Setac: A Framework for Phased Deterministic
Testing of Scala Actor Programs

Samira Tasharofi, Milos Gligoric, Darko Marinov, and Ralph Johnson

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{tasharol, gliga, marinov, rjohnson}@illinois.edu

Abstract

Scala provides an actor library where computation enti-
ties, called actors, communicate by exchanging messages.
The schedule of message exchanges is in general non-
deterministic. Testing non-deterministic programs is hard,
because it is necessary to ensure that the system under test
has executed all important schedules. Setac is our proposed
framework for testing Scala actors that (1) allows program-
mers to specify constraints on schedules and (2) makes it
easy to check test assertions that require actors to be in a
stable state. Setac requires little change to the program un-
der test and requires no change to the actor run-time system.
In sum, Setac aims to make it much simpler to test non-
deterministic actor programs in Scala.

Keywords actor programs, testing framework, message-
passing programs, concurrency bugs

1. Introduction

With the advent of multicore processors and networked com-
puting, parallel and distributed programming is becoming
an increasingly important topic. While such programming
is often done with the shared-memory paradigm, it leads to
problems such as low-level data races. The message-passing
paradigm is an alternative that reduces some problems asso-
ciated with parallel and distributed programming.

The actor-based programming model [2] is one way of
programming in the message-passing paradigm. Each actor
is a concurrent computation entity that communicates with
other actors by exchanging messages. Each actor has a mail-
box which stores the messages delivered to the actor but

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

The Scala Workshop’11  June 2, Stanford, CA, USA.

Copyright © 2011 ACM [to be supplied]. .. $10.00

not yet processed. The message handlers in the actors de-
termine which messages should be picked from the mailbox
for processing. A message handler removes from the mail-
box a message that can be processed and then processes the
message. We distinguish between message delivery, which
refers to adding the message to the mailbox, and message
processing, which refers to removing the message from the
mailbox and executing a handler on it.

Scala provides an actor library in the scala.actors pack-
age in the standard Scala distribution [5]. (There are also
other actor libraries for Scala, such as Akka [3] and Lift [9],
but our focus in this paper is on the standard library.) The li-
brary provides a number of features, including dynamically
creating and destroying actors, sending asynchronous and
synchronous messages, handling exceptions, garbage col-
lecting actors, remote actors, and some customization of the
thread pool executing actors. However, the Scala library does
not provide any special support for testing actors. The com-
mon approach is to use single-threaded execution of actors,
which does not allow the programmer to examine different
schedules but does allow the test to be executed determinis-
tically for one schedule.

Testing actor programs is challenging precisely due
to non-determinism associated with message schedules.
Namely, an actor system can have different behavior based
on the order in which the messages are processed by each
actor. (If the mailbox is a queue and processes the first avail-
able message, then the order of message deliveries mat-
ters.) It is, therefore, important to explore multiple sched-
ules/orders of messages. Using model checking and verifi-
cation approaches that try to explore (almost) all possible
schedules [6, 7] leads to state space explosion that makes it
impossible to check larger programs, even when advanced
pruning techniques are used [8]. As a result, our analysis
of publicly available, manually written actor tests shows
that they focus on very simple cases (test one actor for one
message at a time) and encounter problematic issues in con-
trolling/constraining schedules and checking assertions.



One issue in writing test cases for actors, using just the
standard library, is that constraining the schedule is difficult
and sometimes impossible. The difficulty stems from the fact
that enforcing specific schedules requires: (1) changing the
application (e.g., using synchronous communication instead
of asynchronous communication, thread sleeps, latches, bar-
riers, etc. to enforce the order of messages delivered to the
actors), (2) changing the environment that runs the applica-
tion (e.g., changing the system scheduler), and/or (3) creat-
ing mock actors to control the order of messages sent to the
actor such that one actor is tested at a time. Changing the
application or the environment requires great effort on the
programmer’s side, while creating mock actors can make the
test cases very complex and cannot be applied for programs
with multiple communicating actors.

Another issue in writing test cases for actors, using just
the standard library, is checking assertions, namely checking
that the program state satisfies certain conditions at appro-
priate points in execution. Assertions that check the effect
of sending some messages should not be checked until after
those messages have been processed by the actors. However,
the standard library does not provide a functionality to check
if messages have been processed. The solutions that are cur-
rently used include: (1) using explicit delays with the hope
that the desired messages are processed by the actors, (2) us-
ing barriers in the message handlers of the actors after some
messages are processed, and/or (3) checking just the final
results returned from the actors in the form of messages and
not any internal states of the actors.

The issues of controlling schedules and checking asser-
tions during tests were previously addressed for shared-
memory programming, in particular for Java. For example,
ConAn [10] and MultithreadTC [12] are two frameworks
that allow controlling schedules, i.e., specifying the order of
accesses to shared data and synchronization variables, and
ThreadControl [4] provides a framework for checking as-
sertions at appropriate points in execution. However, to the
best of our knowledge, there was no such framework for the
actor systems.

We have developed a framework, called Setac, for phased
deterministic testing of Scala actor programs. In our frame-
work, the programmer can define certain messages in the
program under test as relevant for controlling schedules and
checking assertions. Specifically, these are messages whose
delivery/processing status is important for the purpose of
testing. We refer to these messages as test messages. Not all
messages in a test execution need to be test messages. The
programmer can use Setac to enforce a delivery order be-
tween test messages and to obtain some information about
their delivery and processing status. Controlling the sched-
ule (to enforce a particular order between some messages)
brings an element of determinism to test execution.

Assertions should only be checked when the results are
ready. In actor programs this usually happens when the indi-

vidual actors process all the messages they can, i.e., the sys-
tem reaches a stable state where no actor is processing any
message and no message can be processed (until new mes-
sages are delivered). This point of stability can be viewed as
the end of a phase in the test execution. Indeed, Setac allows
the programmer to break the entire execution of the test into
multiple phases. Each phase starts by delivering some mes-
sages, then lets the program run, and finally checks asser-
tions. This feature creates a phased execution.

Compared to the current approaches for writing actor
tests, Setac provides several advantages:

e Setac allows the programmer to easier write tests with
some explicit constraints on the message schedule. The
schedule is the order of messages delivered to the actors.
The constraints do not need to enforce the order of all
messages from a test execution but can enforce ordering
constraints only on a selected set of test messages. Allow-
ing the programmer to enforce some partial constraints
avoids two extreme situations: (1) the programmer has no
control over the schedule, or (2) the programmer should
specify all the details of the schedule although the order
of some messages does not matter.

e Setac makes it easy to check assertions in the stable
state, which is usually the appropriate time for checking
assertions. Without Setac, checking that the system is in
a stable state is not straightforward in most cases.

e Setac allows accessing the delivery/processing status of
messages defined as test messages, which enables new
types of assertions to be succinctly encoded. Addition-
ally, providing a way to define test messages eliminates
the need to change the program under test to keep track
of the messages.

e Setac reduces the cost of changing the program for the
purpose of testing: the only change needed to use Setac
is to make each actor class from the code under test a
subclass of a Setac’s class rather than the standard Actor.
Note that the programmer need not change literally every
class in the program, but only the superclasses of those
actors that are direct subclasses of Actor. Also note that
this change can be automated easily.

e Setac requires no change in the environment that runs the
actor program to preserve the portability: since the entire
Setac framework is implemented on top of the standard
Scala environment that runs the Scala actor programs,
Setac makes the testing framework portable.

While this paper presents a high-level overview of our
Setac framework, the exact design and implementation of
Setac are still evolving. The latest code for Setac and several
examples is available from:

http://mir.cs.illinois.edu/setac



2. Example

To better describe the problems in testing actor systems,
we start with an example. Consider a server that processes
clients’ requests using a divide-and-conquer recursive algo-
rithm: when the server receives a request that needs a large
amount of work, it distributes the work among two children,
waits for them to finish their work, merges the results, and
returns it as the final result of the request. To make the ex-
ample more concrete, we assume a simple QuickSort server
as shown in Listing 1. It accepts an array of integers as input
(through a Sort message) and returns an array that is sorted
input (through a Result message).

When the QuickSort actor receives a Sort message
(line 13), it sets the requester variable to the sender of the
message and calls the split method. This method chooses
a pivot, divides the array into two subarrays whose ele-
ments are smaller/greater than the pivot, and creates two
(children) quick sort actors to sort each subarray. Note that
before dispatching the array among the two children, split
sets a boolean variable enableProcessingMessage to false,
which disables processing any Sort message. It also sets the
counter for partial results, resultCount, to zero.

After receiving a partial result (through Result, line 17),
the actor increments resultCount, and when the counter
reaches two, the actor calls the mergeResults method to
merge the partial results and returns the final result. Af-
ter that, it sends the final result to the requester, and sets
enableProcessingMessage to true which enables the actor
to process another sort request. For the sake of simplicity,
we omitted the code for merging the partial results.

We want to test the following two properties for the
QuickSort example. First, the basic functional correctness: if
the actor receives one Sort message with some input array,
the result should be the sorted array of the input. Second, if it
receives multiple Sort messages, it should process them one
by one and return correct result for each message. Specif-
ically, if it receives a Sort message while it is waiting for
the partial results of the previous Sort message, it should
not process the second sort message until it finishes its work
with the previous Sort message.

Writing test code for the first property is quite straight-
forward; however, testing the second property might not be
easy. We need to write a test in which two Sort messages
are sent to the actor and enforce that the second Sort mes-
sage be delivered before both partial results of the first sort
message.

A message sequence diagram that corresponds to such a
test is shown in Figure 1; Sort (input1) and Sort (input2)
show the two messages sent from the test to the gsort ac-
tor, while Result (part1) and Result (part2) show the two
messages sent from the children that are created by the gsort
actor. As mentioned before, assertions break execution into
phases in the test. The diagram in Figure 1 consists of two
phases: in the first phase, a schedule is enforced in which

Listing 1 Simple QuickSort actor

QuickSort extends Actor {

1
2 var partl = Array[Int]()

3 var part2 = Array[Int]()

4 var middle = Array[Int]()

5

6 var requester: OutputChannel[Any] = null
7 var resultCount = 0

8 var enableProcessingMessage = true

9

10 start

11 def act() = loop {

12 react {

13 case Sort(input) if (enableProcessingMessage) => {
14 requester = sender

15 split (input)

16

17 case Result(res) => {

18 resultCount += 1

19 if (resultCount == 1) {

20 partl = res

21 } else if (resultCount == 2) {

22 part2 = res

23 val finalResult = mergeResults
24 requester ! Result(finalResult)
25 enableProcessingMessage = true
26 }

27 }

28 }

29 }

30

31 private def split(xs:Array[Int]) {

32 if (xs.length <= 1) {

33 requester ! Result(xs)

34 } else {

35 enableProcessingMessage = false

36 resultCount = 0

37

38 val pivot = xs(0)

39 val left = (xs filter (pivot >))

40 val right = (xs filter (pivot <))
41 middle = (xs filter (pivot ==))

42 new QuickSort ! Sort(left)

43 new QuickSort ! Sort(right)

44 }

45 }

46

47 private def mergeResults:Array[Int] = {
48 /! merge partl , part2, and middle

49 }

50 }

the gsort actor receives the first sort message, then a partial
result from one of its children, and finally the second sort
message. At the end of the phase, it is checked that the ac-
tor has not processed the second Sort message. In the second
phase, the second partial result is delivered, and it is checked
that the resulting arrays are sorted.

2.1 Problems with Writing Test for QuickSort

Listing 2 shows a possible implementation of the test de-
picted in Figure 1 without using Setac but using only the
current testing frameworks, e.g., JUnit. To impose the de-
sired order of message delivery, we had to change the code
under test as shown in Listing 3.

In Listing 3, we added some arguments to the constructor:
childId to distinguish the first and second child from the
parent, resilatch to be informed about sending parti (by
one of the children) and then send sort2 (because we want



1
2
3
4
5
6
7
8
9

11

‘ gsort ‘ ‘ childL ‘ ‘ child2 ‘
- | ! |
Sort(inputl) | . .
>
I Sort(left) | 3
I I I
?é‘ | | Sortright) |
g | | |
. Result(partl) | .
Sort(input2) i i i
>
i L. Lol Essatl
[—— I I [
| | Result(part2) |
T T 1
‘gé‘ Result(resultl) | | |
s I I
[=% ! | |
Result(result2) . .
L ! ! ! assert2

Figure 1. Sequence diagram describes a test which checks
that processing multiple Sort messages do not overlap

Listing 2 Test written in the current testing frameworks

class QuickSortTest extends TestCase {
var qsort: QuickSort = null
var inputl = Array[Int](2,3,1)
var input2 = Array[Int](4)

var reslLatch: CountDownLatch = null
var assertlLatch: CountDownLatch = null
var sortLatch: CountDownLatch = null

var finishLatch: CountDownLatch = null

override def setUp {
reslLatch = new CountDownLatch(1)
assertlLatch = new CountDownLatch (1)
sortLatch = new CountDownLatch(2)
finishLatch = new CountDownLatch (1)
gqsort = new QuickSort(0,reslLatch,assertlLatch ,
sortLatch)

}

def testTwoSortMessages {
actor {
/! phasel
gqsort ! Sort(inputl)
/! wait for the first partial result
reslLatch.await ()
gsort ! Sort(input2)
Thread.sleep (1000)
// assertionl: actor does not process sort2
assert(sortLatch.getCount == 1)

/! phase2

assertlLatch .countDown

// assertion2: resulting arrays are sorted

receive { case Result(result) =>
assert(isSorted (result ,inputl))

}

receive { case Result(result) =>
assert(isSorted (result ,input2))

finishLatch .countDown

finishLatch.await

}

def isSorted(result:Array[Int],input:Array[Int]):
Boolean = {
/! check if the result is sorted array of input

}

1

Listing 3 QuickSort actor changed for testing

class QuickSort(childId:Int,reslLatch:CountDownLatch,
assertlLatch :CountDownLatch, sortLatch: CountDownLatch
) extends Actor {
var partl = Array[Int]()
var part2 = Array[Int]()
var middle = Array[Int]()

var requester: OutputChannel[Any] = null
var resultCount = 0
var enableProcessingMessage = true

start
def act() = loop {
react {
case Sort(input) if (enableProcessingMessage) => {
// if parent, track processed messages
if (childld == 0)
sortLatch.countDown
requester = sender
split (input)

case Result(res) => {
resultCount += 1
if (resultCount == 1) {
partl = res
} else if (resultCount == 2) {
part2 = res
val finalResult = mergeResults ()
requester ! Result(finalResult)
enableProcessingMessage = true
¥
}
}
}

private def split(xs:Array[Int]) {
if (xs.length <= 1) {
/! wait for phasel and assertionl to be finished
if (childld == 2)
assertlLatch.await()
requester ! Result(xs)
// signal on sending the first partial result
if (childld == 1)
reslLatch.countDown
} else {
enableProcessingMessage = false
resultCount = 0

val pivot = xs(0)

val left = (xs filter (pivot >))

val right = (xs filter (pivot <))

middle = (xs filter (pivot ==))

new QuickSort(1,reslLatch ,assertlLatch ,sortLatch) !
Sort(left)

new QuickSort(2,reslLatch ,assertlLatch ,sortLatch) !
Sort(right)

}
}

private def mergeResults():Array[Int] = {
// merge partl, part2, and middle
}

an order in which the second Sort message is delivered after
the first partial result), assertilatch such that the other
child can finish the first phase (checking assertion1) and send
part2 for starting the second phase, and sortLatch to keep
the number of Sort messages processed by the gsort actor
and to infer the number of Sort messages remaining in its
mailbox. The body of QuickSort actor is also changed to
countDown or wait on the latches at appropriate times. Note



that these changes might be different for different test cases.
For example, if input2 has more than one element or the
order of elements in inputl is changed, then we will have
more children that send the partial results, and so we need
more latches.

The test case from Listing 2 creates the latches and
passes them to the constructor of the gsort actor. We set
the variable childId to zero to mark it as the parent. In
testTwoSortMessages method, line 20, a mock actor is cre-
ated that sends (receives) messages to (from) gsort actor.
For checking assertionl, we use thread sleep for a time in-
terval to make sure that the gsort actor cannot process any
more messages and then check the value of sortLatch. Be-
cause we know that we sent two Sort messages, if the value
of sortLatch equals to one, it means that one of the Sort
messages still remains in the mailbox and has not been pro-
cessed by the actor. The finishLatch is used to wait for the
mock actor to finish its work before the test terminates.

In summary, writing the test described in Figure 1 using
current testing frameworks has the following challenges:

e Reasoning about the delivery of important messages (test
messages): how can we define messages that are impor-
tant in the test and be informed about their delivery? As
shown, using latches requires changes in the program un-
der test, which makes the test very complex.

e Enforcing the desired order between the messages: if all
of the actors in the system were created by the user,
sometimes it is possible to impose some orders between
the messages, but it is not possible in all situations. In
the QuickSort example, the issue is that children, created
for providing partial results, are not under the control of
the user. So, the user cannot easily impose the schedule
in which the second sort message is delivered before
the second partial result of the first sort message. As
shown, changing the program under test is not an easy
and practical solution.

¢ Checking the assertions: how do we know when to check
assertion1? How long do we have to wait to make sure
that the gsort actor has processed as many messages as
it can and thus cannot process more messages?

e Accessing the contents of the mailbox: in assertioni,
how can we check that the second sort message remains
in the mailbox and will not be processed until phase2
starts (the actor will not start processing the second sort
message until it finishes its work with the first sort mes-
sage)? We added sortLatch to the program under test
to keep track of the Sort messages processed by the ac-
tor and then reason about the messages remaining in the
mailbox of the actor. So, in order to check the contents of
the mailbox, we need to keep track of the messages sent
to the actor and processed by the actor via adding some
extra variables and changing the application under test.

3. Example in Setac

Listing 4 shows the test from Figure 1 written in Setac. Each
test class is a test suite that consists of three parts: setUp, test
cases, and tearDown. Before and after running each test case,
the setUp and tearDown methods are executed, respectively
In our QuickSort example, tearDown is not needed, therefore
it is not shown in Listing 4.

To allow Setac to control the execution of the program
under test, each class that extends Actor should replace it
with TestSubject. Specifically, in Listing 1 we will have
class QuickSort extends TestSubject, but note that this
is literally the only change to the original code under test.

3.1 Defining Test Messages

The first step in writing a test with Setac is to define the test
messages, which can be of two kinds: schedule messages
are used in constraining the schedule, and watch messages
are only checked for their delivery or processing status. In
our QuickSort example, we need four schedule messages—
sortl, sort2, partl, and part2—that are all sent to the
gsort actor. There are other, non-test messages in the sys-
tem, e.g., the Sort messages sent from gsort to the children,
but we do not care about the order of their delivery.

Each test message is identified by three parameters:
sender, receiver, and content. The sender and the receiver
are the IDs of the respective actors. The value ANY_ACTOR
stands for the wildcard that can be matched with any actor.
The content can be an object or a partial function that should
be matched with the messages in the system. The power of
partial functions for pattern matching brings a lot of flexibil-
ity in defining test messages, especially when some values
are not known statically but determined at run time.

In Setac, test messages need to be defined before the main
test execution. Therefore, the setUp method is a good place
to define them, although they can be defined at the beginning
of the test method itself.

In Setac, schedule messages are defined, and the refer-
ences to them are created, with the createScheduleMessage
method that takes the sender, receiver, and content. This
method returns a reference to a schedule message that can
be used in the test to refer to that message. Note that the
messages that are not matched with any of the schedule mes-
sages will be delivered without any constraints. (Watch mes-
sages are explained in more detail in Section 5.)

For our QuickSort example, we define four schedule mes-
sages in the setUp method in Listing 4 using the method
createScheduleMessage. For two of these message, the con-
tent parameter is known statically (the arguments of two
Sort messages are inputl and input?2), so they are defined
as objects. For the other two messages, the content is not
known statically (the arguments of two Result messages),
so they are defined as partial functions that can match any
Result message sent to the gsort actor. The senders of these
messages are not important and are thus set to ANY_ACTOR.



Listing 4 Example test written in Setac

class QuickSortTest extends Test {
var qsort: QuickSort = null
var inputl = Array[Int](2,3,1)
var input2 = Array[Int](4)

/] test messages

var sortl: TestMessage
var sort2: TestMessage
9 var partl: TestMessage
10 var part2: TestMessage
11

null
null
null
null

1
2
3
4
5
6
.
8

12 override def setUp() {
13 qsort = new QuickSort
14 sortl = createScheduleMessage (ANY_ACTOR, gsort ,
15 Sort(inputl))
16 sort2 = createScheduleMessage (ANY.ACTOR, gsort ,
17 Sort(input2))
18 partl = createScheduleMessage (ANY_ACTOR, gsort)
19 ({case Result(-) = (O}
20 part2 = createScheduleMessage (ANY-ACTOR, gsort)
21 ({case Result(-) = (})
2 }
23
2 def testTwoSortMessages () {
25 /! phasel
26 setSchedule (sortl — partl —> sort2)
27 gsort ! Sort(inputl)
28 qsort ! Sort(input2)
29 // assertionl: actor does not process sort2
30 assertWhenStable (" mailbox has the second sort message
”,getMsgCount(sort2 ,qsort) == 1)
31
32 /! phase2
33 setSchedule (part2)
34 // assertion2: resulting arrays are sorted
35 receive { case Result(result) =>
36 assertTrue ("resultl is not sorted”,isSorted (
result ,inputl))
37 }
38 receive { case Result(result) =>
39 assertTrue ("result2 is not sorted”,isSorted (
result ,input2))
40 }
41 }
42
43 def isSorted(result:Array[Int],input:Array[Int]):
Boolean = {
44 // check if the result is sorted input array
45 }
46 }

3.2 Controlling Schedule and Checking Assertions

A test will execute the code under test with some inputs. The
advantage of Setac is that the programmer can (1) control the
test execution by enforcing some specific order of (schedule)
messages and (2) check assertions at some points in the
middle of test execution (not just at the end). These features
allow overcoming some non-determinism in actor programs
and having a more fine grain control of the code under test.

Controlling Schedule After defining the schedule mes-
sages, the order of their delivery can be enforced by the
setSchedule method. Listing 4 uses this method, lines 26
and 33. In general, this method accepts a set of constraints
among schedule messages, where each constraint is speci-
fied with a precedence operator, ‘->’, between schedule mes-
sages. Note that if a reference to a schedule message is cre-
ated but not used in any setSchedule method, this message

will not be delivered by Setac. Instead, it will give a warning
indicating that there are some messages that are not deliv-
ered. In other words, creating a reference to a schedule mes-
sage means that the programmer wants to determine when
the message should be delivered.

Checking Assertions Setac provides two methods for
checking assertions: assertWhenStable and assertAfter.
Both methods take a name and a boolean expression, and
assertAfter additionally takes a time out value. The dif-
ference between these methods is in the execution point at
which they evaluate the boolean expression: assertWhenStable
waits for the system to get stable (no actor is processing any
message and all the actors are suspended, blocked, or ter-
minated or have not been started yet) and then evaluates
the expression; and assertAfter evaluates the expression
after a specified amount of time. In our QuickSort exam-
ple, for checking assertionl the system should be stable
(to ensure that the gsort actor cannot process any more
messages), while assertion2 can be evaluated immediately
(because the results are ready). So, as shown at the end of
phasel and phase2 in Listing 4, assertWhenStable is used
for assertionl, and assertTrue is used for assertion2.
(Section 5 explains assertAfter in more detail.)

Accessing the contents of mailbox Setac also provides
methods for inspecting the content of mailboxes. One of the
methods is getMsgCount, used in assertioni. This method
takes a test message and an actor as inputs, and returns the
number of the messages in the mailbox of the actor that
match the test message. In our example, at the end of phasel,
we need to check that the second sort message is still in the
mailbox and has not been processed by the actor.

4. Architecture of Setac

We next briefly describe the architecture of our framework.
Setac comes in a package named edu.illinois.cs.setac,
shown in Figure 2. Note that Actor is the actor class from the
standard Scala library. Setac consists of several components.

TestScheduler is a singleton actor that coordinates the
communication of TestSubject actors. More specifically,
TestScheduler is responsible for enforcing the schedule
provided by the programmer. TestSubject overrides the
send method, which is used in the standard Actor to deliver
a message, in order to ask TestScheduler for permission
to deliver a message. If the message should not be deliv-
ered (based on the constraints specified in the test), then
TestScheduler keeps that message in its cloud (a container
for the messages that should be delivered later) and delivers
it at the appropriate later time.

TestSubject is a trait that extends Actor. TestSubject
communicates with TestScheduler upon sending and re-
ceiving messages. TestSubject also communicates with
TestSubjectRegistry to register itself in the registry list.
To allow Setac to manage messages, the actors in the pro-
gram under test should extend TestSubject.



| Actor

‘ A A A

edu.illinois.cs.setac

TestSubjectRegistry Commons [§]™7 TestScheduler
— [ N S
<<singleton>> ] <<singleton>>
1

1

: :

: TestSubject !
[ 1T <<trait>> <=

1

1

1

1

Figure 2. Architecture of the Setac framework

TestSubjectRegistry is a singleton actor which is re-
sponsible for registering each TestSubject in its registry list.
This registry list is used to keep track of the actors in the test
and also to kill them when the test finishes.

Test is a class that extends Actor and provides the
functionality for writing test cases. It uses TestScheduler,
TestSubjectRegistry, and TestSubject to provide the nec-
essary functionality.

Commons contains all the common types used in our
edu.illinois.cs.setac package, e.g., TestMessage.

5. Other Features

The key Setac features are explained and used in our Quick-
Sort example. We explain here the additional Setac features.
Note that Setac is still under development, so the list of fea-
tures that are described may not be complete. The latest ver-
sion of the framework is available online [16].

5.1 Watch Messages

Some messages do not require a specific schedule, but it is
important to check the delivery or processing status of these
messages. In Setac, we call these test messages watch mes-
sages. They are defined via the createWatchMessage method
that takes the same parameters as createScheduleMessage.
Watch messages are lighter than schedule messages in that
the framework need not interfere with the delivery of watch
messages but only observes them to collect the information
of their delivery/processing. Because schedule messages
are also observed as watch messages, the programmer can
obtain the delivery/processing status of schedule messages
without defining them as watch messages.

5.2 Status of Test Messages

In Setac, there are different methods for obtaining the de-
livery/processing information of test messages, including
whether a test message is processed/delivered or not, and the
number of test messages processed/delivered.

5.3 Status of Actors

During test execution, the actors can have different execution
status. There are five methods—isBlocked, isSuspended,

isRunning, isTerminated, and isNotStarted (the actor is
created but not started yet)—that can be used to access the
execution state of the actors. These methods are particularly
useful for checking deadlock in the system, i.e., when all or
some actors in the system are blocked.

Considering that the mailbox of an actor is a part of
the actor’s state, getMailboxSize and getMsgCount can be
used to obtain the total number of messages in an actor’s
mailbox and the number of a particular test message in the
actor mailbox, respectively. Our QuickSort example shows
how to use getMsgCount to access the number of sort2 test
messages in the mailbox of the gsort actor.

5.4 Assertions for Non-Stable Systems

The method assertWhenStable waits for the system to get
stable and then evaluates the expression. However, some-
times the system may not get stable. An example is an ac-
tor that has a loop in receiving TIMEOUT message, €.g., us-
ing receiveWithin Or reactWithin in a loop. In these cases,
assertAfter should be used, which takes a timeout interval
as the argument and checks the assertion after that timeout.

6. Limitations

Although some of the problems with testing Scala actor pro-
grams are addressed in Setac, our framework has its own
limitations. As mentioned before, only the actors that extend
TestSubject can be controlled by Setac. This means that
anonymous actors which do not extend TestSubject are out
of control of Setac. An example can be Futures in Scala.
This limitation also carries over to the cases where the source
code of the program is not available. One solution for this
limitation would be to provide some of the Setac function-
ality directly into the standard Actor class. We believe that
Setac is useful enough to consider this approach.

Another issue is with the systems that do not get stable.
In that case, the programmer should either use some black-
box testing that does not depend on the schedule or provide a
time out for checking assertions. This will reduce the robust-
ness of the test cases because they will become dependent on
some real time values.

7. Related Work

Our design and implementation of Setac are inspired by
testing frameworks for shared-memory, multithreaded Java
code such as ConAn [10] and MultithreadedTC [12]. In
ConAn, the programmer can specify the order of the events
in the test by using a global clock value. A difficulty of
writing test cases in ConAn is that the user needs to provide
the order of all events in the test, but the order of some
events might not be important (e.g., messages sent from
gsort to the children in our running example). Another issue
with ConAn is that tests are written as scripts in a language
different from the language of the program under test. In
MultithreadedTC, tests are written in Java, which is the same



as the language of the program under test. The programmer
can specify the order of some (not necessarily all) events
with respect to a global clock. However, tracking the exact
value of the global clock can make it complex and difficult to
specify the order of events. We are not aware of any similar
framework for testing actor programs.

There are frameworks for model checking and automated
test generation for actor programs. For example, McEr-
lang [11] and QuviQ [13], which are used for Erlang pro-
grams, mostly deal with the abstract model of system in the
form of an FSM. Writing test cases in these frameworks is
not easy and requires creating a correct model of the sys-
tem. Also, the programmer needs to annotate the program to
trigger the appropriate events to map the current state of the
program to a state in the FSM model. The programmer can
provide a random seed for the scheduler; obviously specify-
ing a random seed will not give any intuition to the program-
mer about the order of the events, but it is useful for trying
different random schedules and establishing deterministic
replay with respect to a random seed. Finally, these frame-
works are targeting Erlang programs and not Scala (actors).
Basset [6, 7] is a framework for state-space exploration of
actor programs written in Scala and ActorFoundry [1]. Bas-
set tries to explore (almost) all possible schedules, which
can lead to state-space explosion and make it impossible to
check larger programs.

There are some tools for testing Scala programs, includ-
ing Java tools, such as JUnit, and the tools written in Scala
such as ScalaTest [15], specs [17], and ScalaCheck [14].
ScalaTest is an alternative to JUnit for writing test cases with
fewer lines and more clarity. Specs is a framework that facil-
itates writing test cases in the behavior-driven development
testing style that extends the test-driven development by us-
ing natural language for writing test cases. ScalaCheck is a
tool for automatic unit testing of Scala and Java programs
which is based on property specifications and automatic test
data generation. In this tool, the programmers specify the
behavior of the code in terms of some properties, and the
tool generates random test data and checks that the proper-
ties hold. Although these tools facilitate testing Scala pro-
grams, none of them is designed and specialized for dealing
with non-determinism in the actor programs in terms of con-
trolling schedules and checking assertions like Setac.

8. Conclusions and Future Work

We presented our initial work on creating a testing frame-
work, called Setac, for testing Scala actor programs. The
main goal of Setac is to alleviate the problems with non-
determinism in testing actor programs. The features pro-
vided by Setac make it possible for the programmer to write
test cases with some constraints on the schedule, and to
check the assertions when the system reaches a stable state.

In the future, we plan to integrate Setac with ScalaT-
est [15] such that the programmers can benefit from the ad-

vantages of both frameworks for testing Scala actors. We
hope that this integration will provide us with a user base
and result in more tests written using Setac. The tests will
be used to evaluate the expressiveness of Setac and likely to
revise its design. We will also rewrite more of the existing
test cases for Scala actors that we have collected or will col-
lect using Setac. Finally, we plan to compare the test cases
written with and without Setac in terms of various metrics.

Acknowledgments

We thank Philipp Haller and Frank Sommers for providing
a draft of their book on Scala actors, Daniel Spiewak for
sharing information about testing Novell Vibe actors, and
Nicholas Chen and Steven Lauterburg for providing feed-
back on an earlier draft of this paper. This material is based
upon work partially supported by the Department of En-
ergy under Grant No. DE-FC02-06ER25752 and the Na-
tional Science Foundation under Grant Nos. CCF-1012759,
CNS-0958199, and CCF-0916893.

References
[1] ActorFoundry. http://osl.cs.uiuc.edu/af/.

[2] G. Agha. Actors: a model of concurrent computation in
distributed systems. MIT Press, 1986.

[3] Akka. http://akka.io/.

[4] A. Dantas, F. Brasileiro, and W. Cirne. Improving automated
testing of multi-threaded software. In ICST, pages 521-524,
2008.

[5] P. Haller and F. Sommers. Actors in Scala - Concurrent
programming for the multi-core era. Artima, 2011.

[6] S. Lauterburg, M. Dotta, D. Marinov, and G. Agha. A frame-
work for state-space exploration of Java-based actor pro-
grams. In ASE, pages 468-479, 2009.

[7] S. Lauterburg, R. K. Karmani, D. Marinov, and G. Agha.
Basset: a tool for systematic testing of actor programs. In
FSE, pages 363-364, 2010.

[8] S.Lauterburg, R. K. Karmani, D. Marinov, and G. Agha. Eval-
uating ordering heuristics for dynamic partial-order reduction
techniques. In FASE, pages 308-322, 2010.

[9] Lift. http://liftweb.net/.

[10] B. Long, D. Hoffman, and P. Strooper. Tool support for testing
concurrent Java components. [EEE Trans. Softw. Eng., 29:
555-566, 2003.

[11] McErlang Project. https://babel.ls.fi.upm.es/trac/
McErlang/.

[12] W. Pugh and N. Ayewah. Unit testing concurrent software. In
ASE, pages 513-516, 2007.

[13] QuviQ QuickCheck. http://www.quviq.com/.

[14] ScalaCheck. http://code.google.com/p/scalacheck/.
[15] ScalaTest. http://www.scalatest.org/.

[16] Setac. http://mir.cs.illinois.edu/setac/.

[17] specs. http://code.google.com/p/specs/.



