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Figure 1 Long-term history of world GDP. Plotted on a linear scale, the history of the world
economy looks like a flat line hugging the x-axis, until it suddenly spikes vertically upward. (@) Even
when we zoom in on the most recent 10,000 years, the pattern remains essentially one of a single
90° angle. (b) Only within the past 100 years or so does the curve lift perceptibly above the zero-
level. (The different lines in the plot correspond to different data sets, which yield slightly different
estimates.®)



Table 1 Game-playing Al

Checkers

Backgammon

Traveller TCS

Othello

Chess

Crosswords

Superhuman

Superhuman

Superhuman in
collaboration
with human?

Superhuman

Superhuman

Expert level

Arthur Samuel's checkers program, originally
written in 1952 and later improved (the
1955 version incorporating machine learning),
becomes the first program to learn to play

a game better than its creator®” In 1994,

the program CHINOOK beats the reigning
human champion, marking the first time a
program wins an official world championship
in a game of skill. In 2002, Jonathan Schaeffer
and his team “solve” checkers, i.e. produce a
program that always makes the best possible
move (combining alpha-beta search with a
database of 39 trillion endgame positions).
Perfect play by both sides leads to a draw.*®

1979: The backgammon program BKG by
Hans Berliner defeats the world champion—
the first computer program to defeat (in an
exhibition match) a world champion in any
game—though Berliner later attributes the
win to luck with the dice rolls.*’

1992: The backgammon program TD-
Gammon by Gerry Tesauro reaches
championship-level ability, using temporal
difference learning (a form of reinforcement
learning) and repeated plays against itself to
improve.*

In the years since, backgammon programs
have far surpassed the best human players.*

In both 1981 and 1982, Douglas Lenat’s
program Eurisko wins the US championship
in Traveller TCS (a futuristic naval war game),
prompting rule changes to block its unortho-
dox strategies.” Eurisko had heuristics for
designing its fleet, and it also had heuristics
for modifying its heuristics.

1997 The program Logistello wins every
game in a six-game match against world
champion Takeshi Murakami.**

1997. Deep Blue beats the world chess
champion, Garry Kasparov. Kasparov claims
to have seen glimpses of true intelligence and
creativity in some of the computer’s moves.*
Since then, chess engines have continued to
improve.*

1999: The crossword-solving program Prov-
erb outperforms the average crossword-
solver¥




Table 1 Continued

Scrabble

Bridge

Jeopardy!

Poker

FreeCell

Superhuman

Equal to the
best

Superhuman

Varied

Superhuman

Very strong
amateur level

2012: The program Dr. Fill, created by Matt
Ginsberg, scores in the top quartile among
the otherwise human contestants in the
American Crossword Puzzle Tournament.
(Dr. Fill's performance is uneven. It completes
perfectly the puzzle rated most difficult

by humans, yet is stumped by a couple of
nonstandard puzzles that involved spelling
backwards or writing answers diagonally.)*®

As of 2002, Scrabble-playing software sur-
passes the best human players.”

By 2005, contract bridge playing software
reaches parity with the best human bridge
players.®

2010: IBM’s Watson defeats the two all-time-
greatest human Jeopardy! champions, Ken
Jennings and Brad Rutter.' Jeopardy! is a tel-
evised game show with trivia questions about
history, literature, sports, geography, pop
culture, science, and other topics. Questions
are presented in the form of clues, and often
involve wordplay.

Computer poker players remain slightly
below the best humans for full-ring Texas
hold 'em but perform at a superhuman level
in some poker variants.*?

Heuristics evolved using genetic algorithms
produce a solver for the solitaire game
FreeCell (which in its generalized form is NP-
complete) that is able to beat high-ranking
human players.>

As of 2012, the Zen series of go-playing pro-
grams has reached rank 6 dan in fast games
(the level of a very strong amateur player),
using Monte Carlo tree search and machine
learning techniques.> Go-playing programs
have been improving at a rate of about 1 dan/
year in recent years. If this rate of improve-
ment continues, they might beat the human
world champion in about a decade.




Table 2 When will human-level machine intelligence be attained?®'

10% 50% 90%
PT-Al 2023 2048 2080
AGI 2022 2040 2065
EETN 2020 2050 2093
TOP100 2024 2050 2070

Combined 2022 2040 2075




Table 3 How long from human level to superintelligence?

Within 2 years after HLMI Within 30 years after HLMI

TOP100 5% 50%
Combined 10% 75%
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Figure 2 Overall long-term impact of HLM|.&



Speed

1935 1945 1955 1965 1975

Year

Figure 3 Supercomputer performance. In a narrow sense, “Moore’s law" refers to the obser-
vation that the number of transistors on integrated circuits have for several decades doubled
approximately every two years. However, the term is often used to refer to the more general
observation that many performance metrics in computing technology have followed a similarly fast
exponential trend. Here we plot peak speed of the world's fastest supercomputer as a function
of time (on a logarithmic vertical scale). In recent years, growth in the serial speed of processors
has stagnated, but increased use of parallelization has enabled the total number of computations

performed to remain on the trend line¢

1995 2005 2015



Figure 4 Reconstructing 3D neuro-
anatomy from electron microscope
images. Upper left: A typical electron
micrograph showing cross-sections
of neuronal matter—dendrites and
axons. Upper right: Volume image of
rabbit retinal neural tissue acquired
by serial block-face scanning electron
microscopy.”’ Individual 2D images
have been stacked into a cube (with a
side of approximately 11 um). Bottom:
Reconstruction of a subset of the
neuronal projections filling a volume
of neuropil, generated by an auto-
mated segmentation algorithm.??



Table 4 Capabilities needed for whole brain emulation

Scanning

Physical handling

Imaging

Translation Image processing

Scan
interpretation

Software model
of neural system

Simulation Storage
Bandwidth
CPU

Body simulation

Pre-processing/fixation

Volume

Resolution

Functional information

Geometric
adjustment

Data interpolation
Noise removal

Tracing
Cell type identification
Synapse identification

Parameter estimation

Databasing
Mathematical model

Efficient
implementation

Environment simulation

Preparing brains appropriately,
retaining relevant microstruc-
ture and state

Methods of manipulating fixed
brains and tissue pieces before,
during, and after scanning

Capability to scan entire brain
volumes in reasonable time
and expense

Scanning at sufficient resolution
to enable reconstruction

Ability for scanning to detect
the functionally relevant prop-
erties of tissue

Handling distortions due to
scanning imperfections

Handling missing data
Improving scan quality
Detecting structure and

processing it into a consistent
3D model of the tissue

Identifying cell types

Identifying synapses and their
connectivity

Estimating functionally relevant
parameters of cells, synapses,
and other entities

Storing the resulting inventory
in an efficient way

Model of entities and their
behavior

Implementation of model

Storage of original model and
current state

Efficient interprocessor
communication

Processor power to run
simulation

Simulation of body enabling
interaction with virtual environ-
ment or actual environment

via robot

Virtual environment for virtual
body
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Figure 5 Whole brain emulation roadmap. Schematic of inputs, activities, and milestones.?®



Table 5 Maximum IQ gains from selecting among a set of embryos*?

Selection IQ points gained
1in2 42

1in 10 1.5

1in 100 18.8

1in 1000 243

5 generations of 1in 10
10 generations of 1in 10

Cumulative limits (additive variants optimized
for cognition)

< 65 (b/c diminishing returns)
<130 (b/c diminishing returns)
100 + (< 300 (b/c diminishing returns))




Table 6 Possible impacts from genetic selection in different scenarios®?

Adoption /
technology

“IVE+”
Selection of 1 of 2 embryos
[4 points]

“Aggressive IVF”

Selection of 1 of 10 embryos Selection of 1 of 100 embryos

[12 points]

“In vitro egg”

[19 points]

“Iterated embryo
selection”
[100+ points]

“Marginal fertility
practice”
~ 0.25% adoption

“Elite advantage”
10% adoption

“New normal”
> 909% adoption

Socially negligible over one
generation. Effects of social
controversy more important
than direct impacts.

Slight cognitive impact in 1st
generation, combines with
selection for non-cognitive
traits to perceptibly advantage
a minority.

Learning disability much less
frequent among children.

In 2nd generation, population
above high 1Q thresholds
more than doubled.

Socially negligible over one
generation. Effects of social
controversy more important
than direct impacts.

Large fraction of Harvard
undergraduates enhanced.
2nd generation dominate
cognitively demanding
professions.

Substantial growth in educa-
tional attainment, income.
2nd generation manyfold
increase at right tail.

Enhanced contingent form
noticeable minority in highly
cognitively selective positions.

Selected dominate ranks of
scientists, attorneys, physicians,
engineers in st generation.

Raw Qs typical for eminent

scientists 10+ times as common
in 1st generation. Thousands of

times in 2nd generation.

Selected dominate ranks of
elite scientists, attorneys,
physicians, engineers. Intel-
lectual Renaissance?

“Posthumanity’?

“Posthumanity”




Figure 6 Composite faces as a metaphor for spell-checked genomes. Each of the central pic-
tures was produced by superimposing photographs of sixteen different individuals (residents
of Tel Aviv). Composite faces are often judged to be more beautiful than any of the individual
faces of which they are composed, as idiosyncratic imperfections are averaged out. Analogously,
by removing individual mutations, proofread genomes may produce people closer to “Platonic
ideals.” Such individuals would not all be genetically identical, because many genes come in multiple
equally functional alleles. Proofreading would only eliminate variance arising from deleterious
mutations.*’



Table 7 Some strategically significant technology races

United Soviet United France China India Israel Pakistan North South
States Union Kingdom Korea Africa
Fission bomb 1945 1949 1952 1960 1964 1974 19797 1998 2006 19797
Fusion bomb 1952 1953" 1957 1968 1967 1998 ? — — —
Satellite launch 1958 1957 1971 1965 1970 1980 1988 — 19981 13
capability
Human launch 1961 1961 — — 2003 — — — — —
capability
ICBM™ 1959 1960 1968" 1985 1971 2012 2008 —16 2006 i
MIRV® 1970 1975 1979 1985 2007 2014 2008?




Table 8 Superpowers: some strategically relevant tasks and correspond-

ing skill sets

Task

Skill set

Strategic relevance

Intelligence
amplification

Strategizing

Social
manipulation

Hacking

Technology
research

Economic
productivity

Al programming, cognitive
enhancement research,
social epistemology devel-
opment, etc.

Strategic planning, forecast-
ing, prioritizing, and analysis
for optimizing chances of
achieving distant goal

Social and psychological
modeling, manipulation,
rhetoric persuasion

Finding and exploiting
security flaws in computer
systems

Design and modeling of
advanced technologies (e.g.
biotechnology, nanotechnol-
ogy) and development paths

Various skills enabling
economically productive
intellectual work

* System can bootstrap its intelligence

* Achieve distant goals
» Overcome intelligent opposition

* Leverage external resources by
recruiting human support

* Enable a “boxed” Al to persuade its
gatekeepers to let it out

» Persuade states and organizations to
adopt some course of action

* Al can expropriate computational
resources over the Internet

* Aboxed Al may exploit security holes
to escape cybernetic confinement

* Steal financial resources

* Hijack infrastructure, military robots,
etc.

* Creation of powerful military force
» Creation of surveillance system
* Automated space colonization

» Generate wealth which can be used
to buy influence, services, resources
(including hardware), etc.
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Figure 10 Phasesin an Al takeover scenario.
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Figure 11 Schematic illustration of some possible trajectories for a hypothetical wise singleton.
With a capability below the short-term viability threshold—for example, if population size is too
small—a species tends to go extinct in short order (and remain extinct). At marginally higher
levels of capability, various trajectories are possible: a singleton might be unlucky and go extinct or
it might be lucky and attain a capability (e.g. population size, geographical dispersion, technological
capacity) that crosses the wise-singleton sustainability threshold. Once above this threshold, a
singleton will almost certainly continue to gain in capability until some extremely high capability
level is attained. In this picture, there are two attractors: extinction and astronomical capability.
Note that, for a wise singleton, the distance between the short-term viability threshold and the
sustainability threshold may be rather small.®
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Figure 12 Results of anthropomorphizing alien motivation. Least likely hypothesis: space aliens
prefer blondes. More likely hypothesis: the illustrators succumbed to the “mind projection fallacy.”
Most likely hypothesis: the publisher wanted a cover that would entice the target demographic.



Table 9 Different kinds of tripwires

Type of monitoring

Description and examples

Behavior

Ability

Content

Detectors could be placed around a boxed Al to detect at-
tempts to breach the containment. For example, detectors
could intercept attempts at radio communication or at accessing
internal computational resources intended to be off limits. An
“Ethernet port of Eden” could be installed: an apparent connec-
tion to the internet that leads to a shutdown switch.

Automated capability testing could be performed at frequent
intervals to determine the Al's skill in various domains. If either
the rate of improvement is unexpectedly high or the Al attains
a level of competence that brings it close to the potential danger
zone, the system could be slowed down or paused, in order to
allow the programmers to monitor further developments more
closely.

The Al's internal processes could be monitored for suspicious
activity. For example, any change to the Al's representation of
its final values might trigger an automatic shutdown and review.
The Al's resource use and algorithmic methods may also be also
be monitored for unexpected patterns.

More ambitiously, the Al's beliefs, plans, subgoals, and
justifications may be continuously scrutinized, to ensure they
conform to the programmers’ expectations. Such monitoring of
the Al's intentional states would enable a particularly powerful
form of content monitoring: the scanning of the Al's cogni-
tive processes for a conception of deception—that vulnerable
moment when an unfriendly Al first forms the intention to
conceal its true intentions.”!

Content monitoring that requires that the Al's intentional
states be transparent to the programmers or to an automatic
monitoring mechanism may not be feasible for all kinds of Al
architectures. (Some neural networks, for instance, are opaque,
as they represent information holistically and in ways that do
not necessarily match up with human concepts.) This may be a
reason to avoid using such architectures.




Table 10 Control methods

Capability control

Boxing methods

Incentive methods

Stunting

Tripwires

The system is confined in such a way that it can affect the exter-
nal world only through some restricted, pre-approved channel.
Encompasses physical and informational containment methods.

The system is placed within an environment that provides ap-
propriate incentives. This could involve social integration into
a world of similarly powerful entities. Another variation is the
use of (cryptographic) reward tokens. “Anthropic capture” is
also a very important possibility but one that involves esoteric
considerations.

Constraints are imposed on the cognitive capabilities of the
system or its ability to affect key internal processes.

Diagnostic tests are performed on the system (possibly without
its knowledge) and a mechanism shuts down the system if dan-
gerous activity is detected.

Motivation selection

Direct specification

Domesticity

Indirect normativity

Augmentation

The system is endowed with some directly specified motivation
system, which might be consequentialist or involve following a
set of rules.

A motivation system is designed to severely limit the scope of
the agent's ambitions and activities.

Indirect normativity could involve rule-based or consequential-
ist principles, but is distinguished by its reliance on an indirect
approach to specifying the rules that are to be followed or the
values that are to be pursued.

One starts with a system that already has substantially human or
benevolent motivations, and enhances its cognitive capacities to
make it superintelligent.




Table 11 Features of different system castes

Oracle

Genie

A question-answering system

Variations: Domain-limited oracles (e.g.
mathematics); output-restricted oracles
(e.g. only yes/no/undecided answers,

or probabilities); oracles that refuse to
answer questions if they predict the
consequences of answering would meet
pre-specified “disaster criteria”; multiple
oracles for peer review

A command-executing system

Variations: Genies using different “extrapo-
lation distances” or degrees of following
the spirit rather than letter of the com-
mand; domain-limited genies; genies-with-
preview; genies that refuse to obey com-
mands if they predict the consequences
of obeying would meet pre-specified
“disaster criteria”

Boxing methods fully applicable

Domesticity fully applicable

Reduced need for Al to understand human intentions and interests (com-
pared to genies and sovereigns)

Use of yes/no questions can obviate need for a metric of the “usefulness” or
“informativeness” of answers

Source of great power (might give operator a decisive strategic advantage)
Limited protection against foolish use by operator

Untrustworthy oracles could be used to provide answers that are hard to
find but easy to verify

Weak verification of answers may be possible through the use of multiple
oracles

Boxing methods partially applicable (for spatially limited genies)

Domesticity partially applicable

Genie could offer a preview of salient aspects of expected outcomes

Genie could implement change in stages, with opportunity for review at each
stage

Source of great power (might give operator a decisive strategic advantage)
Limited protection against foolish use by operator

Greater need for Al to understand human interests and intentions (compared
to oracles)




Table 11 Continued

Sovereign

Tool

A system designed for open-ended
autonomous operation

Variations: Many possible motivation
systems; possibility of using preview and
“sponsor ratification” (to be discussed in
Chapter 13)

A system not designed to exhibit goal-
directed behavior

Boxing methods inapplicable

Most other capability control methods also inapplicable (except, possibly,
social integration or anthropic capture)

Domesticity mostly inapplicable

Great need for Al to understand true human interests and intentions
Necessity of getting it right on the first try (though, to a possibly lesser extent,
this is true for all castes)

Potentially a source of great power for sponsor, including decisive strategic
advantage

Once activated, not vulnerable to hijacking by operator, and might be de-
signed with some protection against foolish use

Can be used to implement “veil of ignorance” outcomes (cf. Chapter 13)

Boxing methods may be applicable, depending on the implementation
Powerful search processes would likely be involved in the development and
operation of a machine superintelligence

Powerful search to find a solution meeting some formal criterion can produce
solutions that meet the criterion in an unintended and dangerous way
Powerful search might involve secondary, internal search and planning
processes that might find dangerous ways of executing the primary search
process




Box 10 Formalizing value learning

Introducing some formal notation can help us see some things more clearly.
However, readers who dislike formalism can skip this part.

Consider a simplified framework in which an agent interacts with its environ-
ment in a finite number of discrete cycles™ In cycle k, the agent performs action
¥,» and then receives the percept x,. The interaction history of an agent with
lifespan mis a string y,x,y,x, . .. y_x_ (which we can abbreviate as yx, oryx_).
In each cycle, the agent selects an action based on the percept sequence it has
received to date.

Consider first a reinforcement learner. An optimal reinforcement learner
(AI-RL) is one that maximizes expected future rewards. It obeys the equation™

ye=argmax, D (n+.+n,)P(yxe, lyxay).
XeYXk+1:m
The reward sequence r,, .. ., r_is implied by the percept sequence x,_, since
the reward that the agent receives in a given cycle is part of the percept that the
agent receives in that cycle.

As argued earlier, this kind of reinforcement learning is unsuitable in the pre-
sent context because a sufficiently intelligent agent will realize that it could secure
maximum reward if it were able to directly manipulate its reward signal (wire-
heading). For weak agents, this need not be a problem, since we can physically
prevent them from tampering with their own reward channel. We can also con-
trol their environment so that they receive rewards only when they act in ways
that are agreeable to us. But a reinforcement learner has a strong incentive to
eliminate this artificial dependence of its rewards on our whims and wishes. Our
relationship with a reinforcement learner is therefore fundamentally antagonis-
tic. If the agent is strong, this spells danger.

Variations of the wireheading syndrome can also affect systems that do not
seek an external sensory reward signal but whose goals are defined as the at-
tainment of some internal state. For example, in so-called “actor—critic” systems,
there is an actor module that selects actions in order to minimize the disapproval
of a separate critic module that computes how far the agent's behavior falls short
of a given performance measure. The problem with this setup is that the actor
module may realize that it can minimize disapproval by modifying the critic or
eliminating it altogether—much like a dictator who dissolves the parliament and
nationalizes the press. For limited systems, the problem can be avoided simply
by not giving the actor module any means of modifying the critic module. A suf-
ficiently intelligent and resourceful actor module, however, could always gain ac-
cess to the critic module (which, after all, is merely a physical process in some
computer).®

Before we get to the value learner, let us consider as an intermediary step
what has been called an observation-utility maximizer (Al-OUM). It is obtained




Box 10 Continued

by replacing the reward series (r, + ...+ r ) in the Al-RL with a utility function
that is allowed to depend on the entire future interaction history of the Al:

ye=argmax, Y U(yxa, )P(yXa, lyxay):
Xk YXk4tm
This formulation provides a way around the wireheading problem because a
utility function defined over an entire interaction history could be designed to
penalize interaction histories that show signs of self-deception (or of a failure on
the part of the agent to invest sufficiently in obtaining an accurate view of reality).

The AI-OUM thus makes it possible in principle to circumvent the wireheading
problem. Availing ourselves of this possibility, however, would require that we
specify a suitable utility function over the class of possible interaction histories—a
task that looks forbiddingly difficult.

[t may be more natural to specify utility functions directly in terms of possible
worlds (or properties of possible worlds, or theories about the world) rather
than in terms of an agent’s own interaction histories. If we use this approach, we
could reformulate and simplify the Al-OUM optimality notion:

y=arg maxyZU(w)P(w |Ey).

Here, E is the total evidence available to the agent (at the time when it is making
its decision), and U is a utility function that assigns utility to some class of possible
worlds. The optimal agent chooses the act that maximizes expected utility.

An outstanding problem with these formulations is the difficulty of defining
the utility function U. This, finally, returns us to the value-loading problem. To en-
able the utility function to be learned, we must expand our formalism to allow for
uncertainty over utility functions. This can be done as follows (Al-VL):"¢

y=argmax,.; y_P(w|Ey)D UW)POV(U)|w).
weW uel

Here, V() is a function from utility functions to propositions about utility func-
tions. V(U) is the proposition that the utility function U satisfies the value criterion
expressed by V7

To decide which action to perform, one could hence proceed as follows: First,
compute the conditional probability of each possible world w (given available evi-
dence and on the supposition that action y is to be performed). Second, for each
possible utility function U, compute the conditional probability that U satisfies the
value criterion V (conditional on w being the actual world). Third, for each pos-
sible utility function U, compute the utility of possible world w. Fourth, combine
these quantities to compute the expected utility of action y. Fifth, repeat this pro-
cedure for each possible action, and perform the action found to have the highest

continued




Box 10 Continued

expected utility (using some arbitrary method to break ties). As described, this
procedure—which involves giving explicit and separate consideration to each
possible world—is, of course, wildly computationally intractable. The Al would
have to use computational shortcuts that approximate this optimality notion.
The question, then, is how to define this value criterion V. Once the Al has an
adequate representation of the value criterion, it could in principle use its general
intelligence to gather information about which possible worlds are most likely to
be the actual one. It could then apply the criterion, for each such plausible pos-
sible world w, to find out which utility function satisfies the criterion ¥V in w. One
can thus regard the Al-VL formula as a way of identifying and separating out this
key challenge in the value learning approach—the challenge of how to represent
V. The formalism also brings to light a number of other issues (such as how to
define Y, W and U) which would need to be resolved before the approach could
be made to work?? )




Table 12 Summary of value-loading techniques

Explicit representation May hold promise as a way of loading domesticity values.
Does not seem promising as a way of loading more
complex values.

Evolutionary selection Less promising. Powerful search may find a design that
satisfies the formal search criteria but not our inten-
tions. Furthermore, if designs are evaluated by running
them—including designs that do not even meet the
formal criteria—a potentially grave additional danger is
created. Evolution also makes it difficult to avoid massive
mind crime, especially if one is aiming to fashion human-
like minds.

Reinforcement learning A range of different methods can be used to solve “rein-
forcement-learning problems,” but they typically involve
creating a system that seeks to maximize a reward signal.
This has an inherent tendency to produce the wireheading
failure mode when the system becomes more intelligent.
Reinforcement learning therefore looks unpromising.

Value accretion We humans acquire much of our specific goal content from
our reactions to experience. While value accretion could in
principle be used to create an agent with human motiva-
tions, the human value-accretion dispositions might be com-
plex and difficult to replicate in a seed Al. A bad approxima-
tion may yield an Al that generalizes differently than humans
do and therefore acquires unintended final goals. More
research is needed to determine how difficult it would be
to make value accretion work with sufficient precision.

Motivational scaffolding [t is too early to tell how difficult it would be to encour-
age a system to develop internal high-level representa-
tions that are transparent to humans (while keeping the
system’s capabilities below the dangerous level) and then
to use those representations to design a new goal system.
The approach might hold considerable promise. (How-
ever, as with any untested approach that would postpone
much of the hard work on safety engineering until the
development of human-level Al, one should be careful
not to allow it to become an excuse for a lackadaisical
attitude to the control problem in the interim.)




Table 12 Continued

Value learning

Emulation modulation

Institution design

A potentially promising approach, but more research is
needed to determine how difficult it would be to formally
specify a reference that successfully points to the relevant
external information about human value (and how dif-
ficult it would be to specify a correctness criterion for a
utility function in terms of such a reference). Also worth
exploring within the value learning category are proposals
of the Hail Mary type or along the lines of Paul Chris-
tiano's construction (or other such shortcuts).

If machine intelligence is achieved via the emulation
pathway, it would likely be possible to tweak motivations
through the digital equivalent of drugs or by other means.
Whether this would enable values to be loaded with suf-
ficient precision to ensure safety even as the emulation is
boosted to superintelligence is an open question. (Ethical
constraints might also complicate developments in this
direction.)

Various strong methods of social control could be applied
in an institution composed of emulations. In principle, so-
cial control methods could also be applied in an institution
composed of artificial intelligences. Emulations have some
properties that would make them easier to control via
such methods, but also some properties that might make
them harder to control than Als. Institution design seems
worthy of further exploration as a potential value-loading
technique.
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Figure 13 Artificial intelligence or whole brain emulation first? In an Al-first scenario, there is
one transition that creates an existential risk. In a WBE-first scenario, there are two risky transi-
tions, first the development of WBE and then the development of Al. The total existential risk
along the WBE-first scenario is the sum of these. However, the risk of an Al transition might be
lower if it occurs in a world where WBE has already been successfully introduced.
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Figure 14 Risk levels in Al technology races. Levels of risk of dangerous Al in a simple model
of a technology race involving either (a) two teams or (b) five teams, plotted against the rela-
tive importance of capability (as opposed to investment in safety) in determining which project
wins the race. The graphs show three information-level scenarios: no capability information
(straight), private capability information (dashed), and full capability information (dotted).
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