to represent 
 . The formalism also brings to light a number of other issues (such as how to 
define , , and ) which would need to be resolved before the approach could 
be made to work.19

could lean back and crack its knuckles—though more likely a malignant failure 
would ensue, for reasons we discussed in Chapter 8. So now we face the question 
of how to define time. We could point to a clock and say, “Time is defined by the 
movements of this device”—but this could fail if the AI conjectures that it can 
manipulate time by moving the hands on the clock, a conjecture which would 
indeed be correct if “time” were given the aforesaid definition. (In a realistic case, 
matters would be further complicated by the fact that the relevant values are not 
going to be conveniently described in a letter; more likely, they would have to be 
inferred from observations of pre-existing structures that implicitly contain the 
relevant information, such as human brains.)

Another issue in coding the goal “Maximize the realization of the values 
described in the envelope” is that even if all the correct values were described 
in a letter, and even if the AI’s motivation system were successfully keyed to this 
source, the AI might not interpret the descriptions the way we intended. This 
would create a risk of perverse instantiation, as discussed in Chapter 8.

To clarify, the difficulty here is not so much how to ensure that the AI can under-
stand human intentions. A superintelligence should easily develop such under-
standing. Rather, the difficulty is ensuring that the AI will be motivated to pursue 
the described values in the way we intended. This is not guaranteed by the AI’s abil-
ity to understand our intentions: an AI could know exactly what we meant and yet 
be indifferent to that interpretation of our words (being motivated instead by some 
other interpretation of the words or being indifferent to our words altogether).

The difficulty is compounded by the desideratum that, for reasons of safety, 
the correct motivation should ideally be installed in the seed AI before it becomes 
capable of fully representing human concepts or understanding human intentions. 
This requires that somehow a cognitive framework be created, with a particular 
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Synopsis

Goal system engineering is not yet an established discipline. It is not currently 
known how to transfer human values to a digital computer, even given human-
level machine intelligence. Having investigated a number of approaches, we found 
that some of them appear to be dead ends; but others appear to hold promise and 
deserve to be explored further. A summary is provided in Table 12.

Table 12  Summary of value-loading techniques

Explicit representation May hold promise as a way of loading domesticity values. 
Does not seem promising as a way of loading more 
complex values.

Evolutionary selection Less promising. Powerful search may find a design that 
satisfies the formal search criteria but not our inten-
tions. Furthermore, if designs are evaluated by running 
them—including designs that do not even meet the 
formal criteria—a potentially grave additional danger is 
created. Evolution also makes it difficult to avoid massive 
mind crime, especially if one is aiming to fashion human-
like minds.

Reinforcement learning A range of different methods can be used to solve “rein-
forcement-learning problems,” but they typically involve 
creating a system that seeks to maximize a reward signal. 
This has an inherent tendency to produce the wireheading 
failure mode when the system becomes more intelligent. 
Reinforcement learning therefore looks unpromising.

Value accretion We humans acquire much of our specific goal content from 
our reactions to experience. While value accretion could in 
principle be used to create an agent with human motiva-
tions, the human value-accretion dispositions might be com-
plex and difficult to replicate in a seed AI. A bad approxima-
tion may yield an AI that generalizes differently than humans 
do and therefore acquires unintended final goals. More 
research is needed to determine how difficult it would be 
to make value accretion work with sufficient precision.

Motivational scaffolding It is too early to tell how difficult it would be to encour-
age a system to develop internal high-level representa-
tions that are transparent to humans (while keeping the 
system’s capabilities below the dangerous level) and then 
to use those representations to design a new goal system. 
The approach might hold considerable promise. (How-
ever, as with any untested approach that would postpone 
much of the hard work on safety engineering until the 
development of human-level AI, one should be careful 
not to allow it to become an excuse for a lackadaisical 
attitude to the control problem in the interim.)

Continued
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If we knew how to solve the value-loading problem, we would confront a fur-
ther problem: the problem of deciding which values to load. What, in other words, 
would we want a superintelligence to want? This is the more philosophical prob-
lem to which we turn next.

Value learning A potentially promising approach, but more research is 
needed to determine how difficult it would be to formally 
specify a reference that successfully points to the relevant 
external information about human value (and how dif-
ficult it would be to specify a correctness criterion for a 
utility function in terms of such a reference). Also worth 
exploring within the value learning category are proposals 
of the Hail Mary type or along the lines of Paul Chris-
tiano’s construction (or other such shortcuts).

Emulation modulation If machine intelligence is achieved via the emulation 
pathway, it would likely be possible to tweak motivations 
through the digital equivalent of drugs or by other means. 
Whether this would enable values to be loaded with suf-
ficient precision to ensure safety even as the emulation is 
boosted to superintelligence is an open question. (Ethical 
constraints might also complicate developments in this 
direction.)

Institution design Various strong methods of social control could be applied 
in an institution composed of emulations. In principle, so-
cial control methods could also be applied in an institution 
composed of artificial intelligences. Emulations have some 
properties that would make them easier to control via 
such methods, but also some properties that might make 
them harder to control than AIs. Institution design seems 
worthy of further exploration as a potential value-loading 
technique.

Table 12  Continued
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that emulations would at least be more likely to have human-like motivations 
(as opposed to valuing only paperclips or discovering digits of pi). Depending 
on one’s views on human nature, this might or might not be reassuring.22

	 iii	 It is not clear why whole brain emulation should result in a slower takeoff than 
artificial intelligence. Perhaps with whole brain emulation one should expect 
less hardware overhang, since whole brain emulation is less computationally 
efficient than artificial intelligence can be. Perhaps, also, an AI system could 
more easily absorb all available computing power into one giant integrated in-
tellect, whereas whole brain emulation would forego quality superintelligence 
and pull ahead of humanity only in speed and size of population. If whole brain 
emulation does lead to a slower takeoff, this could have benefits in terms of 
alleviating the control problem. A slower takeoff would also make a multipolar 
outcome more likely. But whether a multipolar outcome is desirable is very 
doubtful.

There is another important complication with the general idea that getting 
whole brain emulation first is safer: the need to cope with a second transition. 
Even if the first form of human-level machine intelligence is emulation-based, it 
would still remain feasible to develop artificial intelligence. AI in its mature form 
has important advantages over WBE, making AI the ultimately more powerful 
technology.23 While mature AI would render WBE obsolete (except for the special 
purpose of preserving individual human minds), the reverse does not hold.

What this means is that if AI is developed first, there might be a single wave of 
the intelligence explosion. But if WBE is developed first, there may be two waves: 
first, the arrival of WBE; and later, the arrival of AI. The total existential risk along 
the WBE-first path is the sum of the risk in the first transition and the risk in the 
second transition (conditional on having made it through the first); see Figure 13.24

How much safer would the AI transition be in a WBE world? One considera-
tion is that the AI transition would be less explosive if it occurs after some form 

AI
�rst

AI

WBE
�rst

WBE AI

�rst
transition

second
transition

WBE

Figure 13  Artificial intelligence or whole brain emulation first? In an AI-first scenario, there is 
one transition that creates an existential risk. In a WBE-first scenario, there are two risky transi-
tions, first the development of WBE and then the development of AI. The total existential risk 
along the WBE-first scenario is the sum of these. However, the risk of an AI transition might be 
lower if it occurs in a world where WBE has already been successfully introduced.
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Box 13 A  risk-race to the bottom

Consider a hypothetical AI arms race in which several teams compete to develop 
superintelligence.32 Each team decides how much to invest in safety—knowing 
that resources spent on developing safety precautions are resources not spent 
on developing the AI. Absent a deal between all the competitors (which might be 
stymied by bargaining or enforcement difficulties), there might then be a risk-race 
to the bottom, driving each team to take only a minimum of precautions.

One can model each team’s performance as a function of its capability (meas-
uring its raw ability and luck) and a penalty term corresponding to the cost of its 
safety precautions. The team with the highest performance builds the first AI. 
The riskiness of that AI is determined by how much its creators invested in safety. 
In the worst-case scenario, all teams have equal levels of capability. The winner 
is then determined exclusively by investment in safety: the team that took the 
fewest safety precautions wins. The Nash equilibrium for this game is for every 
team to spend nothing on safety. In the real world, such a situation might arise 
via a risk ratchet: some team, fearful of falling behind, increments its risk-taking to 
catch up with its competitors—who respond in kind, until the maximum level of 
risk is reached.

Capability versus risk

The situation changes when there are variations in capability. As variations in ca-
pability become more important relative to the cost of safety precautions, the risk 
ratchet weakens: there is less incentive to incur an extra bit of risk if doing so is 
unlikely to change the order of the race. This is illustrated under various scenarios 
in Figure 14, which plots how the riskiness of the AI depends on the importance 
of capability. Safety investment ranges from 1 (resulting in perfectly safe AI)  
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Figure 14  Risk levels in AI technology races. Levels of risk of dangerous AI in a simple model 
of a technology race involving either (a) two teams or (b) five teams, plotted against the rela-
tive importance of capability (as opposed to investment in safety) in determining which project 
wins the race. The graphs show three information-level scenarios: no capability information 
(straight), private capability information (dashed), and full capability information (dotted).
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