
VLDB Journal manuscript No.
(will be inserted by the editor)

Query Optimization Through the Looking Glass, and What We Found
Running the Join Order Benchmark

Viktor Leis · Bernhard Radke · Andrey Gubichev · Atanas Mirchev · Peter Boncz ·
Alfons Kemper · Thomas Neumann

Received: date / Accepted: date

Abstract Finding a good join order is crucial for query per-
formance. In this paper, we introduce the Join Order Bench-
mark (JOB) that works on real-life data riddled with corre-
lations and introduces 113 complex join queries. We exper-
imentally revisit the main components in the classic query
optimizer architecture using a complex, real-world data set
and realistic multi-join queries. For this purpose, we de-
scribe cardinality-estimate injection and extraction techniques
that allow us to compare the cardinality estimators of mul-
tiple industrial SQL implementations on equal footing, and
to characterize the value of having perfect cardinality es-
timates. Our investigation shows that all industrial-strength
cardinality estimators routinely produce large errors: though
cardinality estimation using table samples solves the prob-
lem for single-table queries, there are still no techniques in

Viktor Leis
Technische Universität München, Garching, Germany
E-mail: leis@in.tum.de

Bernhard Radke
Technische Universität München, Garching, Germany
E-mail: radke@in.tum.de

Andrey Gubichev
Technische Universität München, Garching, Germany
E-mail: gubichev@in.tum.de

Atanas Mirchev
Technische Universität München, Garching, Germany
E-mail: mirchev@in.tum.de

Peter Boncz
CWI, Amsterdam, The Netherlands
E-mail: p.boncz@cwi.nl

Alfons Kemper
Technische Universität München, Garching, Germany
E-mail: kemper@in.tum.de

Thomas Neumann
Technische Universität München, Garching, Germany
E-mail: neumann@in.tum.de

industrial systems that can deal accurately with join-crossing
correlated query predicates. We further show that while es-
timates are essential for finding a good join order, query
performance is unsatisfactory if the query engine relies too
heavily on these estimates. Using another set of experiments
that measure the impact of the cost model, we find that it
has much less influence on query performance than the car-
dinality estimates. We investigate plan enumeration tech-
niques comparing exhaustive dynamic programming with
heuristic algorithms and find that exhaustive enumeration
improves performance despite the sub-optimal cardinality
estimates. Finally, we extend our investigation from main-
memory only, to also include disk-based query processing.
Here, we find that though accurate cardinality estimation
should be the first priority, other aspects such as modeling
random vs. sequential I/O are also important to predict query
runtime.

1 Introduction

The problem of finding a good join order is one of the most
studied problems in the database field. Fig. 1 illustrates the
classical, cost-based approach, which dates back to System
R [45]. To obtain an efficient query plan, the query optimizer
enumerates some subset of the valid join orders, for example
using dynamic programming. Using cardinality estimates as
its principal input, the cost model then chooses the cheapest
alternative from semantically equivalent plan alternatives.

Theoretically, as long as the cardinality estimations and
the cost model are accurate, this architecture obtains the op-
timal query plan. In reality, cardinality estimates are usually
computed based on simplifying assumptions like uniformity
and independence. In real-world data sets, these assump-
tions are frequently wrong, which may lead to sub-optimal
and sometimes disastrous plans.

2 Viktor Leis et al.

SELECT ...
FROM R,S,T
WHERE ...

v

B

B

R
S

T

HJ

INLcardinality
estimation

cost
model

plan space
enumeration

Fig. 1 Traditional query optimizer architecture.

In this paper we experimentally investigate the three main
components of the classical query optimization architecture
in order to answer the following questions:

– How good are cardinality estimators and when do bad
estimates lead to slow queries?

– How important is an accurate cost model for the overall
query optimization process?

– How large does the enumerated plan space need to be?

To answer these questions, we use a novel methodology that
allows us to isolate the influence of the individual optimizer
components on query performance. Our experiments are con-
ducted using a real-world data set and 113 multi-join queries
that provide a challenging, diverse, and realistic workload.
The main contributions of this paper are:

– We design a challenging workload named Join Order
Benchmark (JOB), which is based on the IMDB data set.
The benchmark is publicly available to facilitate further
research.

– To the best of our knowledge, this work is the first end-
to-end study of the join ordering problem using a real-
world data set and realistic queries.

– By quantifying the contributions of cardinality estima-
tion, the cost model, and the plan enumeration algorithm
on query performance, we provide guidelines for the com-
plete design of a query optimizer. We also show that
many disastrous plans can easily be avoided.

The rest of this paper is organized as follows: We first
discuss important background and the Join Order Bench-
mark in Section 2. Section 3 shows that the cardinality es-
timators of the major relational database systems produce
bad estimates for many realistic queries, in particular for
multi-join queries. The conditions under which these bad es-
timates cause slow performance are analyzed in Section 4.
We show that it very much depends on how much the query
engine relies on these estimates and on how complex the
physical database design is, i.e., the number of indexes avail-
able. Query engines that mainly rely on hash joins and full
table scans, are quite robust even in the presence of large
cardinality estimation errors. The more indexes are avail-
able, the harder the problem becomes for the query opti-
mizer resulting in runtimes that are far away from the op-
timal query plan. Section 5 shows that with the currently-
used cardinality estimation techniques, the influence of cost

model errors is dwarfed by cardinality estimation errors and
that even quite simple cost models seem to be sufficient.
Section 6 investigates different plan enumeration algorithms
and shows that—despite large cardinality misestimates and
sub-optimal cost models—exhaustive join order enumera-
tion improves performance and that using heuristics leaves
performance on the table. To augment the understanding
obtained from aggregated statistics, Section 7 looks at two
particular queries in our workload and analyzes their query
plans. While most experiments use the in-memory setting,
Section 8 repeats the important experiments with a cold cache
and reading data from disk. Related work is discussed in
Section 9.

We conclude this paper by repeating all important in-
sights in Section 10. Time-constrained readers may start with
Section 10, and selectively read the sections referenced there.

2 Background and Methodology

Many query optimization papers ignore cardinality estima-
tion and only study search space exploration for join order-
ing with randomly generated, synthetic queries (e.g., [39,
14]). Other papers investigate only cardinality estimation in
isolation either theoretically (e.g., [22]) or empirically (e.g.,
[53]). As important and interesting both approaches are for
understanding query optimizers, they do not necessarily re-
flect real-world user experience.

The goal of this paper is to investigate the contribution of
all relevant query optimizer components to end-to-end query
performance in a realistic setting. We therefore perform our
experiments using a workload based on a real-world data
set and the widely-used PostgreSQL system. PostgreSQL is
a relational database system with a fairly traditional archi-
tecture making it a good subject for our experiments. Fur-
thermore, its open source nature allows one to inspect and
change its internals. In this section we introduce the Join Or-
der Benchmark, describe all relevant aspects of PostgreSQL,
and present our methodology.

2.1 The IMDB Data Set

Many research papers on query processing and optimization
use standard benchmarks like TPC-H, TPC-DS, or the Star
Schema Benchmark (SSB) [4,43,41]. While these bench-
marks have proven their value for evaluating query engines,
we argue that they are not good benchmarks for the cardi-
nality estimation component of query optimizers. The rea-
son is that in order to easily be able to scale the bench-
mark data, the data generators are using the very same sim-
plifying assumptions (uniformity, independence, principle
of inclusion) that query optimizers make. Real-world data

Query Optimization Through the Looking Glass, and What We Found Running the Join Order Benchmark 3

Table 1 Cardinalities and aliases of the IMDB tables.

table alias cardinality
aka name an 901,343
aka title at 361,472
cast info ci 36,244,344
char name chn 3,140,339
comp cast type cct 4
company name cn 234,997
company type ct 4
complete cast cc 135,086
info type it 113
keyword k 134,170
kind type kt 7
link type lt 18
movie companies mc 2,609,129
movie info mi 14,835,720
movie info idx mi idx 1,380,035
movie keyword mk 4,523,930
movie link ml 29,997
name n 4,167,491
person info pi 2,963,664
role type rt 12
title t 2,528,312

sets, in contrast, are full of correlations and non-uniform
data distributions, which makes cardinality estimation much
harder. Section 3.3 shows that PostgreSQL’s simple cardi-
nality estimator indeed works unrealistically well for TPC-
H. TPC-DS is slightly harder in that it has a number of non-
uniformly distributed (skewed) attributes, but is still too easy
due to not having correlations between attributes.

Therefore, instead of using a synthetic data set, we chose
the Internet Movie Data Base1 (IMDB). It contains a plethora
of information about movies and related facts about actors,
directors, production companies, etc. The data is freely avail-
able2 for non-commercial use as text files. In addition, we
used the open-source imdbpy3 package to transform the text
files into a relational database. The schema and the key/foreign-
key relationships are depicted in Fig. 2. The data set allows
one to answer queries like “Which actors played in movies
released between 2000 and 2005 with ratings above 8?”.
Like most real-world data sets IMDB is full of correlations
and non-uniform data distributions, and is therefore much
more challenging than most synthetic data sets. Our snap-
shot is from May 2013 and occupies 3.6 GB when exported
to CSV files. The cardinalities of all 21 tables of the data set
are listed in Table 1.

2.2 The JOB Queries

Based on the IMDB database, we have constructed analyti-
cal SQL queries. Each query consists of one select-project-

1 http://www.imdb.com/
2 ftp://ftp.fu-berlin.de/pub/misc/movies/database/
3 https://bitbucket.org/alberanid/imdbpy/get/5.0.zip

join block4. Since we focus on join ordering, which arguably
is the most important query optimization problem, we de-
signed the queries to have between 3 and 16 joins, with an
average of 8 joins per query. Query 13d, which is shown in
Fig. 3, is a typical example that computes the ratings and
release dates for all movies produced by US companies.

The join graph of query 13d is shown in Fig. 4. The solid
edges in the graph represent key/foreign key edges (1 : n)
with the arrow head pointing to the primary key side. Dotted
edges represent foreign key/foreign key joins (n : m), which
appear due to transitive join predicates. Our query set con-
sists of 33 query structures, each with 2-6 variants that differ
in their selections only, resulting in a total of 113 queries –
all depicted in detail in Appendix A. Note that depending on
the selectivities of the base table predicates, the variants of
the same query structure have different optimal query plans
that yield widely differing (sometimes by orders of mag-
nitude) runtimes. Also, some queries have more complex
selection predicates than the example (e.g., disjunctions or
substring search using LIKE).

Our queries, which are shown in Appendix A, are “real-
istic” and “ad hoc” in the sense that they answer questions
that may reasonably have been asked by a movie enthusiast.
We also believe that despite their simple SPJ-structure, the
queries model the core difficulty of the join ordering prob-
lem. For cardinality estimators the queries are challenging
due to the significant number of joins and the correlations
contained in the data set. However, we did not try to “trick”
the query optimizer, e.g., by picking attributes with extreme
correlations. Indeed we believe that real-world predicates
on real-world data sets more often than not are correlated
(i.e., not independent). The prevalence of correlated predi-
cates is nicely illustrated by the well-known Honda Accord
example [35], which is often used in IBM papers. We inten-
tionally did not include more complex join predicates like
inequalities or non-surrogate-key predicates, because cardi-
nality estimation for JOB is already quite challenging.

We do not claim that the specific quantitative results ob-
tained using JOB are directly transferable to other work-
loads. On the other hand, we also do not see any excuse
for why the JOB should not run well in a relational database
systems. Thus, we propose JOB for future research in cardi-
nality estimation and join order optimization.

4 Since in this paper we do not model or investigate aggregation,
we omitted GROUP BY from our queries. To avoid communication
from becoming the performance bottleneck for queries with large result
sizes, we wrap all attributes in the projection clause with MIN(...)
expressions when executing (but not when estimating). This change
has no effect on PostgreSQL’s join order selection because its opti-
mizer does not push down aggregations.

http://www.imdb.com/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/
https://bitbucket.org/alberanid/imdbpy/get/5.0.zip

4 Viktor Leis et al.

Fig. 2 IMDB schema with key/foreign-key relationships. Underlined attributes are primary keys. Italic font indicates a foreign-key attribute.

SELECT MIN(cn.name),
MIN(mi.info),
MIN(mi_idx.info)

FROM company_name cn, company_type ct,
info_type it, info_type it2, title t,
kind_type kt, movie_companies mc,
movie_info mi, movie_info_idx mi_idx

WHERE cn.country_code = ’[us]’
AND ct.kind = ’production companies’
AND it.info = ’rating’
AND it2.info = ’release dates’
AND kt.kind = ’movie’
AND .. --(11 join predicates/see Fig. 4)

Fig. 3 Example JOB query 13d computes the ratings and release dates
for all movies produced by US companies.

2.3 PostgreSQL

PostgreSQL’s optimizer follows the traditional textbook ar-
chitecture. Join orders, including bushy trees but excluding
trees with cross products, are enumerated using dynamic
programming. The cost model, which is used to decide which
plan alternative is cheaper, is described in more detail in
Section 5.1. The cardinalities of base tables are estimated
using histograms (quantile statistics), most common values

movie_info_idx

movie_companies

title

info_type

company_type

company_name kind_type

movie_info

info_type

Fig. 4 Join graph for JOB queries 13a, 13b, 13c, 13d.

with their frequencies, and domain cardinalities (distinct value
counts). These per-attribute statistics are computed by the
analyze command using a sample of the relation. For com-
plex predicates, where histograms can not be applied, the
system resorts to ad hoc methods that are not theoretically
grounded (“magic constants”). To combine conjunctive pred-
icates for the same table, PostgreSQL simply assumes inde-
pendence and multiplies the selectivities of the individual
selectivity estimates.

The result sizes of joins are estimated using the formula

Query Optimization Through the Looking Glass, and What We Found Running the Join Order Benchmark 5

|T1 ./x=y T2|=
|T1||T2|

max(dom(x),dom(y))
,

where T1 and T2 are arbitrary expressions and dom(x) is
the domain cardinality of attribute x, i.e., the number of dis-
tinct values of x. This value is the principal input for the join
cardinality estimation. To summarize, PostgreSQL’s cardi-
nality estimator is based on the following assumptions:

– uniformity: all values, except for the most-frequent ones,
are assumed to have the same number of tuples

– independence: predicates on attributes (in the same table
or from joined tables) are independent

– principle of inclusion: the domains of the join keys over-
lap such that the keys from the smaller domain have
matches in the larger domain

The query engine of PostgreSQL takes a physical opera-
tor plan and executes it using Volcano-style interpretation.
The most important access paths are full table scans and
lookups in unclustered B+Tree indexes. Joins can be exe-
cuted using either nested-loop joins (with or without index
lookups), in-memory hash joins, or sort-merge joins where
the sort can spill to disk if necessary. The decision which
join algorithm is used is made by the optimizer and cannot
be changed at runtime.

2.4 Cardinality Extraction and Injection

We loaded the IMDB data set into 5 relational database sys-
tems: PostgreSQL, HyPer, and 3 commercial systems. Next,
we ran the statistics gathering command of each database
system with default settings to generate the database-specific
statistics (e.g., histograms or samples) that are used by the
estimation algorithms. We then obtained the cardinality es-
timates for all intermediate results of our test queries us-
ing database-specific commands (e.g., using the EXPLAIN
command for PostgreSQL). We will later use these estimates
of different systems to obtain optimal query plans (w.r.t. re-
spective systems) and run these plans in PostgreSQL. For
example, the intermediate results of the chain query

σx=5(A) ./A.bid=B.id B ./B.cid=C.id C

are σx=5(A), σx=5(A) ./ B, B ./ C, and σx=5(A) ./ B ./ C.
Additionally, the availability of indexes on foreign keys and
index-nested-loop joins introduces the need for additional
intermediate result sizes. For instance, if there exists a non-
unique index on the foreign key A.bid, it is also necessary to
estimate A ./ B and A ./ B ./C. The reason is that the selec-
tion A.x = 5 can only be applied after retrieving all match-
ing tuples from the index on A.bid, and therefore the system

produces two intermediate results, before and after the se-
lection. Besides cardinality estimates from the different sys-
tems, we also obtain the true cardinality for each intermedi-
ate result by executing SELECT COUNT(*) queries5.

We further modified PostgreSQL to enable cardinality
injection of arbitrary join expressions, allowing its optimizer
to use the estimates of other systems (or the true cardinali-
ties) instead of its own. This allows one to directly mea-
sure the influence of cardinality estimates from different sys-
tems on query performance. Note that IBM DB2 supports
a limited form of user control over the estimation process
by allowing users to explicitly specify the selectivities of
predicates. However, selectivity injection cannot fully model
inter-relation correlations and is therefore less general than
the capability of injecting cardinalities.

2.5 Experimental Setup

The cardinalities of the commercial systems were obtained
using a laptop running Windows 7. All performance experi-
ments were performed on a server with two Intel Xeon X5570
CPUs (2.9 GHz) and a total of 8 cores running PostgreSQL
9.4 on Linux. Version 9.4 does not support intra-query par-
allelism and since we do not execute multiple queries at the
same time, only a single core was used in all experiments.
The system has 64 GB of RAM, which means that the en-
tire IMDB database is fully cached in RAM. Intermediate
query processing results (e.g., hash tables) also easily fit into
RAM, unless a very bad plan with extremely large interme-
diate results is chosen.

We set the memory limit per operator (work mem) to
2 GB, which results in much better performance due to the
more frequent use of in-memory hash joins instead of ex-
ternal memory sort-merge joins. Additionally, we set the
buffer pool size (shared buffers) to 4 GB and the size
of the operating system’s buffer cache used by PostgreSQL
(effective cache size) to 32 GB. For PostgreSQL it
is generally recommended to use OS buffering in addition to
its own buffer pool and keep most of the memory on the OS
side. The defaults for these three settings are very low (MBs,
not GBs), which is why increasing them is generally rec-
ommended. Finally, by increasing the geqo threshold
parameter to 18 we forced PostgreSQL to always use dy-
namic programming instead of falling back to a heuristic for
queries with more than 12 joins.

3 Cardinality Estimation

Cardinality estimates are the most important ingredient for
finding a good query plan. Even exhaustive join order enu-

5 For our workload it was still feasible to do this naı̈vely. For larger
data sets the approach by Chaudhuri et al. [8] may become necessary.

6 Viktor Leis et al.

Table 2 Q-errors for base table selections.

median 90th 95th max
PostgreSQL 1.00 2.08 6.10 207
DBMS A 1.01 1.33 1.98 43.4
DBMS B 1.00 6.03 30.2 104000
DBMS C 1.06 1677 5367 20471
HyPer 1.02 4.47 8.00 2084

meration and a perfectly accurate cost model are worthless
unless the cardinality estimates are (roughly) correct. It is
well known, however, that cardinality estimates are some-
times wrong by orders of magnitude, and that such errors are
usually the reason for slow queries. In this section, we ex-
perimentally investigate the quality of cardinality estimates
in relational database systems by comparing the estimates
with the true cardinalities.

3.1 Estimates for Base Tables

To measure the quality of base table cardinality estimates,
we use the q-error, which is the factor by which an esti-
mate differs from the true cardinality. For example, if the
true cardinality of an expression is 100, the estimates of 10
or 1000 both have a q-error of 10. Using the ratio instead
of an absolute or quadratic difference captures the intuition
that for making planning decisions only relative differences
matter. The q-error furthermore provides a theoretical up-
per bound for the plan quality if the q-errors of a query are
bounded [37].

Table 2 shows the 50th, 90th, 95th, and 100th percentiles
of the q-errors for the 629 base table selections in our work-
load. The median q-error is close to the optimal value of 1
for all systems, indicating that the majority of all selections
are estimated correctly. However, all systems produce mis-
estimates for some queries, and the quality of the cardinality
estimates differs strongly between the different systems.

Looking at the individual selections, we found that
DBMS A and HyPer can usually predict even complex pred-
icates like substring search using LIKE very well. To esti-
mate the selectivities for base tables HyPer uses a random
sample of 1000 rows per table and applies the predicates on
that sample6. This allows one to get accurate estimates for
arbitrary base table predicates as long as the selectivity is not
too low. When we looked at the selections where DBMS A
and HyPer produce errors above 2, we found that most of
them have predicates with extremely low true selectivities
(e.g., 10−5 or 10−6). This routinely happens when the selec-
tion yields zero tuples on the sample, and the system falls
back on an ad-hoc estimation method (“magic constants”).

6 The sample is stored in the DataBlock [26] format, which enables
fast scans (and therefore fast estimation). The sample is (re-)generated
when computing the statistics of a table.

It therefore appears to be likely that DBMS A also uses the
sampling approach.

The estimates of the other systems are worse and seem
to be based on per-attribute histograms, which do not work
well for many predicates and cannot detect (anti-)correlations
between attributes. Note that we obtained all estimates us-
ing the default settings after running the respective statis-
tics gathering tool. Some commercial systems support the
use of sampling for base table estimation, multi-attribute
histograms (“column group statistics”), or ex post feedback
from previous query runs [47]. However, these features are
either not enabled by default or are not fully automatic.

3.2 Estimates for Joins

Let us now turn our attention to the estimation of interme-
diate results for joins, which are more challenging because
sampling or histograms do not work well. Fig. 5 summarizes
over 100,000 cardinality estimates in a single figure. For
each intermediate result of our query set, we compute the
factor by which the estimate differs from the true cardinal-
ity, distinguishing between over- and underestimation. The
graph shows one “boxplot” (note the legend in the bottom-
left corner) for each intermediate result size, which allows
one to compare how the errors change as the number of
joins increases. The vertical axis uses a logarithmic scale
to encompass underestimates by a factor of 108 and overes-
timates by a factor of 104.

Despite the better base table estimates of DBMS A, the
overall variance of the join estimation errors, as indicated
by the boxplot, is similar for all systems with the exception
of DBMS B. For all systems we routinely observe mises-
timates by a factor of 1000 or more. Furthermore, as wit-
nessed by the increasing height of the box plots, the errors
grow exponentially (note the logarithmic scale) as the num-
ber of joins increases [22]. For PostgreSQL 16% of the es-
timates for 1 join are wrong by a factor of 10 or more. This
percentage increases to 32% with 2 joins, and to 52% with 3
joins. For DBMS A, which has the best estimator of the sys-
tems we compared, the corresponding percentages are only
marginally better at 15%, 25%, and 36%.

Another striking observation is that all tested systems—
though DBMS A to a lesser degree—tend to systematically
underestimate the results sizes of queries with multiple joins.
This can be deduced from the median of the error distri-
butions in Fig. 5. For our query set, it is indeed the case
that the intermediate results tend to decrease with an in-
creasing number of joins because more base table selec-
tions get applied. However, the true decrease is less than
the independence assumption used by PostgreSQL (and ap-
parently by the other systems) predicts. Underestimation is
most pronounced with DBMS B, which frequently estimates
1 row for queries with more than 2 joins. The estimates of

Query Optimization Through the Looking Glass, and What We Found Running the Join Order Benchmark 7

PostgreSQL DBMS A DBMS B DBMS C HyPer

1e8

1e6

1e4

1e2

1

1e2

1e4

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
number of joins

←
un

de
re

st
im

at
io

n
[lo

g
sc

al
e]

 o
ve

re
st

im
at

io
n

→

95th percentile

5th percentile

median
75th percentile

25th percentile

Fig. 5 Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distri-
bution of all subexpressions with a particular size (over all queries in the workload).

DBMS A, on the other hand, have medians that are much
closer to the truth, despite their variance being similar to
some of the other systems. We speculate that DBMS A uses
a damping factor that depends on the join size, similar to
how many optimizers combine multiple selectivities. Many
estimators combine the selectivities of multiple predicates
(e.g., for a base relation or for a subexpression with multiple
joins) not by assuming full independence, but by adjusting
the selectivities “upwards”, using a damping factor. The mo-
tivation for this stems from the fact that the more predicates
need to be applied, the less certain one should be about their
independence.

Given the simplicity of PostgreSQL’s join estimation for-
mula (cf. Section 2.3) and the fact that its estimates are nev-
ertheless competitive with the commercial systems, we can
deduce that the current join size estimators are based on the
independence assumption. No system tested was able to de-
tect join-crossing correlations.

Note that this section does not benchmark the query op-
timizers of the different systems. In particular, our results
do not imply that the DBMS B’s optimizer or the resulting
query performance is necessarily worse than that of other
systems, despite larger errors in the estimator. The query
runtime heavily depends on how the system’s optimizer uses
the estimates and how much trust it puts into these numbers.
A sophisticated engine may employ adaptive operators (e.g.,
[5,9]) and thus mitigate the impact of misestimations, while
another engine might have very complex access paths or join
methods that require more accurate estimates. The results
do, however, demonstrate that the state-of-the-art in cardi-
nality estimation is far from perfect and its brittleness is fur-
ther illustrated by the following anecdote: In PostgreSQL,
we observed different cardinality estimates of the same sim-
ple 2-join query depending on the syntactic order of the re-

lations in the from and/or the join predicates in the where
clauses! Simply by swapping predicates or relations, we ob-
served the estimates of 3, 9, 128, or 310 rows for the same
query (with a true cardinality of 2600)7.

3.3 Estimates for TPC-H

We have stated earlier that cardinality estimation in TPC-
H is a rather trivial task. Fig. 6 substantiates that claim by
showing the distributions of PostgreSQL estimation errors
for 3 of the larger TPC-H queries and 4 of our JOB queries.
Note that in the figure we report estimation errors for indi-
vidual queries (not for all queries like in Fig. 5). Clearly, the
TPC-H query workload does not present many hard chal-
lenges for cardinality estimators. In contrast, our workload
contains queries that routinely lead to severe overestimation
and underestimation errors, and hence can be considered a
challenging benchmark for cardinality estimation.

3.4 Better Statistics for PostgreSQL

As mentioned in Section 2.3, the most important statistic for
join estimation in PostgreSQL is the number of distinct val-
ues. These statistics are estimated from a fixed-sized sam-
ple, and we have observed severe underestimates for large
tables. To determine if the misestimated distinct counts are

7 The reasons for this surprising behavior are two implementation
artifacts: First, estimates that are less than 1 are rounded up to 1, mak-
ing subexpression estimates sensitive to the (usually arbitrary) join
enumeration order, which is affected by the from clause. The second
is a consistency problem caused by incorrect domain sizes of predicate
attributes in joins with multiple predicates.

8 Viktor Leis et al.

JOB 6a JOB 13a JOB 13d JOB 16d JOB 17b JOB 25c TPC-H 5 TPC-H 8 TPC-H 10

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

1e4

1e2

1

1e2

number of joins

 ←
 u

nd
er

es
tim

at
io

n

 [l
og

 s
ca

le
]

ov
er

es
tim

at
io

n
→

Fig. 6 PostgreSQL cardinality estimates for 6 JOB queries and 3 TPC-H queries.

PostgreSQL PostgreSQL (true distinct)

1e4

1e2

1

0 1 2 3 4 5 6 0 1 2 3 4 5 6
number of joins

←
 u

nd
er

es
tim

at
io

n

[lo
g

sc
al

e]

Fig. 7 PostgreSQL cardinality estimates based on the default distinct
count estimates, and the true distinct counts.

the underlying problem for cardinality estimation, we com-
puted these values precisely and replaced the estimated with
the true values.

Fig. 7 shows that the true distinct counts slightly im-
prove the variance of the errors. Surprisingly, however, the
trend to underestimate cardinalities becomes even more pro-
nounced. The reason is that the original, underestimated dis-
tinct counts resulted in higher estimates, which, acciden-
tally, are closer to the truth. This is an example for the prover-
bial “two wrongs that make a right”, i.e., two errors that
(partially) cancel each other out. Such behavior makes ana-
lyzing and fixing query optimizer problems very frustrating
because fixing one query might break another.

4 When Do Bad Cardinality Estimates Lead to Slow
Queries?

While the large estimation errors shown in the previous sec-
tion are certainly sobering, large errors do not necessarily
lead to slow query plans. For example, the misestimated ex-
pression may be cheap in comparison with other parts of the

query, or the relevant plan alternative may have been mis-
estimated by a similar factor thus “canceling out” the origi-
nal error. In this section we investigate the conditions under
which bad cardinalities are likely to cause slow queries.

One important observation is that query optimization is
closely intertwined with the physical database design: the
type and number of indexes heavily influence the plan search
space, and therefore affects how sensitive the system is to
cardinality misestimates. We therefore start this section with
experiments using a relatively robust physical design with
only primary key indexes and show that in such a setup the
impact of cardinality misestimates can largely be mitigated.
After that, we demonstrate that for more complex configura-
tions with many indexes, cardinality misestimation makes it
much more likely to miss the optimal plan by a large margin.

4.1 The Risk of Relying on Estimates

To measure the impact of cardinality misestimation on query
performance we injected the estimates of the different sys-
tems into PostgreSQL and then executed the resulting plans.
Using the same query engine allows one to compare the car-
dinality estimation components in isolation by (largely) ab-
stracting away from the different query execution engines.
Additionally, we inject the true cardinalities, which com-
putes the—with respect to the cost model—optimal plan.
We group the runtimes based on their slowdown w.r.t. the
optimal plan, and report the distribution in the following ta-
ble, where each column corresponds to a group of slowdown
factors (the group [2,10), for example, contains all queries
where the slowdown is between 2 and 10):

Query Optimization Through the Looking Glass, and What We Found Running the Join Order Benchmark 9

<0.9 [0.9,1.1) [1.1,2) [2,10) [10,100) >100
PostgreSQL 1.8% 38% 25% 25% 5.3% 5.3%
DBMS A 2.7% 54% 21% 14% 0.9% 7.1%
DBMS B 0.9% 35% 18% 15% 7.1% 25%
DBMS C 1.8% 38% 35% 13% 7.1% 5.3%
HyPer 2.7% 37% 27% 19% 8.0% 6.2%

A small number of queries become slightly slower us-
ing the true instead of the erroneous cardinalities. This ef-
fect is caused by cost model errors, which we discuss in
Section 5. However, as expected, the vast majority of the
queries are slower when estimates are used. Using DBMS
A’s estimates, 78% of the queries are less than 2× slower
than using the true cardinalities, while for DBMS B this is
the case for only 53% of the queries. This corroborates the
findings about the relative quality of cardinality estimates in
the previous section. Unfortunately, all estimators occasion-
ally lead to plans that take an unreasonable time and lead
to a timeout. Surprisingly, however, many of the observed
slowdowns are easily avoidable despite the bad estimates as
we show in the following.

When looking at the queries that did not finish in a rea-
sonable time using the estimates, we found that most have
one thing in common: PostgreSQL’s optimizer decides to
introduce a nested-loop join (without an index lookup) be-
cause of a very low cardinality estimate, whereas in reality
the true cardinality is larger. As we saw in the previous sec-
tion, systematic underestimation happens very frequently,
which occasionally results in the introduction of nested-loop
joins.

The underlying reason why PostgreSQL chooses nested-
loop joins is that it picks the join algorithm on a purely cost-
based basis. For example, if the cost estimate is 1,000,000
with the nested-loop join algorithm and 1,000,001 with a
hash join, PostgreSQL will always prefer the nested-loop
algorithm even if there is a equality join predicate, which
allows one to use hashing. Of course, given the O(n2) com-
plexity of nested-loop join and O(n) complexity of hash
join, and given the fact that underestimates are quite fre-
quent, this decision is extremely risky. And even if the es-
timates happen to be correct, any potential performance ad-
vantage of a nested-loop join in comparison with a hash join
is very small, so taking this high risk can only result in a
very small payoff.

Therefore, we disabled nested-loop joins (but not index-
nested-loop joins) in all following experiments. As Fig. 8b
shows, when rerunning all queries without these risky nested-
loop joins, we observed no more timeouts despite using Post-
greSQL’s estimates.

Also, none of the queries performed slower than before
despite having less join algorithm options, confirming our
hypothesis that nested-loop joins (without indexes) seldom
have any upside. However, this change does not solve all

default + no nested-loop join + rehashing

(a) (b) (c)

0%

20%

40%

60%

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

Fig. 8 Slowdown of queries using PostgreSQL estimates w.r.t. using
true cardinalities. Only primary key indexes are enabled and we mod-
ified the query engine: (a) shows the performance of PostgreSQL 9.4,
(b) disables nested-loop joins that do not use indexes, and (c) addition-
ally enables dynamic rehashing of the hash tables that are used in hash
joins.

problems, as there are still a number of queries that are more
than a factor of 10 slower (cf., red bars) in comparison with
the true cardinalities.

When investigating the reason why the remaining queries
still did not perform as well as they could, we found that
most of them contain a hash join where the size of the build
input is underestimated. PostgreSQL up to and including
version 9.4 chooses the size of the in-memory hash table
based on the cardinality estimate. Underestimates can lead
to undersized hash tables with very long collisions chains
and therefore bad performance. The upcoming version 9.5
resizes the hash table at runtime based on the number of
rows actually stored in the hash table. We backported this
patch to our code base, which is based on 9.4, and enabled
it for all remaining experiments. Fig. 8c shows the effect of
this change in addition with disabled nested-loop joins. Less
than 4% of the queries are off by more than 2× in compari-
son with the true cardinalities.

To summarize, being “purely cost-based”, i.e., not tak-
ing into account the inherent uncertainty of cardinality es-
timates and the asymptotic complexities of different algo-
rithm choices, can lead to very bad query plans. Algorithms
that seldom offer a large benefit over more robust algorithms
should not be chosen. Furthermore, query processing algo-
rithms should, if possible, automatically determine their pa-
rameters at runtime instead of relying on cardinality esti-
mates.

4.2 Good Plans Despite Bad Cardinalities

The query runtimes of plans with different join orders often
vary by many orders of magnitude (cf. Section 6.1). Nev-
ertheless, when the database has only primary key indexes,
as in all experiments so far, and once nested-loop joins have
been disabled and rehashing has been enabled, the perfor-

10 Viktor Leis et al.

PK indexes PK + FK indexes

(a) (b)

0%

20%

40%

60%

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

Fig. 9 Slowdown of queries using PostgreSQL estimates w.r.t. using
true cardinalities. Nested-loop joins that do not use indexes are dis-
abled and rehashing is enabled, i.e., plot (a) is the same as Fig. 8(c).
Adding foreign key indexes makes finding optimal plans much more
difficult.

mance of most queries is close to the one obtained using the
true cardinalities. Given the bad quality of the cardinality es-
timates, we consider this to be a surprisingly positive result.
It is worthwhile to reflect on why this is the case.

The main reason is that without foreign key indexes,
most large (“fact”) tables need to be scanned using full ta-
ble scans, which dampens the effect of different join orders.
The join order still matters, but the results indicate that the
cardinality estimates are usually good enough to rule out all
disastrous join order decisions like joining two large tables
using an unselective join predicate. Another important rea-
son is that in main memory picking an index-nested-loop
join where a hash join would have been faster is never disas-
trous. With all data and indexes fully cached, we measured
that the performance advantage of a hash join over an index-
nested-loop join is at most 5× with PostgreSQL and 2×
with HyPer. Obviously, when the index must be read from
disk, random IO may result in a much larger factor. There-
fore, the main-memory setting is much more forgiving.

4.3 Complex Access Paths

So far, all query executions were performed on a database
with indexes on primary key attributes only. To see if the
query optimization problem becomes harder when there are
more indexes, we additionally indexed all foreign key at-
tributes. Fig. 9b shows the effect of additional foreign key
indexes. We see large performance differences with 40% of
the queries being slower by a factor of 2! Note that these re-
sults do not mean that adding more indexes decreases perfor-
mance (although this can occasionally happen). Indeed over-
all performance generally increases significantly, but the more
indexes are available the harder the job of the query opti-
mizer becomes.

4.4 Join-Crossing Correlations

There is consensus in our community that estimation of in-
termediate result cardinalities in the presence of correlated
query predicates is a frontier in query optimization research.
Many industrial query optimizers keep only individual col-
umn statistics (e.g., histograms) and use the independence
assumption for combining predicates on multiple columns.
There has been previous work in detecting correlations be-
tween value distributions of different columns in the same
table, for which then multi-column histograms or samples
can be kept, e.g. [20]. The JOB workload studied in this pa-
per consists of real-world data and its queries contain many
correlated predicates. Our experiments that focus on single-
table subquery cardinality estimation quality (cf. Table 2)
show that systems that keep table samples (HyPer and pre-
sumably DBMS A) can achieve almost perfect estimation
results, even for correlated predicates (inside the same ta-
ble). As such, the cardinality estimation research challenge
appears to lie in queries where the correlated predicates in-
volve columns from different tables, connected by joins. These
we call “join-crossing correlations”. Such correlations fre-
quently occur in the IMDB data set, e.g., actors born in Paris
are likely to play in French movies.

Given these join-crossing correlations one could wonder
if there exist complex access paths that allow one to exploit
these. One example relevant here despite its original set-
ting in XQuery processing is ROX [23]. It studied runtime
join order query optimization in the context of DBLP co-
authorship queries that count how many Authors had pub-
lished Papers in three particular venues, out of many. These
queries joining the author sets from different venues clearly
have join-crossing correlations, since authors who publish in
VLDB are typically database researchers, likely to also pub-
lish in SIGMOD, but not—say—in Nature.

In the DBLP case, Authorship is a n : m relationship
that links the relation Authors with the relation Papers.
The optimal query plans in [23] used an index-nested-loop
join, looking up each author into Authorship.author (the
leading column of the indexed primary key of Authorship)
followed by a filter restriction on Paper.venue, which
needs to be looked up with yet another join. This fil-
ter on venue would normally have to be calculated after
these two joins. However, the physical design of [23] stored
Authorship partitioned by Paper.venue.8 This partition-
ing has startling effects: instead of one Authorship table
and primary key index, one physically has many, one for
each venue partition. This means that by accessing the right

8 In fact, rather than relational table partitioning, there was a sepa-
rate XML document per venue, e.g., separate documents for SIGMOD,
VLDB, Nature and a few thousand more venues. Storage in a sep-
arate XML document has roughly the same effect on access paths as
partitioned tables.

Query Optimization Through the Looking Glass, and What We Found Running the Join Order Benchmark 11

partition, the filter is implicitly enforced (for free), before the
join happens. This specific physical design therefore causes
the optimal plan to be as follows: first join the smallish
authorship set from SIGMOD with the large set for Nature
producing almost no result tuples, making the subsequent
nested-loops index lookup join into VLDB very cheap. If the
tables would not have been partitioned, index lookups from
all SIGMOD authors into Authorships would first find all
co-authored papers, of which the great majority is irrele-
vant because they are from database venues, and were not
published in Nature. Without this partitioning, there is no
way to avoid this large intermediate result, and there is no
query plan that comes close to the partitioned case in effi-
ciency: even if cardinality estimation would be able to pre-
dict join-crossing correlations, there would be no physical
way to profit from this knowledge.

The lesson to draw from this example is that the effects
of query optimization are always gated by the available op-
tions in terms of access paths. This is similar to our ex-
periments with and without indexes on foreign keys, where
the latter, richer, scenario is more challenging for optimiz-
ers. Having a partitioned index on a join-crossing correlated
predicate as in [23] is a non-obvious physical design al-
ternative which even modifies the schema by bringing in
a join-crossing column (Paper.venue) as partitioning key
of a table (Authorship). We did not try to apply such op-
timizations in our IMDB experiments, because a phyiscal
design similar to [23] would help only a minority of the
join-crossing correlations in our 113 queries, and this type of
indexing is by no means common practice. The partitioned
DBLP set-up is just one example of how one particular join-
crossing correlation can be handled, rather than a generic
solution. Join-crossing correlations remain an open frontier
for database research involving the interplay of physical de-
sign, query execution and query optimization. In our JOB
experiments we do not attempt to chart this mostly unknown
space, but rather characterize the impact of (join-crossing)
correlations on the current state-of-the-art of query process-
ing, restricting ourselves to standard PK and FK indexing.

5 Cost Models

The cost model guides the selection of plans from the search
space. The cost models of contemporary systems are sophis-
ticated software artifacts that are resulting from 30+ years of
research and development, mostly concentrated in the area
of traditional disk-based systems. PostgreSQL’s cost model,
for instance, is comprised of over 4000 lines of C code, and
takes into account various subtle considerations, e.g., it takes
into account partially correlated index accesses, interesting
orders, tuple sizes, etc. It is interesting, therefore, to evaluate
how much a complex cost model actually contributes to the
overall query performance.

First, we will experimentally establish the correlation
between the PostgreSQL cost model—a typical cost model
of a disk-based DBMS—and the query runtime. Then, we
will compare the PostgreSQL cost model with two other cost
functions. The first cost model is a tuned version of Post-
greSQL’s model for a main-memory setup where all data
fits into RAM. The second cost model is an extremely sim-
ple function that only takes the number of tuples produced
during query evaluation into account. We show that, unsur-
prisingly, the difference between the cost models is dwarfed
by the cardinality estimates errors. We conduct our experi-
ments on a database instance with foreign key indexes. We
begin with a brief description of a typical disk-oriented com-
plex cost model, namely the one of PostgreSQL.

5.1 The PostgreSQL Cost Model

PostgreSQL’s disk-oriented cost model combines CPU and
I/O costs with certain weights. Specifically, the cost of an
operator is defined as a weighted sum of the number of
accessed disk pages (both sequential and random) and the
amount of data processed in memory. The cost of a query
plan is then the sum of the costs of all operators. The de-
fault values of the weight parameters used in the sum (cost
variables) are set by the optimizer designers and are meant
to reflect the relative difference between random access, se-
quential access and CPU costs.

The PostgreSQL documentation contains the following
note on cost variables: “Unfortunately, there is no well-defined
method for determining ideal values for the cost variables.
They are best treated as averages over the entire mix of
queries that a particular installation will receive. This means
that changing them on the basis of just a few experiments is
very risky.” For a database administrator, who needs to actu-
ally set these parameters these suggestions are not very help-
ful; no doubt most will not change these parameters. This
comment is of course, not PostgreSQL-specific, since other
systems feature similarly complex cost models. In general,
tuning and calibrating cost models (based on sampling, vari-
ous machine learning techniques etc.) has been a subject of a
number of papers (e.g, [51,32]). It is important, therefore, to
investigate the impact of the cost model on the overall query
engine performance. This will indirectly show the contribu-
tion of cost model errors on query performance.

5.2 Cost and Runtime

The main virtue of a cost function is its ability to predict
which of the alternative query plans will be the fastest, given
the cardinality estimates; in other words, what counts is its
correlation with the query runtime. The correlation between
the cost and the runtime of queries in PostgreSQL is shown

12 Viktor Leis et al.

PostgreSQL estimates true cardinalities

1

1e2

1e4

1

1e2

1e4

1

1e2

1e4

standard cost m
odel

tuned cost m
odel

sim
ple cost m

odel

1e+05 1e+07 1e+03 1e+05 1e+07
cost [log scale]

ru
nt

im
e

[m
s]

 [l
og

 s
ca

le
]

(a) (b)

(c) (d)

(e) (f)

Fig. 10 Predicted cost vs. runtime for different cost models. Cardi-
nality estimation has a much larger effect on query performance than
the cost model and even a simple cost model seems sufficient for in-
memory workloads.

in Fig. 10a. Additionally, we consider the case where the
engine has the true cardinalities injected, and plot the cor-
responding data points in Fig. 10b. For both plots, we fit
the linear regression model (displayed as a straight line) and
highlight the standard error. The predicted cost of a query
correlates with its runtime in both scenarios. Poor cardinal-
ity estimates, however, lead to a large number of outliers
and a very wide standard error area in Fig. 10a. Only using
the true cardinalities makes the PostgreSQL cost model a
reliable predictor of the runtime, as has been observed pre-
viously [51].

Intuitively, a straight line in Fig. 10 corresponds to an
ideal cost model that always assigns (predicts) higher costs
for more expensive queries. Naturally, any monotonically
increasing function would satisfy that requirement, but the
linear model provides the simplest and the closest fit to the
observed data. We can therefore interpret the deviation from
this line as the prediction error of the cost model. Specif-
ically, we consider the absolute percentage error of a cost
model for a query Q: ε(Q) =

|Treal(Q)−Tpred(Q)|
Treal(Q) , where Treal

is the observed runtime, and Tpred is the runtime predicted
by our linear model. Using the default cost model of Post-
greSQL and the true cardinalities, the median error of the
cost model is 38%.

5.3 Tuning the Cost Model for Main Memory

As mentioned above, a cost model typically involves param-
eters that are subject to tuning by the database administra-
tor. In a disk-based system such as PostgreSQL, these pa-
rameters can be grouped into CPU cost parameters and I/O
cost parameters, with the default settings reflecting an ex-
pected proportion between these two classes in a hypotheti-
cal workload.

In many settings the default values are sub-optimal. For
example, the default parameter values in PostgreSQL sug-
gest that processing a tuple is 400x cheaper than reading
it from a page. However, modern servers are frequently
equipped with very large RAM capacities, and in many
workloads the data set actually fits entirely into avail-
able memory (admittedly, the core of PostgreSQL was
shaped decades ago when database servers only had a few
megabytes of RAM). This does not eliminate the page ac-
cess costs entirely (due to buffer manager overhead), but
significantly bridges the gap between the I/O and CPU pro-
cessing costs.

Arguably, the most important change that needs to be
done in the cost model for a main-memory workload is to
decrease the proportion between these two groups. We have
done so by multiplying the CPU cost parameters by a factor
of 509. The results of the workload run with improved pa-
rameters are plotted in the two middle subfigures of Fig. 10.
Comparing Fig. 10b with d, we see that tuning does indeed
improve the correlation between the cost and the runtime.
On the other hand, as is evident from comparing Fig. 10c
and d, parameter tuning improvement is still overshadowed
by the difference between the estimated and the true cardi-
nalities. Note that Fig. 10c features a set of outliers for which
the optimizer has accidentally discovered very good plans
(runtimes around 1 ms) without realizing it (hence very high
costs). This is another sign of “oscillation” in query planning
caused by cardinality misestimates.

In addition, we measure the prediction error ε of the
tuned cost model, as defined in Section 5.2. We observe that
tuning improves the predictive power of the cost model: the
median error decreases from 38% to 30%.

9 We did not run extensive experiments to find the “best” parameter
and do not claim that 50 is the best setting. Our goal is to measure the
effect of adjusting cost parameters into a significantly more accurate
direction to determine how important it is to tune the cost model.

Query Optimization Through the Looking Glass, and What We Found Running the Join Order Benchmark 13

5.4 Are Complex Cost Models Necessary?

As discussed above, the PostgreSQL cost model is quite
complex. Presumably, this complexity should reflect vari-
ous factors influencing query execution, such as the speed
of a disk seek and read, CPU processing costs, etc. In or-
der to find out whether this complexity is actually necessary
in a main-memory setting, we will contrast it with a very
simple cost function Cmm. This cost function is tailored for
the main-memory setting in that it does not model I/O costs,
but only counts the number of tuples that pass through each
operator during query execution:

Cmm(T) =

τ · |R| if T = R∨T = σ(R)
|T |+ |T1|+Cmm(T1)+Cmm(T2) if T = T1 ./

HJ T2

Cmm(T1)+ if T = T1 ./
INL T2,

λ · |T1| ·max(|T1./R|
|T1|

,1) (T2 = R∨T2 = σ(R))

In the formula above R is a base relation, and τ ≤ 1 is
a parameter that discounts the cost of a table scan in com-
parison with joins. The cost function distinguishes between
hash ./HJ and index-nested-loop ./INL joins: the latter scans
T1 and performs index lookups into an index on R, thus
avoiding a full table scan of R. A special case occurs when
there is a selection on the right side of the index-nested-loop
join, in which case we take into account the number of tuple
lookups in the base table index and essentially discard the
selection from the cost computation (hence the multiplier
max(|T1./R|

|T1|
,1)). For index-nested-loop joins we use the con-

stant λ ≥ 1 to approximate by how much an index lookup
is more expensive than a hash table lookup. Specifically, we
set λ = 2 and τ = 0.2. As in our previous experiments, we
disable nested-loop joins when the inner relation is not an
index lookup.

The results of our workload run with Cmm as a cost func-
tion are depicted in Fig. 10e and f. We see that even our triv-
ial cost model is able to fairly accurately predict the query
runtime using the true cardinalities. To quantify this argu-
ment, we measure the improvement in the runtime achieved
by changing the cost model for true cardinalities: In terms of
the geometric mean over all queries, our tuned cost model
yields 41% faster runtimes than the standard PostgreSQL
model, but even a simple Cmm makes queries 34% faster than
the built-in cost function. This improvement is not insignif-
icant, but on the other hand, it is dwarfed by improvement
in query runtime observed when we replace estimated cardi-
nalities with the real ones (cf. Fig. 8b). This allows us to re-
iterate our main message that cardinality estimation is much
more crucial than the cost model.

6 Plan Space

Besides cardinality estimation and the cost model, the final
important query optimization component is a plan enumera-
tion algorithm that explores the space of semantically equiv-
alent join orders. Many different algorithms, both exhaus-
tive (e.g., [36,13]) as well as heuristic (e.g, [46,39]) have
been proposed. These algorithms consider a different num-
ber of candidate solutions (that constitute the search space)
when picking the best plan. In this section we investigate
how large the search space needs to be in order to find a
good plan.

The experiments of this section use a standalone query
optimizer, which implements Dynamic Programming (DP)
and a number of heuristic join enumeration algorithms. Our
optimizer allows the injection of arbitrary cardinality esti-
mates. In order to fully explore the search space, we do not
actually execute the query plans produced by the optimizer
in this section, as that would be infeasible due to the number
of joins our queries have. Instead, we first run the query op-
timizer using the estimates as input. Then, we recompute the
cost of the resulting plan with the true cardinalities, giving
us a very good approximation of the runtime the plan would
have in reality.

We use the in-memory cost model from Section 5.4 and
assume that it perfectly predicts the query runtime, which,
for our purposes, is a reasonable assumption since the errors
of the cost model are negligible in comparison to the car-
dinality errors. This approach allows us to compare a large
number of plans without executing all of them.

Note that due to a data handling mistake, the numbers
reported in Section 7 of the conference version of this pa-
per [28] differ from the ones reported in this section. How-
ever, the qualitative conclusions are largely unaffected.

6.1 How Important Is the Join Order?

We use the Quickpick [49] algorithm to visualize the costs
of different join orders. Quickpick is a simple, randomized
algorithm that picks join edges at random until all joined re-
lations are fully connected. Each run produces a correct, but
usually slow, query plan. By running the algorithm 10,000
times per query and computing the costs of the resulting
plans, we obtain an approximate distribution for the costs
of random plans [49]. Fig. 11 shows density plots for 6 rep-
resentative example queries and for three physical database
designs: no indexes, primary key indexes only, and pri-
mary+foreign key indexes. The costs are normalized by the
optimal plan (with foreign key indexes), which we obtained
by running dynamic programming and the true cardinalities.

The graphs, which use a logarithmic scale on the hori-
zontal cost axis, clearly illustrate the importance of the join

14 Viktor Leis et al.

JOB 6a JOB 13a JOB 13d JOB 16d JOB 17b JOB 25c

no indexes
PK indexes

PK + FK indexes

1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000
cost relative to optimal FK plan [log scale]

Fig. 11 Cost distributions for 6 queries and different index configurations. The vertical green lines represent the cost of the optimal plan.

13%

0

2e6

4e6

6e6

only PK 5 10 15 PK+FK
number of foreign key indexes

pl
an

 c
os

t [
ge

o.
 m

ea
n]

48%

2.2x

PostgresSQL
estimates

true
cardinalities

Fig. 12 Geometric mean of plan cost with varying index configura-
tions.

ordering problem: The slowest or even median cost is gen-
erally multiple orders of magnitude more expensive than the
cheapest plan. The shapes of the distributions are quite di-
verse. For some queries, there are many good plans (e.g.,
25c), for others few (e.g., 16d). The distributions are some-
times wide (e.g., 16d) and sometimes narrow (e.g., 25c). The
plots for the “no indexes” and the “PK indexes” configura-
tions are very similar implying that for our workload pri-
mary key indexes alone do not improve performance very
much, since we do not have selections on primary key columns.
In many cases the “PK+FK indexes” distributions have ad-
ditional small peaks on the left side of the plot, which means
that the optimal plan in this index configuration is much
faster than in the other configurations.

Indexes only on primary keys and on foreign as well as
primary keys are two extremes of the spectrum. In reality,
one would typically have only some foreign keys indexes.
We therefore generated a random permutation of all for-
eign key indexes and enabled them one-by-one. The effect

on plan quality as measured by the geometric mean of the
plan cost is shown in Fig. 12. Generally, the more indexes
exist, the better performance is. However, with PostgreSQL
adding an index (e.g., 9) may even cause average perfor-
mance to decrease (slightly). The curve is not smooth but
has a number of large “jumps” due to the fact that certain for-
eign key indexes are particularly important for query perfor-
mance. One final important point is that the relative perfor-
mance difference increases dramatically from 13% to 2.2×
as indexes are added because having more indexes makes
finding the optimal plan harder.

6.2 Are Bushy Trees Necessary?

Most join ordering algorithms do not enumerate all possible
tree shapes. Virtually all optimizers ignore join orders with
cross products, which results in a dramatically reduced op-
timization time with only negligible query performance im-
pact. Oracle goes even further by not considering bushy join
trees [1], and System R only enumerated pipelined (right-
deep) query plans. We define the left input of a join to be the
build side of the hash join and the right input to be the probe
side. In order to quantify the effect of restricting the search
space on query performance, we modified our DP algorithm
to only enumerate left-deep, right-deep, or zig-zag trees.

Aside from the obvious tree shape restriction, each of
these classes implies constraints on the join method selec-
tion. We follow the definition of Garcia-Molina et al.’s text-
book, which is reverse from the one in Ramakrishnan and
Gehrke’s book: Using hash joins, right-deep trees are exe-
cuted by first creating hash tables out of each relation except
one before probing in all of these hash tables in a pipelined
fashion, whereas in left-deep trees, a new hash table is built
from the result of each join. In zig-zag trees, which are a

Query Optimization Through the Looking Glass, and What We Found Running the Join Order Benchmark 15

Table 3 Slowdown for restricted tree shapes in comparison to the op-
timal plan (true cardinalities).

PK indexes PK + FK indexes
median 95% max median 95% max

zig-zag 1.00 1.04 1.38 1.00 1.16 1.88
left-deep 1.00 1.23 1.66 1.94 48.2 1252
right-deep 1.12 1.63 1.69 6.46 140 6108

super set of all left- and right-deep trees, each join opera-
tor must have at least one base relation as input. For index-
nested-loop joins we additionally employ the following con-
vention: the left child of a join is a source of tuples that are
looked up in the index on the right child, which must be a
base table.

Using the true cardinalities, we compute the cost of the
optimal plan for each of the three restricted tree shapes. We
divide these costs by the optimal tree (which may have any
shape, including “bushy”) thereby measuring how much per-
formance is lost by restricting the search space. The results
in Table 3 show that zig-zag trees offer decent performance
in most cases, with the worst case being 1.88× more ex-
pensive than the best bushy plan. Left-deep trees are worse
than zig-zag trees, as expected, but still result in reasonable
performance. Right-deep trees, on the other hand, perform
much worse than the other tree shapes and thus should not
be used exclusively. The bad performance of right-deep trees
is caused by the large intermediate hash tables that need to
be created from each base relation and the fact that only the
bottom-most join can be done via index lookup.

6.3 Are Heuristics Good Enough?

So far in this paper, we have used the dynamic programming
algorithm, which computes the optimal join order. However,
given the bad quality of the cardinality estimates, one may
reasonably ask whether an exhaustive algorithm is even nec-
essary. We therefore compare dynamic programming with a
randomized approach and two greedy heuristics.

The “Quickpick-1000” heuristics is a randomized algo-
rithm that chooses the cheapest (based on the estimated car-
dinalities) 1000 random plans. Among all greedy heuris-
tics, we pick Greedy Operator Ordering (GOO) since it was
shown to be superior to other deterministic approximate al-
gorithms [12]. GOO maintains a set of join trees, each of
which initially consists of one base relation. The algorithm
then calculates ranks for each pair of join trees and combines
the pair with lowest rank to a single join tree. In addition to
the originally proposed rank function MinCard, which min-
imizes the sizes of intermediate results, we use the Cmm cost
function for ranking pairs of join trees, thus making GOO
aware of indexes.

We also implemented the “BSizePP” heuristics proposed
by Bruno et al. [6], which is based on Greedy Operator Or-

dering but takes index-nested-loop joins into account ex-
plicitly. BSizePP starts with the same set of trees as GOO
and also picks two join trees to combine based on an index-
aware rank function (again we use Cmm for ranking). Ad-
ditional plans are explored by applying the following two
transformations each time a pair of join trees has been se-
lected:

1. Push each tree inside the other to correct mistakes that
the greedy nature of the approach might have caused in
previous steps.

2. Pull leaves out of the resulting tree to allow for index
joins that might become cheaper now due to a decreased
input cardinality.

The cheapest of the generated alternatives is selected as the
join tree for the set of relations it contains. This process re-
peats until all trees are combined to a single remaining solu-
tion covering the complete set of relations.

Quickpick-1000 as well as the two deterministic heuris-
tics can produce bushy plans, but obviously only explore
parts of the search space. All algorithms in this experiment
internally use the PostgreSQL cardinality estimates to com-
pute a query plan, for which we compute the “true” cost
using the true cardinalities.

The results of optimizing the 113 JOB queries using
the aforementioned algorithms are summarized in Table 4.
Apart from the strong impact of cardinality misestimates we
identify the following factors influencing the quality of plans
generated by an algorithm:

– exploration depth: Fully examining the search space us-
ing DP yields better plans than using heuristics (espe-
cially if many indexes are available).

– index-awareness: Algorithms that take indexes into
account during join ordering, such as BSizePP and
GOO/MinCost, outperform GOO/MinCard, which ig-
nores indexes and orders joins solely by reducing the
size of intermediate results.

– exploration methodology: Additional indexes add a few
very good plans to the search space, which are less likely
to be discovered by a randomized approach like Quick-
pick compared to systematic exploration as performed
by GOO and BSizePP.

The push and pull transformations introduced by BSizePP
have little effect compared to the index-aware GOO/Min-
Cost.

To summarize, our results indicate that enumerating all
bushy trees exhaustively offers moderate but not insignifi-
cant performance benefits in comparison to algorithms that
enumerate only a subset of the search space. The perfor-
mance potential from good cardinality estimates is certainly
much larger. However, given the existence of exhaustive enu-
meration algorithms that can find the optimal solution for
queries with dozens of relations very quickly (e.g., [36,13]),

16 Viktor Leis et al.

Table 4 Comparison of exhaustive dynamic programming with the Quickpick-1000 [49] (best of 1000 random plans), the Greedy Operator
Ordering [12], and BSizePP [6]. All costs are normalized by the optimal plan of that index configuration.

PK indexes PK + FK indexes
PostgreSQL estimates true cardinalities PostgreSQL estimates true cardinalities
median 95% max median 95% max median 95% max median 95% max

Dynamic Programming 1.03 1.69 4.79 1.00 1.00 1.00 1.42 15.3 35.3 1.00 1.00 1.00
Quickpick-1000 1.05 7.99 42.4 1.00 1.08 1.21 2.10 77.6 3303 1.08 9.82 26.2
GOO/MinCard 1.01 1.85 3.42 1.01 1.37 1.92 1.84 34.1 766 1.55 28.6 766
GOO/MinCost 1.13 1.84 2.36 1.06 1.43 1.97 2.04 20.3 136 1.21 4.69 21.0
BSizePP 1.16 2.40 3.41 1.04 1.39 1.93 2.03 21.1 126 1.15 4.66 21.0

using heuristics or disabling bushy trees should only be nec-
essary for queries with a large number of joins.

7 Join Ordering By Example

Up to now, when looking at plan quality, we mostly showed
aggregated statistics. In order to get a better understanding
of the effect of cardinality misestimation on plan quality,
this section looks at two particular queries in detail. We use
PostgreSQL as the source of cardinality estimates and the
two query variants 13d and 13a as examples. The queries
compute the ratings and release dates of movies produced
by US (respectively, German) production companies. The
two variants have the same structure (cf. Fig. 3) and join
graph (cf. Fig. 4). The only difference is the predicate on
cn.country code, i.e., the base table selection on the
company name table10. In the remainder of this section
we call query 13a the German query and 13d the US query.

As Fig. 6 shows, both queries exhibit the typical trend
of growing underestimates as the number of joins increases.
The base table predicate estimates, including the two dif-
ferent cn.country code selections, are very close to the
true cardinalities. PostgreSQL correctly estimates that the
company name table contains more than 8 times as many
US companies than German companies. As a result, all in-
termediate results containing the company name table dif-
fer by a similar factor in the two query variants. Interest-
ingly, however, the PostgreSQL estimates lead to the same
plan, which is shown in Fig. 13, for both variants.

To find out how good this plan is, we re-optimized both
queries using the true cardinalities and obtained two differ-
ent plans (Fig. 14 and 15 respectively). Comparing those
three plans, we find that the PostgreSQL plan is quite good
for the US query, as its true cost is only 35% higher than the
cost of the optimal plan. Querying for the German movies
using the same plan, however, is 3 times as expensive as the
optimal plan.

10 Since the two query variants only differ in a constant within a
selection predicate, they could be executed using the same prepared
statement. Not statically knowing all constants statically presents ad-
ditional, important, and well-researched challenges. However, we do
not consider prepared statements in this work and always send the full
query text.

onHJ

σit2

info type

onINL

σcn

onINL

onHJ

σct

company type

onINL

onHJ

σkt

kind type

onINL

onINL

σit

info type

movie info idx

title

movie companies

company name

movie info

(1)

(1)

(1)

(1)

1

(12213)

(12213)

(1745)

(4187)

(1047)

(378)
(42)

3

4

(5286)
(592)

2

(47)
(5)

Fig. 13 Plan for both queries using PostgreSQL’s estimates. This plan
is fairly good for the US query, but not for the German query. The
numbers in parentheses represent the estimated sizes of the respective
intermediate results.

The plan quality difference of the two variants (the sub-
optimality of 1.35 vs. 3.05) is surprising given the fact that
both queries have similarly large estimation errors and the
only difference between the two queries is one predicate that
is estimated accurately in both cases. To understand this re-
sult, one has to look at the different plans carefully. The op-
timal plan for the US query, which is shown in Fig. 14, is
fairly similar to the one selected by PostgreSQL. The main
difference is that index-nested-loop joins are more common
due to underestimated intermediate results. However, none
of these decisions have disastrous impact on the quality of

Query Optimization Through the Looking Glass, and What We Found Running the Join Order Benchmark 17

onHJ

onHJ

σct

company type

onHJ

σcn

company name

onHJ

onHJ

σkt

kind type

onINL

onHJ

σit

info type

movie info idx

title

movie companies

onHJ

movie info σit2

info type

(1)

(1)

(1)

(84K)

8

(1)

(460K)

(460K)

(210K)

(773K)

(265K)
7

(87K) (3.3M)
6

(670K)
5

Fig. 14 Optimal plan for the US query using true cardinalities. The
numbers in parentheses represent the true cardinalities of the respective
intermediate results.

onHJ

σit2

info type

onINL

onHJ

σit

info type

onINL

onHJ

σkt

kind type

onINL

onHJ

σct

company type

onINL

σcn

company name

movie companies

title

movie info idx

movie info

(1)

(1)

(1)

(9K)

(1)

9

(148K)
11

(71K)

(71K)

(33K)

(59K)

(16K)

(516K)
10

(111K)

Fig. 15 Optimal plan for the German query using true cardinalities.
The numbers in parentheses represent the true cardinalities of the re-
spective intermediate results.

the plan. As Fig. 15 shows, the optimal plan for the German
query, on the other hand, has a completely different struc-
ture than the one selected by PostgreSQL. In the following
we identify three major differences between the plans and
their impact on plan quality:

For the relatively few movies produced by German com-
panies, using the index to join those movies with the movie info
table (2 and 10) and afterwards filtering for the release
date information (1 and 9) is the right decision. However,
performing this index-lookup for each of the many movies
produced by US companies is no longer the cheapest solu-
tion. Instead, it would have been cheaper to first filter the
movie info for the release dates (6) and afterwards join
those with the US movies (5).

Even more costly is the decision to index join all the
movies rating information with the names of the involved
companies (4) and performing the required selection for
German (respectively, US) companies (3) on top of this
join. Due to the severe underestimation of the left-hand in-
termediate result (1,047 instead of 303K for both queries),
the index-nested-loop join looks much cheaper than it actu-
ally is (cf. 7 and 8).

Finally, even though the estimates for the base table se-
lection on company name are almost perfect for both queries
(the maximum q-error is 1.03), PostgreSQL fails to detect
the cheap join of the filtered German company names with
the movie companies (11) and hence does not use it as
the bottom most join. Again the exponentially growing, sys-
tematic underestimation of intermediate cardinalities heav-
ily distorts the optimizer’s view: Many intermediate results
for larger sets of relations are estimated to be much smaller
than the number of German production companies, causing
the optimizer to favor such subexpressions. This is the main
cause for the plan in Fig. 13 being significantly worse to an-
swer the query for German movies.

While these explanations are anecdotal since they only
concern two queries, we have seen similar phenomena more
frequently:

– In many cases misestimations cancel out each other—at
least partially.

– Sometimes even large estimation errors have no influ-
ence on the optimality of a join ordering for a certain
subexpression.

– In other cases, already slightly misestimated cardinali-
ties may lead to large differences in plan quality.

8 Disk-based Experiments

While main memory databases are becoming widespread,
large databases are still often stored on disk. Thus we now
widen our investigation to include disk I/O cost as well.
Our system has a hardware controller implementing RAID5,

18 Viktor Leis et al.

default + no nested-loop join + rehashing

0%

10%

20%

30%

40%

<0
.9

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00 <0
.9

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00 <0
.9

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

(a) (b) (c)

Fig. 16 Disk version of the experiments in Fig. 8. Slowdown distri-
bution when using PostgreSQL estimates w.r.t. using true cardinalities
– now on disk. On disk, the penalty for avoidable nested-loop joins
(a, default PostgreSQL) is much higher. Even with this and hash join
performance improved (cases b,c), more queries are 2-10 times slower
than optimal, compared to the main memory case.

PK indexes PK + FK indexes

0%

10%

20%

30%

40%

<0
.9

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00 <0
.9

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

(a) (b)

Fig. 17 Disk version of the experiments in Fig. 9. Slowdown distri-
bution when using PostgreSQL estimates w.r.t. using true cardinalities.
Using PK+FK indexes with wrong estimates on disk causes 10% of the
queries to be slower than optimal by a factor of 100 or more; something
that does not occur in main-memory.

which, using magnetic disks, achieves a read throughput of
around 900 MB/s.

Due to being a real-world data set, we cannot simply
increase the data size of the IMDB database (as would be
possible with most synthetic benchmarks). In order to be
able to run disk-based experiments, we instead decrease the
PostgreSQL buffer pool to only 16 MB11. Additionally, we
modified our JOB benchmark driver to flush the Linux (file)
system buffer cache12 before running each individual query.
We increased the query timeout to 10 minutes. Repeating
our experiments of Fig. 8, 9 and 10 under these conditions
lasted roughly one week, and resulted in Fig. 16, 17, and 18.

11 We also ran experiments with a 128 MB buffer pool where we ob-
served results that lie between the in-memory and the small buffer pool
configuration.

12 echo 3 > /proc/sys/vm/drop caches

8.1 Query Execution Engine

We now investigate the effects of the improvements to the
query execution engine introduced in Section 5.2. Compar-
ing Fig. 8a with Fig. 16a we see that the penalty for avoid-
able nested-loop joins is much higher on disk. Further, even
when these are avoided and hash join performance is im-
proved (cases a and c), significantly more queries are 2-10
times slower-than-optimal on-disk when compared to the
main-memory case. On-disk processing thus makes the ab-
solute cost distribution more extreme than in main-memory:
slow/bad query plans are further away in time than fast/op-
timal query plans.

8.2 Adding Foreign Key Indexes

Although worse than in main-memory, query performance
on disk is, despite the errors in cardinality estimation, still
quite good with only primary-key indexes available. As can
be seen from the on-disk Fig. 17, adding foreign-key indexes
widens the cost distribution even further. Using PK+FK in-
dexes with wrong estimates on disk causes 24% of the queries
to be more than 10x slower than optimal with 12% being
even more than a factor of 100 worse; something that occurs
rarely in main-memory.

An in-depth analysis of the plans of the queries that were
at least a factor of 10 slower than optimal revealed two main
causes for them being slow: First, cardinalities, especially
of small subexpressions (2-way and 3-way joins), are some-
times overestimated, resulting in a hash join to be used in
places where performing a few index lookups would have
been significantly faster. The vast majority of plans, how-
ever, becomes that slow due to excessive use of indexes.
The optimal plans for the complete workload use an over-
all of 669 index-nested-loop joins, whereas using the Post-
greSQL estimates results in 780 index-nested-loop joins be-
ing planned. In disk-based settings, planning index-nested-
loop joins is risky due to expensive random IO required for
the index lookups.

Not only are there more index-nested-loop joins planned,
often the same joins are performed, but in a different or-
der. Because of undetected join-crossing correlations, the
optimizer misses opportunities to eliminate irrelevant tuples
early. Thus, we often observe plans performing several or-
ders of magnitude more index lookups than the optimal plan.

8.3 Tuning the Cost Model for Disk IO

One of the main findings so far was that physical cost mod-
eling has become relatively unimportant in join order opti-
mization for main-memory query processing, and research
should focus on improving cardinality estimation. Does this

Query Optimization Through the Looking Glass, and What We Found Running the Join Order Benchmark 19

Fig. 18 Disk version of the experiments in Fig. 10. Note that the tuned
cost model differs from Fig. 10, as we increase the relative cost of ran-
dom to sequential I/O from the default factor of 4 to a more realistic
factor of 100. On disk, true cardinalities are no longer perfect predic-
tors of runtime (regardless of the tested cost model), and some high-
cardinality queries time-out. Accurate estimates still correlate to run-
time, but performance predictions are now very frequently off by an or-
der of magnitude, giving rise to significant join-order sub-optimalities.

conclusion also hold for disk-based query processing? Fig. 18
which compares estimated cost with actual runtimes does
confirm that cardinality estimation is indeed key to correctly
predicting performance: even our trivial cost model that gets
fed true cardinalities clearly correlates with on-disk query
runtime, whereas with bad estimates (left side) there is no
hope of good predictions. However, moving from main-memory
(Fig. 10) to disk-based query processing does introduce sig-
nificant errors to the predictions; on average one order of
magnitude. In other words, even with perfect estimates, a
join-order optimizer is likely to pick a suboptimal plan that
could be an order of magnitude slower than optimal. Thus,
for disk-based systems, a good cost model is more important
than for systems purely operating in main-memory.

PostgreSQL’s standard cost model assumes costs for fetch-
ing a random page to be 4x the cost of fetching pages se-
quentially. In reality, this factor is much higher, causing Post-

greSQL to underestimate the cost of index lookups. We thus
increased the cost of random IO to be 100x as expensive as
sequential IO. The results of running the Join Order Bench-
mark with this tuned cost model are shown in subfigures c
and d of Fig. 18. Using true cardinalities, tuning the cost
model indeed improved the runtime prediction. About 63%
of the queries are executed faster and 3 of the queries suf-
fering timeout with the default cost model now execute suc-
cessfully using the tuned cost model. However, the perfor-
mance of 35% of the queries decreases significantly. Look-
ing into the query plans, we find, that improvements are
achieved due to less planning of index-nested-loop joins.
The number of such joins dropped from 669 to 628 due to
the tuned cost model. However, the cost model is still in-
accurate in predicting query runtime, thus performance also
worsens for a significant amount of queries. Finally, from
the left hand subfigures in Fig. 18, we see that because of
large errors in cardinality estimation, there is not much hope
for good runtime predictions regardless of the cost model in
use.

Summarizing the results of the on-disk experiments we
can conclude that cost prediction gets harder in a disk-based
environment and the influence of the cost model on plan
quality is higher than in main memory. Besides the differ-
ent characteristics between main memory and disk, further
aspects, such as other storage devices, degree of parallelism
and newer access methods [25] have an impact on the cost
model. Thus, a cost model taking those factors into account
may further increase the effect on plan quality. However,
plan quality will generally still be dominated by the errors
in cardinality estimation.

9 Related Work

Our cardinality estimation experiments show that systems
which keep table samples for cardinality estimation predict
single-table result sizes considerably better than those which
apply the independence assumption and use single-column
histograms [21]. We think systems should be adopting table
samples as a simple and robust technique, rather than earlier
suggestions to explicitly detect certain correlations [20] to
subsequently create multi-column histograms [42] for these.

However, many of our JOB queries contain join-crossing
correlations, which single-table samples do not capture,
and where the current generation of systems still apply
the independence assumption. There is a body of exist-
ing research work to better estimate result sizes of queries
with join-crossing correlations, mainly based on join sam-
ples [18], possibly enhanced against skew (end-biased sam-
pling [11], correlated samples [53], sampling-based query
re-optimization [52], index-based join sampling [30]), us-
ing sketches [44] or graphical models [48]. This work con-
firms that without addressing join-crossing correlations, car-

20 Viktor Leis et al.

dinality estimates deteriorate strongly with more joins [22],
leading to both the over- and underestimation of result sizes
(mostly the latter), so it would be positive if some of these
techniques would be adopted by systems.

Another way of learning about join-crossing correlations
is by exploiting query feedback, as in the LEO project [47],
though there it was noted that deriving cardinality estima-
tions based on a mix of exact knowledge and lack of knowl-
edge needs a sound mathematical underpinning. For this,
maximum entropy (MaxEnt [35,24]) was defined, though
the costs for applying maximum entropy are high and have
prevented its use in systems so far. We found that the per-
formance impact of estimation mistakes heavily depends on
the physical database design; in our experiments the largest
impact is in situations with the richest designs. From the
ROX [23] discussion in Section 4.4 one might conjecture
that to truly unlock the potential of correctly predicting car-
dinalities for join-crossing correlations, we also need new
physical designs and access paths.

Another finding in this paper is that the adverse effects
of cardinality misestimations can be strongly reduced if sys-
tems would be “hedging their bets” and not only choose the
plan with the cheapest expected cost, but take the probabilis-
tic distribution of the estimate into account, to avoid plans
that are marginally faster than others but bear a high risk of
strong underestimation. There has been work both on doing
this for cardinality estimates purely [37], as well as combin-
ing these with a cost model [2].

The problem with fixed hash table sizes for PostgreSQL
illustrates that cost misestimation can often be mitigated by
making the runtime behavior of the query engine more “per-
formance robust”. This can simply mean that operators do
not use estimates in their implementation (e.g., [27,29]).
More advanced techniques for making systems more adap-
tive include dynamically switch sides in a join or between
hashing and sorting (GJoin [16]), switch between sequential
scan and index lookup (smooth scan [5]), adaptively reorder-
ing join pipelines during query execution [31], or change ag-
gregation strategies at runtime depending on the actual num-
ber of group-by values [38] or partition-by values [3].

A radical approach is to move query optimization to run-
time, when actual value-distributions become available [40,
10]. However, runtime techniques typically restrict the plan
search space to limit runtime plan exploration cost, and some-
times come with functional restrictions such as to only con-
sider (sampling through) operators which have pre-created
indexed access paths (e.g., ROX [23]).

Our experiments with the second query optimizer com-
ponent besides cardinality estimation, namely the cost model,
suggest that tuning cost models provides less benefits than
improving cardinality estimates, and in a main-memory set-
ting even an extremely simple cost-model can produce sat-
isfactory results. This conclusion resonates with some of the

findings in [51] which sets out to improve cost models but
shows major improvements by refining cardinality estimates
with additional sampling. In a disk-based setting, more ac-
curate cost models have more impact and can improve query
performance by an order of magnitude, but even this effect is
generally overshadowed by the large cardinality estimation
errors.

For testing the final query optimizer component, plan
enumeration, we borrowed in our methodology from the
Quickpick method used in randomized query optimiza-
tion [49] to characterize and visualize the search space. An-
other well-known search space visualization method is Pi-
casso [19], which visualizes query plans as areas in a space
where query parameters are the dimensions. Interestingly,
[49] claims in its characterization of the search space that
good query plans are easily found, but our tests indicate that
the richer the physical design and access path choices, the
rarer good query plans become.

Query optimization is a core database research topic with
a huge body of related work, that cannot be fully represented
in this section. After decades of work still having this prob-
lem far from resolved [33], some have even questioned it and
argued for the need of optimizer application hints [7]. This
paper introduces the Join Order Benchmark based on the
highly correlated IMDB real-world data set and a method-
ology for measuring the accuracy of cardinality estimation.
Its integration in systems proposed for testing and evaluat-
ing the quality of query optimizers [50,17,15,34] is hoped
to spur further innovation in this important topic.

10 Conclusions

Throughout this paper, in which we look at Query Optimiza-
tion Through the Looking Glass, we made observations, some
of which were already part of published literature or database
systems lore, and others new. In the following we list all of
these numbered by the section in which they are made, with
the most important conclusions in bold:

Section 3.1: Estimate cardinalities by execution on sam-
ples. Cardinality estimation by evaluating predicates on small
samples (e.g., 1000 tuples) and extrapolating from these, is
to be preferred over other options (e.g., keeping histograms),
since execution on samples automatically captures any pred-
icate correlations between table columns, and is capable of
estimating any filter predicate. With large data volumes in
analytical queries and fast CPUs available now, both the ab-
solute and relative overhead of execution on samples dur-
ing query optimization has dropped (in the past, this over-
head made this technique less attractive). In a main-memory
setting, sampling and existing index structures can even be
used to detect join-crossing correlations [30]. One caveat
is that execution on samples has a vulnerability for very

Query Optimization Through the Looking Glass, and What We Found Running the Join Order Benchmark 21

low-cardinality predicates (of which the sample holds 0 in-
stances).

Sections 3.2, 5.1, 5.4: Focus research on cardinality
estimation rather than cost models. Cardinality estima-
tion of joins is the most important problem in query opti-
mization. The estimates of all tested commercial systems
routinely yield large estimation errors. Improving the ac-
curacy of cardinality estimates is much more important for
query optimizer quality than improving the accuracy of cost
models. We tested an ultra-simple cost model that just sums
the estimated amounts of intermediate tuples produced in a
query, and this simple model performs just as well as the
complex cost model of PostgreSQL in main memory, even
after tuning it. In contrast, errors in cardinality estimation
have a heavy effect on optimization quality.

Section 3.2: Underestimation is more common than
overestimation. The more joins a real-life query has, the
more current optimizers will underestimate the cardinalities
due to applying the independence assumption. This implies
that real-life queries tend to look for the Honda Accord (cor-
related predicates on brand and model) rather for the Honda
Mustang (anti-correlated) because queries tend to be posed
with certain embedded domain knowledge about actual, ex-
isting, entities. Our observations on System A suggests a
heuristic that replaces simply applying selectivity multipli-
cation (mandated by the independence assumption) by a
“dampening” method that nudges selectivity downwards more
gracefully. This suggestion is still a heuristic; of course, es-
timation methods that effectively capture join-crossing cor-
relations would be better, but will be much harder to devise,
given the huge space of potential correlations to cover.

Section 3.3: Traditional benchmarks are not good tests
for join order optimization. TPC-H, TPC-DS, and SSB all
work on data sets where column values have uniform or (in
case of TPC-DS) stepwise-uniform frequency distributions,
and which almost completely lack both intra- and inter-table
correlations. This trivializes cardinality estimation. Further-
more, the queries in these benchmarks have a low number of
joins, and this paper has shown that the hardness of accurate
cardinality estimation increases directly with the number of
joins.

Sections 3.4, 7: Query Optimization is quirky business.
Two wrongs often make a right in query optimization. In
multiple cases we illustrated the effect that multiple errors
cancel each other out. This phenomenon makes analyzing
and fixing query optimizer problems very frustrating because
fixing one query will break another. Also, sometimes large
estimation errors still lead the optimizer to find the right join
order, whereas in other cases already slight misestimations
have disastrous consequences.

Sections 4.1, 4.2, 8: One should use cost estimations in
robust fashion. Rather than blindly picking the query plan
with the lowest estimated cost, query optimizers should take

the cardinality estimate error margins (or estimate proba-
bility density distribution) into account and avoid picking
plans where the expected estimated cost is only slightly bet-
ter but which run significant risk of being much slower than
a robust alternative. In general, hash joins should be favored
over nested-loop equi joins, because they are never much
slower yet fall in a better complexity class. A related prin-
ciple is never to rely on estimation for making decisions
that can also be made at runtime, when the actual cardinal-
ities are known (such as determining the amount of buckets
in a hash-table, created for a hash join). As a final exam-
ple, a rule that prefers to use index-nested-loops joins over
hash joins is a robust choice in query optimization for main
memory systems, since at worst there is only a small perfor-
mance penalty in case hash joins would be better, whereas
the upside can be large. In disk-based systems, where index-
nested-loops joins lead to (slow) random I/O, this is not the
case.

Sections 4.3, 6.1, 8: The richer the physical database
infrastructure, the harder query optimization becomes. We
observe the effect when adding unclustered foreign key in-
dexes to the schema, which typically did lead to faster query
times. However, with a richer schema, (i) the cost distribu-
tion of the plan space gets more diverse, often introducing
a few (therefore hard-to-find) plans that are much faster and
(ii) the slowdown experienced due to misestimations (com-
pared to the optimal plan) is much higher than in the case
without indexes or with only primary key indexes. The ef-
fect of (ii) is much larger in disk-based systems than in main
memory systems.

Section 4.4: Access paths for join-crossing correla-
tions should be a research topic. Correlations are a re-
search frontier not only for correct estimation, but also in
terms of devising new data structures, access paths, and exe-
cution algorithms. We discussed a DBLP co-authorship ex-
ample query, where correctly predicting join-crossing anti-
correlations is knowledge that cannot be leveraged, unless
special physical database designs are deployed (in the exam-
ple, table partitioning on a join-crossing attribute is needed).
Thus, research in cost-estimation needs to be accompanied
by research into new types of access paths.

Sections 6.2, 6.3: Superiority of exhaustive search. In
rich schemas with FK indexes, exhaustive plan enumera-
tion provides tangible benefits over more restricted strate-
gies. Among these, restricting to zig-zag trees is better than
considering only left-deep plans, which in turn is better than
only considering right-deep plans. Heuristic strategies such
as QuickPick, GOO, and BSizePP similarly find worse query
plans than exhaustive search, especially in schemas with FK
indexes, where index-aware approaches such as BSizePP
perform better than the other heuristic approaches.

22 Viktor Leis et al.

Acknowledgements We would like to thank Guy Lohman and the
anonymous reviewers for their valuable feedback. We also thank Moritz
Wilfer for his input in the early stages of this project.

References

1. Ahmed, R., Sen, R., Poess, M., Chakkappen, S.: Of snowstorms
and bushy trees. PVLDB 7(13), 1452–1461 (2014)

2. Babcock, B., Chaudhuri, S.: Towards a robust query optimizer:
A principled and practical approach. In: SIGMOD, pp. 119–130
(2005)

3. Bellamkonda, S., Li, H.G., Jagtap, U., Zhu, Y., Liang, V., Cru-
anes, T.: Adaptive and big data scale parallel execution in Oracle.
PVLDB 6(11), 1102–1113 (2013)

4. Boncz, P.A., Neumann, T., Erling, O.: TPC-H analyzed: Hidden
messages and lessons learned from an influential benchmark. In:
TPCTC, pp. 61–76 (2013)

5. Borovica-Gajic, R., Idreos, S., Ailamaki, A., Zukowski, M.,
Fraser, C.: Smooth scan: Statistics-oblivious access paths. In:
ICDE, pp. 315–326 (2015)

6. Bruno, N., Galindo-Legaria, C.A., Joshi, M.: Polynomial heuris-
tics for query optimization. In: ICDE, pp. 589–600 (2010)

7. Chaudhuri, S.: Query optimizers: time to rethink the contract? In:
SIGMOD, pp. 961–968 (2009)

8. Chaudhuri, S., Narasayya, V.R., Ramamurthy, R.: Exact cardinal-
ity query optimization for optimizer testing. PVLDB 2(1), 994–
1005 (2009)

9. Colgan, M.: Oracle adaptive joins. https://blogs.
oracle.com/optimizer/entry/what_s_new_in_
12c (2013)

10. Dutt, A., Haritsa, J.R.: Plan bouquets: query processing without
selectivity estimation. In: SIGMOD, pp. 1039–1050 (2014)

11. Estan, C., Naughton, J.F.: End-biased samples for join cardinality
estimation. In: ICDE, p. 20 (2006)

12. Fegaras, L.: A new heuristic for optimizing large queries. In:
DEXA, pp. 726–735 (1998)

13. Fender, P., Moerkotte, G.: Counter strike: Generic top-down join
enumeration for hypergraphs. PVLDB 6(14), 1822–1833 (2013)

14. Fender, P., Moerkotte, G., Neumann, T., Leis, V.: Effective and ro-
bust pruning for top-down join enumeration algorithms. In: ICDE,
pp. 414–425 (2012)

15. Fraser, C., Giakoumakis, L., Hamine, V., Moore-Smith, K.F.: Test-
ing cardinality estimation models in SQL Server. In: DBtest
(2012)

16. Graefe, G.: A generalized join algorithm. In: BTW, pp. 267–286
(2011)

17. Gu, Z., Soliman, M.A., Waas, F.M.: Testing the accuracy of query
optimizers. In: DBTest (2012)

18. Haas, P.J., Naughton, J.F., Seshadri, S., Swami, A.N.: Selectivity
and cost estimation for joins based on random sampling. J Com-
puter System Science 52(3), 550–569 (1996)

19. Haritsa, J.R.: The Picasso database query optimizer visualizer.
PVLDB 3(2), 1517–1520 (2010)

20. Ilyas, I.F., Markl, V., Haas, P.J., Brown, P., Aboulnaga, A.:
CORDS: automatic discovery of correlations and soft functional
dependencies. In: SIGMOD, pp. 647–658 (2004)

21. Ioannidis, Y.E.: The history of histograms (abridged). In: VLDB,
pp. 19–30 (2003)

22. Ioannidis, Y.E., Christodoulakis, S.: On the propagation of errors
in the size of join results. In: SIGMOD (1991)

23. Kader, R.A., Boncz, P.A., Manegold, S., van Keulen, M.: ROX:
run-time optimization of XQueries. In: SIGMOD, pp. 615–626
(2009)

24. Kaushik, R., Ré, C., Suciu, D.: General database statistics using
entropy maximization. In: DBPL, pp. 84–99 (2009)

25. Kester, M.S., Athanassoulis, M., Idreos, S.: Access path selection
in main-memory optimized data systems: Should I scan or should
I probe? In: SIGMOD (2017)

26. Lang, H., Mühlbauer, T., Funke, F., Boncz, P.A., Neumann, T.,
Kemper, A.: Data Blocks: Hybrid OLTP and OLAP on com-
pressed storage using both vectorization and compilation. In: SIG-
MOD, pp. 311–326 (2016)

27. Leis, V., Boncz, P., Kemper, A., Neumann, T.: Morsel-driven par-
allelism: A NUMA-aware query evaluation framework for the
many-core age. In: SIGMOD (2014)

28. Leis, V., Gubichev, A., Mirchev, A., Boncz, P.A., Kemper, A.,
Neumann, T.: How good are query optimizers, really? PVLDB
9(3), 204–215 (2015)

29. Leis, V., Kundhikanjana, K., Kemper, A., Neumann, T.: Effi-
cient processing of window functions in analytical SQL queries.
PVLDB 8(10) (2015)

30. Leis, V., Radke, B., Gubichev, A., Kemper, A., Neumann, T.: Car-
dinality estimation done right: Index-based join sampling. In:
CIDR (2017)

31. Li, Q., Shao, M., Markl, V., Beyer, K.S., Colby, L.S., Lohman,
G.M.: Adaptively reordering joins during query execution. In:
ICDE, pp. 26–35 (2007)

32. Liu, F., Blanas, S.: Forecasting the cost of processing multi-join
queries via hashing for main-memory databases. In: SoCC, pp.
153–166 (2015)

33. Lohman, G.: Is query optimization a solved problem? http:
//wp.sigmod.org/?p=1075 (2014)

34. Mackert, L.F., Lohman, G.M.: R* optimizer validation and per-
formance evaluation for local queries. In: SIGMOD, pp. 84–95
(1986)

35. Markl, V., Megiddo, N., Kutsch, M., Tran, T.M., Haas, P.J., Sri-
vastava, U.: Consistently estimating the selectivity of conjuncts of
predicates. In: VLDB, pp. 373–384 (2005)

36. Moerkotte, G., Neumann, T.: Dynamic programming strikes back.
In: SIGMOD, pp. 539–552 (2008)

37. Moerkotte, G., Neumann, T., Steidl, G.: Preventing bad plans by
bounding the impact of cardinality estimation errors. PVLDB
2(1), 982–993 (2009)

38. Müller, I., Sanders, P., Lacurie, A., Lehner, W., Färber, F.: Cache-
efficient aggregation: Hashing is sorting. In: SIGMOD, pp. 1123–
1136 (2015)

39. Neumann, T.: Query simplification: graceful degradation for join-
order optimization. In: SIGMOD, pp. 403–414 (2009)

40. Neumann, T., Galindo-Legaria, C.A.: Taking the edge off cardi-
nality estimation errors using incremental execution. In: BTW,
pp. 73–92 (2013)

41. O’Neil, P.E., O’Neil, E.J., Chen, X., Revilak, S.: The star schema
benchmark and augmented fact table indexing. In: TPCTC, pp.
237–252 (2009)

42. Poosala, V., Ioannidis, Y.E.: Selectivity estimation without the at-
tribute value independence assumption. In: VLDB, pp. 486–495
(1997)

43. Pöss, M., Nambiar, R.O., Walrath, D.: Why you should run TPC-
DS: A workload analysis. In: PVLDB, pp. 1138–1149 (2007)

44. Rusu, F., Dobra, A.: Sketches for size of join estimation. TODS
33(3) (2008)

45. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A.,
Price, T.G.: Access path selection in a relational database man-
agement system. In: SIGMOD, pp. 23–34 (1979)

46. Steinbrunn, M., Moerkotte, G., Kemper, A.: Heuristic and ran-
domized optimization for the join ordering problem. VLDB J.
6(3), 191–208 (1997)

47. Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: LEO - DB2’s
learning optimizer. In: VLDB, pp. 19–28 (2001)

48. Tzoumas, K., Deshpande, A., Jensen, C.S.: Lightweight graphical
models for selectivity estimation without independence assump-
tions. PVLDB 4(11), 852–863 (2011)

https://blogs.oracle.com/optimizer/entry/what_s_new_in_12c
https://blogs.oracle.com/optimizer/entry/what_s_new_in_12c
https://blogs.oracle.com/optimizer/entry/what_s_new_in_12c
http://wp.sigmod.org/?p=1075
http://wp.sigmod.org/?p=1075

Query Optimization Through the Looking Glass, and What We Found Running the Join Order Benchmark 23

49. Waas, F., Pellenkoft, A.: Join order selection - good enough is
easy. In: BNCOD, pp. 51–67 (2000)

50. Waas, F.M., Giakoumakis, L., Zhang, S.: Plan space analysis: an
early warning system to detect plan regressions in cost-based op-
timizers. In: DBTest (2011)

51. Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigümüs, H., Naughton,
J.F.: Predicting query execution time: Are optimizer cost models
really unusable? In: ICDE, pp. 1081–1092 (2013)

52. Wu, W., Naughton, J.F., Singh, H.: Sampling-based query re-
optimization. In: SIGMOD (2016)

53. Yu, F., Hou, W., Luo, C., Che, D., Zhu, M.: CS2: a new database
synopsis for query estimation. In: SIGMOD, pp. 469–480 (2013)

A Appendix: Detailed Query Descriptions

JOB consists of 113 multi-join query variants based on 33 query struc-
tures. The query variants derive from the same query structure differ
only in their filter predicates; which consist of a series of conjunc-
tions. The join-relationships connect the tables through multiple join
relations, hence we draw the join-graph for each template on the left
side. We use the alias from Table 1 as the tuple variable names for the
joined relations. On the right side, we first list all filter predicates that
are common to all variants of a query structure, followed by a box con-
taining all additional filter predicates, one box for each query variant.
On the bottom right, we list the projection columns (retrieved as MIN()
aggregates). The query set is available online:
http://www-db.in.tum.de/˜leis/qo/job.tgz

Q1 join-graph: filters: ct.kind = ’production companies’
ct

mc

mi_idx

t

it

mc.note NOT LIKE ’%(as Metro-Goldwyn-Mayer
Pictures)%’
1a: it.info = ’top 250 rank’
1a: (mc.note LIKE ’%(co-production)%’ OR
mc.note LIKE ’%(presents)%’)
1b: it.info = ’bottom 10 rank’
1b: t.production year BETWEEN 2005 AND 2010
1c: it.info = ’top 250 rank’
1c: (mc.note LIKE ’%(co-production)%’)
1c: t.production year > 2010
1d: it.info = ’bottom 10 rank’
1d: t.production year > 2000
projections: mc.note t.title t.production year

Q2 join-graph: filters: k.keyword = ’character-name-in-title’
cn

mc

t

mk

k

2a: cn.country code =’[de]’
2b: cn.country code =’[nl]’
2c: cn.country code =’[sm]’
2d: cn.country code =’[us]’

projections: t.title

Q3 join-graph: filters: k.keyword LIKE ’%sequel%’
t

mi

mk

k 3a: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’)
3a: t.production year > 2005
3b: mi.info IN (’Bulgaria’)
3b: t.production year > 2010
3c: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
3c: t.production year > 1990
projections: t.title

Q4 join-graph: filters: it.info = ’rating’
t

mi_idx

mk

k

it

k.keyword LIKE ’%sequel%’
4a: t.production year > 2005
4b: t.production year > 2010
4c: t.production year > 1990

projections: mi idx.info t.title

Q5 join-graph: filters: ct.kind = ’production companies’
t

mi

mc

ct

it

5a: mc.note LIKE ’%(France)%’
5a: mc.note LIKE ’%(theatrical)%’
5a: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’)
5a: t.production year > 2005
5b: mc.note LIKE ’%(1994)%’
5b: mc.note LIKE ’%(USA)%’
5b: mc.note LIKE ’%(VHS)%’
5b: mi.info IN (’USA’, ’America’)
5b: t.production year > 2010
5c: mc.note LIKE ’%(USA)%’
5c: mc.note NOT LIKE ’%(TV)%’
5c: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
5c: t.production year > 1990
projections: t.title

Q6 join-graph: filters: (no common filter predicates)

k

mk

t

ci

n 6a: k.keyword = ’marvel-cinematic-universe’
6a: n.name LIKE ’%Downey%Robert%’
6a: t.production year > 2010
6b: k.keyword in (’superhero’, ’sequel’, ’second-
part’, ’marvel-comics’, ’based-on-comic’, ’tv-
special’, ’fight’, ’violence’)
6b: n.name LIKE ’%Downey%Robert%’
6b: t.production year > 2014
6c: k.keyword = ’marvel-cinematic-universe’
6c: n.name LIKE ’%Downey%Robert%’
6c: t.production year > 2014
6d: k.keyword in (’superhero’, ’sequel’, ’second-
part’, ’marvel-comics’, ’based-on-comic’, ’tv-
special’, ’fight’, ’violence’)
6d: n.name LIKE ’%Downey%Robert%’
6d: t.production year > 2000
6e: k.keyword = ’marvel-cinematic-universe’
6e: n.name LIKE ’%Downey%Robert%’
6e: t.production year > 2000
6f: k.keyword in (’superhero’, ’sequel’, ’second-
part’, ’marvel-comics’, ’based-on-comic’, ’tv-
special’, ’fight’, ’violence’)
6f: t.production year > 2000
projections: k.keyword n.name t.title

Q7 join-graph: filters: it.info = ’mini biography’
n

an

pi

ci

ml

t

lt

it 7a: an.name LIKE ’%a%’
7a: lt.link =’features’
7a: (n.gender=’m’ OR (n.gender = ’f’
7a: n.name LIKE ’B%’))
7a: n.name pcode cf BETWEEN ’A’ AND ’F’
7a: pi.note =’Volker Boehm’
7a: t.production year BETWEEN 1980 AND 1995
7b: an.name LIKE ’%a%’
7b: lt.link =’features’
7b: n.gender=’m’
7b: n.name pcode cf LIKE ’D%’
7b: pi.note =’Volker Boehm’
7b: t.production year BETWEEN 1980 AND 1984
7c: an.name is NOT NULL
7c: (an.name LIKE ’%a%’ OR an.name LIKE ’A%’)
7c: lt.link in (’references’, ’referenced in’, ’features’,
’featured in’)
7c: (n.gender=’m’ OR (n.gender = ’f’
7c: n.name LIKE ’A%’))
7c: n.name pcode cf BETWEEN ’A’ AND ’F’
7c: pi.note is NOT NULL
7c: t.production year BETWEEN 1980 AND 2010
projections: n.name t.title

Q8 join-graph: filters: (no common filter predicates)
an

n

ci

t

mc

rt

cn

8a: ci.note =’(voice: English version)’
8a: cn.country code =’[jp]’
8a: mc.note LIKE ’%(Japan)%’
8a: mc.note NOT LIKE ’%(USA)%’
8a: n.name LIKE ’%Yo%’
8a: n.name NOT LIKE ’%Yu%’
8a: rt.role =’actress’
8b: ci.note =’(voice: English version)’
8b: cn.country code =’[jp]’
8b: (mc.note LIKE ’%(2006)%’ OR mc.note LIKE
’%(2007)%’)
8b: mc.note LIKE ’%(Japan)%’
8b: mc.note NOT LIKE ’%(USA)%’
8b: n.name LIKE ’%Yo%’
8b: n.name NOT LIKE ’%Yu%’
8b: rt.role =’actress’
8b: t.production year BETWEEN 2006 AND 2007
8b: (t.title LIKE ’One Piece%’ OR t.title LIKE
’Dragon Ball Z%’)
8c: cn.country code =’[us]’
8c: rt.role =’writer’
8d: cn.country code =’[us]’
8d: rt.role =’costume designer’
projections: an.name t.title

http://www-db.in.tum.de/~leis/qo/job.tgz

24 Viktor Leis et al.

Q9 join-graph: filters: cn.country code = ’[us]’

ci

t

mc

rt

cn

n chn

an n.gender = ’f’
rt.role = ’actress’
9a: ci.note in (’(voice)’, ’(voice: Japanese version)’,
’(voice) (uncredited)’, ’(voice: English version)’)
9a: mc.note is NOT NULL
9a: n.name LIKE ’%Ang%’
9a: t.production year BETWEEN 2005 AND 2015
9b: ci.note = ’(voice)’
9b: mc.note LIKE ’%(200%)%’
9b: n.name LIKE ’%Angel%’
9b: t.production year BETWEEN 2007 AND 2010
9c: ci.note in (’(voice)’, ’(voice: Japanese version)’,
’(voice) (uncredited)’, ’(voice: English version)’)
9c: n.name LIKE ’%An%’
9d: ci.note in (’(voice)’, ’(voice: Japanese version)’,
’(voice) (uncredited)’, ’(voice: English version)’)
projections: an.name chn.name t.title

Q10 join-graph: filters:(no common filter predicates)
t

mc

ci

chn rt

cn ct

10a: ci.note LIKE ’%(uncredited)%’
10a: ci.note LIKE ’%(voice)%’
10a: cn.country code = ’[ru]’
10a: rt.role = ’actor’
10a: t.production year > 2005
10b: ci.note LIKE ’%(producer)%’
10b: cn.country code = ’[ru]’
10b: rt.role = ’actor’
10b: t.production year > 2010
10c: ci.note LIKE ’%(producer)%’
10c: cn.country code = ’[us]’
10c: t.production year > 1990
projections: chn.name t.title

Q11 join-graph: filters:cn.country code != ’[pl]’
lt

ml

t

mk

mck

ct cn

11a: (cn.name LIKE ’%Film%’ OR cn.name LIKE
’%Warner%’)
11a: ct.kind =’production companies’
11a: k.keyword =’sequel’
11a: lt.link LIKE ’%follow%’
11a: mc.note IS NULL
11a: t.production year BETWEEN 1950 AND 2000
11b: (cn.name LIKE ’%Film%’ OR cn.name LIKE
’%Warner%’)
11b: ct.kind =’production companies’
11b: k.keyword =’sequel’
11b: lt.link LIKE ’%follows%’
11b: mc.note IS NULL
11b: t.production year = 1998
11b: t.title LIKE ’%Money%’
11c: (cn.name LIKE ’20th Century Fox%’ OR
cn.name LIKE ’Twentieth Century Fox%’)
11c: ct.kind is NOT NULL
11c: ct.kind != ’production companies’
11c: k.keyword in (’sequel’, ’revenge’, ’based-on-
novel’)
11c: mc.note is NOT NULL
11c: t.production year > 1950
11d: ct.kind is NOT NULL
11d: ct.kind != ’production companies’
11d: k.keyword in (’sequel’, ’revenge’, ’based-on-
novel’)
11d: mc.note is NOT NULL
11d: t.production year > 1950
projections: cn.name lt.link t.title

Q12 join-graph: filters:cn.country code = ’[us]’
t

mi

mi_idx

mc

it1

it2

ct cn 12a: ct.kind = ’production companies’
12a: it1.info = ’genres’
12a: it2.info = ’rating’
12a: mi.info in (’Drama’, ’Horror’)
12a: t.production year BETWEEN 2005 AND 2008
12b: ct.kind is NOT NULL
12b: (ct.kind =’production companies’ OR ct.kind =
’distributors’)
12b: it1.info =’budget’
12b: it2.info =’bottom 10 rank’
12b: t.production year > 2000
12b: (t.title LIKE ’Birdemic%’ OR t.title LIKE
’%Movie%’)
12c: ct.kind = ’production companies’
12c: it1.info = ’genres’
12c: it2.info = ’rating’
12c: mi.info in (’Drama’, ’Horror’, ’Western’, ’Fam-
ily’)
12c: t.production year BETWEEN 2000 AND 2010
projections: cn.name mi idx.info t.title

Q13 join-graph: filters:ct.kind = ’production companies’

mi

t

mc

mi_idx

it2

kt

cn ct

it1

it1.info = ’rating’
it2.info = ’release dates’
kt.kind = ’movie’
13a: cn.country code =’[de]’
13b: cn.country code =’[us]’
13b: t.title != ”
13b: (t.title LIKE ’%Champion%’ OR t.title LIKE
’%Loser%’)
13c: cn.country code =’[us]’
13c: t.title != ”
13c: (t.title LIKE ’Champion%’ OR t.title LIKE
’Loser%’)
13d: cn.country code =’[us]’
projections: mi.info mi idx.info t.title

Q14 join-graph: filters:it1.info = ’countries’
kt

t

mi

mk

mi_idx

k

it1

it2

it2.info = ’rating’
14a: k.keyword in (’murder’, ’murder-in-title’,
’blood’, ’violence’)
14a: kt.kind = ’movie’
14a: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
14a: t.production year > 2010
14b: k.keyword in (’murder’, ’murder-in-title’)
14b: kt.kind = ’movie’
14b: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
14b: t.production year > 2010
14b: (t.title LIKE ’%murder%’ OR t.title LIKE
’%Murder%’ OR t.title LIKE ’%Mord%’)
14c: k.keyword in (’murder’, ’murder-in-title’,
’blood’, ’violence’)
14c: k.keyword is NOT null
14c: kt.kind in (’movie’, ’episode’)
14c: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Danish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
14c: t.production year > 2005
projections: mi idx.info t.title

Q15 join-graph: filters:cn.country code = ’[us]’
t

at

mi

mk

mc

k

it1

cnct

it1.info = ’release dates’
mi.note LIKE ’%internet%’
15a: mc.note LIKE ’%(200%)%’
15a: mi.info LIKE ’USA:% 200%’
15a: t.production year > 2000
15b: cn.name = ’YouTube’
15b: mc.note LIKE ’%(200%)%’
15b: mi.info LIKE ’USA:% 200%’
15b: t.production year BETWEEN 2005 AND 2010
15c: mi.info is NOT NULL
15c: (mi.info LIKE ’USA:% 199%’ OR mi.info
LIKE ’USA:% 200%’)
15c: t.production year > 1990
15d: t.production year > 1990
projections: mi.info t.title

Q16 join-graph: filters:cn.country code = ’[us]’
an

n

ci

t

mk

mc

k

cn

k.keyword = ’character-name-in-title’
16a: t.episode nr < 100
16a: t.episode nr > = 50
16c: t.episode nr < 100
16d: t.episode nr < 100
16d: t.episode nr > = 5

projections: an.name t.title

Q17 join-graph: filters:k.keyword = ’character-name-in-title’
n

ci

t

mk

mc

k

cn

17a: cn.country code =’[us]’
17a: n.name LIKE ’B%’
17b: n.name LIKE ’Z%’
17c: n.name LIKE ’X%’
17d: n.name LIKE ’%Bert%’
17e: cn.country code =’[us]’
17f: n.name LIKE ’%B%’

projections: n.name n.name

Query Optimization Through the Looking Glass, and What We Found Running the Join Order Benchmark 25

Q18 join-graph: filters:(no common filter predicates)
t

mi

mi_idx

ci

n

it1

it2

18a: ci.note in (’(producer)’, ’(executive producer)’)
18a: it1.info = ’budget’
18a: it2.info = ’votes’
18a: n.gender = ’m’
18a: n.name LIKE ’%Tim%’
18b: ci.note in (’(writer)’, ’(head writer)’, ’(written
by)’, ’(story)’, ’(story editor)’)
18b: it1.info = ’genres’
18b: it2.info = ’rating’
18b: mi.info in (’Horror’, ’Thriller’)
18b: mi.note is NULL
18b: n.gender = ’f’
18b: n.gender is NOT null
18b: t.production year BETWEEN 2008 AND 2014
18c: ci.note in (’(writer)’, ’(head writer)’, ’(written
by)’, ’(story)’, ’(story editor)’)
18c: it1.info = ’genres’
18c: it2.info = ’votes’
18c: mi.info in (’Horror’, ’Action’, ’Sci-Fi’,
’Thriller’, ’Crime’, ’War’)
18c: n.gender = ’m’
projections: mi.info mi idx.info t.title

Q19 join-graph: filters:cn.country code = ’[us]’
t

mi

mc

ci

an

cn

it

nrt chn

it.info = ’release dates’
n.gender = ’f’
rt.role = ’actress’
19a: ci.note in (’(voice)’, ’(voice: Japanese version)’,
’(voice) (uncredited)’, ’(voice: English version)’)
19a: mc.note is NOT NULL
19a: mi.info is NOT null
19a: (mi.info LIKE ’Japan:%200%’ OR mi.info
LIKE ’USA:%200%’)
19a: n.name LIKE ’%Ang%’
19a: t.production year BETWEEN 2005 AND 2009
19b: ci.note = ’(voice)’
19b: mc.note LIKE ’%(200%)%’
19b: mi.info is NOT null
19b: (mi.info LIKE ’Japan:%2007%’ OR mi.info
LIKE ’USA:%2008%’)
19b: n.name LIKE ’%Angel%’
19b: t.production year BETWEEN 2007 AND 2008
19b: t.title LIKE ’%Kung%Fu%PANDa%’
19c: ci.note in (’(voice)’, ’(voice: Japanese version)’,
’(voice) (uncredited)’, ’(voice: English version)’)
19c: mi.info is NOT null
19c: (mi.info LIKE ’Japan:%200%’ OR mi.info
LIKE ’USA:%200%’)
19c: n.name LIKE ’%An%’
19c: t.production year > 2000
19d: ci.note in (’(voice)’, ’(voice: Japanese version)’,
’(voice) (uncredited)’, ’(voice: English version)’)
19d: t.production year > 2000
projections: n.name t.title

Q20 join-graph: filters:cct1.kind = ’cast’
kt

t

mk

ci

cc

chn n

k

cct1 cct2

cct2.kind LIKE ’%complete%’
kt.kind = ’movie’
20a: (chn.name LIKE ’%Tony%Stark%’ OR
chn.name LIKE ’%Iron%Man%’)
20a: chn.name NOT LIKE ’%Sherlock%’
20a: k.keyword in (’superhero’, ’sequel’, ’second-
part’, ’marvel-comics’, ’based-on-comic’, ’tv-
special’, ’fight’, ’violence’)
20a: t.production year > 1950
20b: (chn.name LIKE ’%Tony%Stark%’ OR
chn.name LIKE ’%Iron%Man%’)
20b: chn.name NOT LIKE ’%Sherlock%’
20b: k.keyword in (’superhero’, ’sequel’, ’second-
part’, ’marvel-comics’, ’based-on-comic’, ’tv-
special’, ’fight’, ’violence’)
20b: n.name LIKE ’%Downey%Robert%’
20b: t.production year > 2000
20c: chn.name is NOT NULL
20c: (chn.name LIKE ’%man%’ OR chn.name LIKE
’%Man%’)
20c: k.keyword in (’superhero’, ’marvel-comics’,
’based-on-comic’, ’tv-special’, ’fight’, ’violence’,
’magnet’, ’web’, ’claw’, ’laser’)
20c: t.production year > 2000

projections: t.title

Q21 join-graph: filters:cn.country code != ’[pl]’
lt

ml

t

mk

mc

mi

k

ctcn

(cn.name LIKE ’%Film%’ OR cn.name LIKE
’%Warner%’)
ct.kind = ’production companies’
k.keyword = ’sequel’
lt.link LIKE ’%follow%’
mc.note IS NULL
21a: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’)
21a: t.production year BETWEEN 1950 AND 2000
21b: mi.info IN (’Germany’, ’German’)
21b: t.production year BETWEEN 2000 AND 2010
21c: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’, ’English’)
21c: t.production year BETWEEN 1950 AND 2010
projections: cn.name lt.link t.title

Q23 join-graph: filters:cct.kind = ’complete+verified’
kt

t

mi

mk

mc

cc

k

it

cnct

cct

cn.country code = ’[us]’
it.info = ’release dates’
mi.note LIKE ’%internet%’
23a: kt.kind in (’movie’)
23a: mi.info is NOT NULL
23a: (mi.info LIKE ’USA:% 199%’ OR mi.info
LIKE ’USA:% 200%’)
23a: t.production year > 2000
23b: k.keyword in (’nerd’, ’loner’, ’alienation’, ’dig-
nity’)
23b: kt.kind in (’movie’)
23b: mi.info LIKE ’USA:% 200%’
23b: t.production year > 2000
23c: mi.info is NOT NULL
23c: (mi.info LIKE ’USA:% 199%’ OR mi.info
LIKE ’USA:% 200%’)
23c: t.production year > 1990
projections: kt.kind t.title

Q22 join-graph: filters:cn.country code != ’[us]’
kt

t

mi

mk

mi_idx

mc

k

it1

it2

ctcn

it1.info = ’countries’
it2.info = ’rating’
k.keyword in (’murder’, ’murder-in-title’, ’blood’,
’violence’)
kt.kind in (’movie’, ’episode’)
22a: mc.note LIKE ’%(200%)%’
22a: mc.note NOT LIKE ’%(USA)%’
22a: mi.info IN (’Germany’, ’German’, ’USA’,
’American’)
22a: t.production year > 2008
22b: mc.note LIKE ’%(200%)%’
22b: mc.note NOT LIKE ’%(USA)%’
22b: mi.info IN (’Germany’, ’German’, ’USA’,
’American’)
22b: t.production year > 2009
22c: mc.note LIKE ’%(200%)%’
22c: mc.note NOT LIKE ’%(USA)%’
22c: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Danish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
22c: t.production year > 2005
22d: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Danish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
22d: t.production year > 2005
projections: cn.name mi idx.info t.title

Q24 join-graph: filters:ci.note in (’(voice)’, ’(voice: Japanese version)’,
’(voice) (uncredited)’, ’(voice: English version)’)

t

mi

mc

ci

mk an

cn

it

nrt chn

k

cn.country code = ’[us]’
it.info = ’release dates’
mi.info is NOT null
(mi.info LIKE ’Japan:%201%’ OR mi.info LIKE
’USA:%201%’)
n.gender = ’f’
n.name LIKE ’%An%’
rt.role = ’actress’
t.production year > 2010
24a: k.keyword in (’hero’, ’martial-arts’, ’hAND-to-
hAND-combat’)
24b: cn.name = ’DreamWorks Animation’
24b: k.keyword in (’hero’, ’martial-arts’, ’hAND-to-
hAND-combat’, ’computer-animated-movie’)
24b: t.title LIKE ’Kung Fu PANDa%’
projections: chn.name n.name t.title

26 Viktor Leis et al.

Q25 join-graph: filters:ci.note in (’(writer)’, ’(head writer)’, ’(written by)’,
’(story)’, ’(story editor)’)

t

mi

mi_idx

ci

mk

n

it1

it2

k

it1.info = ’genres’
it2.info = ’votes’
25a: k.keyword in (’murder’, ’blood’, ’gore’, ’death’,
’female-nudity’)
25a: mi.info = ’Horror’
25a: n.gender = ’m’
25b: k.keyword in (’murder’, ’blood’, ’gore’, ’death’,
’female-nudity’)
25b: mi.info = ’Horror’
25b: n.gender = ’m’
25b: t.production year > 2010
25b: t.title LIKE ’Vampire%’
25c: k.keyword in (’murder’, ’violence’, ’blood’,
’gore’, ’death’, ’female-nudity’, ’hospital’)
25c: mi.info in (’Horror’, ’Action’, ’Sci-Fi’,
’Thriller’, ’Crime’, ’War’)
25c: n.gender = ’m’
projections: mi.info mi idx.info n.name t.title

Q26 join-graph: filters:cct1.kind = ’cast’
kt

t

mk

ci

cc

mi_idx

chn n

k

cct1 cct2

it

cct2.kind LIKE ’%complete%’
chn.name is NOT NULL
(chn.name LIKE ’%man%’ OR chn.name LIKE
’%Man%’)
it.info = ’rating’
kt.kind = ’movie’
26a: k.keyword in (’superhero’, ’marvel-comics’,
’based-on-comic’, ’tv-special’, ’fight’, ’violence’,
’magnet’, ’web’, ’claw’, ’laser’)
26a: t.production year > 2000
26b: k.keyword in (’superhero’, ’marvel-comics’,
’based-on-comic’, ’fight’)
26b: t.production year > 2005
26c: k.keyword in (’superhero’, ’marvel-comics’,
’based-on-comic’, ’tv-special’, ’fight’, ’violence’,
’magnet’, ’web’, ’claw’, ’laser’)
26c: t.production year > 2000

projections: chn.name mi idx.info n.name t.title

Q27 join-graph: filters:cn.country code != ’[pl]’
lt

ml

t

mk

mc

mi

cc

k

ct cn cct1cct2

(cn.name LIKE ’%Film%’ OR cn.name LIKE
’%Warner%’)
ct.kind = ’production companies’
k.keyword = ’sequel’
lt.link LIKE ’%follow%’
mc.note IS NULL
27a: cct1.kind in (’cast’, ’crew’)
27a: cct2.kind = ’complete’
27a: mi.info IN (’Sweden’, ’Germany’,’Swedish’,
’German’)
27a: t.production year BETWEEN 1950 AND 2000
27b: cct1.kind in (’cast’, ’crew’)
27b: cct2.kind = ’complete’
27b: mi.info IN (’Sweden’, ’Germany’,’Swedish’,
’German’)
27b: t.production year = 1998
27c: cct1.kind = ’cast’
27c: cct2.kind LIKE ’complete%’
27c: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’, ’English’)
27c: t.production year BETWEEN 1950 AND 2010
projections: cn.name lt.link t.title

Q28 join-graph: filters:cn.country code != ’[us]’
kt

t

mi

mk

mi_idx

mc

cc

k

it1

it2

ctcn

cct1 cct2

it1.info = ’countries’
it2.info = ’rating’
k.keyword in (’murder’, ’murder-in-title’, ’blood’,
’violence’)
kt.kind in (’movie’, ’episode’)
mc.note LIKE ’%(200%)%’
mc.note NOT LIKE ’%(USA)%’
28a: cct1.kind = ’crew’
28a: cct2.kind != ’complete+verified’
28a: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Danish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
28a: t.production year > 2000
28b: cct1.kind = ’crew’
28b: cct2.kind != ’complete+verified’
28b: mi.info IN (’Sweden’, ’Germany’, ’Swedish’,
’German’)
28b: t.production year > 2005
28c: cct1.kind = ’cast’
28c: cct2.kind = ’complete’
28c: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Danish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
28c: t.production year > 2005

projections: cn.name mi idx.info t.title

Q29 join-graph: filters:cct1.kind = ’cast’
t

mi

mc

ci

mk

cc

an pi

cn

it1

nrt chn

it2k

cct1 cct2

cct2.kind = ’complete+verified’
cn.country code = ’[us]’
it1.info = ’release dates’
k.keyword = ’computer-animation’
n.gender = ’f’
n.name LIKE ’%An%’
rt.role = ’actress’
29a: chn.name = ’Queen’
29a: ci.note in (’(voice)’, ’(voice) (uncredited)’,
’(voice: English version)’)
29a: it2.info = ’trivia’
29a: mi.info is NOT null
29a: (mi.info LIKE ’Japan:%200%’ OR mi.info
LIKE ’USA:%200%’)
29a: t.production year BETWEEN 2000 AND 2010
29a: t.title = ’Shrek 2’
29b: chn.name = ’Queen’
29b: ci.note in (’(voice)’, ’(voice) (uncredited)’,
’(voice: English version)’)
29b: it2.info = ’height’
29b: mi.info LIKE ’USA:%200%’
29b: t.production year BETWEEN 2000 AND 2005
29b: t.title = ’Shrek 2’
29c: ci.note in (’(voice)’, ’(voice: Japanese version)’,
’(voice) (uncredited)’, ’(voice: English version)’)
29c: it2.info = ’trivia’
29c: mi.info is NOT null
29c: (mi.info LIKE ’Japan:%200%’ OR mi.info
LIKE ’USA:%200%’)
29c: t.production year BETWEEN 2000 AND 2010
projections: chn.name n.name t.title

Q30 join-graph: filters:cct2.kind = ’complete+verified’
t

mi

mi_idx

ci

mk

cc

n

it1

it2

k

cct1 cct2

ci.note in (’(writer)’, ’(head writer)’, ’(written by)’,
’(story)’, ’(story editor)’)
it1.info = ’genres’
it2.info = ’votes’
k.keyword in (’murder’, ’violence’, ’blood’, ’gore’,
’death’, ’female-nudity’, ’hospital’)
n.gender = ’m’
30a: cct1.kind in (’cast’, ’crew’)
30a: mi.info in (’Horror’, ’Thriller’)
30a: t.production year > 2000
30b: cct1.kind in (’cast’, ’crew’)
30b: mi.info in (’Horror’, ’Thriller’)
30b: t.production year > 2000
30b: (t.title LIKE ’%Freddy%’ OR t.title LIKE
’%Jason%’ OR t.title LIKE ’Saw%’)
30c: cct1.kind = ’cast’
30c: mi.info in (’Horror’, ’Action’, ’Sci-Fi’,
’Thriller’, ’Crime’, ’War’)

projections: mi.info mi idx.info n.name t.title

Q31 join-graph: filters:ci.note in (’(writer)’, ’(head writer)’, ’(written by)’,
’(story)’, ’(story editor)’)

t

mi

mi_idx

ci

mk

mc

n

it1

it2

k

cn

cn.name LIKE ’Lionsgate%’
it1.info = ’genres’
it2.info = ’votes’
k.keyword in (’murder’, ’violence’, ’blood’, ’gore’,
’death’, ’female-nudity’, ’hospital’)
31a: mi.info in (’Horror’, ’Thriller’)
31a: n.gender = ’m’
31b: mc.note LIKE ’%(Blu-ray)%’
31b: mi.info in (’Horror’, ’Thriller’)
31b: n.gender = ’m’
31b: t.production year > 2000
31b: (t.title LIKE ’%Freddy%’ OR t.title LIKE
’%Jason%’ OR t.title LIKE ’Saw%’)
31c: mi.info in (’Horror’, ’Action’, ’Sci-Fi’,
’Thriller’, ’Crime’, ’War’)

projections: mi.info mi idx.info n.name t.title

Q32 join-graph: filters:(no common filter predicates)

mk

k

t1

ml

t2

lt 32a: k.keyword =’10,000-mile-club’
32b: k.keyword =’character-name-in-title’

projections: lt.link t1.title t2.title

Query Optimization Through the Looking Glass, and What We Found Running the Join Order Benchmark 27

Q33 join-graph: filters:it1.info = ’rating’

lt

ml

mi_idx1

mc1

mi_idx2

mc2

t1 t2

it1

kt1

cn1

it2

kt2

cn2

it2.info = ’rating’
33a: cn1.country code = ’[us]’
33a: kt1.kind in (’tv series’)
33a: kt2.kind in (’tv series’)
33a: lt.link in (’sequel’, ’follows’, ’followed by’)
33a: t2.production year BETWEEN 2005 AND
2008
33b: cn1.country code = ’[nl]’
33b: kt1.kind in (’tv series’)
33b: kt2.kind in (’tv series’)
33b: lt.link LIKE ’%follow%’
33b: t2.production year = 2007
33c: cn1.country code != ’[us]’
33c: kt1.kind in (’tv series’, ’episode’)
33c: kt2.kind in (’tv series’, ’episode’)
33c: lt.link in (’sequel’, ’follows’, ’followed by’)
33c: t2.production year BETWEEN 2000 AND 2010

projections: cn1.name cn2.name mi idx1.info
mi idx2.info t1.title t2.title

