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ABSTRACT 

 

This paper focuses on using data mining technology to efficiently and accurately discover habitats and 

stopovers of migratory birds. The three methods we used are as follows: 1. a density-based clustering method, 

detecting stopovers of birds during their migration through density-based clustering of location points; 2. A 

location histories parser method, detecting areas that have been overstayed by migratory birds during a set time 

period by setting time and distance thresholds; and 3. A time-parameterized line segment clustering method, 

clustering directed line segments to analyze shared segments of migratory pathways of different migratory birds 

and discover the habitats and stopovers of these birds. Finally, we analyzed the migration data of the 

bar-headed goose in the Qinghai Lake Area through the three above methods and verified the effectiveness of 

the three methods and, by comparison, identified the scope and context of the use of these three methods 

respectively. 
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1 INTRODUCTION 
 

One of the most important tasks in protecting migratory birds around the globe is to identify the ecological 

needs of birds in their breeding and wintering grounds as well as the stopovers during their migration (Berthold, 

& Terrill, 1991). The information of specific migration routes, net structures of these migration routes, and 

important stopovers during migration is the key to researching migratory birds’ selection of habitats and 

stopovers, birds’ migration strategy, and the influence of global climate change on migratory birds’ migration. 

Also, the role of migratory birds in the spread of avian influenza virus has been a hot topic recently. Among the 

wild birds that have been infected by the H5N1 highly pathogenic avian influenza virus, many are migratory. 

Therefore, migratory bird might be avian influenza virus vectors. As the ecological environment and natural 

resources of the habitats and stopovers might set the stage for interspecific or intraspecific transmission of avian 

influenza virus among birds, studying wild birds’ migration and detecting these birds’ habitats or stopovers 

efficiently and precisely are of significant value for the research and prevention of the spread of avian influenza 

virus.  

 
The traditional way of studying bird migration, bird banding, is simple and easy to carry out, but its results 
depend on long-time observation, and the number and quality of returned birds are estimated. Thus it is 
impossible to get the whole picture of the track of bird migration in short time (Zhang, & Yang, 1997). In other 
words, it is difficult for the traditional method to meet the requirements of modern study. The development of 
satellite tracking technology and its application to biology in recent years provide new opportunities for bird 
migration study (Cagnacci, Boitani, Powell, & Boyce, 2010). Some of the raw data obtained with satellite 
tracking technology is shown in the following Table 1. 
 
Table 1. Relational representation of raw GPS data 

 

ID         Animal       Latitude       Longitude       lc94       Date time      

930796   BH07_67582     65.448         96.317         LZ   2008-01-30 04:02:00 

930948   BH07_67582     65.448         96.317         LZ   2008-01-30 04:02:00  
 
In this chart, ID is the recording number, Animal is the label of the migratory bird, Latitude and Longitude 
show the specific location, and the Date time field signify time stamp. Obviously, traditional data analysis 
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methods such as drawing-dot or the manual statistics method cannot process these high-resolution 
spatial-temporal data. This paper focuses on using data mining technology to discover efficiently and accurately 
the habitats and stopovers of migratory birds among the original satellite telemetry data. These methods are 
described as follows: 
 
 Density-based clustering method. The habitats and stopovers of migratory birds are the areas where the 

bird continuously stays for some time, corresponding to the dense regions in space. We use the 
density–based clustering method to discover these dense regions. Although the location data of the 
migratory bird may be lost because of different reasons, these dense regions can characterize the habitats or 
stopovers of the bird. 

 Location histories parser method. Given a time and distance threshold, this method models the move 
status (stay or move) of a migratory bird and then scans a certain bird’s migration route point by point. It 
can get the arrival and departure time of the migratory bird at its every stopover. 

 Time-parameterized line segment clustering method. We measure the space-time density of moving 
objects by the spatial distance, the direction of the movement, and the time characteristics. We use the 
time-based plane-sweeping trajectory clustering algorithm to analysis shared segments of migratory 
pathways of different migratory birds and discover the habitats and stopovers of these birds. 
 

The rest of this paper is organized as follows: Section 2 introduces relevant research. Section 3 defines specific 
terms. Section 4 elaborates three ways to discover stopovers from the GPS data. Section 5 presents the 
experiments and the result analysis, and Section 6 provides the major conclusions of the paper. 
 

2 RELATED WORK 
 

As GPS-based radio telemetry has improved and international concern about migratory birds has grown, many 

international organizations have begun to trace the birds’ migration through satellite positioning technology 

(Frisch, Vagg, & Hepworth, 2006). Interest is increasing in developing methods to perform data analysis for 

trajectory datasets (Schiller & Voisard, 2004) (Stauffer & Grimson, 2000). A typical data analysis task is to 

detect the stopovers of moving objects. We used the same satellite telemetry datasets as Tang et al. (2009) who 

proposed a hierarchical spatial clustering method, HDBSCAN, to find the habitats or stopovers of migratory 

birds in different spatial scale levels. However the HDBSCAN algorithm measures the proximity of birds 

mainly by Euclidean distance between two points and does not take time information into account. Hariharan 

and Toyama (2004), Zheng, Zhang, Ma, Xie, and Ma (2011), Zheng and Li (2008), and Zheng and Xie (2010) 

modeled the location histories of humans and proposed a method to find the stopovers of humans. However, 

their attention focused on personalized recommendations based on location, so they did not study the stopovers 

in depth. Gaffney and Smyth (1999), and Gaffney, Robertson, Smyth, Camargo, and Ghil (2006) observed that 

existing trajectory clustering algorithms group similar trajectories as a whole, thus revealing common 

trajectories. But clustering trajectories as a whole cannot detect similar portions of trajectories or can miss 

common sub-trajectories. The framework and algorithm proposed by Lee, Han, and Whang (2007) did not 

consider temporal information. Satellite telemetry datasets or GPS-based locations datasets are essentially time 

series of spatial data. To measure the space-time density of moving objects, this paper defines different distance 

functions from Lee et al. (2007) to measure the similarity of different line segments, so that we can find the 

shared segments of migratory pathways both in time and space. In this paper, we use three data mining methods 

to discover habitats and stopovers of migratory birds and analyze in detail the characteristics and the contexts of 

use of the three algorithms respectively. 

 
3 PRELIMINARY 
 
In this section, we clarify the terms used in this paper. 
 

Point: A point P is indicated by a tuple ,Lat Lng  , which refers to that one bird once presented in a 

location where the latitude is Lat and the longitude is Lng. 

Point set: A point set PS consists of a series of points that are generated by one or more birds.  

Trajectory: A trajectory TR is defined as an ordered set of ,position timestamp pairs ordered by time 

serials.  1 1 2 2 3 3, , , , , ,..., , , ( )n n i jTR P t P t P t P t i j t t            where it is point iP ’s 

timestamp. 

Line segment: Given a trajectory TR, a line segment of TR is defined as 1 1, , ,i i i i iLS P t P t     , 

where 1 1, , ,i i i iP t P t TR     represents object moves from position iP to position 1iP during  1,i it t  . 
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The displacement of moving object is denoted by 
iLS , and the duration of iLS is denoted by .iLS TD . 

Line segment set: The line segment set of a trajectory TR is defined as a collection of two sequential pairs in TR, 

 1 1, , , 1 1i i i iLSS P t P t i n         . 

Stop region: The stop region is the area where the migratory birds stay for some time during their migration. 

Migratory birds’ habitats and stopovers are all stop regions. We use a stop region center’s coordinate to indicate 

the stop region in the following sections. 

 

 

4 THREE METHODS TO DISCOVER THE STOP REGIONS 
 
Migratory routes of migratory birds are long and complex paths (Figure 1), and the migratory birds’ raw GPS 
data can’t be used conveniently due to its large scale and high complexity. In this section, we will provide three 
methods to solve the problem and explain their principles in detail. 
 

 
 

Figure 1. Migratory pathway of one bar-headed goose captured in the Qinghai Lake Area 

 

4.1 Density-based clustering method 
 
As depicted in Figure 1, the dense regions in the picture may be the stop regions from the visual point of view. 
We can assume that dense regions in spatial-temporal data are equivalent to stop regions. The GPS position 
sampling frequency of satellite telemetry device was about once every 2 hours during the day. If a bird stays in a 
small area more than a certain period of time, the sampling point in this area may be denser than in other places. 
Therefore, it is possible to detect the migratory birds’ stop regions by finding the dense areas in GPS location 
history data. 
 
In order to find the dense clusters in spatial data, Ester, Kriegel, Sander, and Xu (1996) proposed the DBSCAN 
algorithm. This density-based algorithm is based on the following notions: ε-neighborhood is the neighborhood 
within a radius ε of a given object; an object is a core object if the ε-neighborhood of this object contains at 
least a minimum number (MinPts) of objects; an object p is directly density-reachable from object q if p is 
within the ε-neighborhood of q and q is a core object; an object p is density-reachable from object q with 
respect to ε and MinPts in a set of objects, D, if there is a chain of objects p1 , … , pn, where p1 =  q and pn = p 
such that pi+1 is directly density-reachable from

 
pi with respect to ε and MinPts, for

 
1 , ii n p D   ; an 

object p is density-connected to object q with respect to ε and MinPts in a set of objects, D, if there is an object  
o D both p and q are density-reachable from o with respect to ε and MinPts (Han & Kamber, 2000). All 
points within the cluster are mutually density-connected. If a point is density-connected to any point of the 
cluster, it is part of the cluster as well. 
 
The stop region detection algorithm based on DBSCAN (Ester et al., 1996) is described as follows: 
                                                                                            

Input: Point set: PS; Radius: ε; The minimum number of points to decide the core objects: MinPts  

Output: A set of all stop regions SS 

DBS_SR_DETECTION (PS, ε, MinPts): 

C = 0; 

For each unvisited point P in dataset PS 

    Mark P as visited; 

    N = P’s ε-neighborhood set; 

    If P is not a core object 
       Mark P as NOISE; 

    Else 

Data Science Journal, Volume 12, 10  April 2013

WDS161



       C++;        

       Add P to cluster C; 

       For each point O in N  //find all the objects that density-connected with P 

          If O is not visited 

             Mark O as visited; 

             N' = O’s ε-neighborhood set; 
             If O is a core object 

                N = N joined with N'; 

          If O is not yet member of any cluster 

             Add O to cluster C; 

Return the center coordinates of each cluster; 

                                                                                            

 

The time complexity of DBS_SR_DETECTION is O(n2), where n is the number of points in PS. If the 

appropriate spatial index is used, the time complexity of this algorithm will reduce to O(nlogn). If ε and MinPts 

are appropriately set, this algorithm can detect arbitrarily shaped clusters, but there is no good way to choose 

these two parameters. When we use this algorithm, PS can be either one bird’s history location set or 

multi-birds’ history location sets. Here,  1 2 3, , ,..., nPS P P P P , where ,i i iP Lat Lng  , the points in 

PS only 

contain spatial dimension, and we use great-circle distance as geographical distance formula between two points. 

Furthermore, the NOISE in DBS_SR_DETECTION may be significant for the ornithologist because the object 

may be flying fast at this location. 

 

4.2 Location histories parser method 
 

As stated before, the DBS_SR_DETECTION only takes the spatial dimension into account, dismissing the time 

dimension. In fact, birds’ migration routes are complex and not regular (Figure 1), and bad climate or other 

factors in the wild environment may cause satellite signal loss. As depicted in Figure 2, if we use the 

DBS_SR_DETECTION algorithm to detect this bird’s stop region, we may discover the region surrounded by 

the dotted red line, obviously showing that region is meaningless.  

 

Stop 
region 2

Stop 
region 1

Stop 
region 3  

 

Figure 2. A typical migratory route 

Stop region 2

P1 P2 P3

Stop region 1
P5

P6

P4

P7

P8 P9

 
 

Figure 3. Two kinds of stops of migratory birds 

 
In order to solve the problem above, we need take the time dimension into account. Hariharan et al. (2004), 
Zheng et al. (2011), Zheng et al. (2008), and Zheng et al. (2010) proposed a time and distance threshold based 
method to discover human’s stay point from the historical location data. This method may be useful for 
detecting the migratory birds’ stop regions. The stops of migratory birds may be divided into two kinds: 
 
 At stop region 1 depicted in Figure 3, during the migration, birds may keep stationary for some time 

because of bad weather or the need to rest. 
 At stop region 2 depicted in Figure 3, the birds may stay in a little area for some time because they need to 

find food or for some other reasons. 
 
Both of the stops can be defined as this: 
 

Given a trajectory  1 1 2 2 3 3, , , , , ,..., ,n nTR P t P t P t P t         , if there is a subset of TR sTR   

 1 1, , , ,..., ,i i i i j jP t P t P t       where 1 ,i j n  and for i k j   , ( , ) ,i kDist P P Dr  

Data Science Journal, Volume 12, 10  April 2013

WDS162



1( , ) ,i iDist P P Dr  ( , )i jInt t t Tr , the ( , )i kDist P P denotes the geospatial distance between two points  

iP and kP , the ( , )i j i jInt t t t t  is the time interval between two points, the area where the points at sTR 

are located is a stop region S (Zheng & Xie, 2010). We can also use a quaternion to indicate a stop region 

, , ,S Lat Lng ts te  . Lat stands for the average latitude of the collection sTR; Lng stands for the average 

longitude of the collection sTR; ts means the bird’s arrival time at the stop region S; and te means the bird’s 

departure time. We can compute them as: 

j j

k kk=i k=i
i j

. .
. , . , . ,

P Lat P Lng
S Lat S Lng S ts t te t

sTR sTR
   
 

. 

 

The algorithm that detects all stop regions from a trajectory is described as follows: 

                                                                                            

Input: A trajectory: TR; Distance threshold: Dr; Time threshold: Tr 

Output: A set of all stop regions SS 

LHP_SR_DETECTION (TR, Dr, Tr): 

i=0, n TR ;  //the number of GPS points in a GPS logs 

While i < n do: 

        j=i+1; 

        While j < n do:                  

           ( , )i jDist Dist P P   

            If Dist Dr  then 

                 i jInt( , )T t t  ;   

                  If T Tr   then 

                     
j

kk=i
. . /( 1)S Lat P Lat j i   ; 

                     
j

kk=i
. . /( 1)S Lng P Lng j i   ; 

                     i j. ; .S ts t S te t  ;                      

                     SS.insert(S); 

                  i=j+1; break; 

            j=j+1; 

Return SS 

                                                                                            

 

This algorithm’s time complexity in the worst case is 
2(n )O . The data LHP_SR_DETECTION can process is 

one bird’s trajectory. Before using this algorithm, we should sort the bird’s location history data by timestamp. 

This algorithm cannot deal with multi-birds’ trajectories. A simple method to solve this problem is to combine 

DBS_SR_DETECTION with LHP_SR_DETECTION, which can detect all stop regions of one bird respectively 

and then cluster all the stop regions of all birds.  

 

4.3 Time-parameterized line segment clustering method 
 

Birds in the same region usually share their habitats or stopovers. As indicated in Figure 4, different birds fly 

from the same place to another, and as a result many similar line segments will be generated between these two 

places. The sets of starting points and finishing points of each line segment in this cluster may be the stopovers 

or habitats of migratory birds. 

Stop region 2Stop region 1

 
Figure 4. A line segment cluster 
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In order to cluster line segments, the first problem that needs to be solved is to measure the distance between 

two objects. The distance function we proposed to measure the distance between two line segments includes 

both spatial and temporal aspects. We define the distance function between line segments 

i i i i+1 i+1, , ,LS P t P t    and j j j j+1 j+1, , ,LS P t P t    as follows: 

 

i jL_dist( , )LS LS   

i j i+1 j+1

i j i j2

dist( , ) dist( , )
, f . . ( , )

+ ,else1

P P P P
i LS TD TW LS TD TW LS LS 



  
     

  

   (1)  

 

Here ε means the spatial threshold;θmeans the angle threshold; i jdist( , )P P means the distance between two 

points iP and jP , the distance is measured by the great circle distance; i j( , )LS LS means the included 

angle between line segments iLS and jLS , which is measured by the spherical angle between two great 

circles containing the line segments; and TW means the time window  1 2,TW t t . 

After defining the distance function between two line segments, we use the DBSCAN (Ester et al., 1996) 

algorithm to find all the dense clusters. As the object we are concerned with is a line segment, we give some 

extra description. The set of all the line segments is denoted as LSC; the ε-neighborhood set of line segment 

i i i( . )LS LS LSC LS TD TW    in time window TW is defined as: 

 

           ( , ) i k k k i( ) . L_dist( )TWN LS LS LS LSC LS TD TW LS                (2)  

The algorithm can be described as follows: 

                                                                                             

Input:  The set of all line segments: LSC; The time window size: TWS; The time step: ts; The distance 

threshold: ε; The minimum number of line segments: MinLSSum; and The angle threshold:θ 

Output: A set of stay region SS 

 

TPLS_SR_DETECTION (LSC, TW, ε, MinLSSum,θ): 

LSC_new= {}  //get rid of the NOISE in advance 

For each line segment LS in LSC 

    If .LS TD TW   

       LSC_new .add(LS); 

C = 0; 

For each unvisited line segment LS in dataset LSC_new 

    Mark LS as visited; 

    ( , )( )TWN N LS ; 

    If Size of (N) < MinLSSum 

       Mark LS as NOISE; 

    Else 

       C++;    

       Add LS to cluster C; 

       For each line segment LS' in N  

          If LS' is not visited 

              Mark LS' as visited; 

              ( , )' ( ')TWN N LS ; 

              If Size of (N') >= MinLSSum;    //if LS' is a core object  

                 N = N joined with N'; 

          If LS' is not yet member of any cluster 

              Add LS' to cluster C; 

Return SS;    //get the set of all stay regions 
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The time complexity of the algorithm above is 
2(n )O , where n is the number of the line segments in LSC_new. 

If a spatial index is used, the time complexity will reduce to ( log )O n n . The algorithm 

TPLS_SR_DETECTION can only detect stop regions at which the birds leave or arrive during TW. In order to 

find all stop regions, we use the time window size TWS and time step ts to replace time window TW where 

ts<<TWS. Given a set of line segments LSC, startTime means the time of the first location in LSC, and endTime 

means the time of the last location in LSC. A set of time windows is:  

 

   set , , , ,TW startTime startTime TWS startTime ts startTime ts TWS       

   2* , 2* ,..., * ,startTime ts startTime ts TWS startTime n ts endTime           (3)  

We use the time window parameter in setTW  respectively to call the function TPLS_SR_DETECTIO, and then 

merge all the results. If the time window size and time step are appropriately set, we can detect all the stop 

regions. More details are described as follows: 

                                                                                             

Input:  The set of all line segments: LSC; The time window size: TWS; The time step: ts; The distance 

threshold: ε; The minimum number of line segments: MinLSSum; and The angle threshold:θ 

Output: A set of all the stay regions SS 

TPLS_ALL_SR_DETECTION (LSC, TWS, ts, ε, MinLSSum,θ): 

Sort LSC by time; 

startTime=LSC.getStartTime ();   //get the first location’s time stamp 

endTime=LSC.getEndTime ();    //get the last location’s time stamp 

Get the set of the time window setTW ; 

SS={}; 

For each time window TW in setTW  

TW TPLS_SR_DETECTION( , , , , )SS LSC TW MinLSSum  ; 

TWSS SS SS  ; 

Return SS;              

                                                                                                                                                                 

 

5 EXPERIMENTAL EVALUATION AND RESULT ANALYSIS 
 

To verify the efficiency of these three methods, we chose the satellite telemetry data obtained from 29 

bar-headed geese captured in the Qinghai Lake Area to run a series of tests. Raw data included 471,774 records 

of position and time information between 25 March 2007 and 5 June 2009. We selected 40,756 records with 

higher precision estimates to improve the reliability of analysis. 

 

For DBS_SR_DETECTION, PS is the location history obtained from a bar-headed goose numbered 

BH07_74901, which has 3502 records of time and location information between 31 March 2007 and 23 

November 2008. Under the condition of 20Km, 10MinPts   , we found 11 stop regions during this 

bird’s migration (Figure 5).The distribution of the stop regions we detected is indicated in Table 2. 

 

For LHP_SR_DETECTION, TR was the trajectory obtained from the same bar-headed goose as above. Under 

the condition of 20Km, 48Dr Tr h  , we found 31 stop regions (Figure 6). These 31 stop regions are 

shown in Table 2. 

 

For TPLS_ALL_SR_DETECTION, the GPS position sampling frequency of the satellite telemetry device was 

about once every 2 hours during the day. We reduced the dimension of data from hours to days by choosing 2 

positions that spanned two sampling times closest to a day. These two locations were regarded as starting and 

ending points of a line segment. The duration between two sampling times was the duration TD of the line 

segment. Finally, we chose 5,959 line segments to make up the LSC. The time interval was from 25 March 2007 

to 4 June 2009. Under the condition of TWS = 60 days, 80Km, 2, 10MinLssum     degrees. 

Detailed results are in Figure 7. The stop regions we detected are: Qinghai Lake Area; The river valleys near 

Lhasa; Eling Lake and Zaling Lake; Niriacuogai Lake, Zamucuo Lake, and Gaeencuonama Lake; and Cuona 

Lake, Cuoe Lake, and Nairipingcuo Lake. 
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Table 2. The distribution of stop regions generated by DBS_SR_DETECTION and LHP_SR_DETECTION 

 

Area 
Stop region 

(DBS_SR_DETECTION) 

Stopregion 

(LHP_SR_DETECTION) 

Qinghai Lake Area Stop region 9,10 Stop region 1,2,3,4,5,6,7 

Donggei Cuona Lake Area Stop region 11 Stop region 8,9,10 

Eling Lake and Zaling Lake Area Stop region 7 Stop region 11,12 

Galalacuo Lake Area Stop region 8 Stop region 13 

Saiyongcuo Lake Area Stop region 5 Stop region 21,22,23 

Zhamucuo,Niri’a Cuogai,Ga’e 

Encuo Nama Area 
Stop point 6 Stop point 24,25,26,27,28,29 

Cuo’e Lake and Neri Puncuo Area Stop region 2 Stop region 14,15,17,18,19,30 

River valleys near Lhasa Stop region 1 Stop region 16,31 

 

 

 

Figure 5. The white mark means NOISE. The marks with the same color belonging to one stop region. The 

number near the mark is the stop region number. 

 

 

 

Figure 6. A yellow mark is a stop region, and the number near the mark is the stop region number. 

 

 

Figure 7. Clustering results of long distance segments from 12 June 2007 to 2 April 2009 
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From the results above, we can figure out that the stop regions obtained by executing DBS_SR_DETECTION 

and LHP_SR_DETECTION to analyze the same bird’s migratory route are similar to each other. Nearly all the 

stop regions are next to lakes or wet lands (Figure 5: stop region 5, stop region 7, stop region 11). While the data 

handled by TPLS_ALL_SR_DETECTION are from all bar-headed geese, they are not suitable to be compared 

with that from the other two algorithms. But we still can find that stop regions obtained by these three 

algorithms have obvious overlapping areas. Moreover, the result of TPLS_ALL_SR_DETECTION is almost the 

same as the stop regions of the bar-headed geese’s migratory routes mentioned in Tang et al. (2009).  

 

The distance thresholds of DBS_SR_DETECTION and LHP_SR_DETECTION are both 20Km while there are 

many more stop regions obtained from LHP_SR_DETECTION than from DBS_SR_DETECTION. Based on 

these two algorithms’ principles, DBS_SR_DETECTION only considers the information of spatial dimension, so 

we can only find its dense clusters and treat them as stop regions. From a microcosmic view, this algorithm is 

unable to analyze data within dense clusters. For instance, Figure 8(a) and Figure 8(b) indicate the same area. 

DBS_SR_DETECTION treats this area as one stop region while LHP_SR_DETECTION obtains several stop 

regions for it, considering both spatial and time dimensions. Although these stop regions’ spatial positions are 

next to each other, treating them as different regions still means a lot. What is more, stop region 3(Figure 8(c)) 

discovered by DBS_SR_DETECTION is treated as noise (Figure 8(d)) when executing LHP_SR_DETECTION. 

We discovered that birds have 13 position points in the area but never stop there beyond one day, and this is 

probably an exception because this area is not a perfect stop region. However, DBS_SR_DETECTION still 

considers the area to be a stop region while LHP_SR_DETECTION avoids this incorrect situation. We also 

notice that stop regions detected by DBS_SR_DETECTION are without time information while stop regions 

obtained by LHP_SR_DETECTION are ordered by time sequence. The three algorithms’ further comparison is 

in Table 3. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 8. Four special scenarios: (a) and (c) are generated by DBS_SR_DETECTION while (b) and (d) are 

generated by LHP_SR_DETECTION. 

 

Table 3. Comparison of the three methods in detail 

 DBS_SR_DETECTION LHP_SR_DETECTION TPLS_ALL_SR_DETECTION 

Dimension Spatial Spatial and time Spatial and time 

Object Point Trajectory Line segment 

Raw data GPS location history GPS location history GPS location history 

Range One bird or more One bird Multiple birds 

Time 

complexity 
2(n )O or ( log )O n n  

2(n )O  
2(n )O or ( log )O n n  

 

From the experiments above, we find that all three methods can detect habitats and stopovers on the bar-headed 

geese’s migratory routes. However, their principles lead to their differences in application. 
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DBS_SR_DETECTION does well in the situation that only cares about the stop regions’ position. For example, 

sometimes ornithologists need to know the common stopovers for the whole flock of bar-headed geese during 

their migratory routes. DBS_SR_DETECTION may be very suitable for this situation above. The object handled 

by LHP_SR_DETECTION is a trajectory, so this algorithm can only deal with one bird’s trace once. If we want 

to analyze more birds’ information, we need to perform it multiple times before further processing. This 

algorithm takes the time factor into account. We can detect stop regions with start and end timestamps, which 

indicate some bird’s arrival and departure time in some area. This may be useful for studying the relationship 

between the flyways of migratory birds and climate. The object handled by TPLS_ALL_SR_DETECTION is a 

line segment. This algorithm is meaningful only when many birds’ trajectories are analyzed. The intermediate 

products during the process are line segment clusters. According to those clusters, we can easily figure out the 

fly distance among the stop regions. As indicated in Figure 7, observing the lengths of line segment clusters, we 

find that stop regions around Eling Lake and Zaling Lake are most bar-headed geese’s start areas before their 

long journey. Departing from there, some of the birds make a pit-stop at Niriacuogai Lake, Zamucuo Lake, and 

Gaeencuoname Lake while others fly at one go to Cuona Lake, Cuoe Lake, and Nairipingcuo Lake. This 

information may be useful for ornithologists when analyzing birds’ migration patterns. 

 

6 CONCLUSION 
 

In conclusion, we provide three methods based on data mining for detecting habitats and stopovers on the 

migratory routes from birds’ GPS data. After applying the algorithms on the GPS data of bar-headed geese 

captured in the Qinghai Lake region of China, we verify the algorithms’ correctness. Having analyzed their 

principles and distinctions in detail, we give some suggestions about the application situations for these three 

algorithms. This will be helpful for ornithologists in finding appropriate algorithms for their work. In the future, 
we will further study the climate, ecology, and other factors in the stop regions on birds’ migratory routes. 
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