
DR. DAVID F. RICO, PMP, CSEP, EBAS, BAF, FCP, FCT, ACP, CSM, SAFE, DEVOPS, AWS
Website: http://davidfrico.com ● LinkedIn: http://linkedin.com/in/davidfrico ● Twitter: @dr_david_f_rico

Agile Cost of Quality: http://www.davidfrico.com/agile-vs-trad-coq.pdf
DevOps Return on Investment (ROI): http://davidfrico.com/rico-devops-roi.pdf

Dave’s NEW Business Agility Video: http://www.youtube.com/watch?v=hTvtsAkL8xU
Dave’s NEWER Scaled Agile Framework SAFe 4.5 Video: http://youtu.be/1TAuCRq5a34

Dave’s NEWEST Development Operations Security Video: http://youtu.be/OBAdu4_t2EU
Dave’s BRAND-NEW ROI of Lean Thinking Principles Video: http://youtu.be/wkMfaPAxO6E

Dave’s REALLY-NEW ROI of Evolutionary Design Principles Video: http://youtu.be/TcXI26ClRb0
Dave’s EXTREMELY-NEW ROI of Organizational Agility Principles Video: http://youtu.be/HOzDM5krtes

DoD Fighter Jets versus Amazon Web Services: http://davidfrico.com/dod-agile-principles.pdf
Principles of Collaborative Contracts: http://davidfrico.com/collaborative-contract-principles.pdf

Principles of Lean Organizational Leadership: http://davidfrico.com/lean-leadership-principles.pdf
Principles of Evolutionary Architecture: http://davidfrico.com/evolutionary-architecture-principles.pdf
Principles of CI, CD, & DevOps - Development Operations: http://davidfrico.com/devops-principles.pdf
Principles of SAFe Transformations - Scaled Agile Framework: http://davidfrico.com/safe-principles.pdf

Principles of Maximizing SAFe ROI - Scaled Agile Framework: http://davidfrico.com/safe-roi-principles.pdf
Principles of Lean-Agile - Contract Statements of Work (SOW): http://davidfrico.com/agile-sow-principles.pdf

Principles of Department of Defense (DoD) – Cloud Computing: http://davidfrico.com/dod-cloud-principles.pdf
Economic Value of Agile Businesses, Enterprises & Organizations - http://davidfrico.com/value-of-business-agility.pdf

Business Value of
CI, CD, & DevSecOps

Scaling Up to Billion User Global SoS Using
Containerized Cloud-based Microservices

Author Background
 Management consultant 39+ years of IT experience
 B.S. Comp. Sci., M.S. Soft. Eng., & D.M. Info. Sys.
 Large IT projects in U.S., Far/Mid-East, & Europe

2



 Career IT project management, systems and software engineering PROCESS strategist.
 Supported numerous billion-dollar enterprise digital transformation initiatives for 35+ years.
 Clients multi-billion government agencies, Fortune 500 conglomerates, and international IT firms.
 Included NASA's Space Station, Japanese Firms, Navy Fighters, NRO Satellites, and Intel Clouds, etc.
 Supported Digital Transformations at leading energy, healthcare, financial, and DoD enterprises and firms.
 Supported virtual casefile systems, data warehouses, data lakes, cloud migrations, and enterprise architectures.
 Specialized in Lean, Agile, Scrum, Scaled Agile Framework (SAFe), CI, CD, DevOps, DevSecOps, and Cloud Computing.
 Quickstart SAFe rollouts for critical portfolios, solutions, programs, projects, and new product development initiatives.
 Provides one-on-one and small group coaching services for C-levels, directors, managers, tech leaders, and developers.
 Skills include Lean, Agile, Scrum, SAFe, DevSecOps, Agile assessments, metrics, toolsets, dashboards, and case studies.
 Public speaker, author, blogger, trainer and holds over 15 professional certifications including SAFe SPC 5.0 and AWS CCP.
 Supported HHS, CMS, IRS, Exelon, ODNI IC-CIO, Intel, DoD, DoJ, USPS, NASA, DARPA, DISA, U.S. Air Force, Army, and Navy.

3

Internet of Things—Dinosaur Killer

IoT is an Extinction Level Event
• 25-50B Devices on IOT
• 5-10B Internet Hosts
• 4-8B Mobile Phones
• 2-3B End User Sys
• Mass Business Failure

 Dev-Ops (dĕv′ŏps) Early, iterative, & automated combo
of development & operations; Incremental deployment
 An approach embracing principles & values of lean

thinking, product development flow, & agile methods
 Early, collaborative, and automated form of incremental

development, integration, system, & operational testing
 Design method that supports collaboration, teamwork,

iterative development, & responding to change
 Multi-tiered automated framework for TDD, Continuous

Integration, Continuous Delivery, DevOps, & AppSec
 Maximizes BUSINESS VALUE of organizations, portfolios,

& projects by enabling buyers-suppliers to scale globally

4


Crispin, L., & Gregory, J. (2009). Agile testing: A practical guide for testers and agile teams. Boston, MA: Addison-Wesley.
Crispin, L., & Gregory, J. (2015). More agile testing: Learning journeys for the whole team. Boston, MA: Addison-Wesley.

DevSecOps—What is it?

Network
Computer

Operating System
Middleware
Applications

APIs
GUI

 Requirements are implemented in slices vs. layers
 User needs with higher business value are done first
 Reduces cost & risk while increasing business success

5Shore, J. (2011). Evolutionary design illustrated. Norwegian Developers Conference, Oslo, Norway.

Agile Traditional
1 2 3• Faster

• Early ROI

• Lower Costs

• Fewer Defects

• Manageable Risk

• Better Performance

• Smaller Attack Surface

Late •

No Value •

Cost Overruns •

Very Poor Quality •

Uncontrollable Risk •

Slowest Performance •

More Security Incidents •
Seven Wastes
1. Rework
2. Motion
3. Waiting
4. Inventory
5. Transportation
6. Overprocessing
7. Overproduction

MINIMIZES MAXIMIZES

• JIT, Just-enough architecture
• Early, in-process system V&V
• Fast continuous improvement
• Scalable to systems of systems
• Maximizes successful outcomes

• Myth of perfect architecture
• Late big-bang integration tests
• Year long improvement cycles
• Breaks down on large projects
• Undermines business success



DevSecOps—How it works?




 




6

Traditional vs. Agile Cumulative Flow

W
or

k
(S

to
ry

, P
oi

nt
, T

as
k)

or
 E

ff
or

t
(W

ee
k,

 D
ay

, H
ou

r)

Time Unit (Roadmap, Release, Iteration, Month, Week, Day, Hour, etc.)

W
or

k
(S

to
ry

, P
oi

nt
, T

as
k)

or
 E

ff
or

t
(W

ee
k,

 D
ay

, H
ou

r)

Time Unit (Roadmap, Release, Iteration, Month, Week, Day, Hour, etc.)

TRADITIONAL Cumulative Flow

 Late big bang integration increases WIP backlog
 Agile testing early and often reduces WIP backlog
 Improves workflow and reduces WIP & lead times

Anderson, D. J. (2004). Agile management for software engineering. Upper Saddle River, NJ: Pearson Education.
Anderson, D. J. (2010). Kanban: Successful evolutionary change for your technology business. Sequim, WA: Blue Hole Press.



DevSecOps—Workflow Results

 

DEVSECOPS Cumulative Flow

7

 Methods to “scope” project, product, or system
 “Key” is smallest possible scope with highest value
 Reduces cost, risk, time, failure, & tech. obsolescence

INCREASES TESTABILITY, QUALITY, RELIABILITY, SECURITY, MORALE, MAINTAINABILITY, & SUCCESS

Denne, M., & Cleland-Huang, J. (2004). Software by numbers: Low-risk, high-return development. Santa Clara, CA: Sun Microsystems.
Ries, E. (2011). The lean startup: How today's entrepreneurs use continuous innovation. New York, NY: Crown Publishing.
Patton, J. (2014). User story mapping: Discover the whole story, build the right product. Sebastopol, CA: O'Reilly Media.
Layton, M. C., & Maurer, R. (2011). Agile project management for dummies. Hoboken, NJ: Wiley Publishing.
Krause, L. (2014). Microservices: Patterns and applications. Paris, France: Lucas Krause.


MINIMUM

MARKETABLE FEATURE
- MMF -

Advantage
Difference
Revenue
Profit
Savings
Brand
Loyalty

MINIMUM
VIABLE PRODUCT

- MVP -
Goal
Process
Features
Priorities
Story Map
Architecture

STORY MAP
OR IMPACT MAP

- SM or IM -
Goal
Actors
 Impacts
Deliverables
Measures
Milestones

VISION
STATEMENT

- VS -
For <customer>
Who <needs it>
The <product>
 Is a <benefit>
That <customer>
Unlike <other>
Ours <different>

MICRO-
SERVICE
- MS -

Purpose
Automated
Unique
 Independent
Resilient
Ecosystem
Consumer

DevSecOps—MMF, MVP, MVA, etc.





8



 Lightweight, fast, disposable virtual environments
 Set of isolated processes running on shared kernel
 Efficient way for building, delivering, & running apps

Monolithic Applications Just-Enough Applications Containerized Apps

Minimal - Typically single process entities
Declarative - Built from layered Docker images
Immutable - Do exactly same thing from run to kill

• Small autonomous services that work together
• Self-contained process that provides a unique capability

• Loosely coupled service oriented architecture with bounded contexts
• Small independent processes communicating with each other using language-agnostic APIs

• Fined-grained independent services running in their own processes that are developed and deployed independently
• Suite of services running in their own process, exposing APIs, and doing one thing well (independently developed and deployable)

• Single app as a suite of small services, each running in its own process and communicating with lightweight mechanisms (HTTP APIs)

Krause, L. (2014). Microservices: Patterns and applications. Paris, France: Lucas Krause.

DevSecOps—Microservices







 

OS’s Have
UNREPORTED

30-50 CVEs



9Rix, M. (2019). Conquering the monolith: Architecting for DevOps and release on demand. SAFe Summit Europe, Hague, Netherlands.
Newman, S. (2019). Monolith to microservices: Evolutionary patterns to transform your monolith. Sebastopol, CA: O'Reilly.

DevSecOps—Monolith to µServices
DOMAIN DRIVEN DESIGN

 Aligned to Business
 Better Organized
 Shared Libraries
 Fewer Dependencies
 Portable/Changeable
 Faster Testing
 Enables Scaled Agile Teams

SERVICE-BASED ARCHITECTURE

 Separately Deployable Systems
 Shared Database per System
 Decoupled Business Systems
 Fewer Defects/Breaking Bugs
More Development Options
More Infrastructure Options
 Enables Small Agile Teams

MICROSERVICE ARCHITECTURE

 Decoupled Business Functions
 Local Database per Service
 Separately Deployable Services
 CI, CD, and Fast Deployments
 Release on Demand/Fast Recovery
 Container Ready and Cloud Ready
 Enables Tiny Two-Pizza Teams

• Reverse Conway's Law
• Use Strangler Application Pattern

• Test Within Domains (vs. Across Domains)
• Avoid Canonical and Master Data Definitions

• Not All Monoliths Are Evil (However, Most Are)
• Plan to Re-Architect in Five Years (Moore's Law)

• Lean-Agile practices rarely scale to high-risk solutions



10Podjarny, G. (2021). Cloud native application security: Embracing developer-first security for the cloud era. Sebastopol, CA: O'Reilly.

DevSecOps—Cloud Native µServices



 Cloud native microservices have security concerns
 Developers must first concentrate on code appsec
 Then focus on middleware, VMs, & network sec

11


TDD

- 2003 -
CI

- 2006 -
BDD

- 2008 -
CD

- 2011 -
DEVOPS
- 2012 -

DEVSECOPS
- 2014 -

•User Story

•Acc Criteria

•Dev Unit Test

•Run Unit Test

•Write SW Unit

•Re-Run Unit Test

•Refactor Unit

•Building

•Database

• Inspections

•Testing

• Feedback

•Documentation

•Deployment

•Analyze Feature

•Acc Criteria

•Dev Feat. Test

•Run Feat. Test

•Develop Feature

•Re-Run Feature

•Refactor Feat.

•Packaging

•Acceptance

• Load Test

•Performance

•Pre-Production

•Certification

•Deployment

•Sys Admin

•Config. Mgt.

•Host Builds

•Virtualization

•Containerization

•Deployment

•Monitor & Supp

•Sec. Engineer.

•Sec. Containers

•Sec. Evaluation

•Sec. Deploy.

•Runtime Prot.

•Sec. Monitoring

•Response Mgt.

Beck, K. (2003). Test-driven development: By example. Boston, MA: Addison-Wesley.
Duvall, P., Matyas, S., & Glover, A. (2006). Continuous integration. Boston, MA: Addison-Wesley.
Barker, K., & Humphries, C. (2008). Foundations of rspec: Behavior driven development with ruby and rails. New York, NY: Apress.
Humble, J., & Farley, D. (2011). Continuous delivery. Boston, MA: Pearson Education.
Huttermann, M. (2012). Devops for developers: Integrate development and operations the agile way. New York, NY: Apress.
Bird, J. (2016). Devopssec: Delivering secure software through continuous delivery. Sebastopol, CA: O'Reilly Media.

 Numerous models of lean-agile testing emerging
 Based on principles of lean & agile one piece flow
 Include software, hardware, system, & port. testing

DevSecOps—Evolution

STAGE 1—Test Driven Development
 Term coined by Kent Beck in 2003
 Consists of writing all tests before design
 Ensures all components are verified and validated

12Beck, K. (2003). Test-driven development: By example. Boston, MA: Addison-Wesley.





 Agile TDD consists of seven broad practices
 Document test criteria, tests, software units, etc.
 Include refactoring, verification, optimization, etc.

13

Practice
User Story

Acc Criteria

Dev Test

Run Test

Dev Unit

Rerun Test

Refactor Unit

Description
Read story, analyze meaning, ask questions, and clarify understanding

Identify, verify, and document acceptance criteria for each user story

Design, develop, code, and verify automated unit test for user story

Run automated unit test to verify that it fails the first time (sanity check)

Design, develop, code, and verify the software unit to satisfy user story

Rerun automated unit test to see if code satisfies automated unit test

Refine, reduce, and simplify code to remove waste and optimize performance

STAGE 1—Test Driven Develop.



Beck, K. (2003). Test-driven development: By example. Boston, MA: Addison-Wesley.

STAGE 2—Behavior Driven Develop.
 Term coined by Dan North in 2006
 Consists of writing feature tests before design
 Ensures all system features are verified and validated

14Smart, J. F. (2014). BDD in action: Behavior-driven development for the whole software lifecycle. Shelter Island, NY: Manning Publications.





 Agile BDD consists of seven broad practices
 Document test criteria, tests, syst. features, etc.
 Include refactoring, verification, optimization, etc.

15

Practice
Feature

Acc Criteria

Dev Test

Run Test

Dev Feature

Rerun Test

Refac Feature

Description
Read feature, analyze meaning, ask questions, and clarify understanding

Identify, verify, and document acceptance criteria for each feature

Design, develop, code, and verify automated feature test for feature

Run automated feature test to verify that it fails the first time (sanity check)

Design, develop, code, and verify the feature software to satisfy feature

Rerun automated feature test to see if code satisfies automated feature test

Refine, reduce, and simplify code to remove waste and optimize performance

STAGE 2—Behavior Driven Dev.



Smart, J. F. (2014). BDD in action: Behavior-driven development for the whole software lifecycle. Shelter Island, NY: Manning Publications.

 Term coined by Martin Fowler circa 1998
 User needs designed & developed one-at-a-time
 Changes automatically detected, built, & fully-tested

16Humble, J., & Farley, D. (2011). Continuous delivery. Boston, MA: Pearson Education.
Duvall, P., Matyas, S., & Glover, A. (2006). Continuous integration. Boston, MA: Addison-Wesley.



STAGE 3—Continuous Integration

Thousands of Tests
Continuously Executed

No More Late Big
Bang Integration

Build
Integration

Server

Version
Control
Server

Build
Scripts

UsesWatches

Build
Status

ProvidesDeveloper A

Developer B

Developer C

Commits
Changes

Commits
Changes

Commits
Changes

Builds
Database
Analysis
Testing
Reporting
Documentation
Deployment

Early, Automated, Fast,
Efficient, & Repeatable

Constant Readiness
State & CM Control

Lean, Waste Free, Low WIP,
No Deadlocked Test Queues

Rapidly & Successfully
Dev. Complex Systems

  

  

  
 ALL DEVELOPERS RUN PRIVATE BUILDS

 DEVELOPERS COMMIT CODE TO VERSION CONTROL

 INTEGRATION BUILDS OCCUR SEVERAL TIMES PER DAY

 100% OF SYSTEM TESTS MUST PASS FOR EVERY BUILD

 A SHIPPABLE PRODUCT RESULTS FROM EVERY BUILD

 FIXING BROKEN BUILDS IS OF THE HIGHEST PRIORITY

 REPORTS AUTOMATICALLY GENERATED & REVIEWED

 Agile CI consists of seven broad practices
 Automated build, database, inspection, tests, etc.
 Include reporting, documentation, deployment, etc.

17

Practice
Building

Database

Inspections

Testing

Feedback

Documentation

Deployment

Description
Frequently assembling products and services to ensure delivery readiness

Frequently generating/analyzing database schemas, queries, and forms

Frequently performing automated static analysis of product/service quality

Frequently performing automated dynamic product and service evaluation

Frequently generating automated status reports/messages for all stakeholders

Frequently performing automated technical/customer document generation

Frequently performing automated delivery of products/services to end users

Duvall, P., Matyas, S., & Glover, A. (2006). Continuous integration: Improving software quality and reducing risk. Boston, MA: Addison-Wesley.
Humble, J., & Farley, D. (2011). Continuous delivery. Boston, MA: Pearson Education.

STAGE 3—Continuous Integration



 Created by Jez Humble of ThoughtWorks in 2011
 Includes CM, build, testing, integration, release, etc.
 Goal is one-touch automation of deployment pipeline

18

Humble, J., & Farley, D. (2011). Continuous delivery. Boston, MA: Pearson Education.
Duvall, P., Matyas, S., & Glover, A. (2006). Continuous integration. Boston, MA: Addison-Wesley.
Ohara, D. (2012). Continuous delivery and the world of devops. San Francisco, CA: GigaOM Pro.




CoQ

• 80% MS Tst
• 8/10 No Val
• $24B in 90s
• Rep by CD
• Not Add MLK

STAGE 4—Continuous Delivery

Source Code
Control

Build
Automation

Test
Automation

Continuous
Integration

Release
Automation

Continuous
Delivery

 Agile CD consists of seven broad practices
 Automated acceptance, load, performance, etc.
 Include packaging, pre-production test, C&A, etc.

19

Practice
Packaging

Acceptance

Load Test

Performance

Pre-Production

Certification

Deployment

Description
Frequently generating system images for pre-production testing & checkout

Frequently performing automated system & user acceptance testing

Frequently performing automated system load, stress, & capacity testing

Frequently performing automated system user & technical performance testing

Frequently performing automated pre-production tests prior to final deployment

Frequently performing automated system certification & accreditation tests

Frequently generating product images for pre-deployment testing & checkout

Mukherjee, J. (2015). Continuous delivery pipeline: Where does it choke. Charleston, SC: CreateSpace.
Swartout, P. (2014). Continuous delivery and devops: A quickstart guide. Birmingham, UK: Packt Publishing.

STAGE 4—Continuous Delivery



 Created by Patrick Debois of Jedi BVBA in 2007
 Collaboration of developers & infrastructure people
 Goal to automate the deployment to end-user devices

20

Bass, L., Weber, I., & Zhu, L. (2015). Devops: A software architect's perspective. Old Tappan, NJ: Pearson Education.
Gruver, G., & Mouser, T. (2015). Leading the transformation: Applying agile and devops at scale. Portland, OR: IT Revolution Press.
Humble, J., Molesky, J., & O'Reilly, B. (2015). Lean enterprise: How high performance organizations innovate at scale. Sebastopol, CA: O'Reilly Media.



STAGE 5—Development Operations



Collaboration

 Agile DevOps consists of seven broad practices
 Automated sys admin, CM, building, monitor, etc.
 Include virtualization, containerize, deployment, etc.

21

Practice
Sys Admin

Config. Mgt.

Host Builds

Virtualization

Containerize

Deployment

Monitor & Supp

Description
Frequently performing automated system administration tasks, i.e., scripting

Frequently performing automated infrastructure config. mgt./version control

Frequently performing automated system and server host builds and config.

Frequently performing automated system, server, & net virtualization services

Frequently performing automated software and Microservices containerization

Frequently generating final end-user system & software images for distribution

Frequently performing automated metrics collection & deployment monitoring

Duffy, M. (2015). Devops automation cookbook: Over 120 recipes coverying key automation techniques. Birmingham, UK: Packt Publishing.
Farcic, V. (2016). The devops 2.0 toolkit: Automating the continuous deployment pipelines with containerized microservices. Victoria, CA: LeanPub.



STAGE 5—Development Operations



STAGE 6—Development Sec Operations
 DevSecOps coined by Shannon Lietz in 2014
 Rugged devops, secdevops, devopssec, devsecops
 Microservices, security engineering & operations keys
Secure Microservices

• Docker App
• Docker Bins
• Docker Files
• Docker Images
• Docker Scanning
• Docker Registry
• Docker Host
• Docker Hub
• Docker Monitoring

Secure Engineering
• Security Champions
• Security Planning
• Security Training
• Security Requirements
• Security Architecture
• Security Analysis
• Security Testing
• Security Review
• Security Response

Secure Operations
• Activity Logging
• Event Monitoring
• Configuration Mgt.

• Patch Management
• User Access Control
• Privilege Management

• Vulnerability Mgt.
• Response Mgt.
• Performance Mgt.

Bird, J. (2016). Devopssec: Delivering secure software through continuous delivery. Sebastopol, CA: O'Reilly Media.
22



 DevSecOps consists of seven broad practices
 Automated secure build, analysis, & deployment
 Includes containerization, engineering & operations

23

Practice
Engineering

Containers

Evaluation

Deployment

Protection

Monitoring

Responses

Description
Frequently performing “baked-in” lean and agile security engineering practices

Frequently performing automated microservices containerization practices

Frequently performing automated static and dynamic vulnerability analysis

Frequently performing automated digitally signed security deployment practices

Frequently performing automated real-time self-security protection practices

Frequently performing automated real-time security monitoring practices

Frequently performing automated trigger-based rollback response practices



Bird, J. (2016). Devopssec: Delivering secure software through continuous delivery. Sebastopol, CA: O'Reilly Media.

STAGE 6—Development Sec Operations

 SE framework by Dean Leffingwell of Rally in 2007
 Newest version leaner, meaner, lighter, and simpler
 Experimental bottoms-up DevOps-based innovation

24
Leffingwell, D. (2007). Scaling software agility: Best practices for large enterprises. Boston, MA: Pearson Education.



STAGE 7—Enterprise DevSecOps

 Ent. DevSecOps consists of seven broad practices
 Automated experiments, measures, feedback, etc.
 Includes Lean UX, experiments, DevSecOps, etc.

25

Practice
Themes

Epics

Lean UX

Experiments

DevSecOps

Feedback

Pivot/Persevere

Description
Capturing strategic goals and objectives as objectives and key results

Synthesizing epic hypothesis statements to quickly realize strategic themes

Using low-cost, lightweight user experience techniques to quickly scope needs

Quickly developing/deploying lightweight business experiments to production

Applying DevSecOps principles, practices, and tools for business experiments

Quickly gather measurable feedback from markets, customer, and end users

Be prepared to pivot to a new business experiments when new data emerges

Leffingwell, D. (2018). SAFe reference guide: Scaled agile framework for lean enterprises. Boston, MA: Pearson.
Knaster, R. (2018). SAFe distilled: Applying the scaled agile framework for lean enterprises. Boston, MA: Pearson.



STAGE 7—Enterprise DevSecOps

26Juengst, D. (2015). Deliver better software faster: With the cloudbees jenkins platform. San Francisco, CA: CloudBees.
Weeks, D. E. (2014). Devops and continuous delivery reference architectures (volume 1 & 2). Fulton, MD: Sonatype.



DevSecOps—Basic DevOps Tools
 Numerous tools to automate DevOps pipeline
 People can piece together toolset along with hubs
 Tools include version control, testing, & deployment

27XebiaLabs. (2018). Periodic table of devops tools. Retrieved April 11, 2016, from https://xebialabs.com/periodic-table-of-devops-tools.
Weeks, D. E. (2017). Devops and continuous delivery reference architectures (volume 1 & 2). Fulton, MD: Sonatype.

DevSecOps—Periodic Table

28Tesauro, M. (2016). Taking appsec to 11: Appsec pipelines, devops, and making things better. Denver, CO: SnowFROC 2016.
Weeks, D. E. (2014). Devops and continuous delivery reference architectures (volume 1 & 2). Fulton, MD: Sonatype.



DevSecOps—Basic Security Tools
 Many tools emerging for DevOps application security
 Begins-ends with microservices—tiny attack surface
 Includes containers, testing, & real-time monitoring



29

DevSecOps—Basic DevOps Metrics

30

Test Coverage Test Automation

Integration Builds Running Tested Features



Defects
DecreaseIntegrations

Increase

Increase
Coverage

Increase
Automation

Duvall, P., Matyas, S., & Glover, A. (2006). Continuous integration: Improving software quality and reducing risk. Boston, MA: Addison-Wesley.
Jones, C. L., et al. (2020). Continuous Iterative Development Measurement Framework. Picatinny Arsenal, NJ: US Army ARDEC.

31

 DevOps metrics gaining in widespread popularity
 Hybrid of development & IT operations measures
 Includes code, deployment & e-business analytics

Velasquez, N. F. (2014). State of devops report. Portland, OR: Puppet Labs, Inc.
Jones, C. L., et al. (2020). Continuous Iterative Development Measurement Framework. Picatinny Arsenal, NJ: US Army ARDEC.



DevSecOps—Advanced Metrics

32

 Industry leading DevOps assessments are emerging
 DORA Technology DevOps Assessment is popular
 Includes speed, deployments, reliability & morale

Kim, G., Forsgren, N., & Humble, J. (2017). The DORA technology performance assessment. Portland, OR: DevOps Research.



DevSecOps—Assessments

Activity Def CoQ DevOps Economics Hours ROI
Development Operations 100 0.001 100 Defects x 70% Efficiency x 0.001 Hours 0.070 72,900%

Continuous Delivery 30 0.01 30 Defects x 70% Efficiency x 0.01 Hours 0.210 24,300%

Continuous Integration 9 0.1 9 Defects x 70% Efficiency x 0.1 Hours 0.630 8,100%

Software Inspections 3 1 2.7 Defects x 70% Efficiency x 1 Hours 1.890 2,700%

"Traditional" Testing 0.81 10 0.81 Defects x 70% Efficiency x 10 Hours 5.670 900%

Manual Debugging 0.243 100 0.243 Defects x 70% Efficiency x 100 Hours 17.010 300%

Operations & Maintenance 0.073 1,000 0.0729 Defects x 70% Efficiency x 1,000 Hours 51.030 n/a

33

 DevSecOps is orders-of-magnitude more efficient
 Based on millions of automated tests run in seconds
 One-touch auto-delivery to billions of global end-users

Rico, D. F. (2016). Devops cost of quality (CoQ): Phase-based defect removal model. Retrieved May 10, 2016, from http://davidfrico.com



DevSecOps—Cost of Quality



Under 4
Minutes

4,500 x Faster
than Code

Inspections

34

 Hewlett-Packard is a major user of CI, CD, & DevOps
 400 engineers developed 10 million LOC in 4 years
 Major gains in testing, deployment, & innovation

Gruver, G., Young, M. & Fulghum, P. (2013). A practical approach to large-scale agile development. Upper Saddle River, NJ: Pearson Education.


TYPE METRIC MANUAL DEVOPS MAJOR GAINS

CYCLE TIME
IMPROVEMENTS

Build Time 40 Hours 3 Hours 13 x
No. Builds 1-2 per Day 10-15 per Day 8 x
Feedback 1 per Day 100 per Day 100 x

Regression Testing 240 Hours 24 Hours 10 x

DEVELOPMENT
COST EFFORT
DISTRIBUTION

Integration 10% 2% 5 x
Planning 20% 5% 4 x
Porting 25% 15% 2 x
Support 25% 5% 5 x
Testing 15% 5% 3 x

Innovation 5% 40% 8 x

DevSecOps—HP Case Study





 Assembla went from 2 to 45 releases every month
 15K Google developers run 150 million tests per day
 30K+ Amazon developers deliver 136K releases a day

35Singleton, A. (2014). Unblock: A guide to the new continuous agile. Needham, MA: Assembla, Inc.

10-100 x
Faster Than
Traditional
IT Project



DevSecOps—Dot Com Case Studies




50-5,000 x
Faster Than
Traditional
IT Project

36Ashman, D. (2014). Blackboard: Keep your head in the clouds. Proceedings of the 2014 Enterprise DevOps Summit, San Francisco, California, USA.

 Productivity STOPS due to excessive integration
 Implements DevOps & Microservices around 2010
 Waste elimination, productivity & innovation skyrocket

DevSecOps—Blackboard Case Study



DEVOPS &
MICROSERVICES

IMPLEMENTED

37Denayer, L. (2017). U.S. DHS citizenship and immigration services: USCIS agile development. Washington, DC. iSDLC Seminar.

 1st gen replete with large portfolios & governance
 2nd-3rd gen yield minor incremental improvements
 4th-5th gen enables big order-of-magnitude impacts

DevSecOps—U.S. DHS Case Study










    

Automated GovernanceManual Governance 

 Tesla vehicle models are all electric automobiles
 Tesla autos have 100-200 million lines of code
 Tesla performs up to 130 deployments per day

DevSecOps—Tesla Software Updates

Choksi, N. (2016). How software lifecycle integration and devops are transforming car development. Goto Conference, Copenhagen, Denmark.
Vost, S., & Wagner, S. (2016). Towards continuous integration and continuous delivery in the automotive industry. Ithaca, NY: Cornell University.
Farley, D. (2021). How Tesla’s software disrupted the car industry. Retrieved July 17, 2021, from http://youtu.be/ZMWAlPRhiwY

38

DevSecOps—Various Case Studies
WHO RESULTS

 1 code repository
 40,000 commits per day
 50,000 builds per day
 150 million tests per day

 24-day average server age
 1 billion metrics per day
 Self-service deploys
 Zero downtime

 Everything is monitored
 Code APIs for everything
 136,000 deploys per day
 Very tiny two-pizza teams

 $1 billion annual IT budget
 80 deployments per week
 17 billion API calls per month
 Self-service DevOps Dojo training

 600 developers
 One code branch
 20,000 tests per commit
 Every clean build deployed

Rix, M. (2019). Conquering the monolith: Architecting for DevOps and release on demand. SAFe Summit Europe, Hague, Netherlands. 39

40

 Detailed DevOps economics starting to emerge
 ROI ranges from $17M to $195M with minor costs
 Benefits from cost savings, revenue, and availability

Forsgren, N., Humble, J., & Kim, G. (2017). Forecasting the value of devops transformations: Measuring roi of devops. Portland, OR: DevOps Research.
Rico, D. F. (2017). Devops return on investment (ROI) calculator. Retrieved August 29, 2017, from http://davidfrico.com/devops-roi.xls



DevSecOps—Return on Investment

DevSecOps—Business Performance

Thomke, S. H. (2020). Experimentation works: The surprising power of business experiments. Boston, MA: Harvard Business Review Press. 41

42

 DevOps adoption growing fast in-spite of slow start
 74% using, 14% thinking about it, & 12% are in-dark
 DevOps a global industry-wide extinction-level event

42Statistica. (2019). Extent of devops adoption by software developers worldwide in 2017 and 2018. Retrieved September 9, 2019, from
https://www.statista.com/statistics/673505/worldwide-software-development-survey-devops-adoption

DevSecOps—Adoption Statistics


Never Heard of DevOps

3%
Will NOT Use Devops

9%

Want to Use
DevOps

14%

Started Using
DevOps

22%
Few Good DevOps

Teams
21%

Many Teams Use
DevOps

14%

Whole Firm Uses DevOps
17%



43

 Having a DevOps rollout strategy is a key to success
 Phased, incremental, and situational implementation
 Includes build, testing, & IT operations, & practices

St-Cyr, J. (2015). Evolving devops: Advance alm and devops practices with cont. imp. Agile Dev, Better Software, & DevOps East Conference, Orlando, Florida, USA.



DevSecOps—Roadmap

44

 Containers, Ubuntu images, and pipelines are norm
 Fully automated testing and app security on the rise
 Future in DevOps Experience, BI DevOps, & AIOps

Bryant, D., et al. (2019). Devops and cloud infoq trends report. Retrieved September 9, 2019, from http://infoq.link/devops-trends-2019



DevSecOps—Trends














45Kim, G., Debois, P., Willis, J., & Humble, J. The devops handbook: How to create world-class agility, reliability, and security
in technology organizations. Portland, OR: IT Revolution Press.



 





 Everything begins with lean & agile principles
 Next step is smaller portfolio & simpler designs
 Final step is modular interfaces & E2E automation

DevSecOps—Keys to Success









 DevOps DOES NOT mean deliver it now and fix it later
 Lightweight, yet disciplined approach to development
 Reduced cost, risk, & waste while improving quality

46
Rico, D. F. (2019). 32 attributes of successful continuous integration, continuous delivery, and DevOps.
Retrieved September 27, 2019, from http://davidfrico.com/devops-principles.pdf

What How Result
Flexibility Use lightweight, yet disciplined processes and artifacts Low work-in-process
Customer Involve customers early and often throughout development Early feedback
Prioritize Identify highest-priority, value-adding business needs Focused Priorities
Descope Descope complex programs by an order of magnitude Vicious Simplicity

Decompose Divide the remaining scope into smaller batches Extremely Small Batches
Iterate Implement pieces one at a time over long periods of time Diffuse risk

Leanness Architect and design the system one iteration at a time JIT waste-free design
Swarm Implement each component in small cross-functional teams Radical Teamwork

Collaborate Use frequent informal communications as often as possible Efficient data transfer
Test Early Incrementally test each component as it is developed Early/auto Verification
Test Often Perform system-level regression testing every few minutes Early/auto Validation

Adapt Frequently identify optimal process and product solutions Improve performance
Security Bake in security and automate it throughout lifecycle Ironclad Security
























DevSecOps—Summary



DevOps ensures enterprise success by delivering large
volumes of valuable, reliable, & secure IT products &
services to billions of users in fractions of a second ...

DevSecOps—Bottom Line?

47

PMP, CSEP,
EBAS, BAF, FCP,
FCT, ACP, CSM,
DEVOPS, AWS

& SAFE

39+ YEARS
IN IT

INDUSTRY

Dave’s Professional Capabilities

STRENGTHS – Lean & Agile Thinking • Enterprise Transformation & Roadmapping • 360 Leadership Assessments • Executive & Agile Coaching • Enterprise Business
Agility • Agile Acquisition Contracts • Scaled Agile Framework (SAFe) • Development Security Operations (DevSecOps) • Cloud Computing & Amazon Web Services
(AWS) • Portfolio, Program, & Project Mgt. • Lean-Agile Product Management & Design Thinking • 5x5x5 Innovation & Marketing Sprints • Annual & Quarterly Strategic
Planning • Technology & Product Roadmapping • Program Increment & Big Room Planning • Emergent & Evolutionary Microservices • Exploratory MVP, MVA, & MMF
Experiments • Scrumban, Kanban & Lean-Agile Assessments • Performance Metrics, Measures & Dashboards • Agile lifecycle management (ALM) workflow tools ...

Website: http://davidfrico.com ● LinkedIn: http://linkedin.com/in/davidfrico ● Twitter: @dr_david_f_rico

48

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48

