
Approximate Geospatial Joins with

Precision Guarantees

Andreas Kipf∗, Harald Lang∗, Varun Pandey∗, Raul Alexandru Persa∗,

Peter Boncz†, Thomas Neumann∗, Alfons Kemper∗

∗Technical University of Munich

Munich, Germany

{first.last}@in.tum.de

†Centrum Wiskunde & Informatica

Amsterdam, The Netherlands

boncz@cwi.nl

Abstract—Geospatial joins are a core building block of con-
nected mobility applications. An especially challenging problem
are joins between streaming points and static polygons. Since
points are not known beforehand, they cannot be indexed.
Nevertheless, points need to be mapped to polygons with low
latencies to enable real-time feedback.

We present an approximate geospatial join that guarantees
a user-defined precision. Our technique uses a quadtree-based
hierarchical grid to approximate polygons and stores these
approximations in a specialized radix tree. Our approach can
perform up to several orders of magnitude faster than existing
techniques while providing sufficiently precise results for many
applications.

I. INTRODUCTION

Connected mobility companies need to process vast amounts

of location data in near real-time to run their businesses. For

instance, Uber needs to join locations of passenger requests

with a set of predefined polygons to display available products

(e.g., Uber X) and to enable dynamic pricing1. Another

example are traffic use cases where the positions of vehicles

need to be joined with street segments to enable real-time

traffic control. With a future of connected (and possibly self-

driving) cars and drones, high-performance geospatial joins

will become a key feature for increasingly demanding appli-

cations.

Geospatial joins have been studied for decades [1] and

many of these algorithms follow the traditional filter and refine

approach. A common technique is to index minimum bounding

rectangles (MBRs) of polygons in an R-tree. For each point,

the R-tree is probed and candidate polygons are refined using

expensive point-in-polygon (PIP) tests.

True hit filtering partially avoids expensive refinements by

identifying actual join pairs already in the filter phase [2].

This is achieved by approximating the interior of polygons

using inner circles or rectangles. When a point falls into an

interior approximation of a polygon, it is known to be within

the polygon.

Building on top of this key idea we present an improved

algorithm that combines true hit filtering with quadtree-based

1https://eng.uber.com/go-geofence/

hierarchical grids [3], [4]. This is in contrast to existing

implementations of true hit filtering that use inner rectan-

gles [5] or non-hierarchical grids (e.g., Spark Magellan2). In

our approach, arbitrary geometrical shapes are translated into

sets of hierarchical grid cells which are used to approximate

geometries and their interiors. To support efficient queries, we

store these approximations in a specialized in-memory radix

tree (trie) named Adaptive Cell Trie (ACT).

Thereby, it enhances the state-of-the-art as follows:

• ACT improves the ratio of true hits by covering the

majority of the interior area of polygons using interior

cells.

• It achieves a lower false positive rate for candidate hits

by using tight approximations of the boundary areas of

polygons.

• Further, ACT can entirely avoid the expensive refinement

phase by refining cells in the boundary areas until a user-

defined precision of up to a few centimeters is guaranteed

(more than enough for GPS data).

• Finally, it outperforms existing implementations by up to

two orders of magnitude, since index lookups only rely on

(a few) basic integer arithmetics and bitwise operations.

Of course, these improvements come at the cost of higher

memory consumption. However, we argue that with the large

main-memory capacities of modern hardware we can afford to

maintain fine-grained index structures purely in main memory.

Depending on the employed grid, the approximations can be

very accurate. Our reference implementation supports very

high resolutions, up to a few centimeters.

To the best of our knowledge, this work is the first

to completely avoid the refinement phase while providing

precision guarantees. Given the facts that the processing of

latitude/longitude coordinates is inherently imprecise due to

their representation as floating point numbers and that GPS

positions (typically obtained by smartphones) approximately

have a 5 m accuracy under open sky [6], we argue that trading

off precision with performance is a valid choice for many

geospatial applications.

2https://github.com/harsha2010/magellan

1

(a) Coverings (b) Super covering

Fig. 1: A covering and an interior covering of an individual

polygon (a) and a super covering of neighborhoods in NYC’s

Jamaica Bay (b) — blue = covering, green = interior

Our approach can also be applied under strict memory

constraints. If ACT cannot guarantee the desired precision

given a certain memory budget, the refinement phase clearly

cannot be omitted. Our solution is to adaptively alter the

trie structure based on the distribution of query points to

provide higher precision where it is actually needed. Thus,

the probability for true hits increases, the number of false

positives is reduced, and consequently, expensive refinements

are avoided. Due to space constraints, in the remainder of this

paper we present the basic functionality of ACT assuming no

memory constraints. We cover adaptive versions of ACT in

our technical report [7].

II. APPROACH

The high level idea is to compute fine-grained approx-

imations of sets of polygons and store them in ACT, a

specialized in-memory radix tree. Our index is parameterized

with an application-dependent precision bound3 that must be

guaranteed.

We begin by computing approximations of individual poly-

gons. Figure 1a shows a covering and an interior covering

of a polygon marked in blue and green, respectively. A point

contained in a covering cell is either within or outside of the

polygon while points that match interior cells are known to

be within the polygon (true hits). The cell marked with 1 is

one of the largest covering cells and only minimally intersects

the polygon. Any point contained in this cell has at most a

distance of
√
2 ∗ a (with a being the side length of the cell)

to the polygon.

To avoid expensive PIP tests, we can treat all points con-

tained in covering cells as (approximate) hits. Thereby, we

introduce false positives. However, as described above, the

distance of false positives from the polygon is bounded by the

diagonal of the largest covering cell. Thus, to satisfy a desired

precision, we can refine the largest covering cells until they

are sufficiently small.

In our implementation, we use Google S2 to compute

the individual coverings. Note that our approach does not

depend on S2 and in fact works with any other quadtree-

based hierarchical grid where each (implicit) quadtree node [8]

corresponds to a geographical area (space partitioning). For

our approach to work, each quadtree node needs to be uniquely

3The maximum distance between the partners of a false positive join pair.

 ...7

0 1 255

 ...8

0 1

 ...7

0 1

1

255255

1,2

(a) Adaptive Cell Trie

offset true candidate

0 {5} {3, 1}
1 {7, 2} {8}
...

(b) Lookup table

Fig. 2: Adaptive Cell Trie and the lookup table. Key parts (bit

sequences) are marked in black and values are marked in blue

(single or double payloads) and red (offsets).

identifiable with a bit sequence that represents the path to the

given node starting from the root. Thereby, any (consistent)

enumeration scheme (e.g., the Hilbert space-filling curve used

by S2 or the Z curve used by Roth et. al [9]) of the four

quadrants is valid. To store these encoded node identifiers in

a trie, we require the identifiers of child nodes to share a

common prefix with their parent node.

A key feature of S2 is that it can represent each cm2 on

Earth using a 64 bit unsigned integer (cell id). We refer the

reader to the S2 website4 for more details about the library.

Once the coverings of each polygon have been computed,

we merge these individual coverings into a super covering that

represents all polygons. This step involves removing duplicate

cells and resolving conflicts between overlapping cells. The

latter may require additional refinement steps and potentially

increases the total number of cells.

Figure 1b shows a super covering of neighborhoods in

NYC’s Jamaica Bay. Covering and interior cells are again

marked in blue and green, respectively. Most of the shown

area is either covered by interior cells or by no cells at all.

Only in the unlikely event that a query point hits a blue cell,

we may experience false positives.

Each cell in the super covering references a set of polygons.

A reference consists of a polygon identifier and an interior

flag that indicates whether the cell is a covering or an interior

cell of the respective polygon. To allow for efficient lookups,

we store the cells in ACT and their polygon references in

a separate lookup table. Both data structures are designed

for in-memory processing and are optimized to only cause a

minimal number of cache misses. For performance and space

efficiency reasons, not every indexed cell points to an entry

of the lookup table. In most cases, cells reference one or two

polygons. Therefore, we inline the polygon identifiers in the

trie structure to eliminate additional indirections.

Adaptive Cell Trie: During join processing, we only perform

prefix lookups, i.e., we search for the cell ids that share a

common prefix with the cell id of the query point5 to check

whether the query point is contained in one of the indexed

cells. A radix tree thus is the ideal data structure for our needs.

For example, it is more space-efficient than a vector, since it

4http://s2geometry.io/
5The query point is translated into a cell on the most fine-grained grid level.

avoids redundantly storing common prefixes (in a trie, the path

to a leaf node implicitly defines the key). Likewise, lookups

are in O(k) with k being the key length as opposed to the

O(log n) runtime complexity of binary search that could be

used on a sorted vector. In contrast to a search in a binary tree,

a search in a radix tree is comparison-free. This means that

we do not compare the value of the search key to the value(s)

stored in the current node. We only need to extract the relevant

bits of the search key and jump to the corresponding offset.

We refer the reader to the work of Zäschke et al. for another

example of storing cells in a trie structure [10].

Since we are interested in being highly selective and there-

fore need to index many cells, the radix tree usually exceeds

cache size (cf., Section III). Thus, traversing it potentially

results in many cache misses.

Let kavg be the average key length and f be the fanout

of the tree. Then the average costs cavg of a lookup can be

estimated as follows:

cavg = ⌈kavg/log2(f)⌉ * costs per node access

The number of node accesses is bounded by the maximum

key length kmax , which is 60 when using 30 quadtree levels

(like in our implementation).

ACT uses a default fanout of 256 (= 8 bits). Thus, each level

in the tree represents four grid levels (each level is encoded

with two bits). This has the side effect that we can only index

cells at certain levels.

Let g be the cell level granularity of the tree. Then the

following holds for indexed cells:

levelcell mod g = 0

Thus, we need to denormalize6 cells upon insertion and

replicate their payloads.

While a fanout of 256 results in sparsely occupied trie

nodes and thus in a high space consumption, it allows for

efficient lookups as it reduces the height of the trie to kmax/g.

With f = 256, the maximum number of node accesses is

⌈60/log2(256)⌉ = 8. In practice, a lower kmax is often

sufficient. For example, kmax = 48 allows for indexing cells

up to level 24 which limits the error of false positives to less

than 1 m (in our implementation) and reduces the number of

maximum node accesses to 6.

Figure 2a illustrates the structure of ACT. Values (payloads

or offsets) can be found in any node at any level of the tree.

Every node consists of a fixed-sized array of 256 entries of 8

byte pointers. These pointers are tagged. By default, all entries

point to a sentinel node indicating a false hit. Such a tagged

entry can be:

• An 8 byte pointer to a child or the sentinel node

• An inlined payload (a 31 bit value)

• Two inlined payloads (two 31 bit values)

• An offset (a 31 bit value) into a lookup table indicating

that there are at least three polygon references

6Denormalizing a cell to a given level means replacing the cell with all of
its descendant cells at that level.

We use the two least significant bits of the 8 byte pointer to

differentiate between these four possibilities. For an inlined

payload, we differentiate between a true hit and a candidate

hit using the least significant bit of the 31 bit payload. Thus,

we can effectively only store 30 bit payloads (i.e., index up

to 230 polygons).

Lookup table: When a cell references more than two poly-

gons, the tree contains an offset into a lookup table. Cells often

reference the same set of polygons. To avoid redundancy, we

therefore only store unique polygon reference sets. Figure 2b

shows an example of a lookup table. The reference sets are

split into two parts, a set with true hits and a set with

candidate hits. Both sets contain polygon identifiers. When

a cell references at most two polygons, we inline its payloads

into the tree (as described above). The lookup table is encoded

as a single 32 bit unsigned integer array. The offsets stored in

the tree are simply offsets into that array. Each encoded entry

contains the number of true hits followed by the true hits, the

number of candidate hits, and the candidate hits.

III. EVALUATION

We evaluate our approach on a server-class machine that

is equipped with two 14-core Intel Xeon E5-2680 v4 CPUs

and 256 GB DDR4 RAM. All experiments are conducted on

a single socket to eliminate NUMA effects. We join 1.23 B

points from the NYC taxi dataset7 against NYC’s boroughs (5

polygons), neighborhoods (289 polygons), and census blocks

(39,184 polygons) and count the number of points per poly-

gon. While there are only five boroughs, their polygons are

significantly more complex. We use GCC version 5.4.0 with

O3 and march=core-avx2 flags in all experiments.

As a baseline of comparison, we index the MBRs of the

polygons in the boost R-tree (1.60.0) and measure its lookup

performance without refining candidates. For each returned

candidate, we simply increase the counter of the respective

polygon. We use the splitting strategy rstar with a maximum

of 8 elements per node which performs best in all workloads.

The R-tree consumes 376 bytes, 27.9 kB, and 3.49 MB for the

boroughs, neighborhoods, and census blocks dataset, respec-

tively. Note that this approach does not guarantee any precision

and only serves as a baseline for lookup performance of in-

memory spatial indexes.

The performance of our approach is dominated by the costs

for the ACT node accesses and the aggregation (counting

the number of points per polygon). To better understand the

results, we therefore first analyze the space consumption of

our index.

Table I shows different metrics of our index for the three

polygon datasets with 60 m, 15 m, and 4 m precision. While

the 60 m indexes of the boroughs and neighborhoods datasets

fit into the cache, all other indexes significantly exceed cache

size. Note that even when the number of indexed cells in-

creases, the size of ACT does not necessarily increase. This

is an artifact of the high fanout of our radix tree. Since we

7http://www.nyc.gov/html/tlc/html/about/trip record data.shtml

TABLE I: Metrics of our index

boroughs neighborhoods census

precision [m] 60 15 4 60 15 4 60 15 4

indexed cells [M] 0.08 1.27 20.7 0.11 0.79 13.2 6.08 6.52 34.6

ACT [MB] 1.39 168 168 25.3 139 139 1162 1205 1205

lookup table [MB] 0.00 0.00 0.00 0.01 0.01 0.01 1.33 1.33 1.41

build individual coverings [s] 0.14 1.06 15.6 0.07 0.17 1.75 0.94 0.96 2.92

build super covering [s] 0.08 1.14 16.8 0.18 0.91 10.9 12.7 12.8 39.0

175178182

6662.3
68.7

2325.125

0

50

100

150

200

boroughs neighborhoods census

th
ro

u
g

h
p

u
t

in
 M

 p
o

in
ts

/s

ACT−60m ACT−15m ACT−4m

Fig. 3: Single-threaded throughput of our approach with vary-

ing precision for the three polygon datasets. The dashed lines

indicate the lookup performance of the boost R-tree.

are addressing the case of static polygons, we only minimally

optimized the build phase in our implementation. While the

computation of the individual coverings is parallelized over the

number of polygons, the construction of the super covering is

performed serially.

Figure 3 shows the single-threaded throughput of our

approach with varying precision compared to the baseline

(dashed lines). ACT-60m achieves a throughput of 182 M

points/s for the boroughs dataset. With a higher number

of polygons in the neighborhoods and census datasets, the

throughput of ACT-60m decreases.

The more precise indexes ACT-15m and ACT-4m show

similar performance numbers. The reason for this is that the

refinement process (i.e., increasing the precision of an index)

only affects cells in the boundary areas. Query points are

unlikely to hit these cells in contrast to large (coarse-grained)

interior cells which are indexed in upper (cached) ACT nodes

(due to their short cell ids).

Compared to the baseline, ACT-4m achieves a 3.41x, 5.84x,

and 9.95x higher performance for the boroughs, neighbor-

hoods, and census blocks dataset, respectively. The fact that

this factor increases for the larger datasets shows that our

approach scales better with the number of polygons.

Finally, we evaluate the scalability of our technique. We use

ACT-4m for this experiment since it significantly exceeds the

cache size of our evaluation machine for all datasets. Figure 4

shows the results. Our approach scales almost linearly for all

three datasets with the number of physical cores and benefits

from hyperthreading. The fact that an oversubscription of cores

has a positive performance impact shows that our technique is

●

●

●

●

●
●

64

256

1024

1 2 4 8 16 32

number of threads (log scale)

th
ro

u
g

h
p

u
t

in
 M

 p
o

in
ts

/s
 (

lo
g

 s
c
a

le
) ● boroughs neighborhoods census

Fig. 4: Scalability of our approach with 4 m precision with a

peak throughput of 2.17 B points/s for boroughs

bound by memory access latencies and having more threads

than physical cores can hide these latencies.

IV. CONCLUSIONS

We have presented an approximate geospatial join that guar-

antees a user-defined precision. Our technique uses a quadtree-

based hierarchical grid to approximate polygons represented

by a specialized radix tree. We have shown that it is possible

to refine the index up to a user-defined precision and identify

all join partners in the filter phase.

ACKNOWLEDGMENTS

This work has been sponsored by the German Federal Ministry of Educa-
tion and Research (BMBF) grant FASTDATA 01IS12057. This work is further
part of the TUM Living Lab Connected Mobility (TUM LLCM) project and
has been funded by the Bavarian Ministry of Economic Affairs and Media,
Energy and Technology (StMWi) through the Center Digitisation.Bavaria, an
initiative of the Bavarian State Government.

REFERENCES

[1] E. H. Jacox and H. Samet, “Spatial join techniques,” ACM Trans.
Database Syst., vol. 32, no. 1, p. 7, 2007.

[2] T. Brinkhoff, H. Kriegel, R. Schneider, and B. Seeger, “Multi-step
processing of spatial joins,” in Proc. of SIGMOD, 1994, pp. 197–208.

[3] A. Klinger, “Patterns and search statistics,” in Optimizing methods in
statistics. Elsevier, 1971, pp. 303–337.

[4] G. M. Hunter and K. Steiglitz, “Operations on images using quad trees,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 1, no. 2, pp. 145–153, 1979.

[5] K. V. R. Kanth and S. Ravada, “Efficient processing of large spatial
queries using interior approximations,” in Proc. of SSTD, 2001, pp. 404–
424.

[6] F. van Diggelen and P. Enge, “The worlds first gps mooc and worldwide
laboratory using smartphones,” in Proc. of ION GNSS+ 2015, 2015, pp.
361–369.

[7] A. Kipf, H. Lang, V. Pandey, R. A. Persa, P. Boncz, T. Neumann, and
A. Kemper, “Adaptive geospatial joins for modern hardware,” arXiv
preprint arXiv:1802.09488, 2018.

[8] I. Gargantini, “An effective way to represent quadtrees,” Commun. ACM,
vol. 25, no. 12, pp. 905–910, 1982.

[9] J. Roth, “The extended split index to efficiently store and retrieve spatial
data with standard databases,” in Proc. of IADIS, 2009, pp. 85–92.

[10] T. Zäschke, C. Zimmerli, and M. C. Norrie, “The ph-tree: a space-
efficient storage structure and multi-dimensional index,” in Proc. of
SIGMOD, 2014, pp. 397–408.

