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Abstract—Mobile applications are increasingly integrating
third-party libraries to provide various features, such as ad-
vertising, analytics, social networking, and more. Unfortunately,
such integration with third-party libraries comes with the cost
of potential privacy violations of users, because Android always
grants a full set of permissions to third-party libraries as
their host applications. Unintended accesses to users’ private
data are underestimated threats to users’ privacy, as complex
and often obfuscated third-party libraries make it hard for
application developers to estimate the correct behaviors of third-
party libraries. More critically, a wide adoption of native code
(JNI) and dynamic code executions such as Java reflection or
dynamic code reloading, makes it even harder to apply state-of-
the-art security analysis.

In this work, we propose FLEXDROID, a new Android
security model and isolation mechanism, that provides dy-
namic, fine-grained access control for third-party libraries. With
FLEXDROID, application developers not only can gain a full
control of third-party libraries (e.g., which permissions to grant
or not), but also can specify how to make them behave after
detecting a privacy violation (e.g., providing a mock user’s
information or kill). To achieve such goals, we define a new
notion of principals for third-party libraries, and develop a novel
security mechanism, called inter-process stack inspection that is
effective to JNI as well as dynamic code execution. Our usability
study shows that developers can easily adopt FLEXDROID’s policy
to their existing applications. Finally, our evaluation shows that
FLEXDROID can effectively restrict the permissions of third-party
libraries with negligible overheads.

I. INTRODUCTION

Mobile application (or app for short) developers are becom-
ing increasingly dependent on third-party libraries. For exam-
ple, almost 50% of free apps embed advertisement libraries
(also known as ad libraries) provided by ad companies to
enable in-app advertising [32]. Many other third-party libraries
are also used by app developers to provide various features
at significantly reduced development time and cost. To name
a few, such features include in-app purchases [14], UI [2],
client-side cloud computing interfaces [6], game engines [17],
analytics [8], and PDF view [3]. Unfortunately, third-party
libraries come at costs of potential privacy violation of users.

‡A corresponding author.

A great deal of previous works have increasingly called at-
tention to potential security and privacy risks posed by Android
advertising libraries [22, 32, 40]. Many ad libraries access
privacy-sensitive information even without notification to users
or application developers. Our analysis of 100,000 Android
apps reveals that in addition to ad libraries, various other
third-party libraries (e.g., Facebook, Flurry, RevMob, Pay-
pal) covertly utilize Android APIs to access privacy-sensitive
resources such as GET_ACCOUNTS, READ_PHONE_STATE, or
READ_CALENDAR without mentioning them properly in their
Developer’s Guides. The current Android platform provides
coarse-grained controls for regulating whether third-party li-
braries access private information, allowing them to operate
with the same permissions as their host apps. For example, if
an app has the GET_ACCOUNT permission to access a user’s
online account information (e.g., Gmail and Facebook IDs),
app developers have no way of disallowing third-party libraries
to access such account information. As a result, they must
blindly trust that third-party libraries will properly respect
access to privacy-related information of app users.

This paper presents FLEXDROID, an extension to the An-
droid permission system that allows app developers to control
access to a user’s private information by third-party libraries.
Our primary goal is to enable in-app privilege separation
among a host application and one or more third-party libraries,
while running all in the same process and so, the same UID
privilege. To this end, FLEXDROID provides an interface, as
a part of the app manifest, for app developers to specify a
set of different permissions granted to each third-party library.
Upon any request for a user’s information, FLEXDROID seeks
to identify the principal of the currently running code (either
an app or third-party libraries) via our new security mecha-
nism, called inter-process stack inspection. Depending on the
identified principal, FLEXDROID allows or denies the request
by dynamically adjusting the app’s permissions according to
the pre-specified permissions in the app’s manifest.

Since FLEXDROID assumes that third-party libraries are
potentially malicious, a key challenge is to draw clear and
trustworthy boundaries between the host app and their third-
party libraries at runtime. This becomes particularly chal-
lenging as many third-party libraries utilize various dynamic
features of the Java language including native methods (JNI),
Java reflection, and dynamic class loading. If such dynamic
code execution is not considered carefully, virtually all ad-
versarial third-party libraries can bypass the proposed security
mechanism. From our analysis of 100,000 Android apps, 72%
of 295 third-party libraries are found to rely on dynamic code
execution. Moreover, host apps and third-party libraries involve
complex control- and data-flow dependencies through diverse
features, such as class inheritance and callback methods. Un-
like existing solutions that rely on static analysis [22, 32, 40] or
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cross-app privilege separation [37, 39, 45], the proposed stack-
based inspection technique not only can faithfully identify the
module of third-party libraries but also can regulate them at
runtime without limiting the use of widely-adopted dynamic
code execution.

Experiments with our prototype on Android 4.4.4 show
that FLEXDROID has a high degree of usability and compati-
bility; app developers can easily apply FLEXDROID’s policy to
isolate existing third-party libraries. Our experimental results
also indicate that FLEXDROID incurs negligible overheads.
Experiments with an open-source K-9 email app show that
FLEXDROID adds 1.13-1.55 % overheads in launching the ap-
plication and sending an email, compared with stock Android.

We make three contributions as follows:

• We report several new findings from our analysis of
100,000 real-world Android apps and 20 popular third-
party libraries (see §III-B). For example, 72% of 295
third-party libraries employ the dynamic code execution
using various Java language features, and 17% of them
rely on JNI.

• FLEXDROID extends Android’s permission system by
providing in-app privilege separation for a wide range
of apps, while placing no limit on the use of native code
and reflection and requiring no modification to the code
except the manifest.

• To the best of our knowledge, FLEXDROID is the first
system that adopts a hardware-based fault isolation using
the ARM Domain to sandbox third-party libraries in
Android apps. We describe our engineering experience
in implementing the hardware-based fault isolation and
conduct experiments using real-world Android apps.

II. RELATED WORK

Detecting in-app security/privacy risks. Security and privacy
issues in in-app advertising have recently attracted consider-
able attention. Several studies [22, 32, 40] examine Android
advertising libraries through static analysis. Their findings
indicate that many in-app ad libraries collect privacy-sensitive
information [32] even without mentioning the use of privacy-
related permissions in their documentation [40], while such
negative behaviors may be growing over time [22]. Livshits et
al. [35] propose an automated approach to identify and place
missing permission prompts where third-party libraries may
potentially misuse permissions. A few studies employ dynamic
analysis to disclose potential risks [21, 25]. Brahmastra [21] is
an automation tool to test the potential vulnerability of third-
party libraries embedded into mobile apps, beyond the reach
of GUI-based testing tools. MAdFraud [25] adopts a dynamic
analysis to detect fake ad clicks by host applications. In our
work, we analyzed 20 popular third-party libraries in depth to
understand how they covertly request privacy-sensitive APIs
(e.g., SMS, calendar, location, etc) and how each of them rely
on dynamic features of the Java language (see Table I).

Protecting sensitive data against privacy-unaware third-
party libraries. Several works have introduced protection
mechanisms against permission-abusing third-party libraries.
All existing approaches, except one [43], share the principle
of separating the privilege of third-party libraries from the

host applications by running them in separate processes with
the goal of isolating a specific type of third-party libraries
unlike FLEXDROID. AdSplit [39] and AFrame [45] isolate ad
libraries by running them as separate applications with limited
permissions, and NativeGuard [41] takes a similar approach
for native third-party libraries (written in C/C++) such as
FFmpeg [7]. AdDroid [37] places advertising functionality
into a new Android system service to separate it from host
apps. LayerCake [38] isolates user interface (UI) libraries from
its host app to support secure third-party UI embedding on
Android. On the other hand, Compac [43] is the closest to our
work. Like us, it provides in-app privilege separation for host
app and third-party libraries while both running in the same
process. However, Compac’s approach is not applicable to
third-party libraries relying on JNI or dynamic code execution,
which almost all of the popular third-party libraries rely on
(see Table I). FLEXDROID not only enables isolation of any
third-party libraries but also allows app developers to choose
how each library behaves upon their privacy violation.

Cross-app privacy leaks. A great deal of previous studies aim
to mitigate the confused deputy problem, inter-application or
inter-component permission leaks by either checking IPC call
chains or by monitoring the run-time communication between
apps [23, 24, 26, 29, 30]. TaintDroid [27] and DroidScope [44]
employ efficient taint tracking to monitor real-time data leak-
age.

III. MOTIVATION

Each Android app runs in its own sandbox, an isolated
process with an application-specific UID allocated at the
installation time. In order to get access to sensitive resources
(i.e., contact, location, SMS, camera) outside the app sandbox,
an app must specify proper permissions in the manifest,
AndroidManifest.xml. The Android permission model only
offers an “all-or-nothing” installation option for users to accept
all the permissions requested for installation or simply refuse
to install to the app. More critically, the app is able to keep
accessing the granted resources all the time, no matter what
components or modules of the app are requesting access to.

An Android app often contains third-party libraries to offer
advanced functionality. In the Android security architecture,
all the modules in the same app have exactly the same
permissions, resulting in overprivileged third-party libraries.
That is, some third-party libraries can have more privilege
than what they need, while being malicious (intentionally or
not). As a result, a malicious third-party library may exploit
the app’s SEND_SMS permission to send premium-rate SMS
messages at the users’ cost (i.e., £5 for each message [9]).
This could make app developers vulnerable to lawsuits since
they are considered liable for all the behaviors of their apps.

A. Potential Attack Scenarios

We consider three possible attack scenarios where overpriv-
ileged third-party libraries access privacy-sensitive resources
regardless of the app developers’ intention.

Libraries abusing undocumented permissions. App devel-
opers know what permissions a library will use based on its
documentation (i.e., Developer’s Guide), specifying its must-
have permissions and optionally required permissions. Due
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Facebook Social · × O · · · · × · · · × X X X X X
Flurry Analytics · × O · · · · · · · · O X X · X ·
RevMob Advertising × 4 O · · · · · · · · · · · X X X
Chartboost Advertising · × O · · · · · · · · · X X · X X
InMobi Advertising · · O × × 4 4 · · · · 4 X X X X ·
Millennialmedia Advertising · · O · · · · · · · O × X X · X X
Paypal Billing · × O · · · · · · · · × X · · X ·
Umeng Analytics · O O · · · · × × · · × X X · X X
AppLovin Advertising 4 O O · · · · · · · · · X X X X ·
Pushwoosh Notification · O O · · · · · · · · × · X · X ·
Tapjoy Advertising · O O · · × × · · · · × X X X X ·
AppFlood Advertising · 4 O · · · · · · · · 4 · X · · ·
OpenFeint Social O O O · · · · · · · · × · X X X ·
Airpush Advertising × 4 O · · · · · · × · × · X · X ·
Youmi Advertising · O O · · · · · × · · × · X · X ·
Cauly Advertising · · O · · · · · × · · 4 · · X X ·
Socialize Social · 4 O · · · · · · · · 4 X X · X ·
Domob Advertising · O O · · · · · · · · × X X · X ·
Leadbolt Advertising × 4 O · · × × · · · · 4 X X X X ·
MobFox Advertising · × O · · · · · · · · 4 X X · X ·

TABLE I: Characteristics of third-party libraries. Columns 3-14 show the permissions potentially used by apps (O: required permission, 4:
optional permission, ×: undocumented permission). The rest of columns are related to runtime behavior and dependency with host apps.

to the lack of in-app privilege separation, however, libraries
can take free rides to access private resources even without
corresponding permissions documented properly (i.e., undoc-
umented permissions) when its host app has the permissions.
If the library dynamically checks whether it has certain per-
missions or catches a security exception, it can abuse those
permissions without noticing users.

Contaminated libraries. Although the original library is
legitimate, an adversary is able to rewrite its binary or source
code and redistribute it. When an app mistakenly uses such
contaminated libraries, the users who install the app are in
danger of severe privacy leaks, and may suffer monetary
damages. In 2013, a malware called Uten.A was repackaged
and distributed while disguising itself as Umeng SDK library,
a mobile analytic platform [28]. Some legitimate gaming apps
available in the Google Play used this malware, and many
users installed those apps. Devices affected by the malware
are silently subscribed to a premium-rate SMS service, and
SMS messages are sent to the service at the users’ expense.

Vulnerable libraries. A third-party library may execute a class
or JavaScript code1 downloaded from Internet at runtime. If
the mobile device is connected to an unsafe network and the
library does not encrypt the code, an attacker can replace it
with a malicious code. Such a malicious code can exploit
the host app’s permission to leak personal information (e.g.,
A malicious advertisement written in JavaScript can read the

1 A JavaScript code can run on a WebView-based framework via
JavascriptInterface provided by third-party libraries. Open Rich Media
Mobile Advertising (ORMMA) [13] is an example of such frameworks.

device’s IMEI code if the ad library exposes the getDeivceId
method to JavaScript using addJavascriptInterface).

B. Real-world Findings

In order to look at how our attack scenarios are pervasive
in the wild, we investigate the characteristics of third-party
libraries used in Android applications. Here is a brief summary
of our findings:

1) 17 of 20 popular third-party libraries use undocumented
permissions.

2) 72% of 295 third-party libraries rely on dynamic code
execution.

3) 17% of 295 third-party libraries use JNI.

Methodologies. We randomly collect the 100,000 Android
apps from the Playdrone dataset [42], an archive of Android
Application Package (APK) files downloaded from the Google
play store. To perform a static analysis for applications, we
dissect each APK file using apktool [4] which translates the
Android app’s .dex code into the corresponding .smali code. In
our analysis, we particularly focus the following characteristics
of each library which are relevant to our threat model.

Permissions exploited by third-party libraries. We chose 16
different Android permissions that allow a third-party library
to access privacy-sensitive information such as device ID,
SMS, contacts, and a device’s current location. Since a third-
party library accesses such information via the Android’s
APIs or content provider, we need their mapping to the
corresponding necessary permission. We extended the findings
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from PScout [19] that provides the mapping between Android’s
native API, the content provider’s URI, and permissions. In
addition, we manually examined and compared the required
permissions that we could find from the developer’s guide of
each third-party library, and the exploited permissions that they
could covertly use when embedded by an app.

Dynamic code execution. As previously mentioned in §III,
third-party libraries deeply rely on dynamic features of the
Java programming language, including runtime class loading,
Java reflection, and multi-threading. To identify whether such
techniques are used by third-party libraries, we build code-level
signatures of techniques and apply them to the smali code of
apps.

Interaction between a library and its host application.
In addition to the reliance of dynamic code features, third-
party libraries interact with their host apps in various ways,
which makes it hard to analyze and disambiguate the bound-
aries between third-party libraries and their apps. These
techniques include callback, class inheritance and JNI and
make FLEXDROID distinct from previous works such as Ad-
Droid [37] and AdSplit [39]. To examine such use cases, for
each application, we check whether a host app inherits classes
provided by third-party libraries, whether it uses any callback
method, and whether third-party libraries embed JNI.

Unlike previous works [32, 40] focusing on specific third-
party libraries (i.e., ad), our investigation is not limited to ad
libraries, but includes social, billing, analytics and more. In
addition, our investigation covers dynamic execution patterns
used by third-party libraries, which serves as a primary moti-
vation of our work.

Summary of results. Table I summarizes the results of our
findings for third-party libraries used in 100,000 Android apps.
We extracted the top 20 popular libraries which use at least
one permission out of 16 permissions mentioned above. Note
that in the result, we include a third-party library only if it
provides a clear documentation on necessary permissions and
a method of integration.

We found that some libraries could attempt to use per-
missions which are not documented in their developer’s
guide (marked as ×). For instance, ad libraries such as
RevMob, Airpush, and Leadbolt potentially utilize host app’s
GET_ACCOUNTS permission while its developer does not
mention the permissions as required or optional. With the
GET_ACCOUNTS permission, a library can obtain a user’s online
account information on the phone such as Gmail, Facebook,
and Dropbox.

In addition, our findings show that most libraries can make
dynamic execution paths with dynamic class Loading, Java
reflection, and Java thread. All the listed 20 libraries use at
least one technique, and 16 libraries utilize all three techniques.
Moreover, it turns out that host apps and third-party libraries
have strong dependencies. Specifically, most of the ad libraries
including Flurry, AppLovin, and Tapjoy need to obtain the
host app’s context to show and manipulate advertisements. We
also found that some libraries use class inheritance, perhaps
for simple integration. For instance, Parse and Chartboost
recommend app developers to inherit the provided class for
simplifying the integration process. In addition, we found that
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Fig. 1: Overview of FLEXDROID’s design. The gray boxes represent
FLEXDROID’s modification of the existing Android components and
the gray-stripped boxes represent new components that FLEXDROID
introduced for fine-grained permission checking for third-party li-
braries. In FLEXDROID, all requests to resources will be checked
based on the fine-grained module (host app or third-party libraries)
and the app-specified manifest.

17.1% of 295 third-party libraries use native code through JNI
(see Table II). These tight integration and dynamic behavior
of off-the-shelf libraries make the state-of-the-art analysis
or enforcement challenging. In FLEXDROID, we attempt to
provide a practical yet strong security mechanism to isolate
such third-party libraries.

Technique Out of 295 libs

Class Loading 27.9%
Reflection 49.6%
Class Inheritance 71.5%
JNI 17.1%

TABLE II: Java language techniques used in third-party libraries.

C. Threat Model

FLEXDROID assumes a strong adversary: third-party li-
braries are potentially malicious, their code and logic are not
directly visible to app developers (e.g., obfuscated), and they
might use dynamic features of the Java language. However,
app developers explicitly know what third-party libraries are
for (that is why app developers want to embed them in the
first place). Given a high-level functional description (e.g., ad
or analytics) and perhaps a manifest provided by a third-party
library, app developers should be able to have enough freedom
to adjust the manifest and seamlessly integrate them without
compromising usability.

IV. FLEXDROID DESIGN

A. Overview

FLEXDROID targets at a new permission system that ad-
justs the permissions of Android apps dynamically so as to
enforce fine-grained access controls for untrusted application
modules (i.e, third-party libraries).

A module is a collection of code. FLEXDROID uses the
module as the unit of trust, while an entire app (or a process)
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<flexdroid android:name="com.third.party.library"
android:mockOnException="true">

<allow android:permission="android.permission.READ_CONTACTS" />
<allow android:permission="android.permission.READ_EXTERNAL_STORAGE" />
<allow android:permission="android.permission.INTERNET" />

</flexdroid>

Fig. 2: An example rule in an app’s manifest that allows a third-party library to access contacts, sdcard and the Internet.

is the unit of trust in the Android’s permission system. In
FLEXDROID, the boundary of a module aligns with either
a class or a method. Key features of FLEXDROID are as
follows (see Figure 1). (1) App developers specify a set of
permissions for each individual module in the manifest. (2)
Upon each request for resource access, FLEXDROID identifies
the context of execution (i.e., a call chain of modules leading
to the current execution) by inspecting the Dalvik call stack.
(3) FLEXDROID then determines whether to accept or decline
the request according to the permissions commonly granted to
the modules.

Achieving the above features for a wide range of Android
apps presents several challenges:

Secure inter-process stack inspection. FLEXDROID relies on
call stack trace to mediate access from untrusted modules,
while conducting access control in a separate address space
from the modules. Thus, FLEXDROID should provide a mech-
anism to utilize the call stack trace across the process boundary
(see §IV-B).

Integrity of stack principal. Preserving the integrity of Dalvik
call stack and stack tracer is crucial for correctness. It is,
however, very challenging with the use of native code via Java
Native Interface (JNI). Malicious third-party libraries may use
native code to tamper with Dalvik’s data memory, for example,
to counterfeit call stack frames directly. Therefore, it is critical
to provide a tamper-resistant memory protection mechanism
for accuracy of FLEXDROID permission system (see §IV-C).

Handling dynamic code execution. There are various ways
of dynamic code execution in Java, which could blur the
boundary of modules. For instance, Java reflection can be
used to enable dynamic code generation and execution across
classes, and code can be executed on a new thread with Java
thread creation. These make it very complicated to identify
module boundaries clearly. Since FLEXDROID aims to support
accurate fine-grained access control for individual modules, it
should be able to adjust the permissions of modules dynami-
cally when the modules are modified at run time for execution
(see §IV-D).

In addition to addressing the above challenges,
FLEXDROID also aims to offer a high level of usability. To
this end, FLEXDROID provides developers with programming
interfaces, in the form of simple XML manifest rules, to
restrict third-party libraries’ privileges. Figure 2 shows an
example rule in FLEXDROID’s policy. Using the flexdroid
tag, developers can specify a third-party library of interest and
configure that library’s privileges with the allow tag. Inspired
by [20, 33], FLEXDROID also provides a mockOnException
attribute to enable developers to choose whether FLEXDROID

should offers mock data (e.g., fake IMEI code) upon a request
for an unauthorized resource.

B. Secure Inter-Process Stack Inspection

The Android permission system conducts access control
outside the process boundary of an app of interest. This is
mainly because a significant portion of Android apps make
use of native code for various reasons. If permission checking
is performed inside the Dalvik virtual machine, just as in the
traditional JVM’s security architecture [31], native code can
circumvent permission checking through low-level system calls
or tampering with the Dalvik’s data memory. Thus, Android
performs permission checking in a separate address space to
protect memory tampering or in the kernel to secure the use
of low-level system calls, and FLEXDROID does so too.

This entails a secure inter-process stack inspection mecha-
nism for FLEXDROID. FLEXDROID requires extra information
(i.e, Dalvik call trace) to understand the current execution
context for fine-grained access control. Thus, for each app,
FLEXDROID creates a single special-purpose thread, called
stack tracer, that sends Dalvik call trace data to the system’s
permission checker upon request. It is important to note that a
malicious third-party library may pretend to be a stack tracer
to send a fake call trace data. To protect against such a forgery,
FLEXDROID provides a secure communication channel, stack
transmission channel, between individual stack tracer threads
and the permission checkers. FLEXDROID restricts each app
to create only one trusted stack tracer, and ignores all attempts
to use the stack transmission channel except those by the stack
tracer.

To guarantee the authenticity of stack tracer and its enroll-
ment for the stack transmission channel, FLEXDROID adds a
unique stack tracer into each app and the stack tracer registers
itself to the channel at the app’s initialization time (e.g., in
Android, right after Zygote forks the app process). Since the
initialization occurs before the execution of the app’s code,
a malicious library code cannot create a thread to pretend
to be a stack tracer. Notice that the malicious code could
attempt to tamper with memory used by the stack tracer thread
at runtime to counterfeit data and control or to raise faults.
This is impossible because of our in-app memory protection
mechanism. (See §IV-C for details of the in-app memory
protection.)

The detailed procedure of inter-process stack inspection
differs according to the type of requested resources. Android
resources can broadly fall into two categories: user-space and
kernel-space, depending on which components are responsible
for access control. Android permission system conducts per-
mission checking for user-space resources at the framework
layer and for kernel-space resource in the kernel, respectively.
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User-space resources. Apps access user-space resources
through the interfaces provided by Android system services.
Such resources include system resources (GPS, camera, etc.)
and app components (activity, service, content provider, and
broadcast receiver). Apps and system service processes, which
are user processes, communicate through the Binder IPC (Inter
Process Communication) mechanism. A system service, called
Package Manager (PM), is involved in the permission checking
of user-space resources, while it maintains various kinds of
information (i.e., a set of permissions granted) related to the
application packages installed on the device.

In FLEXDROID, a typical control flow to access user-space
resources is as follows. Like Android, when an app requests
to access a resource (e.g., location) to a corresponding system
service (e.g., Location Manager), the system service process
queries the Package Manager (PM) to see whether the app has
proper permission. FLEXDROID provides inter-process stack
inspection to conduct access control at the granularity of a
module. Upon a request from PM, the stack tracer of the
app passes the Dalvik call trace to PM via the secure stack
transmission channel mentioned above. PM then looks through
all the modules involved in the current access request to find
out the commonly granted permissions among them.

Kernel-space resources. Android apps access kernel-space
resources (Internet, external storage, Bluetooth, etc.) via sys-
tem calls. In Android, unlike the user-space resource case,
PM does not conduct permission checking for kernel-space
resources. Instead, at the initialization of an app, PM passes
a set of permissions (granted to the app) to the kernel. The
kernel then performs permission checking itself, using Linux’s
Access Control Lists [1] 2. FLEXDROID enforces the kernel to
conduct inter-process stack inspection through the stack trans-
mission channel during permission checking. Additionally, in
FLEXDROID, upon app installation, PM sends to the kernel a
set of granted permissions to each module in the app so as to
avoid expensive user-kernel communication later on.

Note that the above process of inter-process stack in-
spection for user- and kernel-space resources works in a
synchronous manner. That is, after requesting the access to
resources, the thread is suspended so that the thread’s context
will remain consistent until the end of the process.

FLEXDROID extracts information of a caller method from
the corresponding stack frame in its Dalvik call stack and the
permission set of each modules. The information contains the
sequence of method call, the principal of module, and access
permission on the memory region of the call stack, as depicted
in Table III. For instance, a stack frame in Table III illus-
trates that com.malicious.library.WebCodeRunner.run
called the com.ImgLib.takePicture method which invokes
the takePicture method of Android’s Camera Class. Here
we assume that com.ImgLib.takePicture is a JNI wrapper
method to take a photo. Such a JNI method can maliciously
manipulate the call stack through a memory tampering attack.
To prevent such an attack, we introduce the design of Dalvik
memory protection in §IV-C.

2 In Android, each kernel-space resource is mapped to a unique GID.

P M Call stack trace

↓ A 7 android.app.Activity.onCreate
A 7 com.example.userapp.MainActivity.onCreate

↓ L 7 com.malicious.library.WebCodeRunner.run
L X com.ImgLib.takePicture (JNI wrapper)
L X android.hardware.Camera.takePicture

P: Principal M: Potential modification
A: Host application L: Third party library

TABLE III: A snapshot of an app’s call stack: application (A) invokes
a JNI library (L) to take a picture. Since FLEXDROID protects the
app’s call stack when executing the library, the JNI library cannot
counterfeit its principal to bypass FLEXDROID’s rules.

C. Ensuring Dalvik Stack Integrity against Native Code

Android supports the Java Native Interface (JNI) and
allows developers to implement parts of an app or library to
incorporate native libraries. With JNI, a developer can re-use
existing libraries written in native languages or improve an
app’s performance.

Despite its advantages, it renders the memory safety of
the Java programming language obsolete, which results in
security threats in Android. In FLEXDROID, such memory
safety problems make it hard to guarantee the integrity of
Dalvik call stack and stack tracer, as they might be corrupted
or even manipulated by malicious third-party libraries.

1) Potential Attacks: We consider three potential attack
scenarios where malicious JNI code might attempt to bypass
FLEXDROID’s security mechanism, in particular, by compro-
mising the integrity of its principal.

1) Compromising the stack tracer. An attacker can ef-
fectively guess the address of a memory region (e.g., a
region that stores stack traces) used by the stack tracer,
and manipulate its content to counterfeit its principal.

2) Manipulating Dalvik stack. An attacker can directly
manipulate Dalvik stacks, thereby corrupting the integrity
of the call stack used for the inspection.

3) Hijacking the control data. Although the code segment
in memory is typically read-only, an attacker can modify
the read-only protection with mprotect() system call,
and manipulate the code for a malicious purpose. Fur-
thermore, an attacker can compromise code pointers (e.g.,
function pointers in heap, return addresses in stack).

2) Defenses: Since the above attacks rely on JNI’s ability to
access memory regions of Java code, one might think that those
attacks can be prevented by making important memory regions
read-only. However, such a solution does not work properly
for protecting the integrity of call stack for the following two
reasons.

First, it is difficult to track all memory regions which need
to be protected. Although we can easily pinpoint and protect
memory locations of Dalvik call stack and buffers of stack
tracer, it is difficult to precisely track all function pointers
within a process.

Moreover, even if we protect important memory regions
by making them read-only, a multi-threaded malicious process
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can bypass this protection mechanism. For instance, suppose
that there are two threads T1 and T2 within a process, and
they are executing JNI and Java code, respectively. Then, T1
is able to counterfeit the stack principal by manipulating the
Dalvik call stack of T2; simply making the Dalvik call stack
of T2 read-only can freeze T2.

Thus, making specific memory locations read-only is not
a suitable solution to guarantee the integrity of call stack.
This motivates us to introduce a JNI sandboxing mechanism
to FLEXDROID. In this approach, FLEXDROID prevents JNI
from accessing memory regions of Java code by sandboxing
JNI code.

We have three different design choices of implementing
this protection mechanism.

1) Process separation. Process separation naturally supports
the memory sandboxing. Since it lets a JNI thread run in
a separate process, JNI code is not able to access the
memory region of Java code directly. NativeGuard [41]
applied this strategy to isolate JNI libraries in Android
applications.

2) Software Fault Isolation (SFI). SFI restricts memory
accessing by JNI through masking the operands of store
and jump instructions used in JNI. Since an attacker can
perform indirect attacks via static or shared libraries used
by JNI, SFI also needs to confine memory access by such
libraries by masking those two instructions used in such
libraries. AppCage [47] applied this design in Android to
prevent JNI libraries from accessing restricted APIs.

3) Hardware Fault Isolation (HFI). HFI leverages the
memory separation mechanism supported by a processor
such as the memory domain in ARM architecture. It
strictly confines memory access by executing JNI in the
restricted memory domain. ARMLock [46] utilizes the
memory domain to implement HFI in the ARM-Linux
architecture.

Each design has its own advantages and disadvantages. The
process separation approach enables JNI sandboxing easily,
while imposing a large amount of overhead in switching
process contexts. On the other hand, unlike process separation,
SFI does not incur any process context switching overhead for
sandbox switching. However, it imposes runtime overhead due
to extra instructions for masking store and jump instructions.
Unlike SFI, HFI does not incur runtime overhead for masking
operands, while adding a little overhead in switching between
JNI and Java code by updating register values (i.e., Domain
Access Control Register (DACR)), which is negligible.

FLEXDROID takes the HFI approach to implement JNI
sandboxing, as the process separation and SFI approaches
incur significant overheads compared to HFI, and most An-
droid devices based on ARM architecture natively support the
concept of domain which we can leverage for our implemen-
tation. We introduce two memory domains called JNI and Java
domain, which represent restricted memory regions assigned
for JNI and Java code, respectively.

However, there are a couple of challenges raised in apply-
ing this design to FLEXDROID. First, it is not trivial to apply
the JNI sandboxing to existing JNI and shared libraries without
modifying their implementation. In the default setting, when

JNI attempts to access memory regions for the stack, heap,
and shared libraries located at the Java domain, the domain
fault occurs since only the JNI can access the JNI domain.
To overcome this, FLEXDROID provides the JNI domain with
separate stack and heap, and loads a set of necessary shared
libraries located at the JNI domain.

Another challenge is that an attacker can indirectly manip-
ulate important memory regions through the communication
channel between JNI and Java code. For instance, when JNI
calls Java API, it can pass a pointer variable that points the
address of Dalvik stack to Java code as an argument or as a
return value. Such a pointer passing can be used to manipulate
the Dalvik stack, if the pointer is set properly, bypassing the
JNI sandboxing mechanism.

To prevent such attacks, FLEXDROID classifies pointer
variables as valid or potentially malicious pointers and dis-
allows the latter ones to be passed to Java code via Java API.
FLEXDROID considers a pointer variable as valid if one of the
following cases holds:

1) It points a memory address within the JNI domain
2) It points a memory address within Java domain, when the

address has been returned from Java code via Java API
call.

If JNI attempts to pass a pointer that does not satisfy the above
conditions, the pointer can be used for a malicious purpose.

FLEXDROID manages a table called Valid Address Table
(VAT) that maintains a list of memory addresses which have
been returned from Java code via Java API calls. When JNI
calls a Java API and the API returns a pointer, FLEXDROID
adds the memory address that the pointer stores to the
VAT. Then, when JNI passes a pointer via any Java APIs,
FLEXDROID checks whether the pointed address is in the JNI
domain (i.e., valid case 1) or exists in VAT (i.e., valid case 2).
Otherwise, the pointer is invalid and FLEXDROID rejects the
passing operation.

Despite the validity checking for pointers, JNI still can
cause integrity or confidentiality violations with the type-
confusion attack [36]. For instance, suppose that there are two
Java classes called PrivClass which has a private integer
member variable and ListClass which is an implementation
of linked lists and has a pointer to the next element as a
member variable, and a function called set_null_to_list
that takes a ListClass pointer and sets the next element
of the list to null. JNI can make the value of the private
field of PrivClass instance to null by casting the pointer
to the instance to ListClass pointer type and passing it to
set_null_to_list.

To prevent this attack, FLEXDROID verifies the type of
pointer which belongs to the second condition of the valid
pointer. In VAT, FLEXDROID maintains a type of pointer for
each address entry. With this information, FLEXDROID accepts
pointers only if the addresses to which they point exist in VAT
and their types match the corresponding type entries in VAT.

D. Dynamic Permission Management

Dynamic code execution through various Java features (re-
flection, dynamic class loading, native methods, multithread-
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package com.malicious.lib 
class A 
    method launch_attack 
        generateClass(“com.host.B”) 
        generateMethod(“com.host.B”, “malFunction”) 
        loadClass(“com.host.B”) 
        C.registerCallback(new B()) 
    end method 
end class 

(a) Pseudocode of class A:
registering a callback

P Call stack 
ê H  com.host.C.runCallback 

L  com.host.B.malFunc 

(b) Call stack when the callback
method is executed

Fig. 3: Example of an attack using dynamic code generation and
execution

ing, callback, etc.) blurs the boundaries between modules at
run time. More importantly, dynamic code instrumentation via
reflection makes it difficult to maintain the mapping between
modules and permissions accurately. Reflection is a powerful
and widely-adopted feature that allows programmers to inspect
or modify any code at run time across Java classes for various
benefits (e.g., logging). At the same time, reflection also opens
a host of security threats. For instance, a malicious third-party
library may use reflection to generate code for an existing
host module, and dynamically load and run the code generated
to perform harmful actions in the name of the existing host
module. Or, it may even simply change its class name at run
time to pretend that it is a trusted host module class.

For example, suppose a malicious library class
com.malicious.lib.A (A) generates a new code that
contains a harmful method. A then loads the new code
with the name of a trusted host class com.host.B (B) and
registers the harmful method of B as a callback method from
another trusted host class com.host.C (C) (see Figure 3a).
Afterwards, A may terminate its execution, disappearing out
of the call stack trace, before C invokes the harmful callback
method of B (see Figure 3b). This way, a malicious module
can perform harmful actions without its name appearing in
the call stack trace. This could happen as a result of the call
stack not capturing the context where the callback method
was registered during the execution of a callback.

Another example is related to Java thread creation, where
the call stack of a new thread created does not capture the
context of the parent thread. Suppose a malicious class A
invokes a method of a trusted class B and B creates a new
thread. Figure 4 shows the call stack trace of the parent thread
and the new child thread. Then, the call stack trace of the new
thread contains the method of B but no trace related to A. This
way, the malicious class A may perform the confused-deputy
attack to exploit the permissions of the trusted class B.

Note that the use of the callback does not affect the bound-
ary since when the callback method is called, the principal
of callback method can still be identified from the call stack.
Besides, even in the case where the callback is intertwined with
reflection and class loading, although it looks complicated, is
just another case of reflection.

As such, the boundaries between modules become unclear
with dynamic code generation and execution. If we keep
a static mapping between modules and permissions, it is
unlikely to prevent untrusted modules from exploiting dynamic

P Call stack 

ê L  com.malicious.lib.A 

L  com.host.B 

P Call stack 

ê L  com.host.B 

  

Child thread Parent thread 

C
re

at
e 

Fig. 4: Example of an attack using thread creation

code execution to help or perform malicious actions. Thus,
FLEXDROID enforces dynamic permission management for
modules to resolve the problem. A basic idea behind the man-
agement is that a runtime instance of a module is assigned a set
of permissions granted at app installation, except two cases of
dynamic class loading and thread creation. As explained above,
a malicious module can make use of reflection or dynamic
code generation along with dynamic class loading to take
harmful actions without leaving any trace on the call stack
(see Figure 3b). In addition, Java thread creation is another
feature that malicious modules can exploit for similar attacks,
as shown in Figure 4. Hence, in those two cases, FLEXDROID
sets the permissions of a runtime instance of a module with
respect to not only its installation-time permissions but also
the context at runtime.

For ease of presentation, let us define some terms before
presenting the rules for dynamic permission management.
Each module M has a set of installation-time permissions
(denoted by PI(M)). Let 〈M,T 〉 indicate a runtime instance
of module M running on thread T and P (〈M,T 〉) represent
its permissions. For each thread T , its permission Pτ (T ) is
defined as the intersection of the permissions of all modules
on the call stack of T , i.e.,

Pτ (T ) =
⋂

∀Mi∈CS(T )

P (〈Mi, T 〉),

where CS(T ) is a set of modules on the call stack of thread
T .

When a new runtime instance 〈M,T 〉 is created,
FLEXDROID determines its permissions depending on how it
is created in the following way:

• If 〈M,T 〉 is created via dynamic class loading, its per-
missions are set to the intersection of its installation-time
permissions and the thread’s permissions. P (〈M,T 〉) =
PI(M) ∩ Pτ (T ).

• If 〈M,T 〉 is created via thread creation, its permis-
sion is determined as the intersection of its installation-
time permissions and the parent thread’s permissions.
P (〈M,T 〉) = PI(M) ∩ Pτ (T ′), where a thread T′ is a
parent thread of T.

• Otherwise, P (〈M,T 〉) = PI(M).

A similar reasoning to the above rules was used to address
the confused-deputy attack [24, 26, 29].

V. IMPLEMENTATION

We implemented a prototype of FLEXDROID on Android
4.4.4 (KitKat) and Linux kernel 3.4.0. We have modified
various components of the Android framework, the Dalvik
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#Files Insertion Deletion

Kernel 28 1,831 25
Android Framework 46 1,466 77
Dalvik VM 24 6,081 22
Bionic 23 2,827 70
Others 12 95 24

Total 133 12,300 218

TABLE IV: FLEXDROID’s component-wise complexity in terms of
lines of code.

VM, the Bionic, the Linux kernel, the Java core library, the
Binder library (user layer interface of Binder IPC), and the
SELinux setting, which in total consists of 12,300 LoC across
133 files (see Table IV).

In the rest of this section, we first describe the detailed
implementation of inter-process stack inspection. We then
present how FLEXDROID handles general Java techniques
(i.e., JNI and reflection) that can be used to bypass our
security mechanism. Next we share our experience to cope
with deadlocks and optimize performance further during the
implementation of FLEXDROID.

A. Inter-Process Stack Inspection

There are three key components involved in the inter-
process stack inspection; stack tracer, stack transmission chan-
nel, and permission checkers (e,g., the Android framework’s
Package Manager (PM) and the Linux kernel’s ACL) which
communicate with the stack tracer to obtain Dalvik call trace
and conduct access control.

Stack tracer. In order to send the Dalvik call trace to per-
mission checkers, FLEXDROID adds a unique stack tracer into
each app right after Zygote is forked at the app’s initialization
time. The stack tracer enrolls itself via the ioctl system
call in the stack transmission channel. After registration, the
channel stores it with its process ID (PID) as a key into the
RBTree and is inactivated until a request comes from either of
the permission checkers.

In detail, the stack tracer performs the stack inspection for
a target thread as follows. It first holds Dalvik VM thread lock
to block garbage collection. It then suspends the target thread
and traces the stack frame pointer to get the call trace (utilizing
DVMFillInStackTraceRaw which is originally used to print
stack when an exception occurs). It resumes the thread and
releases the Dalvik VM thread lock.

Stack transmission channel. The stack transmission channel
is a special purpose device driver that is designed to handle
the communication between a permission checker and a stack
tracer. The communication gets started by the permission
checker when it leaves a stack inspection request for a target
thread of TID (Thread ID) and PID. The channel then finds
and wakes up the pre-registered stack tracer for the process of
PID and sends the target thread information (TID) to the stack
tracer. The channel waits for a response from the stack tracer
and forwards the call trace to the permission checker.

The length of Dalvik call traces are often longer than 1000
bytes, although it depends on the current depth of the call
sequence. To reduce the amount of exchanging data for a
inter-process stack inspection, FLEXDROID assigns a unique
integer key to each module specified by each app developer in
the manifest. At the initial time, PM determines the mapping
between a key and a module. A stack tracer receives part of
the mapping related to its app, when it is created. Afterwards,
a stack tracer sends only keys of the modules shown in the
call trace for inter-process stack inspection.

Although the use of keys reduce the amount of data to ex-
change, it requires additional costs to find keys corresponding
to the modules in the call trace. A naive approach is to compare
the name of each module in the call trace with each module
name listed in the mapping table. This approach can incur a
significant amount of string comparison overheads. We avoid
the overheads by caching memory addresses of modules. In
other words, each stack tracer creates a table, which maps the
address of a module to its key, so that the stack tracer simply
compares the address of each module in the call trace to each
address in the table.

There are two things worth mentioning in the imple-
mentation of the stack transmission channel. First, SELinux
(integrated since Android 4.3 (Jelly Bean)) enforces a strict
security policy that does not allow any user-space process to
access a device driver (e.g., stack transmission channel) by
default. We re-configured SELinux to allow all processes to
access the channel. Then, to prevent threads that are neither
a stack tracer nor a permission checker from intervening in
the communication between a permission checker and a stack
tracer, the stack transmission channel does not return anything
when the caller is not a permission checker and a stack
tracer, by checking its PID and TID. Second, since both the
permission checkers and the stack tracers access the channel
asynchronously through write and read system calls, it is
subject to race conditions. Thereby we enforce synchronized
access to the channel and employ a wake queue for waiting
and waking up for channel access.

Permission checker. During access control, the permission
checkers need to know authorized privileges of each module.
Thus at app install time, our modified PackageParser parses
a manifest of an app (i.e., flexdroid tags), and passes
permissions for user-space resources to PM and those for
kernel-space resources to the kernel, respectively. PM and the
kernel keep them as a key-value data structure, where a key is
a Java package name of each third-party library, and a value
is the granted permission set for the library. Because several
apps can have different permission sets for the same library, the
key-value storage is allocated to each app. Note that for a finer-
grained permission management, FLEXDROID allows multiple
sub-packages of a single library to have different permission
sets.

To mediate access from third-party libraries, we modified
system services to check accesses to user-space resources
(Android permission model) and to kernel-space resources
(GID-controlled ACL routine). For user-space resources, An-
droid’s PM uses the checkUidPermission method to per-
form permission checks based on the app’s UID. Instead,
FLEXDROID’s PM provides the checkThreadPermission
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method for access control in the granularity of the thread.
To enable this, we modified most Android system services to
invoke the checkThreadPermission method rather than the
checkUidPermission method. For kernel-space resources,
on the other hand, we modified Linux’s ACL to adopt the
inter-process stack inspection.

B. JNI Sandbox

As stated in §IV-C, we implement JNI sandbox on
FLEXDROID based on hardware-based fault isolation using
memory domain supported by ARM architecture. The goal of
our implementation is to confine memory access by JNI to the
JNI sandbox. At the same time, it ensures that the JNI code
should maintain their functionality without any modification.
Our implementation mainly consists of a sandbox switch,
custom linker, separate heap in JNI sandbox, and Java API
wrapper used in JNI.

In ARM architecture, each 1MB virtual memory, called
section, has a domain ID (from 0 to 15) as a field in its page
directory entry. A domain is a collection of memory regions
having the same domain ID. Each domain has two bits in the
Domain Access Control Register (DACR). According to the
values in these bits, attempts to access regions belonging to
the domain can: 1) generate a domain fault (00); 2) be allowed
only if the permissions set in the page table allow (01); 3) be
allowed regardless of the permissions set in the page table (11)
3. For instance, the system can disallow the code to access a
specific domain by setting the corresponding its two bits to 00.
Since each core has its own DACR, it is possible to control
memory regions that a specific thread can access.

Sandbox switch. FLEXDROID uses domain 3 for JNI sandbox
in FLEXDROID, while three domains (0 to 2) are reserved for
kernel, user-space (Java domain in FLEXDROID), and device
memory, respectively. To assign a domain ID to specific con-
tiguous memory regions, we introduce a sys_mark_domain
system call which takes the base address and size of the regions
that will be used as a JNI sandbox. Assuming that JNIs and
shared libraries invoke malloc for memory allocation, rather
than mmap, FLEXDROID assigns 512MB to the JNI sandbox
for each process using mmap and sys_mark_domain. Then,
FLEXDROID allocates the stack, heap, text, and data of JNI
within the 512MB region.

When a thread in an app executes Java code, FLEXDROID
allows the thread to access both the Java and JNI domain by
setting its DACR. When the thread executes JNI, FLEXDROID
updates DACR to prevent the thread from accessing the Java
domain. However, switching DACR alone will lead to a
domain fault since the thread can attempt to access memory
regions outside the JNI domain such as the stack, heap of the
process.

We define the context of sandbox as the combination
of DACR, Program Counter (PC), Stack Pointer (SP), and
Thread Local Storage (TLS), and we call switching those four
registers sandbox switch. It is worth noting that we do not
need to switch anything for the heap (acquired by malloc)
and shared libraries, since addresses of functions used in JNI

310 is reserved.

are determined at linking time of JNI, which are separate from
the ones used in Java domain.

For sandbox switch, we add two system calls named
sys_jni_enter and sys_jni_exit. Switching to JNI sand-
box invokes sys_jni_enter to save the current DACR, PC,
and SP and change them to new ones. It also updates TLS
using set_tls system call. Switching to Java domain involves
restoring the saved sandbox context. sys_jni_enter/exit
uses struct pt_regs* to modify PC and SP while special
ARM instructions (MCR and MRC) are used to update DACR
and TLS.

While JNI is executed, it can call Java APIs through the
JNIEnv structure to interact with the Java context. Since JNI
cannot directly call Java APIs located at the Java domain,
an interface between JNI and Java APIs is needed (i.e.,
trampoline). Also, as mentioned in §IV-C, the validity and type
of a pointer passed from JNI as an argument of a Java API
should be checked. To enable this, we implement wrappers
for all 228 Java APIs, two system calls, sys_java_enter
and sys_java_exit, and Java API handler. Each Java API
wrapper invokes sys_java_enter system call with the mar-
shalled arguments and the name of the API function, and then
the system call activates the Java API handler. The handler
validates the pointer arguments, calls the actual Java API, and
invokes sys_java_exit system call which restores the saved
JNI context. (see Java API handler below for details).

During the implementation, we found that a shared library
libjnigraphics.so in the Android framework layer directly
accesses the Java domain without calling Java APIs. It receives
an integer from a Java API and casts it to a pointer to access
the memory of the address. We implement trampolines for
AndroidBitmap_getInfo, AndroidBitmap_lockPixels,
AndroidBitmap_unlockPixels of libjnigraphics.so.

Since the SP and TLS switch need a stack in the JNI
sandbox, FLEXDROID provides an on-demand 1MB stack to
each thread running JNI. FLEXDROID supports 64 JNI stacks
at maximum, which are managed as a pool. Since JNI stack
grows upward from its bottom, FLEXDROID sets the highest
address of JNI stack as the base address of JNI’s TLS. A stack
for a newly created thread in JNI is also allocated from this
stack pool.

Right after the sandbox switch, Foreign Function Interface
(FFI) is called to invoke the JNI function as JVM usually does.
FLEXDROID marshals arguments in JNI’s stack that will be
passed to FFI.

Custom Linker. We implement a custom linker by modifying
the original linker in Android. We add dlopen_in_jni in the
linker to load JNI code to the JNI sandbox, while Dalvik VM
originally loads them using dlopen. dlopen maps each shared
library file (.so) to memory region using mmap system call.
Since mmap can allocate the memory region outside the JNI
sandbox, dlopen_in_jni should not use the mmap. Instead,
we implement a wrapper of mmap to map .so files to the
memory region inside the JNI sandbox.

The original Android linker manages information of shared
libraries loaded by dlopen using a linked list for reusability.
To reuse shared libraries loaded into the JNI sandbox, our
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custom linker maintains another linked list which manages
information of shared libraries loaded by dlopen_in_jni.

Among shared libraries, the libc is required to be cus-
tomized to support the JNI sandbox. The libc provides a
process with important information for constructing JNI ex-
ecution environment, including system environment variables
and arguments of the created process. Because of this, when
initializing the libc, FLEXDROID copies the variables and
arguments from the Java domain into the JNI sandbox so that
the JNI code can access that information.

Heap management in JNI sandbox. FLEXDROID needs to
allocate memory space from the heap of the JNI sandbox
instead of the default heap. We customize the heap man-
agement functions in the libc including malloc, calloc,
realloc, free, and memalign using mspace_malloc() in
dlmalloc [34], which enables us to allocate memory from
specified memory regions.

Java API handler. Java API handler first unmarshals the
passed arguments and verifies the validity of pointer ar-
guments. We implement Valid Address Table (VAT) which
maintains a mapping between memory addresses a pointer
variable points and the type of the pointer. If the Java function
returns a pointer variable, the handler updates VAT with the
value and type of pointer.

It is important to note that if the type of return value is a
pointer of primitive type (e.g., char*, int*), and the JNI code
attempts to dereference the returned pointer, it causes a domain
fault since the dereferenced value is in the Java domain. To
resolve this, when a pointer of primitive type is returned, we
copy the data pointed by it into a buffer inside the JNI domain
and return the address of buffer instead.

In general, marshalling and unmarshalling arguments im-
pose additional memory copy overhead. We avoid the overhead
by maintaining the value of registers and stack4 used for
arguments when the calling Java API conducts the sandbox
switch.

C. Dynamic Permission Management

Java reflection enables dynamic code generation and ex-
ecution at runtime. A common procedure involved in dy-
namic code generation is to store a sequence of bytecode
instructions into a Java class file. In order to execute the
code generated as such, it needs to load the class file that
contains the code. FLEXDROID adjusts the permissions of a
module dynamically when the module is loaded. The Dalvik
class loader loads a class using loadClassFromDex() or a
method using loadMethodFromDex(). Upon each class or
method loading, FLEXDROID looks at the Dalvik call stack
to identify which module (caller) loads which other module
(callee). Then, FLEXDROID restricts the permissions of the
callee module as the intersection of the permissions of the
caller and callee modules in order to avoid a potential attack,
where the caller module abuses the permissions of the callee
module for its own sake.

4 In ARM calling convention, the first four arguments are passed through
r0-r3 registers while the rest are passed through the stack.

In addition, FLEXDROID performs dynamic permission
management when a new Java thread is created. When a
system call do_fork() is invoked to create a new thread,
FLEXDROID inspects the Dalvik call stack of a parent thread
and adjusts the permissions of a module running on the new
thread according to the rules described in §IV-D.

D. Deadlock Avoidance

There were two critical cases arose causing deadlocks that
we faced in the course of developing the inter-process stack
inspection.

File access from Garbage Collection. Both Garbage Collec-
tion (GC) and stack tracer need to hold the thread lock in
the Dalvik VM. If a thread in the GC state accesses a file,
the kernel conducts the access control and activates the stack
tracer of the same process for access control. The stack tracer
waits for the lock already held by the GC. At the same time,
GC waits for the access control (i.e. deadlock). To resolve
this, FLEXDROID keeps a waiting thread list of the lock using
stl::set. When inter-process stack inspection of a waiting
thread is requested, the stack tracer ignores the request.

Resource access without state change. We can trace the call
stack of a thread only when the thread is in “suspended” state.
Since a stack tracker is just a normal thread, it cannot actually
suspend the target thread. Instead, it just waits until the thread
suspends itself. When a thread is in the middle of access to a
resource via a system call, Dalvik VM does not know it and
keeps its state as “running” (i.e., not suspended). At the same
time, the stack tracer just waits for the thread to suspend itself
(i.e. deadlock). To avoid this, stack tracer marks the status of
the thread as “suspended” when tracing its call stack.

VI. EVALUATION

In this section, we evaluate FLEXDROID by answering the
three questions as follows:

1) How flexible and effective is FLEXDROID’s policy to
restrict third-party libraries (§VI-A)?

2) How easy is it to adopt FLEXDROID’s policy to existing
Android apps (§VI-A)?

3) How much performance overhead does FLEXDROID im-
pose when adopted (§VI-B)?

Experimental setup. All our experiments are performed on
Nexus 5 that has 2.265GHz quad-core CPU with 2GB RAM,
with our prototype of FLEXDROID on Android 4.4.4 (KitKat)
and Linux kernel 3.4.0.

A. Usability

In this evaluation, we examine two aspects of
FLEXDROID’s usability:

1) How easily can app developers apply FLEXDROID’s
policy to third-party libraries?

2) What experiences do the end-users have running
FLEXDROID-protected apps?

Compatibility with existing apps. We downloaded appli-
cation APK files of 32 apps, which are top apps of various
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App Name Package Name Category # of JNI libraries

Bible com.sirma.mobile.bible.android Book 0
Job Search com.indeed.android.jobsearch Business 0
ZingBox Manga com.zingbox.manga.view Cartoon 0
LINE Messenger jp.naver.line.android Communication 8
Duolingo com.duolingo Education 1
eBay com.ebay.mobile Shopping 1
Amazon Shopping com.amazon.mShop.android.shopping Shopping 3
Airbnb com.airbnb.android Trip 0
Instagram com.instagram.android SNS 10
TED com.ted.android Education 0
Subway Surf com.kiloo.subwaysurf Game 3
NPR News org.npr.android.news News 0
Flashlight com.devuni.flashlight Utilities 1
K-9 mail com.fsck.k9 E-mail 1
Fitbit com.fitbit.FitbitMobile Health 0
Zillow Real Estate & Rentals com.zillow.android.zillowmap Lifestyle 0
musical.ly com.zhiliaoapp.musically Media & Video 7
Drugs.com com.drugscom.app Medical 0
Yahoo News com.yahoo.mobile.client.android.yahoo News & Magazines 2
Yahoo Mail com.yahoo.mobile.client.android.mail E-mail 1
Hola launcher com.hola.launcher Launcher 4
Layout from Instagram: Collage com.instagram.layout Photography 0
Photo Editor by Aviary com.aviary.android.feather Photography 2
SquareQuick mobi.charmer.squarequick Photography 1
Retrica com.venticake.retrica Photography 1
Yelp com.yelp.android Local & Travel 1
Pinterest com.pinterest Social 0

TABLE V: Compatibility test. Running popular apps on FLEXDROID without applying FLEXDROID policy.

categories listed in App Annie [5], from the Google Play store.
In order to test the backward compatibility of FLEXDROID,
we installed each app without any modification and ran it for
10 minutes in both the stock Android and FLEXDROID, and
checked to see if an app crashes during the execution.

Table V shows a list of apps which run as normal
in FLEXDROID. Unlike those apps, 5 apps crashed during
the execution. They are Waze Social GPS Map & Travel
(com.waze), Uber (com.ubercab), Adobe Acrobat Reader
(com.adobe.reader), Facebook (com.facebook.katana),
and UC Browser (com.UCMobile.intl). To figure out the
cause of the crash, we first disable JNI sandbox (§V-B) and
then test those apps again. Since they work fine without JNI
sandbox, we conclude the faults stem from the JNI sandbox.

To specify the source of each fault, we capture the fault
address and the context (i.e., values of registers and stack
information) of the thread at the time the fault occurs using a
signal handler registered by Dalvik VM and our domain fault
handler in the kernel. Moreover, we manually reverse engineer
the JNI code (i.e., *.so files) of the crashed apps and pinpoint
the locations of the faults based on the captured information.
We found out that the roots of the faults are Pthread ID,
mmap(), and free().

JNI code of Waze fails in the thread safety check which
compares the Pthread ID obtained by Java to the one ob-
tained by JNI code. Since both are the return values of
pthread_self(), they are expected to be the same, but they
are different in FLEXDROID, indeed. Pthread ID is an address
of a thread structure inside Android libc, which is accessed
by Pthread APIs. The thread structure initially stays in Java
domain, because Dalvik VM, libc and other code in Java
domain need it to use Pthread APIs. When executing JNI
code, FLEXDROID copies the thread structure to JNI domain

so as to support Pthread APIs in JNI without domain faults5.
Consequently, it changes the return value of pthread_self()
and causes the failure. Separating Pthread ID from the thread
structure is a way to avoid this problem, although it requires
modification of JNI code.

Uber employs a JNI library SnappyDB [16], which is
a key-value database for Android. It maps data stored in
a file to memory pages using mmap(). Since the memory
pages returned by mmap() are out of JNI domain, it gener-
ates domain faults. Another shared library that calls mmap()
is libbinder.so. Fortunately, since the bulk of apps use
Binder only in Java code, most apps do not crash because of
libbinder.so. Allocating memory to each separate region
depending on the caller of mmap() is our future work.

While executing JNI code of Adobe Acrobat Reader,
free() which we implement for JNI domain is called a
few thousand times and then incurs a fault. We are currently
uncertain as to what makes this fault, however, we believe that
we can solve this through engineering.

Since Facebook and UC Browser contain many JNI li-
braries (29 and 20, respectively), it is challenging to manually
reverse engineer them and understand the roles of their in-
structions. Moreover, they show complicated runtime behaviors
such as multi-threading. Due to this, we cannot reveal the exact
reasons that cause crashes of both apps.

Usability and effectiveness. We evaluate the usability of
FLEXDROID’s policy and its effectiveness. We conduct exper-
iments using a simple app that we implement and real-world
apps repackaged with FLEXDROID’s policy. A component of
our simple app accesses several resources with correspond-

5 If FLEXDROID moves the thread structure to JNI domain instead of
copying it to JNI domain, the thread structure should be shared between Java
domain and JNI domain. It raises a security concern that the thread structure
can be tampered by untrusted native code (i.e., JNI) in malicious purposes.
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Target Third-party Library Role App Name Blocked
Resource

com.google.ads.*
† Ad ZingBox Manga Internet

jp.naver.line.*
‡ Photo LINE Messenger Camera

com.ebay.redlasersdk.* Barcode scanner eBay Camera
com.facebook.*

† Login Airbnb Internet
com.tapjoy.* Ad Subway Surf Internet
com.twitter.*

† Login Drugs.com Internet
com.android.volley.* HTTP Yahoo News Internet
com.flurry.*

† Analytics Yahoo Mail Internet

† Used in two or more apps
‡ A component of the app, not a third-party library

TABLE VI: Enforcing the FLEXDROID’s policy against third-party
libraries of real-world apps.

ing permissions. We eliminate each permission by enforcing
FLEXDROID’s policy and verify that a security exception
occurs according to the absence of permission.

We select 8 third-party libraries from 8 real-world apps
and apply FLEXDROID’s policy to them. We just decom-
press the 8 APK files, append flexdroid tags to their
AndroidManifest.xml files, and repackage them. It is worth
noting that a simple modification to AndroidManifest.xml
file is enough to enforce FLEXDROID’s policy without any
knowledge of the app. In other words, it is easy for app
developers to adopt FLEXDROID. We manually analyze each
third-party library to specify one of its roles and eliminate
all its permissions using FLEXDROID’s policy. As shown
in Table VI, each of the 8 libraries have a problem accessing
a resource. It implies that FLEXDROID’s policy is effectively
enforced.

Case study with a real-world app. To demonstrate
how FLEXDROID works with existing apps, we used Ya-
hoo News [18] which is a popular news app registered on
Google Play. We chose this app for our case study, since the
app uses various third-party analytics, social, UI, and video
libraries such as Flurry, Facebook, NineOldAndroids [12],
and MP4Parser [11]. Among the libraries, we particularly
focus on Flurry, which accesses a device’s IMEI code using
undocumented READ_PHONE_STATE permission. Flurry prints
IMEI code as a log message that we can observe.

We repackage the APK file to take away the
READ_PHONE_STATE permission from Flurry. We also
set the android:mockOnException attribute to true to
provide Flurry with a fake IMEI code. We check out that
Flurry outputs log messages related to the fake IMEI code.
This indicates that FLEXDROID does not degrade usability in
the view of a user while FLEXDROID successfully prevents
the privacy-sensitive information from being leaked.

B. Performance

We evaluate the performance impact of enabling
FLEXDROID’s features in comparison to stock Android. The
overhead of FLEXDROID mainly comes from two potential
sources. One is from the inter-process stack inspection that
FLEXDROID conducts upon each access request, and the other
is from a sandbox switch that FLEXDROID does upon every
JNI execution and Java API calls from JNI. For the inter-
process stack inspection overhead, we focus on situations

Use scenario Android FLEXDROID Over.

Launch an application∗ 39.13 ms 39.73 ms 1.55%
Launch a service 3.76 ms 3.95 ms 5.22%
Download 1.3MB file 136.54 ms 139.59 ms 2.24%
Take a photo 443.01 ms 448.99 ms 1.35%
Send an email∗ 100.56 ms 101.70 ms 1.13%
Read 8.4MB file via JNI 88.71 ms 89.16 ms 0.51%
∗ Functionalities of open-source K-9 email app

TABLE VII: Performance overheads of real use scenario on both
FLEXDROID and the stock Android. FLEXDROID imposes 0.51%-
5.22% overheads depending on the type of task.

where an app attempts to access various resources, while
measuring the delay of JNI execution and Java API call
for sandbox switch. We note that FLEXDROID introduces
an additional thread, named stack tracer, for each app. The
stack sleeps all the time, thereby leaving negligible impacts
on performance, except when its app makes access requests.

In order to minimize the effect of unrelated processes
(e.g., system daemons), we turn on all cores of CPU and fix
their frequencies to the maximum values for all experiments.
Besides, we assign the highest priorities to all the threads
running our benchmarks. We repeat each experiment case 50
times on both stock Android and FLEXDROID, and choose a
median value for comparison.

We conduct macro-benchmarks to examine overheads in
common use scenarios and micro-benchmarks to inspect the
details.

1) Benchmarks for Common Use Scenarios: We measure
the performance overheads imposed by FLEXDROID with our
custom benchmarks to simulate end-user scenarios commonly
seen on smartphones, as summarized in Table VII. For ease of
modification and experiment, we use a popular open-source
email app K-9 [10]. In the following, we explain how we
measure the elapsed time for each case.

Launch an application. The application launch time measures
from when startActivity() is called and the time the app
becomes visible. This time includes relatively slow operations
(e.g., process creation, IPCs between system services, and
I/O operations for supporting GUI). FLEXDROID imposes an
overhead of only 1.6%.

Launch a service. We build a custom Android service to
measure the service launch time. Similar to the app’s launch,
we measure from when startService() is called to the time
the service routine is started. FLEXDROID adds an overhead
of 5.22%, which is relatively larger though the actual timespan
is quite small.

Download an image. Using our custom app, we measure the
elapsed time to download a 1.3MB image from the web and
to store it to an SD card. Although it takes several hundreds
of milliseconds, FLEXDROID adds an overhead of 2.24%, as
just a few permission checks occur.

Take a photo. We measure the elapsed time for taking a
photo using the camera benchmark. It measures from when
the shutter button is clicked to the time the image is stored.
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Benchmark Android FLEXDROID Over.

startActivity() 3,935 µs 4,529 µs 594 µs
startService() 1,221 µs 1,734 µs 513 µs

file open∗ 782 µs 1,657 µs 875 µs
file open (create)∗ 1,390 µs 2,338 µs 948 µs
file delete 745 µs 1,330 µs 585 µs
file read† 138 µs 142 µs 4 µs
file write† 1,076 µs 1,134 µs 58 µs

call JNI method 97 µs 186 µs 89 µs
call JNI method 963 µs 8,436 µs 7,473 µs
after loading libs‡

∗ Two stack inspections are required during a file open
† No stack inspection is required during file read and write
‡ This includes the process of loading (and dynamic linking)
the JNI code and shared libraries needed by the JNI code

TABLE VIII: Micro-benchmarks of starting activity/service, file-
related system calls and JNI method invocation. FLEXDROID imposes
4-948 µs overheads depending on the number of stack inspection calls
while calling JNI method, including loading and dynamic linking,
increases the delay by 7,473 µs.

FLEXDROID has an overhead of 1.35%, since the time includes
heavy operations such as capturing raw images from camera
and compressing it.

Send an email. In K-9 app, when we press the Compose but-
ton, a background task for sending an email is asynchronously
executed. Thereby we measure the email sending time as the
execution time of the background task. Since the task is heavy,
our system adds only 1.13% overhead.

Read a file via JNI. We invoke a native method which reads
data from a 8.4MB file and measure the time to finish its
execution. FLEXDROID imposes an overhead of only 0.51%,
which is imperceptible.

2) Micro-benchmarks: We build a custom benchmark app
to measure overheads from inter-process stack inspection for
accessing user-space and kernel-space resources (e.g., Activity,
Service, File) and the expense of calling JNI method. For
user-space resources, we measure the execution times of
startActivity() and startService(). Table VIII shows
the overheads that are mainly caused by inter-process stack
inspection.

For kernel-space resources, we evaluate the over-
heads regarding file operations. Our benchmark app ac-
cesses a file located in the external storage by invok-
ing open, read, write, and close system calls, which need
READ/WRITE_EXTERNAL_STORAGE permissions. As shown
in Table VIII, we can see that opening a file has approximately
twice the delay of the one for file deletion. This is because
opening a file requires executing the inter-process stack in-
spection twice, while the file deletion needs to execute only
once. File read and write have a much lower overhead since
they do not involve the inter-process stack inspection.

Our benchmark app invokes a native method that simply
prints a log message. When Dalvik VM calls a JNI method
for the first time, it conducts loading and dynamic linking the
JNI code and shared libraries needed by the JNI code. After

this, calling the same JNI method again skips the process
of loading and dynamic linking to shorten the delay. It is
worth mentioning that the Android linker keeps loaded shared
libraries to avoid loading the same shared library again. Since
the linker for JNI domain in FLEXDROID loads shared libraries
that are already loaded in Java domain, the first delay of calling
a JNI method must be much longer. This overhead, however,
does not last after the first call. Depicted in Table VIII, the first
JNI method call introduces an overhead of 963 µs on stock
Android, and FLEXDROID incurs an additional overhead of
7,473 µs. The overhead mainly comes from additional loading
and dynamic linking. Though it is very large, the later JNI
method calls, fortunately, impose only 89 µs overhead. The
additional expenses of the later JNI method calls stem from
the sandbox switch.

VII. DISCUSSION

Currently, FLEXDROID has a weakness in terms of back-
ward compatibility which is caused by JNI sandbox. As spec-
ified in §VI-A, Pthread ID, mmap(), and free() are known
sources of faults when executing JNI code in FLEXDROID.
In particular, supporting mmap() requires changing mmap()
system call implementation inside the kernel. It must distin-
guish memory pages that will be allocated in JNI domain from
the one allocated in Java domain, so that FLEXDROID can
allocate memory to each domain depending on the caller of
mmap() and avoid domain faults. Developing the JNI sandbox,
which provides complete backward compatibility, would be a
meaningful future work.

FLEXDROID does not provide memory isolation between
third-party libraries. What this means is that malicious third-
party libraries can use native code to access or overwrite the
memory of other third-party libraries running on its host app.
Establishing memory isolation between third-party libraries is
another significant future work.

Since most of the third-party libraries are provided with
a list of necessary permissions as a plain text or a part
of the manifest code, an app developer can easily enforce
FLEXDROID’s policy with the given information.

App developers often protect apps’ source code with Pro-
Guard [15] which optimizes and obfuscates the source code.
Since ProGuard obfuscates package names, which is given to
FLEXDROID rule, FLEXDROID may not work effectively with
an app protected by ProGuard. To overcome this limitation,
we suggest that app developers configure ProGuard to exclude
suspicious libraries, which is easily done by adding a few lines
in the configuration file (proguard.config).

VIII. CONCLUSION

In this paper, we present FLEXDROID, an extension to
Android’s permission system, which provides dynamic, fine-
grained access control for third-party libraries. FLEXDROID
enables app developers to fully control capabilities of third-
party libraries (e.g., permissions to be granted), and specify
behaviors after unauthorized resource access attempts (e.g.,
quitting the app or sending dummy data). From our analysis
of 100,000 Android apps, 17.1% of 295 third-party libraries
are found to utilize JNI, and at least 27.9% of them are
observed to use dynamic code generation. Considering that
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these are two key factors hindering the host app and their third-
party libraries from drawing clear and trustworthy boundaries
at runtime, FLEXDROID provides a novel in-app privilege
isolation mechanism with inter-process stack inspection, which
is effective to JNI as well as dynamic code generation.

Our usability and compatibility experiments with 32 pop-
ular Android apps show that app developers can easily adopt
FLEXDROID’s policy to third-party libraries without any code
modification except the manifest. Also, our evaluation shows
that FLEXDROID successfully regulates resource access of
third-party libraries with imperceptible performance over-
heads.
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