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Abstract—When self-adaptive systems encounter changes within
their surrounding environments, they enact factics to perform
necessary adaptations. For example, a self-adaptive cloud-based
system may have a tactic that initiates additional computing
resources when response time thresholds are surpassed, or there
may be a tactic to activate a specific security measure when an
intrusion is detected. In real-world environments, these tactics
frequently experience factic volatility which is variable behavior
during the execution of the tactic.

Unfortunately, current self-adaptive approaches do not account
for tactic volatility in their decision-making processes, and merely
assume that tactics do not experience volatility. This limitation
creates uncertainty in the decision-making process and may
adversely impact the system’s ability to effectively and efficiently
adapt. Additionally, many processes do not properly account for
volatility that may effect the system’s Service Level Agreement
(SLA). This can limit the system’s ability to act proactively,
especially when utilizing tactics that contain latency.

To address the challenge of sufficiently accounting for tactic
volatility, we propose a Tactic Volatility Aware (TVA) solution.
Using Multiple Regression Analysis (MRA), TVA enables self-
adaptive systems to accurately estimate the cost and time
required to execute tactics. TVA also utilizes Autoregressive
Integrated Moving Average (ARIMA) for time series forecasting,
allowing the system to proactively maintain specifications.

Index Terms—Artificial Intelligence, Self-Adaptation, Machine
Learning

I. INTRODUCTION

The world is increasingly relying upon autonomous, self-
adaptive systems that have the ability to function indepen-
dently without human interaction. Examples of these self-
adaptive systems include self-driving cars, medical devices,
and many common Internet of Things (IoT) devices. Many
self-adaptive processes utilize a closed-loop control mech-
anism that monitors the system’s state and its surrounding
environment. Furthermore, these mechanisms also determine if
the system should be altered to perform any necessary adap-
tations [27], [5], [42], [11]. These self-adaptive approaches
typically rely upon a set of adaptation tactics to make nec-
essary changes [35], [43], [30], [20], [19]. Example tactics
include the provisioning of an additional virtual machine in
a web farm when the workload reaches a specific threshold,

or reducing non-essential functionality on an autonomous
Unmanned Aerial Vehicle (UAV) when battery levels are low.

Tactics frequently experience latency, which is the amount
of time from when a tactic is invoked until its effect on
the system is realized [35], [37], [39], [38]. Examples of
tactic latency include a cloud-based system requiring more
than a minute to update certain firmware nodes [33], [3], or
a cyber-physical system requiring one minute to re-activate
GPS signals [32], [36]. Tactics also frequently have a cost
associated with them, which may be in the form of energy,
monetary or other resource costs necessary for execution [26],
[44], [25]. Examples of tactic cost include the required energy
for moving a physical component in a UAV or the monetary
cost of using a remote third-party resource for computational
tasks.

Both tactic latency and cost are likely to be first-class concerns
in the decision-making process, as they can directly impact
if and when a tactic is executed [35], [39], [38]. Improperly
accounting for tactic latency can lead to situations where
tactics are begun too early or too late, or are not available
when needed [35], [37]. Additionally, improperly accounting
for tactic cost can result in the selection of a tactic that is
more expensive than a tantamount, less costly alternative [25].
Therefore, it is imperative that self-adaptive systems properly
account for both the latency and cost of tactics.

Real-world systems will frequently encounter factic volatility,
which is any rapid or unpredictable change that exists within
the attributes of a tactic. For example, both tactic latency
and cost may be highly volatile depending on the system’s
surrounding environment. A tactic of transmitting data could
take longer than expected due to network congestion, or a
tactic of moving a physical component in a UAV could be
more expensive due to mechanical problems.

Unfortunately, state-of-the-art decision-making processes in
self-adaptive systems do not account for tactic volatility. This
limitation can be highly problematic, adversely impacting
the decision-making process in several ways. For example,
a system may execute a tactic too late to be effective if
it assumes that the tactic will always take two seconds to



conduct, when in reality it has been observed to consistently
take longer.

A Service Level Agreement (SLA) helps to define system
objectives such as keeping a value under a specific thresh-
old, along with rewards and penalties for meeting defined
objectives [35]. A challenge for purely reactive processes
is that the system may not adhere to objectives defined in
the SLA if tactics are expected to experience latency. For
example, the SLA for a cloud-based self-adaptive system
may define a reward for operating under a response time
threshold. However, tactics such as adding servers to reduce
response times will likely experience varying levels of latency.
To perform optimally, the system should act proactively by
beginning these tactics before the additional resources are
required so that the resources are available when needed [38],
[6]. Thus, a mechanism that enables the system to accurately
forecast tactic latency and cost values is highly beneficial to
the self-adaptive process.

To address the limitations of current self-adaptive processes in
properly accounting for tactic volatility, we propose a Tactic
Volatility Aware (TVA) solution. Through the use of a Multiple
Regression Analysis (MRA) model, TVA enables the self-
adaptive system to learn from previously experienced tactic
volatility and make accurate estimates of how the tactic will
behave in the future. TVA also includes an Autoregressive In-
tegrated Moving Average (ARIMA) component to enable self-
adaptive systems to proactively begin adaptations according to
their SLA specifications.

To summarize, this work makes the following contributions:

1) Problem Demonstration: Using simulations, we demon-
strate that accounting for tactic volatility is essential
in self-adaptive systems, especially when the system is
known to have unpredictable behavior.

2) Concept: To the best of our knowledge, our TVA ap-
proach is the first process that accounts for tactic volatil-
ity. Existing processes merely consider tactics to have
static values, whereas our TVA approach uses run time
predictions of latency and cost to handle tactic volatility.

3) Experiments: Our experiments demonstrate the positive
impact that TVA has on the decision-making process.
These experiments are conducted using real-world data,
and thus provide additional confidence in our findings.

4) Tool and Dataset: Our VolAtiLity EmulaTor (VALET)
tool includes data generated from a physical system.
This enables the evaluation of our TVA process and
provides other researchers with a foundational dataset
that they may use to support their own research. This
tool and dataset are available on the project website:
https://tacticvolatility.github.io/

The rest of the paper is organized as follows. Section II
motivates our research using examples of tactic volatility.
Section III defines our TVA solution to effectively address
tactic volatility. Section IV describes VALET, our tactic volatil-
ity dataset. Section V describes our systematic experimental

evaluation of our proposed process. Section VI describes
related works, while Section VII describes threats and future
work. Section VIII concludes our work.

II. PROBLEM DEFINITION

Tactic latency volatility and tactic cost volatility are the pri-
mary motivators for addressing a system’s SLA with proactive
processes. If a system is purely reactive and does not properly
anticipate future system changes in regards to the specifica-
tions defined in the SLA, it will be limited by its inability to
provide support for proactive tactic implementation.

A. Tactic Cost Volatility

Examples of tactic cost vary widely and are largely domain
specific, however tactic cost is frequently a primary concern
in the decision-making process [25]. Possible examples of
tactic cost include the energy necessary to move a mechanical
component in a physical device, the monetary cost to utilize a
resource, or the number of computations necessary to perform
a tactic. Estimating tactic cost will likely be a first-class
concern for the system, especially if there are defined cost
thresholds, resource limitations, or if the system merely has
the goal of attaining maximum utility at the lowest cost [35].
Unfortunately, despite the cost volatility that many real-world
systems are likely to encounter, existing self-adaptive pro-
cesses that account for cost consider it to be a static value
that will encounter no volatility [37], [38], [36]. Accounting
for tactic cost volatility is imperative for several reasons:

1) Cost may be a primary consideration when selecting
between multiple tactic options: When the system has
multiple tactic options that it may choose from, the cost
of the tactic may be a determining factor when selecting
between multiple, otherwise tantamount options.

2) Determine if the cost exceeds reward: In selecting
which tactic(s) to execute, the system will frequently
calculate the expected reward and cost for performing
the tactic. If the cost exceeds the reward, then it may not
be optimal for the system to execute the tactic.

3) The estimated cost may impact the system’s ability to
execute concurrent or subsequent tactics: The system
may possess a finite amount of a resource, with one
example of being battery power. Assume that a system
has 10 units of battery power remaining. Processes that
consider cost to be a static value may define the energy
usage of tactic a = 4, and for tactic b = 5. Therefore
the system will assume that it has the ability to execute
both tactics concurrently or sequentially. However if the
actual energy usage of each tactic is a = 6 and b = 7,
in reality the system will not have the ability to fulfill
the amount of energy necessary for the execution of both
tactics either concurrently or sequentially.



B. Tactic Latency Volatility

The amount of time required to implement a tactic is known as
tactic latency [7], which in real-world systems, can be highly
volatile. For example, the precise amount of time a system
needs to transmit a file across a network may fluctuate due
to varying amounts of network traffic. Previous works have
shown that latency aware self-adaptive processes offer several
advantages over traditional, non-aware techniques [6], [35],
[37]. However many state-of-the-art self-adaptive processes
still consider tactic latency to be a predetermined and static
value. Systems lack the capability to learn to adaptively
accommodate for variability in tactic latency. Due to its large
impact on the decisions that a system should make, accounting
for tactic latency volatility is imperative for several reasons:

1) Knowing when to begin the execution of a tactic: A
priority for many self-adaptive systems is to ensure that
tactics are ready when needed. Therefore, if a tactic has
expected latency, then the system will need to proactively
begin its execution so that it is available when needed.
However, implementing a tactic proactively will typically
have additional costs involved, so proactive adaptation
must be done with consideration to available resources.

2) Determine when to augment a slow tactic with a faster
tactic: Accurate tactic latency knowledge is imperative
for determining when to augment a slow tactic with a
faster tactic. There may be instances when the system
decides to utilize a faster, less effective tactic to augment
a slower, but more effective tactic [36], [35]. For example,
in a self-adaptive system some given tactic @ may have
higher latency while producing a higher benefit than that
of a faster tactic option b. The system may decide to
implement both tactic options, knowing that the system
could potentially realize the benefits of tactic b while it is
waiting for tactic a. When deciding to augment a slower
tactic with a faster one, accounting for tactic latency
volatility is essential to determine which tactic(s) should
be used to augment a slower tactic.

3) Ensuring the selection of the most appropriate tactic:
When selecting between multiple tactic options, ignoring
tactic latency can be problematic. Consider a scenario
where the system is deciding whether to use tactic a or
tactic b. If tactic b is only slightly better than tactic a
in terms of instantaneous utility improvement, then the
decision-making process would favor tactic b. However,
if tactic a is faster than tactic b, then tactic a would start
to accrue utility faster. This means that tactic a may be
the most optimal selection [36].

C. Motivating Example

As a motivating example we will use a cloud-based self-
adaptive system, based on a similar scenario defined by
Moreno et al. [35]. This example represents a multi-tier web
application that is compromised a web server and database tier.
The webserver(s) process a client’s request and then access

information stored in the database tier. To efficiently provide
content while encountering variable workloads, the system can
either add/remove servers from the pool or reduce optional
content using the ‘dimmer’ feature. This system has has a
goal of maximizing utility while minimizing cost.

The SLA defines the target response time (") and how utility
(U) is calculated. The system incurs penalties if the target
response time is not met and accrues rewards for meeting the
target average response time against the measurement interval.
The average response rate is a, the average response time is
r, the maximum request is k and the length of each interval is
defined as 7. Provided content is reduced as necessary using
a dimmer value (d). Optional content has reward of (Rp),
and produces a higher reward than mandatory content (R2s).
We will slightly modify the equation to incorporate cost (C),
which could be the monetary or energy cost:

-

This system can account for increases in user traffic using two
different tactics: (I) reducing the proportion of responses that
include the optional content (dimmer), and (I[) adding a new
server. While reducing optional content will have negligible
latency, adding a new server can take several minutes.

(ra(dRo + (1 —d)Rwm)/C
(rmin(0,a — k)Rp)/C

r<T

r>7 D

Tactic Latency Volatility If the system anticipates that the
response threshold will be surpassed in the immediate future,
then the system could proactively start the tactic of adding a
server to keep the response time under the defined threshold.
Overestimating latency could result in scenarios where the
system unnecessarily incurs additional cost, as servers would
be ‘active’ longer than necessary. Additionally, if the system
determines that it is likely to surpass the defined response
time threshold before a new server can be added, then the
most appropriate system action may be to use the faster tactic
that reduces the amount of optional content while it waits for
a new server to be added. Improper tactic latency predictions
can lead to situations where the system executes the tactic too
soon or too late, or even selects the improper tactic for the
encountered scenario. Accounting for tactic latency volatility
is a paramount concern, especially when utilizing a proactive
adaptation approach, or when utilizing complementary tactics.

Tactic Cost Volatility In the provided scenario, it is important
to account for cost volatility, especially since not accounting
for cost volatility could lead to inaccurate utility calculations.
In the event that cost is defined to be higher than what the
system is actually encountering in the real-world, then this
may lead to scenarios where optional (O) content is shown
too infrequently. Conversely, if the cost is defined lower than
what is being encountered in the real-world, then could lead to
scenarios where optional (O) content is shown too frequently.
A volatility aware solution that enables the system to more
accurately predict cost would enable the system to make
decisions that lead to more optimal outcomes.



Reactive Specifications Monitoring If the motivating exam-
ple was a purely responsive system and did not employ any
proactive functionality, it will only determine if the defined
response threshold (1) is being surpassed at the current
moment. This can be problematic since the tactic of adding
additional resources to reduce response time in our example
has latency, so the system will need to begin adapting before
the tactic is actually needed to be complete. Otherwise, the
system will incur penalties or not realize rewards while it
waits for the tactic to become available. A process that enables
the system to better anticipate how it was going to act in
accordance with the SLA would help the system to perform
more optimally in dynamic environments.

III. PROPOSED TVA PROCESS

Our TVA process consists of the following two phases: (I)
Time-series forecasting with Autoregressive Integrated Moving
Average (ARIMA) and (II) Run-time model generation using
Multiple Regression Analysis (MRA); where ARIMA predicts
if system specifications in the SLA may be broken in the future
and MRA creates run-time models for predicting tactic latency
and cost.

A. Autoregressive Integrated Moving Average

The first component of the TVA process is ARIMA, which is
a commonly used approach for the prediction of time series
data. ARIMA is a generalization of the ARMA (autoregressive
moving average) model, which accounts for non-stationary
data using differencing. A full ARIMA treatment requires the
following notation, ARIMA(p, d, q), where p represents the
number of lag observations included in the model, d represents
the degree of differencing, and ¢ represents the size, or order
of the moving average window.

This work uses a Box-Jenkins approach to find the best fit of
a ARIMA model for predicting future time series values. This
involves applying the following three steps:

1) Identification: The first step is to determine the order of
the ARIMA model, by utilizing differencing to transform
the potentially non-stationary data to stationary data.
Mathematically, differences are shown as y; = yr — y¢—1,
where y; represents the current observation and ;1
represents the immediate-prior observation. Differenc-
ing allows the model to remove any changes in the
levels of time series data, thus eliminating trend and
seasonality. In some cases, differencing may need to be
applied a second time to obtain stationary data. This
second order differencing includes subtracting another
term y; = y;—1 — y+—2 to the ARIMA model. Our work
used a differencing order of d = 1, as there was a small
amount of non-stationary time series data. Following this,
classic autocorrelation and partial autocorrelation plots
were used to determine the order of the autoregressive

and moving average terms, which resultedinp =1 ¢ = 0,
respectively.

2) Estimation: In order to estimate parameters for the Box-
Jenkins models, we must apply a solution that can numer-
ically approximate nonlinear equations. As the goal was
to minimize a loss or error term, we used the maximum
likelihood estimation (MLE) method over a nonlinear
least squares estimation to determine the model’s optimal
parameters.

3) Model Checking: The final step in applying a full treat-
ment of the Box-Jenkins approach is to perform model
checking. Since we have the ability to modify orders in
the ARIMA model (p and q) it is important that we op-
timize these parameters. In general, optimization should
examine: I) if the model is overfit and II) residual errors.
The former is crucial because it effects how generalizable
our model is to other time series data, while the latter
deals with how well the model performed in terms of
predictions. After examining multiple ARIMA models by
fine-tuning the three main parameters p, d and ¢, the final
ARIMA model for our work was ARIM A(1,1,0). With
this notation, our model is known as a differenced first-
order autoregressive model.

B. Multiple Regression Analysis

The second component of our TVA approach deals with run
time predictions of tactic latency and cost. As discussed previ-
ously, current self-adaptive processes consider these values to
be static attributes. In real-world scenarios, this is an unlikely
phenomena because certain events have different outcomes
depending on the surrounding environment. For example, a
UAV may need to determine the time it will take to transmit
a critical file to its base station. This latency could drastically
vary depending on the distance of the UAV to the base
station, weather conditions and even component functionality.
Therefore, the UAV must have a method of modeling its
surrounding environment so it can accurately anticipate the
length of time required to transmit the file.

In our work we applied this same ideology to predicting tactic
latency and cost. There are many different types of regression
models, and even machine-learning models that could be used
to accomplish this. Initially, we examined a machine-learning
approach called Bayesian Ridge Regression (BRR) which
through a Bayesian process allows the model to train itself
over time as more data becomes available. However, we found
that the required feature space for BRR was too large and that
the data we collected could not support it. Therefore, our TVA
approach uses Multiple Regression Analysis (MRA) to support
run time predictions of tactic latency and cost. Consider a
classic regression model:

M-1
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where z = (z!,...,2M)" with 2° = 1 and 27 being the
j-th observation of the independent variable x. Given a set
of N training variables (z1,...,zy) along with the observed
responses (t1,...,tn), we can solve for the best possible

weights of this model through minimizing the error function:

1 N
B(w) =35> {y(n,w) - tn}? 3)
n=1

E(w) is a quadratic function of w (the observation weight),
which can be conveniently minimized, leading to:

w* = (X'X)7'X't (4)

where X is the design matrix whose rows correspond to
the observation vectors of the variables and ¢t = (¢y,...,tn)’
denotes the observed response values of N variables. After
minimizing Equation 3, we now have the estimated weights
w* in Equation 4, which can be used by our regression model
to predict tactic latency and cost.

It is important to note that regression analysis estimates the
conditional expectation of the dependent variable, that is, the
average value of the dependent variable when the predictor
variables are fixed. Other related methods such as Necessary
Condition Analysis (NCA) could be used to estimate the max-
imum value of the dependent variable, however, we decided
that this was out of scope for our approach since estimating
maximum values would be considered the worst-case scenario
for the tactic.

TVA Workflow

TVA combines an ARIMA time series model with an MRA
model to improve the self-adaptive process. In doing this, the
system is able to properly maintain its defined specifications
while also accounting for tactic volatility, leading to better
adaptations and better overall performance. As shown in
the pseudo code in Algorithm 1, the workflow of TVA is
reasonably straightforward. The top level definitions under
procedure represent the specifications that are being moni-
tored and any calculations that are made. For instance, spec
represents the current specification that we are analyzing,
while resp represents the response we obtain from performing
the actual analysis. Furthermore, the loop of the workflow
represents the main component of TVA.

We will next discuss a concrete example that examines the
two primary steps of our TVA process as shown in the pseudo
code. For this, we will continue to use the self-adaptive hosting
service example described in Section II-C.

Step 1: Monitoring Specifications: The first step in our TVA
approach is to gather and monitor the specifications defined in
the SLA. Using the self-adaptive hosting service example, we
will assume that it has been configured to record the response
time every six seconds. We will also assume that the system’s

Algorithm 1 TVA Workflow
1: procedure WORKFLOW

2: spec < the specification to analyze

3: resp <— quantified response from ARIMA analysis
4: loop:

5 resp = analyzeSpeci fication(spec)

6 if resp is potentiallyBroken then

7: makeLatencyEstimate()

8 makeCostEstimate()

9 goto loop

SLA specification defines that a penalty will be incurred if
response times do not stay under a (0.7 second threshold.
Unfortunately, the majority of self-adaptive processes act in a
reactive manner, so the system would not be able to adapt until
after the threshold was surpassed. Through the application of
the time series model ARIMA discussed in this section, we
will enable the system to act more proactively by allowing it
to anticipate future specification values.

Given the specification and parameters required to make
decisions, historical data is used to determine parameters to
the ARIMA models (Algorithm 1, Line 5), which provide
anticipated future values. For example, in the hosting service
when the response time specification is analyzed with ARIMA,
the “response” is the forecast value. If this forecast value
determines that the specification may be broken in the future
or is close to being broken, we continue with the rest of our
TVA approach.

Step 2: Tactic Latency and Cost Prediction: When the system
has determined that it needs to adapt, whether it be because
a specification will or may be broken, our approach then uses
regression analysis to predict tactic latency and tactic cost.
For example, if our ARIMA analysis from step 1 determines
that the hosting service needs to adapt, our TVA approach
then predicts tactic latency and cost for all available adaptation
tactics. This could entail predicting the latency and cost for a
tactic that adds extra computing resources so that response
time can be reduced. These predictions are made through
a Multiple Regression Analysis (MRA) model. A benefit of
focusing on predicting tactic latency and tactic cost is that
this can be easily adopted into many existing decision-making
processes. For example, one simple option is for the predicted
values to merely replace the static, predefined values in the
system’s decision-making process.

IV. VALET: VOLATILITY EMULATOR TOOL

An additional contribution of this work is the development
of the VolAtiLity EmulaTor (VALET) tool to generate real-
world tactic volatility data to enable the evaluation of our TVA
process. While existing datasets such as ‘The Internet Traffic
Archive’[1] are commonly used when evaluating self-adaptive
processes [18], [9], these are limited as they do not contain an
adequate amount of tactic volatility necessary to evaluate our



work. To create a sufficient dataset to demonstrate the benefits
of TVA, VALET provides tactic volatility data in the form of
latency and cost. The tool and generated dataset is available
on the project website: https://tacticvolatility.github.io/

The first action performed in VALET utilizes two physical
Raspberry Pi devices, with one acting as the operator and the
other as a monitoring instrument. The operator gathers latency
data by recording the time required to download an identical
75MB file at one minute intervals, from three different down-
load mirrors around the world. To determine energy usage for
this operation, the monitoring instrument collects and records
its own energy usage as well as that of the operator. Then, the
monitoring Pi calculates the difference between the operating
and monitoring Pi’s power before and after each download
as the overall energy used for the operation. This action
provides both real-world latency and cost information. Real-
world volatility is also introduced by variations in network
speeds that impact the time required to download the file.

The second action performed by VALET obtains an additional
form of tactic latency and cost values by performing a ‘grep’
activity. After the file is downloaded, a simple grep command
searches files contents for a specific string. The amount of
time and energy required to perform this task is recorded.

These operations are performed at one minute intervals over
the course of an entire day, creating over 1,400 records of
tactic volatility data daily. Figure 1 represents a portion of
the time series data gathered from our operations, and also
visualizes the volatile latency values that we obtained. As
shown, the latency times gathered from Germany were quite
volatile, with some spikes in volatility in Massachusetts and
Ontario download times.

Germany
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Figure 1. 9-Hour+ Snippet of Latency Data

VALET benefits the software engineering community by
enabling developers and researchers to perform evaluations
using real-world, time-series data containing tactic volatility.
Although VALET represents a specific example of a simple
self-adaptive system, the created data is generic enough that
it can be used to conduct preliminary evaluations of other
machine-learning processes and tactic volatility aware self-
adaptive processes.

V. EVALUATION

This evaluation addresses the following research questions:

RQ1. How does not accounting for tactic volatility affect the
decision-making process? Using the statistical tool R,
we demonstrate the negative impact of not accounting
for tactic latency volatility and tactic cost volatility in
the self-adaptive process.

RQ2. How effective is ARIMA in allowing the system to
monitor system specifications? In our experiments using
time series analysis, we demonstrate that time series
forecasting with ARIMA helps the system to become
more proactive in maintaining specifications defined in

the SLA.

RQ3. How effective is MRA in predicting tactic latency and
cost at run time? In evaluating our multiple regression
model, we demonstrate that strong predictive power ex-
ists throughout our experiments when estimating tactic
latency and cost, even when faced with varying amounts

of volatility in the gathered data.
RQ4.

Does using TVA provide substantial improvement to the
self-adaptive process over simply using static values for
latency and cost? In comparing our approach against
existing self-adaptive approaches, such as those that
consider tactics to have static latency and cost values,
we demonstrate the substantial improvement to the

decision-making process that our TVA process provides.

A. Experimental Data Analysis

To analyze the results found from our VALET experiments, we
used the statistical metrics of Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE) to evaluate the systematic
benefits of our TVA approach. Where y; is the predicted value
and ¢; is the actual value at time ¢, RMSE and MAE are defined
as:

RMSE = [ (y; — t:)*/N]'/? (5)

i=1

n

> lyi =t
MAE="=1 (6)
n

These metrics allowed us to determine TVA’s ability to reduce
uncertainty and increase the effectiveness of the decision-
making process by examining the prediction accuracy of our
time series and machine learning models. RMSE provides a
better search landscape for determining model parameters and
was used to determine how well our models performed in
terms of predictive ability, as larger prediction errors become
more pronounced due to the squaring of such errors. On the
other hand, MAE was used to examine the absolute value of
these error differences. MAE was also used for looking at



forecasting errors in time series analysis, which is one of its
most common uses [21].

B. Results

RQ1: How does not accounting for tactic volatility affect
the decision-making process? We first explored RQ1 by per-
forming a proof of concept evaluation using the statistical tool
R, where we emulated the negative effects of poor decision-
making by a self-adaptive system. We began by defining two
tactics (A & B) that had arbitrarily defined costs associated
with their latency times, where if the tactic took X amount of
time to execute, it had C units of cost.

Table I
CHARACTERISTICS OF SAMPLE TACTICS FOR PROOF OF CONCEPT
SIMULATION
| Cost | Distribution | Average | SD
Tactic A | 5 | Positively Skewed | 3 | 0.5
Tactic B | 7 | Normal \ 3 | 0.5

We next generated a normal distribution and positively skewed
distribution with the same mean and standard deviation to
represent latency times. We gave the tactic with the higher cost
(B) the normal distribution, while the tactic with the lower cost
(A) was given the positively skewed distribution. By using two
divergent values, we are able to demonstrate the impact of not
accounting for tactic volatility in a near-perfect environment
(the normal distribution) and in a volatile environment (the
positively skewed distribution). It is possible that both latency
and cost do not follow these types of distributions, but because
they are two extremes, it was sufficient for our proof of
concept. Table I shows the characteristics of each tactic.
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Figure 2. Overall costs of executing a tactic in the R simulations.

After generating the characteristics of each tactic, we then
performed 100 simulations of random sampling from each
tactic’s latency and multiplied the sampled latency value by
its associated cost. This enabled us to build a simulated
distribution of “tactic executions”, where the same tactic is

executed every time, but with different latency values. This
also allowed us to gather overall cost values that could be
used to compare how varying data distributions can impact the
predictability of cost for executing a tactic without accounting
for any form of volatility.

In our analysis, we found that tactic B may not have had the
lowest cost values in the simulations, but it was significantly
more consistent (Figure 2). However, tactic B’s data followed
a normal distribution, which is an unlikely occurrence for
many real-world systems. Furthermore, even though tactic A
had a lower cost of execution with a value of five, it resulted
in much more sporadic, and extremely high, overall costs to
the system.

QOutcome: Our proof of concept simulations in R successfully
demonstrate that accounting for tactic volatility is essential in
self-adaptive systems, especially when the system is known to
have unpredictable behavior.

RQ2: How effective is ARIMA in allowing the system
to monitor system specifications? To evaluate our ARIMA
model for time-series forecasting, we used the energy data
collected from our VALET tool. Although we had been using
a self-adaptive hosting service as an example in this paper,
specifically one that monitored response time, the energy usage
data is of the same concept. For both, data is gathered over
a period of time at equal intervals, thus qualifying it as time-
series data. However, the only difference with this analysis is
that we did not consider the energy usage when VALET is
downloading the file. Therefore, the data used in this research
question is strictly the energy usage fluctuations when the
device was idle and not performing a tactic activity.

To specifically address this research question, we had to loop
through the data multiple times to ensure that ARIMA could
provide sustainable time-series forecasting predictions. We did
this by creating 50 experiments using a randomly selected 90%
portion of our data as training data, and the other 10% as test
data. This type of process can also be seen as a form of k-cross
validation, which ensures that each data point is included in
the training set at least once. After performing this validation,
we then calculated both RMSE and MAE values to determine
the predictive ability of the ARIMA model.

Figure 3 shows the MAE results from our ARIMA model
compared to a previously used Hidden Markov Model (HMM).
Each simulation was independently performed, so no patterns
should be inferred from the left to right sequence. Over the
course of the experiments we saw fairly stable MAE values,
represented by the small range between the lowest MAE value
and the highest. Furthermore, the ARIMA model was not only
successful by itself, but also better than that of the HMM
model. We believe this occurred as we did not have enough
features in our model to allow for a full treatment of a HMM.

As discussed previously, larger prediction errors will become
more pronounced and smaller prediction errors will become
less pronounced when using RMSE. Due to this, we expected
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Figure 3. MAE Values Over 50 Experiments Using ARIMA vs HMM for
Time Series Forecasting
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Figure 4. RMSE values over 50 experiments using ARIMA vs HMM for
Time Series Forecasting

the RMSE graph to be slightly more dispersed compared to
MAE. In examining the RMSE differences between HMM
and ARIMA, we found exactly this. Looking at Figure 4
closely, we can see how the RMSE values have more variation
than the MAE values in Figure 3. However, this does not
mean there was less predictive power or that the model
is less useful. We report on both to show the differences
in possible inferences. For example, in applying our TVA
technique the system’s engineers may care more about larger
prediction errors; deeming RMSE a more powerful statistic for
determining predictive ability of their models. Conversely, if
the system’s engineers want more of a “man-in-the-middle”
statistic, they may deem MAE more appropriate. For our
experiments, using RMSE or MAE would lead to the same
conclusion — both statistics clearly favor the ARIMA model
over the HMM model for time series forecasting.

QOutcome: Through an evaluation process using time series
data, TVA demonstrated it’s ability to positively support
proactive adaptations.

RQ3: How effective is MRA in predicting tactic latency
and cost at run time? Unpredictability is considered to be
an undesirable trait of a self-adaptive system and is frequently
associated with much of the uncertainty that surrounds self-
adaptive systems [41], [45], [28], [14]. To determine how well
TVA can improve the predictability of a self-adaptive system,
we examined the prediction errors across our tactic latency
data and our tactic cost data. For space considerations and
the use of RMSE being more appropriate in this context, this
research question does not report MAE values.

Unlike RQ #2 where we only examined the energy usage
for when the Raspberry Pi was idle, RQ #3 only examined
the energy usage when the device was performing the file
download. If we had used the energy usage data from when
the device was idle, our models would have been invalid. This
is because the file download represented a tactic of gathering
more information, thus any energy data gathered while the
device was idle did not represent tactic latency.
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Figure 5. RMSE Values for Tactic Cost Predictions of MRA vs BRR

Figure 5 demonstrates why MRA is more appropriate for
TVA. Over the course of the 50 simulations, MRA reported
lower RMSE values than BRR in almost every case. In cases
where BRR did outperform MRA, the differences were fairly
negligible. However, the plots are closer together than what we
would have initially expected. We believe this was caused by
only having a few cases of extreme volatility in the cost data,
therefore not allowing the two models to really differentiate
themselves.

As shown in Figure 6, we observed very similar results
between the RMSE values calculated for tactic latency pre-
dictions and those calculated for tactic cost. In most cases,
prediction errors with MRA were much smaller than those
of BRR, and in examining the figures closely, the differences
in volatility that were experienced can be observed. As men-
tioned previously, there were not as many extreme cases of
volatility in the tactic cost data. However, within the tactic
latency data we saw many cases of volatility, with some cases
being extreme. This can partially be seen in Figure 6 since
more volatility will likely lead to larger prediction errors. Thus,
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Figure 6. RMSE values for tactic latency predictions of MRA vs BRR

it came at no surprise that the RMSE values for tactic latency
had a wider-spread than those associated with tactic cost.

In order to say the MRA model can be generalized to other
data sets for predicting tactic latency and cost, observing
consistent RMSE values regardless of the data it was modeling
was imperative. Figure 5 and Figure 6 demonstrate that not
only were RMSE values low for both data sets, but the values
were stable. Therefore, MRA was able to handle the volatile
latency data and cost data collected for these experiments when
making its predictions.

Outcome: The RMSE results gathered from addressing this re-
search question demonstrate that MRA is able to handle tactic
volatility when predicting tactic latency and cost. Throughout
our experiments, MRA consistently provided stable predictive
power, even in the presence of volatile data.

RQ4: Does using TVA provide substantial improvement to
the self-adaptive process over simply using static values for
latency and cost? Thus far, we have demonstrated the benefits
of using an ARIMA time series model and a MRA model in a
self-adaptive process to predict tactic latency and cost, while
also maintaining specifications defined in the SLA. However,
to provide further confidence in our TVA approach, we also
compared it to current self-adaptive processes. Since current
processes consider tactic latency and cost to be static values,
there is no one specific work that TVA can be compared to.
Rather, for this research question, we compared the results
from our approach to what we consider the “baseline” model
defined below:

Baseline Model: A model that uses a simple average of
previous tactic latency and cost values as its prediction
process for estimating future tactic behavior.

While utilizing the average value for latency and cost values
may seem like a naive comparison, in many cases it can be a be
a strong predictor especially when compared a static value (as

in other current self-adaptive processes) on a dynamic time
series. Similar to RQ #2, we will also report the MAE and
RMSE values for model comparison.
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Figure 7. Baseline Value Approach vs TVA - RMSE Differences

As shown in Figure 7, TVA was able to obtain substantially
lower RMSE values. In comparison, TVA had an average
RMSE value of 0.0396 while the baseline approach had an
average RMSE value of 0.0694. Also represented in this
diagram is the ability of TVA to handle volatility. While the
spread of RMSE values remained fairly consistent for TVA,
the baseline approach saw a much wider spread; a direct result
of only using a static value for latency and cost. Although there
were cases where the baseline approach did outperform TVA
(7 in total of 50 experiments), the differences in these values
were fairly negligible.
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Figure 8. Baseline Value Approach vs TVA - MAE Differences

In examining the MAE values shown in Figure 8, we found
that MAE did not behave as we expected. In RQ #2, it
is fairly evident that RMSE made larger prediction errors
larger, and smaller prediction errors smaller. However, in this
research question, those kinds of results are not as evident. In
examining the MAE values from TVA, we can see the plot
is a bit more condensed than then RMSE plot, but the MAE



values for the baseline model did not follow the same trend
as strongly. We believe this occurred because the baseline
model’s prediction method was extremely poor, justified by
both the RMSE and MAE plots. Regardless, TVA was still
superior in predictive ability compared to the baseline model.

Outcome: These findings demonstrate that TVA is beneficial
for decision-making processes in self-adaptive systems, and
offer a significant improvement over assuming tactic latency
and tactic cost to be static values.

VI. RELATED WORKS

Although our work is, to the best of our knowledge, the first
known to make tactic volatility a first-class concern in the
self-adaptive decision-making process, previous works have
examined the impact of tactic latency in self-adaptive systems.
Céamara et al. [6] was likely the first to consider tactic latency
and examined how considering latency could be used to assist
the proactive adaptation process. However, this work differs
from TVA in that it does not consider any forms of tactic
volatility that are likely to be encountered.

In SB-PLA, the latency of an adaptation is considered in the
adaptation decision-making process [31]. A primary benefit
of SB-PLA is that systems that cannot use tactic-based adap-
tations can still include latency awareness in their decision-
making process [35]. In addition to supporting pro-activeness
and concurrent tactic execution, PLA techniques also account
for latency. PLA considers the amount of time necessary for
a tactic to execute, in order to avoid situations that are not
achievable when time dimensions are recognized. However,
like with many latency aware approaches, latency is still
considered to be a static attribute. In our work, we do not
consider latency to be static and provide the system with the
ability to predict tactic latency at run time.

Jamshidi et al. [24] presented FQL4KE, a self-learning fuzzy
cloud controller. This enables systems to not rely upon design-
time knowledge, but allows users to simply adjust weights
that represent system priorities. This work found that their
proposed process outperformed a previously devised technique
that did not have a learning mechanism. Our work is similar
in that we both utilize learning to enable the system to make
better decisions. However, our work differs in that Jamshidi
et al. focused on improving resource planning, and not in
addressing tactic volatility as is accomplished by TVA.

While our work is the first to account for cost volatility,
existing research has considered cost in the self-adaptive
decision-making process. Several works have included cost in
their utility equations, however they consider it to be a static
value and do not account for real-world volatility [37], [38],
[35], [36]. Jung et al. [26] demonstrated that ignoring cost can
have a significant impact on the ability to satisfy response-
time-based SLAs. This work also proposed a cost-sensitive
self-adaption engine using middleware to create adaptation
decisions. This work differs from ours in that it only considers

cost in cloud-based controllers, while we focus on cost during
the entire decision-making process.

Esfahani er al. [15] utilized learning to improve the self-
adaptive process. A primary contribution of this work is a
new process of reasoning and assessing adaptation decisions
using online learning. A preliminary work by Elkhodary [23]
proposed combining feature-orientation, learning and dynamic
optimization techniques to create a new class of self-adaptive
systems that would be able to modify their adaptation logic
at run time. TVA differs from this work in that learning is
utilized to predict tactic latency and cost at run time, while
also providing away to estimate future values for requirements.

Kinneer et al. [29] developed a process for reusing prior
planning knowledge to help the system to adapt to unexpected
situations. This process considered that tactics may fail, and
supports reasoning about tactic latency. While this work is
helpful for assisting the overall planning process, it does not
enable the system to actively learn and predict future values
for tactic latency and cost like our TVA approach does.

Machine learning has been utilized to help determine the most
efficient configurations for self-adaptive systems, while also
performing adaptation planning. Quin et al. [40] enhanced
the traditional MAPE-K feedback loop through the use of a
learning model that selects subsets of adaptation options from
a larger set of adaptation possibilities. This process enables
the system to make more efficient analysis decisions. Jamshidi
et al. [22] used machine learning to discover Pareto-optimal
configurations to eliminate the need to explore every configu-
ration. This work also restricted the search space necessary to
make planning tractable. These works differ from ours in that
while they use machine learning to create a more efficient self-
adaptive process, they do not use machine learning to address
the issue of tactic volatility.

The popular FIFA 98 dataset [4], [2] is a collection of requests
made to the 1998 World Cup website over an approximately
four month span. This dataset is widely used in self-adaptive
research and can be used to simulate when new servers would
have to be activated up to handle additional web traffic or
when to disable resource heavy features on a website because
the traffic load is impeding the system. However, this dataset
does not contain latency. Each request is a log entry that
consists of information such as timestamp, size, status, and
URL hit. Because this dataset does not contain any latency
information, such as a request received and request fulfillment
time, it cannot be used in collaboration with researching and
evaluating latency-aware strategies such as our proposed TVA
process.

VII. THREATS AND FUTURE WORK

Our evaluations have demonstrated TVA’s ability to enable
systems to better account for tactic volatility. However, there
are limitations to this work. In many systems, tactic cost
may be an ambiguous and tough-to-define measurement. This



inability to accurately measure cost could inhibit the adoption
of our process by limiting the quality and quantity of observed
input values into our prediction process. Furthermore, cost can
also be a relative term, and in our TVA approach we consider
it to be a quantifiable value. For example, one could argue that
the ‘cost’ for performing an action could be the wear and tear
on a physical component in the device. Such cost is difficult
to quantify in most situations. Therefore, when using TVA the
notion of cost must be restricted to a value that is reasonably
easy to quantify.

Although TVA provides a method of monitoring specifications
defined in the SLA, not all specifications are necessarily
measurable with time-series analysis. For example, a system
may have the specification that it must be available 99.99%
of the time. This is not something that could be measured or
predicted using time-series analysis, rather it would need to be
accounted for using fault detection techniques in the system’s
architecture. In systems that do not directly utilize a SLA,
the improved tactic estimations can still be used to benefit
the decision-making process by providing more informed
and accurate tactic attribute values. Future work should be
conducted to examine precisely how our TVA process can be
incorporated into these systems and determine the benefits that
they will have.

To be completely proactive, future work must be done to up-
date our ARIMA method to consider tactic latency. Currently,
this process can alert the system of a specification that is about
to be broken, however the time between monitoring intervals
may not leave enough time to fully execute a tactic. Therefore,
there may be occurrences where specifications are slightly
broken for a period of time. This future work will likely
examine other time series models as well that can be flexible
to different systems and datasets. This in turn would also help
us to start addressing the problem of not having enough data
to build other kinds of models and would allow this work to
develop into an entire decision-making framework.

Although we have demonstrated the benefits of our TVA
approach with real-world experimental data, we have yet to im-
plement TVA on any physical devices. Future work will consist
of including our adaptation process into physical equipment
such as IoT devices, small unmanned aerial vehicles (UAV),
and self-adaptive web systems.

ARIMA demonstrated its ability to perform time series fore-
casting, however no mechanisms are in place to quantify
uncertainty within these predictions. Future work could be
done to include confidence intervals around predictions made
by ARIMA. For example, instead of only predicting a single
point value for a specification, we could predict a range that
states something such as the following, “we are 95% certain
response time will be between 3.1 and 3.7 seconds”. This
would allow the system to have a “buffer” zone around its
predictions, therefore providing the decision-making process
with more information.

Additionally, the ARIMA models utilized in this work were
pre-trained on gathered historical data. It is also possible to
have the ARMIA models be updated online as new data is
gathered by a system to adapt themselves as more information
becomes available. Other methods for time series prediction
such as recurrent neural networks (RNNSs), which have been
successfully used for a variety of time series forecasting
problems [10], [34], [17], [16], [8], [13], [12], can be examined
as well. RNNs may also potentially be able to incorporate non-
time series data into predictions.

Our evaluation data was created using two Raspberry Pi’s, and
does not simulate a complicated system such as a self-driving
car or a UAV. However, this generated data was intended to
help demonstrate the capabilities of TVA and the benefits of
accounting for tactic volatility. In reality, the data generated
by these tools could represent virtually any form of tactic
volatility (e.g., the time required for a UAV to communicate
with a base station or the energy cost of a self-driving car
performing a tactic).

There are a few potential limitations to the use of our VALET
tool and dataset in the evaluation of our proposed TVA
process. First, VALET generates its data by performing a small
number of tasks. A real-world self-adaptive system would
likely perform a large number of tasks in any given adaptation,
which depending on the system, could impact one another.
VALET is also limited in the forms of variability that it may
encounter as opposed to a real-world system. For example,
VALET is significantly less likely to be actively targeted by
human hackers than many real-world self-adaptive systems,
which could limit the encountered variability. However, it is
somewhat unreasonable to expect that any created evaluation
system would have the capabilities to address a majority
of real-world events and possibilities. Despite these possible
limitations, we are confident in the ability of VALET in
creating satisfactory evaluation data for not only our study,
but for future research conducted by others.

VIII. CONCLUSION

In this work, we propose a Tactic Volatility Aware (TVA)
process that is able to account for tactic volatility in mul-
tiple ways. TVA first uses time-series forecasting with an
autoregressive integrated moving average (ARIMA) model to
monitor system specifications defined in the SLA, supporting
the system in acting more proactively while maintaining them.
Next, TVA uses multiple regression analysis (MRA) to predict
tactic latency and cost helping to improve the decision-making
process. Our contribution also includes a tool that utilizes
physical devices to create real-world tactic volatility data.
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