FLEXDROID: Enforcing In-App
Privilege Separation in Android

Jaebaek Seo*, Daehyeok Kim*, Donghyun Cho*,
Taesoo Kimt, Insik shin*

* KAIST
T Georgia Institute of Technology

3rd-party libraries become popular in Android

~

admob @ FLURRY

Qunity —2ree

3rd-party
libraries ' PayPal facebOOk /

Ad, Analytics, Game engine, Billing, Soci§l

Application

Host code

3rd-party libraries become popular in Android

~

Application /
o Al 2\ = sammas

How can we trust them?
yunity T OToT

3rd-party
libraries ' PayPal facebOOk /

Ad, Analytics, Game engine, Billing, Soci§I

ANDROID
9 JRITY

Over half of 3rd party Android in-app ad

libraries have privacy issues and possible
security holes

TIME

Your Favorite Apps Know More About You
Than You Realize

SLU=B0X
Bluebox Security Research on Top Travel Apps
On average, only 30% of code for the apps was created in-house. The remaining

70% was made up of third-party components and libraries that may introduce

vulnerabilities that are unknown to the developer, creating a huge potential attack
surface

In NDSS 16

The Price of Free: Privacy Leakage in Personalized
Mobile In-Apps Ads

What Mobile Ads Know About Mobile Users

Free for All! Assessing User Data Exposure to
Advertising Libraries on Android

In NDSS 16

The Price of Free: Privacy Leakage in Personalized

Fundamental problem
\ in Android’s permission system s

Free for All! Assessing User Data Exposure to
Advertising Libraries on Android

Problem: Android Permission System

* The unit of trust in Android: Application

ssssss permission ..Location-
ssssss permission ..Contacts-

[App

Location J

» (Contacts J

Denied

Calendar J

Problem: Android Permission System

* Third-party library: having the same access
right as the host app

ssssss permission ..Location-
ssssss permission ..Contacts-
- - - = = =====-=== N
\
App ___— Location

—-ees e o e - e e o O O e o e e . .

Problem: Android Permission System

* Third-party library: having the same access
right as the host app

A third-party library can abuse

- the permissions of its host app
Location |

:‘ App __— /
i [3rd_party lib (\
N il —————— (Contacts

(The unit of trust)

FLEXDROID

Goal: In-app privilege separation between a
host application and its third-party libraries

Overview of FLEXDROID

Specifying the package name and its permissions
in AndroidManifest.xml

<uses-permission ..Location-
<uses-permission ..Contacts-

T A) Location J
App /

[com.ad.sdk] Deny > ContactsJ
J

.

<flexdroid android:name=“com.ad.sdk” >

<allow ...Location>
</flexdroid>

11

Contributions

1. Report potential privacy threats of third-party
libraries by analyzing 100,000 real-world Android

dpPPpsS

2. Provide an in-app privilege separation in Android
— Supporting JNI, reflection, and multi-threading

3. Adopt a fault isolation using ARM Memory Domain
to sandbox native code in Android

Investigating Real-world Threats

* |nvestigate 100,000 Android apps from Google
Play using a static analysis

Q1: How many third-party libraries use
undocumented permissions?

Q2: How many of them rely on dynamic code
execution?

13

Undocumented Permissions

O Required (%)
&L oo Q X, S
O . <
A Optional Q\(\ K((\’b’0 00,0’00 &Q}Q &cj@
>< Undocumented \({\O A%) Q‘\
Facebook >< ><
(Social)
Flurry (Analytics) X

InMobi (Ad)

O

O O

paypal (Billing) X X O
A O

O

Chartboost (Ad) X

Facebq
(Soci;
Flurry (An

Paypal (B

InMobi (4

(B 12345678, &,

From XXXBank:
Your One-Time
Password is
34819. Valid for
5 mins.

Chartboog et

ISsions

Analysis of Real-World Apps

* Control-flow and data dependency
— Class Inheritance == 71.5%

* Dynamic runtime behavior
— Java Native Interface (JNI) == 17.1%
— Runtime class loading) 27.9%
— Reflection D 49.6%

Challenges

* Control-flow and data dependency

- Naively separating third-party libraries from the
host app is not applicable

* Dynamic runtime behavior

— Statically or dynamically detecting malicious
behaviors introduces low accuracy

Threat Model

Potentially malicious third-party libraries
— Obfuscated code and logic

Use of dynamic features

(e.g., JNI, reflection, multi-threading)

App developers specifying permissions of
each third-party library

SYSTEM DESIGN

Key Idea

Adjusting permissions dynamically
whenever an app requests a resource

Dynamic Permission Adjustment

When executing the host application’s code

I |
 Permissions of host application :
App Permissions E> |+ Location !
: * Contacts :

—————————————————————————————

Permissions of third-party library
* Location

Dynamic Permission Adjustment

When executing the 3"9-party lib’s code

Permissions of host application
* Location
* Contacts

App Permissions B i Petnlclysc?n%:S of third-party library i

ldentification of Executed Code

. ldentify the principal using stack inspection

2. Apply the stack inspection to Android

3. Protect the integrity of call stack information

against attacks via:
— JNI

— Reflection

— Multi-threading

Stack Inspection in Security Context

Process of determining the permissions allowed
to the current thread according to principals
shown in the call stack

P Call stack

Vv A com.A.functionA Perm = Perm(A)
B icom.B.functionB N Perm(B)
C N Perm(C)

com.C.functionC

Inter-process Stack Inspection

Permission Checker

om m mm o = oy,

/ N\
I \
Location I !
A
PP Manager | PM |
| |
Dalvik Dalvik | Dalvik |
\)
User Space) JN -
Kernel Space (———— =~ \
I
: File Sysm : Internet SD Card
[
]

——————————

Permission Checker

Inter-process Stack Inspection

Permission Checker

om m mm o = oy,

/ \
I \
Location I |
A
PP Manager | PM |
I I
I I
Stack :
Dalvik | palvik |
Tracer : |
\ /
User Space I
Kernel Space
File Sytm Internet S Card

Stack Transmission Channel

Potential Attack Surface

Reflection

Multi-threading
\

\w Location
Manager
JNI |
| ek Dalvik
rracer
User Space

PM

Dalvik

Kernel Space

/

Stack Transmission Channel

27

Potential Attack Surface

e Compromising stack tracer <= JNI

* Manipulating Dalvik call stack ¢ JNI, Reflection,
Multi-threading

* Hijacking the control data

e.g., code injection on Dalvik ¢m INI
functions, manipulating code
pointers

Protecting Integrity of Call Stack

\/JNI Sandbox

/ Defense mechanism against attacks via
reflection

* Defense mechanism against attacks via
multi-threading

29

JNI Sandbox

* Inspired by ARMlock (CCS’14),
applying Fault Isolation
using ARM Memory Domain to Android

* Key ldea

— Regard JNI code of 3rd-party libraries as potentially
malicious code

— Run JNI'in an isolated and restricted memory
domain

Fault Isolation

using ARM Memory Domain

App address space

~| Java domain

libc.so
libdvm.so

Heap

Stack

~

Thread Local Storage (TLS)

/

31

Fault Isolation
using ARM Memory Domain

App address space \

libc.so
libdvm.so
Heap
Stack
Thread Local Storage (TLS)

/

~| Java domain

- JNI domain

Fault Isolation
using ARM Memory Domain

App address space FLEXDROID allows Dalvik VM
to access both memory domains

Dalvik VM

| Java domain

JNI domain

33

Fault Isolation
using ARM Memory Domain

App address space : :
PP P by setting Domain Access Control

Register of each thread

JNI code

~| Java domain

- JNI domain

34

Fault Isolation
using ARM Memory Domain

App address space

Domain
Fault

* Java domain

- JNI domain

JNI code

Memory and Shared Libraries for JNI

App address space \

libc.so
Heap
Stack
TLS

Stay in Java domain!!/

* Java domain

- JNI domain

36

Memory and Shared Libraries for JNI

e Shared libraries (e.g., libc.so), heap, stack and
TLS are in Java domain

— JNI cannot access them

—> FLEXDROID provides JNI with independent
shared libraries, heap, stack and TLS

Defense against Reflection

* Problem: A third-party library can dynamically
generate a class with the package name of its host

application

Defense against Reflection

* Problem: A third-party library can dynamically
generate a class with the package name of its host

application
package com.malicious.lib
class A P Call stack
method launch attack
- W H : com.host.C.runCallback

generateClass(“com.host.B”)

generateClass(“com.host.B”, “malFunction”) [i>. L i com.host.B.malFunc

loadClass(“com.host.B”)

com.host.C.setCallback(new com.host.B())
end method

end class

39

Defense against Reflection

* Problem: A third-party library can dynamically
generate a class with the package name of its host

application
package com.malicious.lib
class A P Call stack
thod launch attack
method taunth_ V. H com.host.C.runCallback

generateClass(“com.host.B”)
generateClass(“com.host.B”, “malFunction”) [j>> L |co >R nc
loadClass(“com.host.B”)

com.host.C.setCallback(new com.host.B())

FLEXDROID maintains —
the information of class loader

L> com.malicious.lib

end class

Implementation

* Android 4.4.4 Kitkat / Linux 3.4.0

of Files Insertion (LoC) Deletion (LoC)
Kernel 28 1831 25
Android Framework 46 1466 77
Dalvik VM 24 6081 22
Bionic 23 2827 70
Others 12 95 24
Total 133 12300 218

EVALUATION

Overview

 How effective is FLEXDROID’s policy to restrict
third-party libraries?

* How easy is it to adopt FLEXDROID’s policy to
existing Android apps?

* How much performance overhead does
FLEXDROID impose when adopted?

Blocking Permissions with FLEXDROID

* Choosing 8 third-party libraries from
real-world apps

* Repackaging their host applications with
FLEXDROID policy

— No permission given to third-party libraries

- Denying all accesses to resources
from third-party libraries

Blocking Permissions with FLEXDROID

* Choosing 8 third-party libraries from
real-world apps

FLEXDROID can block
permission abuses of 3™-party libs

- Denying all accesses to resources
from third-party libraries

Blocking Permissions with FLEXDROID

* By modifying only AndroidManifest.xml

<flexdroid
android:name=“com.ebay.redlasersdk”>

<l-- no permission -->
<[flexdroid>

— Easy to adopt FLEXDROID’s policy

Backward Compatibility

* Run 32 popular apps from Google Play without any
modification in FLEXDROID

* Check to see if each of them crashes during the
execution

— 27 of 32 apps run as normal
Other apps crashed due to JNI sandbox

—> FLEXDROID has a high backward compatibility

Performance Evaluation

* Environment setting
— Nexus 5
— Turning on all cores with maximum CPU frequency

* Micro-benchmark

e Macro-benchmark
— K-9 email app

Micro-benchmark Result

Main factors of performance overheads

1. Inter-process stack inspection

> 438 ~ 594 us
2. Sandbox switch

(i.e., switch to JNI domain / Java domain)
- 89 us

Macro-benchmark Result

In the experiment using K-9 email app

1. Launching the app
> 1.55%

2. Send an email
> 1.13%

Macro-benchmark Result

In the experiment using K-9 email app

1. Launching the app
> 1.55%

2. Send an email
= 1.13 %

FLEXDROID incurs reasonable
performance overheads

Conclusion

* Problem: Privacy threats from 39-party libraries
 FLEXDROID: Extension of Android permission system

— Supporting in-app privilege separation

— Resistant against attacks via JNI, reflection
and multi-threading

— Showing reasonable performance overheads

Thank you!

BACKUP SLIDE

Backward Compatibility Issues

e 5 crashed apps
— Waze Social GPS Map & Travel == Pthread / TLS

— Uber = mmap()
— Adobe Acrobat Reader e free()

— Facebook

_ UC Browser Many JNI libraries

(29 and 20, respectively)
- too complicated to manually
analyze them

Previous Works

AdRisk (Wisec’ 12)
— Report private threats from ad libraries

AdSplit (Usenix Sec’ 12) / AdDroid (AsiaCCS’ 12)

— Separate an ad library from its host app

NativeGuard (WiSec’ 14)

— Separate a library written in native code from its host app

Compac (CODASPY’ 14)

— Suggest an idea similar to inter-process stack inspection

