
Graph-Based Profiling of Dependency
Vulnerability Remediation

Fernando Vera Buschmann1, Palina Pauliuchenka1, Ethan Oh1, Bai Chien
Kao2, Louis DiValentin2, and David A. Bader1

1 Department of Data Science,
New Jersey Institute of Technology, Newark, NJ, USA

{fv54,pp272,eo238,bader}@njit.edu
2 Accenture PLC {bai.chien.kao, louis.divalentin}@accenture.com

Abstract. This research presents an enhanced Graph Attention Convo-
lutional Neural Network (GAT) tailored for the analysis of open-source
package vulnerability remediation. By meticulously examining control
flow graphs and implementing node centrality metrics—specifically, de-
gree, norm, and closeness centrality—our methodology identifies and
evaluates changes resulting from vulnerability fixes in nodes, thereby
predicting the ramifications of dependency upgrades on application work-
flows. Empirical testing on diverse datasets reveals that our model chal-
lenges established paradigms in software security, showcasing its efficacy
in delivering comprehensive insights into code vulnerabilities and con-
tributing to advancements in cybersecurity practices. This study delin-
eates a strategic framework for the development of sustainable monitor-
ing systems and the effective remediation of vulnerabilities in open-source
software.

Keywords: Graph Attention Convolutional Neural Network (GAT),
Package Vulnerability Analysis, open source, package upgrade, Knowl-
edge Graph, Node Centrality Metrics, Cybersecurity, Deep Learning Ap-
plications, Network Analysis, Code Vulnerability Mitigation.

1 Introduction

The increasing complexity of software systems and the reliance on third-party
libraries have significantly heightened the importance of vulnerability analysis
in open-source packages. Despite progress in identifying and mitigating vulnera-
bilities, significant gaps remain in understanding the interdependencies and im-
pact of remediation efforts. This study focuses on three real-world applications:
a Python-based data processing package, a Java-based web application, and a
mixed-language analytics tool. By analyzing these diverse codebases, we aim to
demonstrate the versatility and effectiveness of our graph-based approach.

Preventing and analyzing vulnerabilities is crucial for averting cyber attacks
and protecting programs and components [31]. The growing complexity and ab-
straction of dependencies and version management increase the likelihood of
vulnerabilities within application code in this dynamic, continuously updating

2 Vera Buschmann, Pauliuchenka, Oh, Kao, DiValentin, Bader.

world [15]. During code development, it is essential to identify and address the
weakest link or the most apparent vulnerability and to pursue continuous solu-
tions with each code update [14]. To effectively protect against cyber attacks,
three steps are often followed: 1) know the vulnerabilities, 2) understand their
impact on the application, and 3) act on them in depth.

Vulnerability remediation in open source packages is vital for the open-source
community and user security. This process involves identifying vulnerabilities,
reporting them, and analyzing their impact [2]. Open source maintainers then
triage these vulnerabilities and bugs, prioritize updates, and release new package
versions that fix the affected functions and remove bugs.

Various tools facilitate the discovery of vulnerabilities in dependencies, in-
cluding CVEfixes, which replicates the comprehensive database from the U.S.
National Vulnerability Database (NVD). Static and dynamic code analysis ca-
pabilities, such as CodeQL used by the GitHub community, can identify and
modify functions to discover new vulnerabilities [25, 26]. Software Composition
Analysis (SCA) techniques create a Software Bill of Materials (SBOM) listing
the specific versions of dependencies used. This SBOM is correlated with ex-
isting vulnerability repositories to identify vulnerabilities in each dependency,
targeting them for upgrades to newer versions where issues are fixed. However,
upgrading dependencies can sometimes cause compilation errors or functional
issues in the application [12,29].

Understanding the impact of dependency version changes, along with func-
tional interconnections and network structures, is crucial for estimating the likeli-
hood of specific package upgrades causing breaking changes in application code.
Given the distinct and adaptable nature of applications, tools that generalize
across different applications are needed to provide insights into upgrade com-
plexity. Thus, we turn to knowledge graphs [13,24]. Constructing a graph allows
us to comprehend interactions between functions within the code. In this re-
search, we represent functions as entities in a graph space, constructing an Inter
Procedural Control Flow graph of function interactions. This enables examina-
tion of the application code and dependencies, with the caller-callee relationship
as the connecting link [32]. Observing and analyzing these interactions assists
in identifying the impact of dependency changes on application workflow and
downstream effects. This relational understanding supports the automation of
package upgrades with minimal functionality impact, directly translating to im-
proved security by enabling automated processes to upgrade vulnerable package
versions with minimal disruptions.

Understanding the impact of changed function nodes between two applica-
tion versions using a graph necessitates a profound comprehension of the net-
work’s topology and connectivity attributes [33]. This knowledge is indispens-
able for identifying the significance of affected nodes to the network’s overall
operation and making informed decisions on upgrade impacts [4]. This process
involves analyzing centrality, density, connected components, degree assortativ-
ity coefficient, and pathways. Such comprehensive evaluations facilitate strategic
decision-making for optimally mitigating vulnerabilities, ensuring a robust and

Graph-Based Profiling of Dependency Vulnerability Remediation 3

secure network architecture. This is particularly critical in software, where func-
tions exhibit complex nested dependencies and feedback loops.

The remainder of this paper is organized as follows: Section 2 outlines our
proposed approach. Section 3 reviews the background and related work. Section
4 elaborates on the methodology, including the problem statement and workflow.
Section 5 describes the experimental setup and presents the results and analysis.
Finally, Section 6 discusses the findings and provides the conclusion.

2 Proposed Approach

The central issue addressed in this paper is the challenge of accurately iden-
tifying and mitigating vulnerabilities in open-source packages without causing
functional disruptions. Our methodology leverages a Graph Attention Network
(GAT) [28] to analyze the interdependencies of software components and pre-
dict the impact of remediation efforts on software workflows. This approach is
formalized by examining control flow graphs and applying node centrality met-
rics [5].

2.1 Problem Statement

The primary problem is to develop a model that can pinpoint changed nodes
and forecast the impact of dependency updates. This involves analyzing the
structural and functional attributes of the code to ensure that upgrades do not
introduce new vulnerabilities or disrupt existing functionalities [6, 26].

2.2 Workflow

Our workflow involves four main stages: data collection, graph construction,
vulnerability analysis, and impact assessment. Each stage is designed to incre-
mentally build a comprehensive understanding of the software’s vulnerability
landscape.

2.3 Domain-Specific Example

To illustrate our methodology, consider an open-source Python-based data pro-
cessing package. In this context: - **Nodes**: Represent functions and classes
within the package. For example, a node might represent a function responsible
for data encryption. - **Features**: Include degree centrality, which indicates
the number of direct connections a function has, and closeness centrality, which
measures how quickly a function can interact with other functions in the network.

When a vulnerability is identified in a critical function (e.g., the encryption
function), our approach maps the control flow graph for the application and
analyzes each function for differences between the current and remediated version
of the open source package. The GAT model is then applied to analyze how the
changed functions impact related functions and the overall system performance.

4 Vera Buschmann, Pauliuchenka, Oh, Kao, DiValentin, Bader.

By doing so, we can predict potential disruptions and ensure that remediation
efforts do not affect existing functionalities.

This concrete scenario bridges the gap between the high-level overview of
our methodology and its technical implementation, enhancing the clarity and
applicability of our approach.

3 Background and Related Work
Traditional methods of package function analysis primarily rely on static and
dynamic analysis techniques. While static analysis provides a broad overview, it
often lacks the context-specific insights gained from dynamic runtime analysis
[19]. Additionally, these techniques typically focus on the implementations of
functions within the application, rather than vulnerabilities in the application’s
dependencies. Some scanning techniques and vendors address these dependency
vulnerabilities by upgrading to a version where the vulnerability is resolved and
recompiling the code. If the remediated version causes compilation failures or
unit test failures, further code updates are required to ensure compatibility.
Understanding the effects of upgrading to a remediated package version remains
a complex and opaque process.

Inter Procedural Control flow graph analysis is a useful tool for understand-
ing software behavior, allowing developers to easily visualize the flow of execu-
tion within a program. By reducing abstract and complex code into manageable
graphs, it provides information about the structure of the program and its pos-
sible vulnerabilities and affected functions. This analysis is crucial to optimize
code performance and ensure strong cybersecurity measures. In our case, we en-
hance the inter procedural control flow graph with a knowledge graph related to
the use of algorithms and measures focused on large-scale analysis.

Graph Attention Networks (GAT) have emerged as a promising tool in simi-
lar analytical contexts. Originally conceptualized by Veličković et al. [28], GATs
leverage the attention mechanism to provide node-specific contextual insights,
enhancing the accuracy of feature representation in graph-structured data. This
has been effectively utilized in various domains, including bioinformatics, so-
cial network analysis, and natural language processing [30]. In package func-
tion analysis, GATs offer an innovative opportunity to address the limitations
of traditional methods. They provide a scalable approach to analyze the intri-
cate interrelationships and dependencies among package functions represented
as nodes in a graph. This method aligns with recent trends in utilizing deep
learning techniques for software engineering challenges, as documented in sev-
eral contemporary studies [8].

4 Methodology
This section is outlining key definitions and delving into the critical elements
that underpin our methodological approach. A portion of our research is the
deployment of a modified Graph Attention Network (GAT), an advanced model
that is being specifically designed to analyze feature code interactions and study
the importance of changed functions represented as nodes in the graph.

Graph-Based Profiling of Dependency Vulnerability Remediation 5

4.1 Modified Graph Attention Neural Network

The adaptation of the GAT model is motivated by the lack of current visibility
into the effects of upgrading package versions, which directly affects developers
ability to stay on top of package vulnerabilities originating from dependencies.
Unlike traditional GAT models based solely on norm [28], our modified ver-
sion incorporates essential node centrality metrics (degree centrality, norm, and
closeness) to evaluate the importance and interrelationships of various functions
within the code, with a particular focus on identifying and evaluating vulner-
able nodes. This enhancement increases the ability of GATs to provide a more
refined analysis of the relational dynamics within the code, offering a compre-
hensive perspective on the impact of changes in dependency versions and the
potential risk of breakage resulting from changed code.

Rationale for Modification

Utilizing the Knowledge Graph for network analysis, particularly emphasizing
on graph attention Neural Network (GAT) as defined in the work of Veličković et
al. [28], is enabling us to train extensive datasets for the purpose of evaluating
and quantifying the significance of nodes within a network. This base model
is facilitating accurate detection of nodes based on both transductive methods
(such as Cora, Citeseer, Pubmed) and inductive methodologies. Presented as a
convolutional-like neural network operating on knowledge graph-structured data,
this model assigns an importance metric to nodes within their neighborhoods.

The input to our layer consists of a set of node features, h = {h1,h2, . . . ,hN},
with hi ∈ RF , where N denotes the number of nodes and F the number of
features per node. This layer is producing a new set of node features, h′ =
{h′

1,h
′
2, . . . ,h

′
N}, with a potentially different cardinality F ′. A shared linear

transformation, parameterized by a weight matrix W ∈ RF ′×F , is applied to each
node. The GAT then performs a self-attention mechanism a, yielding attention
coefficients eij as: eij = a(Whi,Whj)

These coefficients indicate the importance of node j’s features to node i. The
GAT model is assessing the first-order neighbors of i, necessitating a normaliza-
tion of coefficients across all node features j using the softmax function:

αij = softmaxj(eij) = exp(eij)/
∑

k∈Ni
exp(eik)

it is calculated the coefficient most relevant of each feture of node using the
norm. It identified as αij . Replacing equation eij in equation αij

αij =
exp

(
LeakyReLU

(
a⊤[Whi|Whj]

))∑
k ∈ N (i) exp (LeakyReLU (a⊤[Whi|Whk]))

(1)

In line with the original GAT model [28], with the attention mechanism a as a
single-layer feedforward neural network, we define a parameterized weight matrix
a ∈ R2F ′

and apply the LeakyReLU nonlinearity (negative input slope of 0.2). a⊤
is a learnable weight vector in the single-layer feedforward neural network which
constitutes the attention mechanism. N (i) denotes the neighborhood of node
i in the graph. ∥∥ represents the concatenation operation.eij = a(Whi,Whj)

6 Vera Buschmann, Pauliuchenka, Oh, Kao, DiValentin, Bader.

This process calculates the most relevant coefficient for each feature of a node
using the norm, identified as αij . To enhance the focus and applicability of these
coefficients, particularly in code analysis, we are introducing a modification βij

to highlight the robustness and criticality of all nodes. This modification en-
compasses functions such as degree centrality, the norm, and closeness centrality
metrics, relevant to nodes i and j. Consequently, the revised attention coefficient,
α′
ij , is defined as: α′

ij = αij · βij

This novel approach is proving instrumental in evaluating the importance of
specific functions within their neighborhoods, offering insights into the criticality
of an affected function in a code structure. The modified model enables the gen-
eration of a normalized score ranging from 0 to 1, which reflects the importance
of nodes based on metrics such as degree, norm, and centrality. This scoring
system facilitates a more nuanced understanding of node significance within the
graph structure, particularly in the context of package code analysis.

4.2 Mapping and Mitigating Vulnerability in a Code Development

Fig. 1: In this figure, we are providing a conceptual description of the actors
considered behind the open source. We are taking into account a generic software
ecosystem of code from key elements such as the operating system, language,
and software, packages or others that enable the code to function and connect
with the real world. A code under development typically begins with the Open
Source Base code (primary functions) that is interacting with the repository,
the operating system, and other components of the ecosystem. This base code
is undergoing updates Nth times to enhance its functionality. It is crucial to
emphasize that within each component, there could exist certain flaws which
might potentially manifest as vulnerabilities within the code.

Vulnerabilities are recorded in the NVD repositories from various sources
during the development process. These can be inherent from the base of the code
(fig.1) to the programming language used, integrated through specific packages
or software, or due to operating system flaws [7, 9]. These vulnerabilities are
remediated by standardizing community-driven coding practices [?], like SAST
and DAST scanning, and bug reporting. Nevertheless, vulnerability mapping is
continuously evolving, with new vulnerabilities emerging or being discovered over
time, as well as new tools and methods for finding them [3,27]. Thus, it is proving

Graph-Based Profiling of Dependency Vulnerability Remediation 7

beneficial to maintain an updated, dynamic, and comprehensive connection map,
which serves as a guide to pinpoint the source and address these vulnerabilities
swiftly and precisely.

From the foundational layer of code, the language, environment, configura-
tions [2], and built-in packages [1] emerge. The core code develops from this
foundation, forming the program’s heart with its principal functions. An initial
version of the code is committed, and subsequent updates add functionality and
features, resolving errors and introducing new functions and packages. Each up-
date may integrate previous functions into the core or leave them as branches.
Vulnerabilities can appear in any update or trace back to the base code, and a
vulnerable fragment can extend its impact across updates to critical branches,
potentially affecting the entire application’s core structure. Understanding the
network of functions within the code is crucial to mitigate risks and ensure up-
dates do not compromise the application’s integrity.

4.3 Knowledge Graph in Cybersecurity

According to Hogan [11], a debate is ongoing regarding the precise definition
of a Knowledge Graph, yet consensus exists about its remarkably high adapt-
ability. In the context of this discussion, the knowledge graph G is defined as
G = (E,R, S), where E represents the entity (node), R symbolizes the relation-
ship (edge), and S denotes relationship facts (node-node relationship). A triplet
constitutes a typical form of knowledge representation within this framework.
Entities, serving as foundational elements of the Knowledge Graph, encompass
a wide range of classifications, such as collections, categories, object types, and
thing categories (e.g., domain, host, etc.). Relationships interconnect these en-
tities to formulate the graph’s structure, while attributes encapsulate features
and parameters, exemplified by entities like google.com, windows, and similar.

To construct a dataset, it is necessary to study the relationships existing
between functions through their callee or caller interactions. A database is gen-
erated considering the node entities Ei, their relations Ri, and their relation
Si, which can be a call or a caller. This approach enables the generation of a
knowledge graph containing the identified entities. The data structure provides
critical information, encompassing the function’s path, its name, and whether
it has been modified in the latest update. Additionally, it indicates whether the
function is vulnerable and specifies its role as either a callee or a caller.

4.4 Building the Dataset

To build a comprehensive dataset, we compare subsequent versions of code where
upgraded package versions are intended to remediate vulnerabilities in open
source packages [1]. We use the open source software Syft to generate the soft-
ware bill of materials (SBOM) for the current version of the target application
source code. Curl fetches vulnerability data for individual package versions in
the SBOM from the Open Source Vulnerabilities (OSV) database, which pro-
vides an accessible query interface for all known dependency vulnerabilities. This

8 Vera Buschmann, Pauliuchenka, Oh, Kao, DiValentin, Bader.

information is mapped to the SBOM to identify existing vulnerabilities in the
dependencies. If a package with a vulnerability is detected, we search for the
updated version of the package and clone it. Using CodeQL, a semantic code
analysis engine, we model different versions of the code and construct control
flow graphs of the execution paths for the repository using both the vulnerable
and fixed packages. Tree-sitter performs incremental analysis, constructs, and
maintains a syntax tree, and builds the dataset. The impact of a single package
upgrade is measured by comparing the control flow for matching functions in
the inter procedural graph of the application before and after the upgrade. The
updated version control flow graph serves as the base for the knowledge graph,
with changed or affected nodes marked, along with nodes causing compilation
errors. Multiple upgrades are performed in two sets for each repository: one set
with graphs introducing errors resulting in code breakage, and another set with
graphs not impacting code functionality.

In this research, a preliminary approach is being used, initially focusing on
three application source repositories; The first case in a code base comprising
9621 features with 27 vulnerabilities in its broken update; the second case with
19,569 functions and 3 vulnerabilities. Subsequently, in Cases 3 (15908 functions
and 6 vulnerabilities) and 4 (16095 functions and no vulnerabilities), an appli-
cation is observed with a similar order of magnitude but different dependencies
regarding the base functions.

5 Results and Analysis

Our experimental setup involves analyzing three diverse codebases in Python
and Java, employing Graph Attention Networks (GAT) for vulnerability assess-
ment [28]. The results, underscore the efficacy of our approach in accurately
identifying critical vulnerabilities and predicting the impact of remediation ef-
forts. For instance, in one case study, our model effectively pinpointed a vulner-
able encryption function and forecasted its implications on the data processing
workflow, thereby demonstrating its practical utility in real-world scenarios.

In this section, we discuss the methods of data analysis and describe the
metrics we will use. Once the graph structure is built, we can utilize tools
like NetworkX in Python for small-scale analysis [20] or Arachne for large-scale
projects [21]. In this case, NetworkX is used exclusively to facilitate calculation
and analysis, given the volume of data (less than 20,000 nodes). This analysis
adopts a two-pronged approach. Firstly, it involves an exploratory examination
of graph connectivity, focusing on the distribution and other metrics that pro-
vide insights into the differences between package upgrades that break dataflow
and those that do not. This includes evaluating the structural design and ro-
bustness of the network, ensuring that each functional node and its connections
contribute to the overall integrity and efficiency of the system. Secondly, we ana-
lyze the modified GAT scores to obtain a normalized measure of the interaction
of vulnerabilities as nodes within the graph. The model provides an advanced
mechanism to measure the importance of nodes within a network, allowing for

Graph-Based Profiling of Dependency Vulnerability Remediation 9

a targeted strategy for classifying and assessing vulnerabilities and simplify-
ing the assessment of remediation effectiveness. The practical benefits of this
approach include prioritizing development efforts, improving software integrity,
formulating strategic planning initiatives, and deepening knowledge about soft-
ware architecture. This comprehensive strategy not only improves the immediate
security posture of software systems but also lays the foundation for long-term
sustainable software development and maintenance practices.

The results highlight the model’s ability to maintain system stability while
addressing vulnerabilities, underscoring its potential for broader application in
cybersecurity.

5.1 Graph analysis

It is crucial when analyzing the knowledge graph created with the data set to
measure the network and understand the meaning and relevance of the enti-
ties and relationships within it [5]. It is necessary to quantify the connectivity,
the paths and their strength through the centrality analysis of each objective
element.

Preliminary Graph Analysis

We are constructing a knowledge graph, denoted as G = (Ê, R̂, Ŝ), where Ê = V
signifies the entities or nodes. Our primary focus is on the callee-caller relation-
ship, considered as directional edges. This simplifies the triplet (R̂, Ŝ) = E into
the graph structure G = (V,E) [5], aligning with the GAT model [28].

This knowledge graph features a dynamic representation of functions, with
vertices n and directed edges m. Each edge e ∈ E is assigned a specific weight
w(e), reflecting the significance and connectivity strength between functions.
Paths within the graph are sequences of edges ⟨ui, ui+1⟩, where u0 = s and
ul = t denote the start and end vertices. The distance between two vertices s
and t, represented as d(s, t), is indicated by the shortest paths σst. We quantify
the number of shortest paths traversing a specific vertex v using σst(v), consistent
with Bader et al. [5].

Degree centrality: We are measuring the degree centrality of a vertex v,
denoted as deg(v), to quantify the extent of interactions a node has within its
neighborhood. This metric reflects the node’s importance based on the number
of caller-callee connections it maintains [5].

The Norm: By definition of the Euclidean norm of a vector used by
velivckovic et al [28] in GATs model, x ∈ Rn as: ∥x∥2 =

√∑n
i=1 x

2
i where

x = (x1, x2, . . . , xn) represents a vector in an n-dimensional real space, and xi

corresponds to the i-th element of the vector.
Closeness Centrality: Closeness centrality measures the degree of proxim-

ity of a node to all other nodes in the graph, based on distance. For any node n,
its closeness centrality is calculated as the average length of the shortest path
from n to every other node. A node with higher closeness centrality is more cen-
trally located in the network, indicating greater importance or influence within

10 Vera Buschmann, Pauliuchenka, Oh, Kao, DiValentin, Bader.

the network’s structure. This metric is determined by the inverse of the sum of
the shortest distances from the node to all other nodes [5, 18]:

CC(v) =
1∑

u∈V d(v, u)

In our implementation, this translates to assessing how interconnected a specific
function is relative to the rest of the functions within the code.

Betweenness Centrality: Betweenness centrality quantifies how often a
node appears on the shortest paths between other nodes, acting as a critical
bridge within the network [5]. In software systems, a function with high be-
tweenness centrality is pivotal in the flow of information or processes, signifi-
cantly influencing other functions. The pairwise dependency δst(v), representing
the fraction of shortest paths between nodes s and t passing through node v,
is defined as: δst(v) = σst(v)/σst This leads to the formulation of betweenness
centrality for a node v, where s, v, t ∈ V :

BC(v) =
∑

s̸=v ̸=t

δst(v)

Betweenness centrality reflects a node’s ability to control information or resource
flow by bridging the shortest paths between nodes. Nodes with high betweenness
centrality are essential for network connectivity, facilitating communication and
interactions by being part of numerous shortest paths connecting various node
pairs.

Connected components: Connected components are defined as subgraphs
where any two vertices are connected by paths, without external connections [10].
Our research defines a connected component as a set of nodes where each node
can access all other nodes within the same set. This concept is crucial for analyz-
ing network structures, detecting isolated clusters, and examining connectivity.
The study distinguishes between undirected graphs, where a connected com-
ponent comprises the largest set of interconnected nodes, and directed graphs,
which include strongly connected components defined by bidirectional paths be-
tween all pairs of nodes. Our approach leverages the concept of connected com-
ponents to gain insights into the network’s architecture. This analysis is pivotal
in identifying potential vulnerabilities or areas of improvement within the net-
work, particularly in cybersecurity and software engineering. By understanding
the formation and interaction of these components, we can devise more effective
strategies for network optimization and vulnerability mitigation.

Clustering Coefficient: The clustering coefficient for a node v, denoted as
Ci, assesses the likelihood of connectivity between two randomly chosen neigh-
bors of this node. This measure indicates the number of triangles in which the
i-th node participates, normalized by the maximum possible number of such
triangles. We compute the average clustering coefficient by averaging these in-
dividual values across all nodes in the graph:

Ci =
2ti

ki(ki − 1)
,

Graph-Based Profiling of Dependency Vulnerability Remediation 11

where ti is the number of triangles around node i, and ki is the degree of node i.
As this coefficient approaches 1, it suggests increasing completeness of the graph
with a predominant cohesive component. Higher coefficients indicate triadic clo-
sure, observed in denser graphs with prevalent triangular formations [22]. The
average clustering for a graph is calculated as:

C̄i =
1

n

n∑
i=1

Ci.

This metric provides an overall indication of the degree of clustering within
the network, reflecting how closely nodes tend to cluster together, thus offering
insights into the network’s structural density and connectivity patterns.

Degree Assortativity Coefficient: We measure the degree assortativity
coefficient to quantify the tendency of nodes in a network to connect with other
nodes of similar degree, providing insights into assortative or disassortative mix-
ing [17]. This metric determines whether high-degree nodes are more likely to
connect with other high-degree nodes or with low-degree nodes. The coefficient
ranges from −1 to 1, where values close to 1 indicate assortative mixing and
values close to −1 indicate disassortative mixing. A value around 0 indicates
no particular connectivity preference. The degree assortativity coefficient r is
defined as:

r =

∑
jk jk(ejk − qjqk)

σ2
q

,

where ejk is the fraction of edges connecting nodes of degree j and k, qj is the
distribution of the remaining degrees of nodes, and σ2

q is the variance of q. This
coefficient is crucial for understanding the structural tendencies of the network
and how nodes preferentially form connections based on their degrees.

Cyclomatic complexity Cyclomatic complexity serves as a quantitative
measure for evaluating the number of linearly independent paths within a code,
estimating the program’s complexity [6]. This metric is crucial for understanding
the intricacy and structural complexity of a program [23]. Adapting McCabe’s
definition [16], the cyclomatic complexity V (G) of a control flow graph G is
defined as: V (G) = E − N + 2P where E represents the number of edges, N
signifies the number of nodes, and P stands for the number of connected compo-
nents. This measure provides insight into potential paths and decision points in
a program’s structure, helping to understand software maintainability and areas
for refactoring. Cyclomatic complexity is thus a practical tool for guiding the
development and maintenance of robust and efficient software systems.

5.2 Dataset Results and Interpretation

This preliminary study analyzes three different Python and Java applications,
leveraging open source packages with control flow graphs of base versions, bro-
ken post-upgrade, and non-broken post-upgrade. CodeQL analysis flags critical
features, identifying changes that cause build failures. The goal is to understand

12 Vera Buschmann, Pauliuchenka, Oh, Kao, DiValentin, Bader.

how the structural and functional attributes of the functions in the graph af-
fect the probability of code breaking, especially due to modifications and new
features or patches to fix vulnerabilities.

CASE 1: (Table 1) We analyzed an application code base with 9626 func-
tions, identifying 27 as critical, where remediation upgrades caused code break-
age. Post-update, we observed an increase in the number of nodes and average
degree, while network density remained constant. The number of connected com-
ponents increased, and the degree assortativity coefficient remained negative and
constant. Notably, the degree assortativity coefficient for the Non-Broken Up-
grade was much lower than that for the Broken Upgrade, and closeness centrality
was higher for Non-Broken Upgrades.

Base Non Broken Upgrade Broken Upgrade
Number of unique functions 9621 9621 9621
nodes kind Unchanged Changed Unchanged Changed
Number of nodes 9621 9614 19 9613 23
Number of edges 15186 15178 19 15176 24
Average degree 3.1568 3.1575 2.0 3.1574 2.087
Density 0.0003281 0.0003285 0.1111 0.0003285 0.09486
Num. of connected components 327 327 2 327 2
Average clustering 0.06809 0.06815 0.0 0.06815 0.0
Degree assortativity coefficient -0.08515 -0.08519 -0.3996 -0.08521 -0.3464
Avg. betweenness centrality 0.00036 0.000361 1.63973 0.00036 2.13699
Avg. closeness centrality 0.15857 0.15864 0.11057 0.15871 0.0909
Cyclomatic Complexity 6219 6218 4 6217 5
Table 1: (Case1) Comparative analysis of code metrics from code base, non-
broken update and broken upgrade.

CASE 2: (Table 2) We analyzed an application code base with 19,569 func-
tions and 37,615 caller-recipient interactions, identifying 3 functions as critical in
their failed update, causing code breakage. Both upgrades significantly affected
the number of functions, although the total number of functions remained the
same. Cyclomatic complexity decreased after both upgrades, while the number
of connected components increased. The degree assortativity coefficient for the
Non-Broken Upgrade was lower than that for the Broken Upgrade, as was the
density of the changed nodes, while closeness centrality was higher for Non-
Broken Upgrades.

CASE 3: (Table 3) We analyzed an application code base with 15,908 func-
tions and 29,449 caller-recipient interactions, identifying 6 critical functions in
the upgrade. Post-upgrade, cyclomatic complexity decreased, and the number
of connected components increased. The degree assortativity coefficient for the
Non-Broken Upgrade was higher than that for the Broken Upgrade, while the
density of changed nodes remained lower and closeness centrality was higher for
Non-Broken Upgrades.

Graph-Based Profiling of Dependency Vulnerability Remediation 13

Base Non Broken Upgrade Broken Upgrade
Number of unique functions 19569 19569 19569
nodes kind Unchanged Changed Unchanged Changed
Number of nodes 19569 17635 2629 17255 3338
Number of edges 37615 33180 4586 32234 5850
Average degree 3.8443 3.7630 3.4888 3.7362 3.5051
Density 0.00019646 0.00021339 0.00132754 0.00021654 0.00105037
Number of connected components 440 426 80 429 97
Average clustering 0.05552 0.05505 0.04415 0.05467 0.04482
Degree assortativity coefficient -0.07772 -0.08047 -0.12601 -0.07853 -0.12377
Avg. betweenness centrality 0.00018 0.00019 0.000124 0.00019 0.00012
Avg. closeness centrality 0.17790 0.17686 0.18617 0.18716 0.17640
Cyclomatic Complexity 18926 16397 2117 15837 2706
Table 2: (CASE 2) Comparative analysis of code metrics from code base, non-
broken upgrade and broken upgrade.

Base Non Broken Upgrade Broken Upgrade
Number of unique functions 15908 15908 15908
nodes kind Unchanged Changed Unchanged Changed
Number of nodes 15908 15553 603 15127 1015
Number of edges 29449 28616 912 27695 1816
Average degree 3.7024 3.6798 3.0249 3.6617 3.5783
Density 0.00023275 0.00023661 0.00502471 0.00024208 0.00352892
Number of connected components 337 341 19 335 28
Average clustering 0.05004 0.04834 0.06402 0.04688 0.05890
Degree assortativity coefficient -0.10958 -0.11123 -0.10286 -0.11203 -0.13705
Avg. betweenness centrality 0.00022 0.00022 0.00018 0.00022 0.00022
Avg. closeness centrality 0.18028 0.18032 0.17876 0.18049 0.17684
Cyclomatic Complexity 14215 13745 347 13238 857
Table 3: (CASE 3) Comparative analysis of code metrics from code base, non-
broken update and broken upgrade

Statistical Differences between Base and Subgraphs: Given the con-
sistent differences in closeness centrality across the three cases, we further ex-
plored these variations. Conducting a package upgrade generates two subgraphs
of the control flow graph: functions affected by the upgrade and those not af-
fected. We hypothesize that the subgraphs resulting from broken package up-
grades are statistically different from randomly drawn subgraphs due to higher
concentrations of vulnerabilities. This hypothesis is based on the premise that
vulnerabilities are likely to disrupt the normal connectivity patterns, which can
be captured through centrality metrics.

To test this hypothesis, we used the closeness centrality values for each node
and applied T-tests and Kolmogorov-Smirnov (K-S) tests to evaluate the dif-
ferences in means and distributions between the subgraphs. The T-test assesses
whether the average closeness centrality of nodes in the affected subgraph differs
significantly from the baseline, while the K-S test compares the overall distri-
butions to identify broader variations in connectivity patterns. These statistical

14 Vera Buschmann, Pauliuchenka, Oh, Kao, DiValentin, Bader.

methods are appropriate because they provide a robust framework for detect-
ing changes in node centrality, which is crucial for understanding the impact of
upgrades on the network structure.

For Broken Case 1, we observed a T-statistic of -4.881 (p-value = 0.0012) and
a K-S statistic of 0.6916 (p-value = 8.16e-05), indicating significant deviations
in closeness centrality between changed nodes and all nodes. In contrast, Broken
Case 2 had a T-statistic of 8.399 (p-value = 6.47e-17) and a K-S statistic of 0.1161
(p-value = 1.38e-27), suggesting less variation but still significant differences.
Broken Case 3 showed significant differences with a K-S statistic of 0.2176 (p-
value = 9.81e-34) and a T-statistic of -2.349 (p-value = 0.019). These results
validate the hypothesis by confirming that the mean values and distributions
of closeness centrality are statistically different between the subgraphs resulting
from upgrades that break functionality and the base repositories.

The results from the three cases analyzed here exhibit a trend where cyclo-
matic complexity tends to keep or decrease as upgrades are made to package.
This observation suggests a relationship between the resolution of vulnerabili-
ties and the simplification of code structure that may justify further exploration.
This ongoing analysis is crucial for understanding the dynamic nature of package
vulnerabilities and their impact on overall code complexity.

Modified GAT Results The next step of the analysis attempts to analyze
the interconnectedness of the critical functions causing the package upgrades to
fail. When we apply the modified GAT model Fig. 2, the scores obtained. It is
necessary to see each case as a specific case. For this, an average GAT score was
obtained for each case. Having a high GAT score above average indicates that
the vulnerabilities are more critical and necessary since the network depends
more on them.

Case 1 Case 2 Case 3
NC 27 3 6
MSC 0.5295 0.3662 0.5045
mSC 0.2461 0.1254 0.1260
ASC 0.4359 0.2185 0.3228
AGS 0.4287 0.3785 0.3153

Fig. 2: NC: number of Critical Function, MSFC:Max Score Critical, mSFC:Min
Score Critical, ASC:Avr Score Critical, and AG:Avr Gat Score for all nodes(Red
line)

Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor
Embedding (t-SNE) [28] are dimensionality reduction techniques applied along-
side GATs to enhance visualization and interpretability as we do in the Case 2
Fig.5. While PCA projects data into a lower-dimensional space preserving vari-

Graph-Based Profiling of Dependency Vulnerability Remediation 15

ance, t-SNE focuses on maintaining local relationships, making it particularly
useful for visualizing high-dimensional data generated by GATs in a way that
highlights patterns and relationships within the graph structure.

The enhanced GAT Score significantly improves our ability to discern the
connectivity and importance of critical functions within a system’s context. By
employing a normalized approach, where scores closer to 1 denote higher impor-
tance, we gain nuanced insights into specific vulnerabilities. This is exemplified
in CASE 1, where the average GAT score for the entire graph is 0.4287, with
most of the 27 critical functions scoring above this value (see Fig. 2). In CASE
2, the GAT scores for all critical functions are below the average, with a max-
imum critical function score of 0.3662, while the average score for the entire
graph is 0.3785, indicating lower criticality. These scores integrate a weighted
combination of degree, norm, and centrality metrics, rather than relying solely
on connectivity. This holistic approach allows us to identify functions that, de-
spite having lower connectivity, hold substantial significance within the network’s
overall architecture. Such insights underscore the complexity of network dynam-
ics and the crucial role of advanced analytical tools in unveiling the intricate
interplay of functions within a software system.

Fig. 3: Closeness Centrality Histogram, y-axes counts and x-axes Closeness Cen-
trality. Cases 1, 2, 3, and 4 with their respective base code, broken upgrade,
and non-broken upgrade as applicable. Light blue indicates the centrality of all
nodes, light red represents unchanged nodes, and green denotes changed nodes.

16 Vera Buschmann, Pauliuchenka, Oh, Kao, DiValentin, Bader.

Fig. 4: Normalized cases of clustering coefficient histogram. Blue: All nodes, Red:
Changed nodes, Green: Non changed nodes.

Fig. 5: Visualization of communities for Case 2, using t-SNE and PCA applied
to a modified Graph Attention Network (GAT) as usually worked in GAT data
analysis,The red dot is the representation of the vulnerability in their respective
spaces. The third figure is a graphical representation of the communities within
the graph, each distinguished by a unique color.

6 Discussion

The results of our extensive analysis of several code bases reveal an intricate
dynamic between package vulnerabilities and the complexity of the code. This
study contributes to the current discourse in package development by highlight-
ing the nuanced relationship between the vulnerabilities after the publication
and evolution of the code.This requires not only immediate code updates, but
also a deeper understanding of the underlying dynamics of these vulnerabilities.

Our analysis of CASES 1, 2, and 3 reveals several key insights into the impact
of vulnerability resolution on code structure. We observed a trend of decreased or
consistent cyclomatic complexity when comparing base cases with broken and
intact vulnerability resolutions, indicating that addressing vulnerabilities sim-
plifies the code structure and aligns with best practices for maintainable and
less error-prone packages. However, managing the complexity of package vul-
nerabilities remains challenging. Notably, the number of connected components
increased from the base case to the non-broken update, suggesting that reme-
diation efforts improve connectivity and robustness. Despite this, even minor
vulnerabilities can affect the entire application, highlighting the need for a com-
prehensive approach to understanding and mitigating the impacts of package
updates. This complexity is further underscored by cross-centrality graphs (3,
4), which show significant variations in node centrality, emphasizing the critical
importance of detailed graph-based analyses for managing software vulnerabili-
ties.

Graph-Based Profiling of Dependency Vulnerability Remediation 17

In addition, our analysis sheds light on the connectivity patterns of the func-
tion within the code bases. The coefficient of negative degree supply consistently
observed in multiple studies indicates that the code functions tend to connect
with a diverse variety of other functions, instead of predominantly linked to sim-
ilar functionalities. This diversity in connectivity patterns has deep implications
to understand how vulnerabilities could spread through a code base and affect
their general integrity.

This ambiguity highlights a critical gap in current understanding and requires
more research. It emphasizes the importance of a strategic approach to code
updates, where essential functionalities such as configuration are refined and
maintained, instead of being completely eliminated.

The significance of the modified GAT score is underscored by our observations
of the wide dispersion of nodes and low density within the analyzed graphs. This
dispersion requires a nuanced approach to understanding the role of each node,
focusing on both its connections and the paths traversing through it. The modi-
fied GAT model provides a normalized view of how interconnected a function is
concerning its degree, norm, and closeness centrality metrics. This comprehen-
sive perspective is crucial for effective vulnerability management and software
maintenance, highlighting critical nodes that warrant prioritized attention. By
integrating GAT score insights with node propagation and density observations,
stakeholders are equipped with a powerful tool to identify and address significant
vulnerabilities, optimizing resource allocation and enhancing software security
and reliability. This blend of quantitative measures and attention-based analysis
represents a significant advancement in strategically mitigating vulnerabilities
and strengthening software infrastructure.

Our study underscores the dynamic nature of package vulnerabilities and
their impact on code complexity, emphasizing the need for continuous vigilance
and strategic intervention throughout the package development lifecycle. By hy-
pothesizing that broken package upgrade subgraphs differ statistically from ran-
domly drawn subgraphs due to higher vulnerability concentrations, we validated
our approach using closeness centrality values for each node and comparative
T-tests and Kolmogorov-Smirnov tests, confirming the reliability of our vulner-
ability assessments. To illustrate the versatility and effectiveness of our graph-
based methodology, we analyzed three real-world applications: a Python-based
data processing package, a Java-based web application, and a mixed-language
analytics tool. This comprehensive analysis demonstrates the applicability of our
methods across different programming environments, highlighting critical func-
tions within each application that contribute to increased vulnerability risks. By
integrating insights from our modified Graph Attention Network (GAT) with
node propagation and density observations, we offer valuable strategic planning
for vulnerability mitigation, ultimately enhancing software security and reliabil-
ity across diverse software ecosystems.

18 Vera Buschmann, Pauliuchenka, Oh, Kao, DiValentin, Bader.

7 Conclusion

This paper embarks on a comprehensive exploration, leveraging the intricate ca-
pabilities of knowledge graphs to delve into the dynamics of opensource package
function networks. Central to our investigation is the identification and analy-
sis of vulnerable functions, where we scrutinize their interactions and assess the
impact of their mitigation on the codebase. Our research reveals a notable in-
sight: targeted remediation of specific vulnerabilities tends to preserve the overall
network’s connectivity, underscoring the package structure’s inherent resilience.

During our analysis, we noted a pattern of decreasing vulnerabilities following
successive package updates, prompting a pivotal inquiry: are these vulnerabili-
ties conclusively resolved, or do they subtly embed themselves into subsequent
features? This ambiguity signals a compelling need for further work into the
lifecycle of vulnerabilities within package development, promising to enrich the
discourse in this field significantly.

At the heart of our methodology is the odified Graph Attention Network
(GAT), especially its attention mechanism. Through the integration of node-
centric metrics—such as degree centrality, norm, and closeness centrality—our
approach refines the network’s ability to discern detailed aspects of the graph’s
architecture and the nuances of node characteristics. This methodological ad-
vancement facilitates a nuanced portrayal of the network, yielding a comprehen-
sive understanding of node interrelations and their significance.

Furthermore, our investigation brings to light the existence of latent vul-
nerabilities within the most critical segments of the code, initially perceived as
flawless. These covert vulnerabilities represent significant security risks, with the
potential to compromise vital components, including databases and core func-
tionalities. To address these issues, we advocate for an in-depth and ongoing
code analysis from its inception. Utilizing knowledge graphs as both historical
and dynamic monitoring tools enables proactive surveillance of vulnerabilities.

For future works, our research direction will focus on methodological im-
provements, particularly in dissecting the interconnectivity between functions.
The number of case analyzed was small with significant complexity, necessitat-
ing additional application repositories for comprehensive analysis to draw more
robust conclusions. By evaluating various aspects such as variable types, execu-
tion times, and functional dependencies, we aim to unravel the importance of
specific functions within the network. This comprehensive strategy is designed
to offer deeper insights into the structural integrity and vulnerabilities of soft-
ware systems, thereby making a substantial contribution to enhancing package
security and dependability. Our endeavors are geared towards the development
of robust software systems capable of navigating the complexities of contempo-
rary cyber threats, marking a significant stride forward in the realm of package
vulnerability analysis and cybersecurity.

Acknowledgment

This research was supported in part by NSF grant CCF-2109988.

Graph-Based Profiling of Dependency Vulnerability Remediation 19

References

1. Manar Alanazi, Abdun Mahmood, and Mohammad Jabed Morshed Chowdhury.
SCADA vulnerabilities and attacks: A review of the state-of-the-art and open is-
sues. Computers & Security, page 103028, 2022.

2. Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. Empirical analysis
of security vulnerabilities in Python packages. Empirical Software Engineering,
28(3):59, 2023.

3. Raghavendra Rao Althar, Debabrata Samanta, Manjit Kaur, Dilbag Singh, and
Heung-No Lee. Automated risk management based software security vulnerabilities
management. IEEE Access, 10:90597–90608, 2022.

4. Ashwin Arulselvan, Clayton W Commander, Lily Elefteriadou, and Panos M
Pardalos. Detecting critical nodes in sparse graphs. Computers & Operations
Research, 36(7):2193–2200, 2009.

5. David A. Bader and Kamesh Madduri. Parallel algorithms for evaluating central-
ity indices in real-world networks. In 2006 International Conference on Parallel
Processing (ICPP’06), pages 539–550, 2006.

6. Christof Ebert, James Cain, Giuliano Antoniol, Steve Counsell, and Phillip La-
plante. Cyclomatic complexity. IEEE Software, 33(6):27–29, 2016.

7. Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. A C/C++ code vul-
nerability dataset with code changes and CVE summaries. In Proceedings of the
17th International Conference on Mining Software Repositories, MSR ’20, page
508–512, New York, NY, USA, 2020. Association for Computing Machinery.

8. Görkem Giray. A software engineering perspective on engineering machine learn-
ing systems: State of the art and challenges. Journal of Systems and Software,
180:111031, 2021.

9. Katerina Goseva-Popstojanova and Andrei Perhinschi. On the capability of static
code analysis to detect security vulnerabilities. Information and Software Technol-
ogy, 68:18–33, 2015.

10. Lifeng He, Xiwei Ren, Qihang Gao, Xiao Zhao, Bin Yao, and Yuyan Chao. The
connected-component labeling problem: A review of state-of-the-art algorithms.
Pattern Recognition, 70:25–43, 2017.

11. Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia D’Amato, Gerard De Melo,
Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Se-
bastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid,
Anisa Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, and Antoine Zim-
mermann. Knowledge Graphs. ACM Computing Surveys, 54(4):1–37, Jul 2021.

12. Nasif Imtiaz, Seaver Thorn, and Laurie Williams. A comparative study of vul-
nerability reporting by software composition analysis tools. In Proceedings of the
15th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), pages 1–11, 2021.

13. Yan Jia, Yulu Qi, Huaijun Shang, Rong Jiang, and Aiping Li. A practical approach
to constructing a Knowledge Graph for cybersecurity. Engineering, 4(1):53–60,
2018.

14. Kai Liu, Fei Wang, Zhaoyun Ding, Sheng Liang, Zhengfei Yu, and Yun Zhou. Re-
cent progress of using Knowledge Graph for cybersecurity. Electronics, 11(15):2287,
2022.

15. Kai Liu, Fei Wang, Zhaoyun Ding, Sheng Liang, Zhengfei Yu, and Yun Zhou. A
review of Knowledge Graph application scenarios in cybersecurity. arXiv preprint
arXiv:2204.04769, 2022.

20 Vera Buschmann, Pauliuchenka, Oh, Kao, DiValentin, Bader.

16. Thomas J McCabe. A complexity measure. IEEE Transactions on Software En-
gineering, (4):308–320, 1976.

17. Mark EJ Newman. Mixing patterns in networks. Physical review E, 67(2):026126,
2003.

18. UJ Nieminen. On the centrality in a directed graph. Social Science Research,
2(4):371–378, 1973.

19. Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, and Christos Faloutsos.
Estimating node importance in Knowledge Graphs using Graph Neural Networks.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery Data Mining, pages 596–606, 2019.

20. Edward L Platt. Network Science with Python and NetworkX Quick Start Guide:
Explore and Visualize Network Data Effectively. Packt Publishing Ltd, 2019.

21. Oliver Alvarado Rodriguez, Zhihui Du, Joseph Patchett, Fuhuan Li, and David A
Bader. Arachne: An Arkouda package for large-scale graph analytics. In 2022 IEEE
High Performance Extreme Computing Conference (HPEC), pages 1–7. IEEE,
2022.

22. Jari Saramäki, Mikko Kivelä, Jukka-Pekka Onnela, Kimmo Kaski, and Janos
Kertesz. Generalizations of the clustering coefficient to weighted complex net-
works. Physical Review E, 75(2):027105, 2007.

23. Mir Muhammad Suleman Sarwar, Sara Shahzad, and Ibrar Ahmad. Cyclomatic
complexity: The nesting problem. In Eighth International Conference on Digital
Information Management (ICDIM 2013), pages 274–279. IEEE, 2013.

24. Leslie F Sikos. Cybersecurity Knowledge Graphs. Knowledge and Information
Systems, pages 1–21, 2023.

25. Sherri Sparks, Shawn Embleton, Ryan Cunningham, and Cliff Zou. Automated
vulnerability analysis: Leveraging control flow for evolutionary input crafting. In
Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007),
pages 477–486. IEEE, 2007.

26. Tamás Szabó. Incrementalizing production CodeQL analyses. arXiv preprint
arXiv:2308.09660, 2023.

27. Ángel Jesús Varela-Vaca, Diana Borrego, María Teresa Gómez-López, Rafael M
Gasca, and A German Márquez. Feature models to boost the vulnerability man-
agement process. Journal of Systems and Software, 195:111541, 2023.

28. Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. Graph Attention Networks. arXiv preprint
arXiv:1710.10903, 2017.

29. Boming Xia, Tingting Bi, Zhenchang Xing, Qinghua Lu, and Liming Zhu. An
empirical study on software bill of materials: Where we stand and the road ahead.
arXiv preprint arXiv:2301.05362, 2023.

30. Feng Xia, Xin Chen, Shuo Yu, Mingliang Hou, Mujie Liu, and Linlin You. Coupled
attention networks for multivariate time series anomaly detection. IEEE Transac-
tions on Emerging Topics in Computing, 2023.

31. Zhihao Yan and Jingju Liu. A review on application of Knowledge Graph in
cybersecurity. In 2020 International Signal Processing, Communications and En-
gineering Management Conference (ISPCEM), pages 240–243. IEEE, 2020.

32. Kailong Zhu, Yuliang Lu, Hui Huang, Lu Yu, and Jiazhen Zhao. Constructing more
complete control flow graphs utilizing directed gray-box fuzzing. Applied Sciences,
11(3):1351, 2021.

33. Afra Zomorodian. Computational topology. Algorithms and Theory of Computa-
tion Handbook, 2(3), 2009.

	Graph-Based Profiling of Dependency Vulnerability Remediation

