
Flow-Join: Adaptive Skew Handling for
Distributed Joins over High-Speed Networks

Wolf Rödiger∗†, Sam Idicula‡, Alfons Kemper∗, Thomas Neumann∗

∗Technische Universität München
Munich, Germany

{roediger, kemper, neumann}@in.tum.de

‡Oracle Labs
Redwood Shores, CA, USA

sam.idicula@oracle.com

Abstract—Modern InfiniBand interconnects offer link speeds
of several gigabytes per second and a remote direct memory
access (RDMA) paradigm for zero-copy network communication.
Both are crucial for parallel database systems to achieve scalable
distributed query processing where adding a server to the cluster
increases performance. However, the scalability of distributed
joins is threatened by unexpected data characteristics: Skew can
cause a severe load imbalance such that a single server has to
process a much larger part of the input than its fair share and
by this slows down the entire distributed query.

We introduce Flow-Join, a novel distributed join algorithm
that handles attribute value skew with minimal overhead. Flow-
Join detects heavy hitters at runtime using small approximate
histograms and adapts the redistribution scheme to resolve load
imbalances before they impact the join performance. Previous
approaches often involve expensive analysis phases, which slow
down distributed join processing for non-skewed workloads.
This is especially the case for modern high-speed interconnects,
which are too fast to hide the extra computation. Other skew
handling approaches require detailed statistics, which are often
not available or overly inaccurate for intermediate results. In
contrast, Flow-Join uses our novel lightweight skew handling
scheme to execute at the full network speed of more than 6 GB/s
for InfiniBand 4×FDR, joining a skewed input at 11.5 billion
tuples/s with 32 servers. This is 6.8× faster than a standard
distributed hash join using the same hardware. At the same
time, Flow-Join does not compromise the join performance for
non-skewed workloads.

I. INTRODUCTION

Today’s many-core servers offer unprecedented single-
server query performance and main-memory capacities in the
terabytes. Yet, a scale-out to a cluster is still necessary to in-
crease the main-memory capacity beyond a few terabytes. For
example, Walmart—the world’s largest company by revenue—
uses a 16 server cluster with a total of 64TiB of main memory
to perform analytical queries on their business data [21].

Data is commonly partitioned across servers so that users
can utilize the combined main-memory capacity of the cluster.
Consequently, query processing requires network communica-
tion between servers. Network speed used to be a bottleneck
for distributed query processing such that a cluster actually
performed worse than a single server. Previous work has thus
focussed on avoiding communication as much as possible

†Work conducted while employed at Oracle, Redwood Shores, CA, USA.

a b c d e f
0 s

0.2 s

0.4 s

0.6 s

0.8 s

1 s

server

ex
ec

ut
io

n
tim

e

no skew skew

Figure 1. A skewed input causes a load imbalance for a standard distributed
hash join (6 servers, InfiniBand 4×QDR at 4 GB/s, Zipf factor z = 1.25)

[25], [22]. However, the economic viability of high-bandwidth
networks has changed the game: Modern high-bandwidth
interconnects with link speeds of several gigabytes per second
enable scalable query distributed processing where adding
servers to the cluster in fact improves performance [2], [24].

However, skew can cause a load imbalance during data
shuffling and thus again threatens the scalability of distributed
query processing as highlighted by Figure 1. The experiment
shows the join execution time for each individual server in a
6-machine cluster comparing skewed and non-skewed inputs.
The cluster is connected via InfiniBand 4×QDR, which offers
a theoretical throughput of 4 GB/s. The skewed input causes
server c to process many more tuples than the others and by
this increases the overall join execution time by 54%.

Heavy hitter skew is particularly harmful for partitioning-
based operators (e.g., join and aggregation), as all tuples
with the same partitioning key are assigned to the same
server. While distributed aggregations can handle heavy hitter
skew effectively using a fast in-cache pre-aggregation, there
is no simple remedy for distributed joins. A distributed join
partitions both inputs into as many partitions as there are
servers. Only tuples from corresponding partitions will join
and these partition pairs are thus assigned to servers. As tuples
with the same key are assigned to the same server, heavy
hitters cause a serious load imbalance as shown in Figure 1.
In the example, a much larger number of tuples is assigned to

2 4 6 8 10 12 14
0 B

1 B

2 B

3 B

number of cores per server

tu
pl

es
/s

InfiniBand 4×FDR
(Intel 2660 v1 2.2 GHz)
InfiniBand 4×QDR
(Intel 2660 v2 2.2 GHz)

Figure 2. CPU-bound vs. network-bound distributed join processing
(6 servers, no skew, 5040 build and 105 M probe tuples per server)

the third server. This impacts performance in two ways: First,
communication becomes irregular, congesting the link to this
server. Second, the third server must process many more tuples
than the others. Ultimately, the overloaded server takes much
longer to process its part of the input and thus slows down the
entire join. With more servers the situation gets even worse:
The larger the cluster, the larger the negative impact of skew.

Heavy hitter skew causes load imbalances during dis-
tributed query processing whether the network is slow or
fast. However, for slow networks the actual join computation
accounts for such a small fraction of the total execution time
that even expensive skew handling approaches are a viable
choice. For example, a distributed join over Gigabit Ethernet
using 6 servers with 5040 build and 105 M probe tuples per
server has a runtime of 13.2 s. The actual join computation
takes less than 250ms while the remaining time is spent
waiting for network transfers. In this case, a preceding skew
detection phase would increase runtime by only 2% even if it
performs as much computational work as the actual join.

Modern high-speed interconnects have closed the gap be-
tween network bandwidth and compute speed: A distributed
join is not necessarily network-bound anymore. Figure 2 shows
that using additional cores for join processing keeps improving
the join performance of a 6-server cluster that is connected
via InfiniBand 4×FDR. This stands in contrast to the slower
4×QDR where six cores already suffice to saturate the avail-
able network bandwidth. In this experiment the size of the
build input is chosen to fit into cache for fastest join processing.
Even so, InfiniBand 4×FDR is still not the bottleneck. The
experiment shows that skew detection cannot be hidden behind
slow network transfers anymore. Instead, any additional work
will directly translate into a visible increase in execution time.
Modern high-speed networks thus require fast skew detection.
This applies even more so for the upcoming InfiniBand EDR
hardware, which will offer almost twice the bandwidth of FDR.

Previous approaches to handle skew depend either on
detailed statistics [6], [34], which are often not available or
overly inaccurate for intermediate results, or an extra analysis
phase [15], [14], [33], [25], which is difficult to hide when
InfiniBand is used. Flow-Join instead performs a lightweight
heavy hitter detection alongside partitioning. It avoids load
imbalances by broadcasting tuples that join with heavy hitters.

0ms 100ms 200ms 300ms 400ms 500ms

Flow-Join
hash join

no skew

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

Flow-Join
hash join

skew (Zipf 1.25)

process build detect skew process probe

Figure 3. Breakdown of execution time for hash join and Flow-Join (6 servers,
4×FDR at 6.8 GB/s, 5040 build and 105 M probe tuples per server)

Flow-Join’s skew detection and handling techniques add
almost no overhead even for InfiniBand 4×FDR, which is
more than 50× faster than Gigabit Ethernet: Figure 3 compares
Flow-Join to a standard hash join for skewed and non-skewed
inputs. The experiment runs on a 6-server cluster connected
via 4×FDR at 6.8 GB/s using 5040 build and 105 M probe
tuples per server. Both join algorithms perform similar for the
non-skewed input with Flow-Join’s skew detection adding only
a minimal overhead of 1.6%. For skewed inputs, the hash
join takes 79% longer, while Flow-Join actually performs 5%
faster compared to the non-skewed input as it keeps heavy
hitter tuples local, thereby reducing network communication.

Flow-Join does not have a separate skew detection phase.
It detects skew while it partitions the first 1% of the probe
input, after which a global consensus on skew values is formed.
The implementation of both algorithms overlaps computation
(partitioning, build, and probe) with network communication
so that the join finishes shortly after the last network trans-
fer. Our adaptive skew handling approach enables pipelined
execution of joins and thus avoids the materialization of the
probe side, reducing main-memory consumption significantly.
In particular, this paper makes the following contributions:

1) A novel mechanism to detect heavy hitters alongside
partitioning of the inputs that incurs only minimal
overhead, comparing successively-refined implemen-
tations of the employed approximate histograms.

2) A method to adapt the redistribution scheme at run-
time for a subset of the keys identified as heavy
hitters. We broadcast corresponding tuples to avoid
that all heavy hitter tuples are assigned to one server.

3) Based on these two techniques, a highly-scalable
implementation of Flow-Join that utilizes RDMA to
shuffle data at full network speed and distinguishes
between local and distributed parallelism to avoid the
inflexibility of the classic exchange operator model.

4) A generalization of Flow-Join beyond key/foreign-
key equi joins that employs the Symmetric Fragment
Replicate redistribution scheme to optimally handle
correlated skew in both inputs.

5) Finally, an extensive evaluation including a scalability
experiment using Zipf-generated data as well as a real
workload from a large commercial vendor.

se
rv

er
 1

se
rv

er
 0

se
rv

er
 1

se
rv

er
 0

keep
local

SRR S

⨝

1

3
4

⨝

1

1

2

1
3
1
2

3
1
1
4

bcast
keep
local

1

1
1
3
1
2

3
1
1
4

1

3
4

2

⨝

⨝

(a) A standard hash join assigns the
heavy hitter to a single server, caus-
ing it to become the bottleneck

se
rv

er
 1

se
rv

er
 0

se
rv

er
 1

se
rv

er
 0

keep
local

SRR S

⨝

1

3
4

⨝

1

1

2

1
3
1
2

3
1
1
4

bcast
keep
local

1

1
1
3
1
2

3
1
1
4

1

3
4

2

⨝

⨝

(b) Selective Broadcast keeps the
skewed probe tuples local and repli-
cates the corresponding build tuple

Figure 4. Selective Broadcast avoids the load imbalance caused by skew

II. FLOW-JOIN

It is hard to detect skew at runtime without causing a
significant overhead for non-skewed workloads. Materializing
all tuples and computing histograms to decide on an optimal
assignment takes time and will provide no benefit when the
input is not skewed. While the additional computation might
not add a noticeable overhead to the overall query execution
time for slow interconnects such as Gigabit Ethernet, this is
no longer the case for InfiniBand 4×FDR, which is more than
50× faster. Any substantial computation in addition to core
join processing is likely to increase query execution time when
such high-speed networks are used.

Flow-Join is a skew-resilient distributed join algorithm
with negligible overhead even for high-speed interconnects. It
computes small, approximate histograms alongside partitioning
to detect skew early. When a small percentage of the input
has been processed, the frequencies in the histograms are
checked. Servers exchange the approximate counts for join key
values when they exceed a skew threshold—i.e., the expected
frequency—by a large factor. Afterwards, all servers in the
cluster know the heavy hitters. The tuples that join with heavy
hitters are broadcast to avoid the load imbalance before it
arises. The heavy hitters can be refined after more tuples have
been processed as they might vary over time.

To simplify the presentation we restrict the discussion
in this section to the common case of key/foreign-key equi
joins. Section IV generalizes Flow-Join to equi joins beyond
key/foreign-key relationships as well as non-equi joins. For
key/foreign-key joins, heavy hitter skew is by definition limited
to the foreign-key side as the attribute values of the other
side are necessarily unique as a consequence of the primary
key property. Therefore, correlated skew—i.e., both inputs are
skewed on the same join key value—is also not covered here
but as part of Section IV.

A. Selective Broadcast

A standard hash join redistributes tuples between servers
according to the hash value of the join key. Tuples with
the same join key value will thus all end up at the same
target server. An example is shown in Figure 4(a): Server 0
is assigned all tuples with the skewed join key 1 and as a

fast access
by key

fixed size 
(k = 8)

remove
minimum
when full

approximate
histogram

probebuild

⨝

key count
42 188
55 123
8 97
17 77
33 54
4 14
39 3
22 1

Figure 5. Flow-Join detects and adapts to heavy hitter skew at runtime using
small approximate histograms that impose only a minimal processing overhead

result receives 4× more tuples than server 1. This impacts
the performance in two ways: First, network communication
becomes irregular as most data is sent over the link to server 0.
Second, server 0 must process many more tuples than its
fair share. The execution time of distributed operators is
determined by the slowest server. Consequently, the increased
load at server 0 will slow down the entire query. This also
affects the scalability of the system: Adding more servers to
the cluster will not improve the performance as expected. The
heavy hitter is still assigned to a single server and the query
execution time thus remains largely unchanged.

An effective way to handle heavy hitter skew is the
Selective Broadcast [34], [25], [22] redistribution method for
distributed hash joins, which is known as Subset-Replicate [6]
in the case of range partitioning. The key idea of Selective
Broadcast is to keep tuples with skewed join keys local to
avoid overloading a single server. Instead, the corresponding
tuples of the other input are broadcast to all servers so that the
heavy hitter tuples can be processed locally. This is shown in
Figure 4(b) where the R tuples with join key 1 are broadcast,
while S tuples with join key 1 are kept local. An equi-
join algorithm that uses Selective Broadcast still computes
the correct join result and at the same time avoids the load
imbalance caused by a standard hash join (for the required
changes to support non-equi joins see Section IV-C). Selective
Broadcast yields performance results for skewed workloads
that are on par with those for non-skewed inputs. For current
systems, a distributed join using Selective Broadcast will in
fact achieve higher performance for skewed than for non-
skewed workloads as the heavy hitter tuples can be kept local
and do not need to be materialized and sent over the network.

B. Heavy Hitter Detection

Even though Selective Broadcast seems to solve the prob-
lem of heavy hitter skew, there is one important caveat: The
heavy hitter values have to be known beforehand. Previous
approaches either assumed that heavy hitter elements can be
deduced from existing statistics [6], [34]—which is often dif-
ficult and expensive for intermediate results—or are computed
during a separate analysis phase that requires a complete
materialization of both join inputs and additional processing
[15], [14], [33], [25].

Flow-Join identifies heavy hitters alongside partitioning
and thus does not need detailed statistics or a separate analysis

4

6

3
9

1

7

1

43

79 6

4

6

3
9

1

7

9 7 6 4 3 1

4

6

3
9

1

7

(a) Hash table

4

6

3
9

1

7

1

43

79 6

4

6

3
9

1

7

9 7 6 4 3 1

4

6

3
9

1

7

(b) Hash table + heap

4

6

3
9

1

7

1

43

79 6

4

6

3
9

1

7

9 7 6 4 3 1

4

6

3
9

1

7

(c) Hash table + sorted array

21 23 25 29 211 213 215
0 M

50 M
100 M
150 M
200 M
250 M

27

distinct values

up
da

te
s/
s

hash table
min-heap
sorted array

(d) Single-threaded update rate, k = 128

Figure 6. Comparison of implementation alternatives for the approximate histogram that is used by Flow-Join to detect heavy hitters alongside partitioning

key count
42 188
55 123
8 97
17 76
33 54
4 14
39 3

key count
42 188
55 123
8 97
17 77
33 54
4 14
39 3

insert 17

key count
42 188
55 123
8 97
17 77
33 54
4 14
39 3
22 1

insert 22

key count
42 188
55 123
8 97
17 77
33 54
4 14
39 3
71 2

insert 71

Figure 7. Example for the SpaceSaving algorithm using capacity k = 8 and
replacing the entry with the minimum count once the histogram is full

phase. This enables pipelined join processing and avoids mate-
rialization of the probe side. The high-level idea of Flow-Join’s
algorithm to detect heavy hitters is shown in Figure 5. The join
maintains approximate—and therefore extremely efficient—
histograms for the probe input. Histograms are updated during
join processing by incrementing the count for each probe tuple
as it is processed. The tuple is only forwarded to the target
server when its count is below the skew threshold. Otherwise,
the probe tuple is kept local and the corresponding build tuple
is broadcast to ensure the correct result.

1) Frequent Items Problem: Detecting heavy hitters during
distributed join processing corresponds to finding frequent
items in a data stream. This is known as the frequent items
problem. The subsequent definitions are adapted from a recent
survey [4] on algorithms that compute frequent items:

Definition 1: EXACT FREQUENT ITEMS PROBLEM:
Given a stream S of n items t1, ..., tn, the frequency of item
i is fi = |{j | tj = i}|, i.e., the number of indices j where
the jth item is i. The exact φ-frequent items for a frequency
threshold of φn are then defined as the set {i | fi > φn} that
contains all items that occur more than φn times.

However, solving the frequent items problem exactly has
been shown to require space linear in the size of the input [4].
Basically, a counter per join value would be required to detect
the k most frequent items. Apart from the large amount of main
memory needed, this would also be very compute-intensive
to maintain due to cache misses and related issues. Thus, we
instead focus on the approximate version of the frequent items
problem with error tolerance ε:

Definition 2: APPROXIMATE FREQ. ITEMS PROBLEM:
Given a stream S of n items, compute the set F of approximate
frequent items such that each reported item i ∈ F has

frequency fi > (φ− ε)n. This allows a reported item to occur
εn times less often in the stream than the specified threshold
of φn. Further, there should be no i 6∈ F such that fi > φn,
i.e., all items i with a frequency larger than φn have to be
reported.

Flow-Join’s heavy hitter detection is based on the Space-
Saving algorithm [19], which solves the frequency estimation
problem with error ε = 1/k, where k is the histogram size.
The frequency of a reported item is off by at most a factor of
1/k. Solving the frequent items problem approximately with
the SpaceSaving algorithm reduces the space requirements
significantly compared to the exact version. For example, a
histogram with 100 entries is sufficient to compute all items
with frequency 1% or higher. This already suffices to detect
all heavy hitters that could potentially impact the performance
of a cluster with dozens of machines.

SpaceSaving reports all frequent items. However, there
is no guarantee that a reported item is indeed frequent.
This is tolerable for our use case, as broadcasting a few
additional tuples will not impact performance noticeably. The
aforementioned survey on algorithms for the frequent items
problem has shown that SpaceSaving is faster, more accurate,
and requires less space than other counter-, quantile-, and
sketch-based alternatives [4], which we will thus not consider.
Figure 7 shows an exemplary execution of the SpaceSaving
algorithm for a histogram with space for k = 8 elements.
In the example there are already 7 elements in the histogram
from the beginning. The insertion of the existing key 17 simply
increments its count. The subsequent insertion of the new value
22 fills the last remaining free slot. Consequently, there is no
free slot for key 71, which instead replaces the element with
the smallest count. The count of the previous element 22 is kept
and incremented by one, yielding a total count of 2 for the new
element 71. Keeping the count of the previous element when
a new element is inserted into a full histogram is necessary to
ensure an item is never underestimated. This approach bounds
the error for the frequency estimation problem to 1/k [19].

2) Data Structures: The main challenge introduced by
the SpaceSaving algorithm is that elements are accessed in
two different ways: via their key for updates and their count
to remove the minimum. The approximate histogram has to
support both operations in a very efficient manner. To this
end, we compared three successively-refined data structures
characterized in Figure 6. The first data structure, depicted

in Figure 6(a), is a hash table, which enables key access in
O(1). However, removing the minimum is expensive as it
incurs a full scan of the hash table with O(k) operations.
Figure 6(b) combines the hash table with a heap to reduce the
cost for accessing the minimum. However, the heap requires
log k moves for every update and removal. Thus, insert, update,
and remove minimum are now all in O(log k). Figure 6(c)
replaces the heap with a sorted array. This enables a remove
minimum that is in O(1). While “increment key” is now worst
case O(k), this only occurs for the rightmost element when all
elements have the same count. In practice, however, an element
rarely moves more than one position to the left.

The experiment shown in Figure 6(d) inserts 10 million
random keys for a uniform distribution without skew into
histograms that have capacity for k = 128 elements. The
number of distinct values increases along the x-axis. Note that
the x-axis is logarithmic so the hash table outperforms the
alternatives only as long as there are very few distinct values.
The update rate of the hash table drops severely as soon as the
number of distinct values exceeds the capacity k = 128. At
this point the remove minimum operation becomes necessary,
which incurs an expensive scan of the hash table. Combining
the hash table with a heap to support a fast remove minimum
operation improves performance by up to 7× once there
are more than k = 128 distinct values. The sorted array
implementation further improves over this and outperforms the
hash table by at least 28× and up to 37× when there are more
than k = 128 distinct values. Increasing k shifts this limit
but does not change the qualitative result. k should be chosen
reasonably small to avoid expensive cache misses.

The sorted-array implementation is very fast, processing
about 60 million keys/s per thread. The implementation of
Flow-Join uses one thread per core to leverage the available
parallelism of modern many-core servers. Worker threads do
not share a single approximate histogram but instead each use
their own private histogram. This avoids the cost of locking
or atomic operations required when sharing a data structure.
Flow-Join uses the sorted-array implementation with a capacity
of k = 128 elements and 256 hash-table entries. This results in
a hash table load factor of at most 1/2 and a memory footprint
of only 2.5KiB, ensuring fast in-cache processing.

C. Early and Iterative Detection

Early detection of heavy hitter values is important to
adapt the redistribution scheme as soon as possible so that
imbalances in network communication and CPU utilization
can be resolved before they impact the join performance.
Flow-Join combines histograms on a per-server level after
processing approximately 1% of the probe input. Afterwards,
the servers combine the resulting skew lists on the cluster level
to reach a global consensus. This is quite cheap: Each server
sums up the counts for the join key values of its local per-
thread approximate histograms. It then forwards those join key
values together with their counts that still exceed the skew
threshold to one of the servers. This one server again adds up
the counts and thus determines the global list of heavy hitter
values as those join key values that still exceed the threshold.
It notifies the servers responsible for the corresponding build
tuples (identified via the join’s hash function). These servers
then broadcast the build tuples across the cluster.

Sampling the first 1% of the input ensures the early
detection of the heavy hitter values. Once the build tuples
are broadcast, the materialized skewed probe tuples can be
joined. This process can be repeated periodically during join
processing to iteratively refine the heavy hitter detection in
case the heavy hitters in the probe input vary over time.

D. Fetch on Demand

Combining all histograms in the cluster did not introduce
a noticeable overhead in our experiments even for 32 servers.
Still, the global consensus requires synchronization between
servers. It is possible to avoid synchronization and reduce
the materialization of heavy hitters to a minimum: Instead of
creating a shared global list of skewed join values, servers
(or even individual worker threads) can decide on the heavy
hitter values on their own. Once a join key value exceeds
the skew threshold, they fetch the corresponding build tuple
asynchronously from the responsible server (identified via the
join’s hash function) similar to the PRPQ scheme by Cheng
et al. [3]. A requesting server does not even need to wait for
the response but can continue processing its input and simply
materialize the probe tuples for the outstanding heavy hitter.
Once the remote server has responded with the build tuple, the
requesting server can join the materialized probe tuples. We
call this refined approach fetch on demand.

Fetch on demand has a second benefit apart from avoiding
the synchronization of the global consensus approach. Differ-
ent servers (or even worker threads) could encounter different
heavy hitters in their part of the input. Fetch on demand allows
them to request only the build tuples for heavy hitters relevant
to them while global consensus always broadcasts the build
tuples for all heavy hitters across the whole cluster.

E. Hash Join Algorithm

There are different ways to implement a distributed hash
join including the classic Grace-style hash join [16] and the
distributed radix join [1]. Both suffer from the load imbalance
caused by heavy hitter skew as they have to assign each heavy
hitter join key value to a single server. Barthels et al. [1] have
shown that a distributed radix join experiences a 3.3× slow
down for a skewed workload with Zipf factor z = 1.2 on an
8-server cluster. We observed similar results for the standard
partitioned hash join, which suffers from a 2.1× slow down
for Zipf factor 1.25. The effect of skew further intensifies with
the cluster size—a standard hash join slows down by 5.2×
on a 32-server cluster for a skewed workload with Zipf factor
1.25. This highlights the need for low-overhead skew handling
techniques whether the underlying join algorithm is a standard
Grace-style hash join or a distributed radix join.

Flow-Join is independent of the underlying hash join algo-
rithm used. During partitioning of the tuples Flow-Join uses
approximate histograms to detect heavy hitters and Selective
Broadcast to handle them. This applies to Grace-style hash
joins [16] as well as radix joins [1]. We decided to implement
the former to evaluate Flow-Join. In the experiments we focus
on the worst case for Flow-Join, i.e., the build relation fits into
cache. In this setting, the cost of skew detection and handling
has the largest visible impact as the join performs fastest. A
larger build side would cause cache misses, slowing down the
join and thus making the overhead of Flow-Join less visible.

Table I. COMPARISON OF NETWORK DATA LINK STANDARDS

GbE
InfiniBand (4×)

SDR DDR QDR FDR EDR

bandwidth [GB/s] 0.125 1 2 4 6.8 12.1

compared to GbE 1× 8× 16× 32× 54× 97×
latency [µs] 340 5 2.5 1.3 0.7 0.5

introduction 1998 2003 2005 2007 2011 2014

III. IMPLEMENTATION DETAILS

Our implementation of Flow-Join uses remote direct mem-
ory access (RDMA) for network communication to utilize
all the available bandwidth offered by modern high-speed
interconnects such as InfiniBand 4×FDR. Flow-Join combines
exchange operators for distributed processing with work steal-
ing across cores and NUMA regions for local processing to
scale join processing to large clusters of many-core servers.

A. High-Speed Networks

InfiniBand is a high-bandwidth, low-latency cluster in-
terconnect offering several different data rates, which have
been standardized over the years since its introduction in
2001 as shown in Table I. Most experiments in this paper
were performed on a 32-server cluster that is connected via
InfiniBand 4×FDR hardware providing more than 50× the
bandwidth of Gigabit Ethernet and latencies as low as 0.7 µs.

InfiniBand offers the choice between two transport pro-
tocols: standard TCP via IP over InfiniBand (IPoIB) and an
InfiniBand-native ibverbs interface, which enables remote di-
rect memory access (RDMA). Figure 8 compares the through-
put of TCP/IP over Gigabit Ethernet and InfiniBand with that
of RDMA for a full-duplex stream of 512KiB messages. The
experiment shows that RDMA is necessary to achieve a net-
work throughput near the theoretical maximum of 6.8 GB/s for
InfiniBand 4×FDR. This stands in contrast to TCP/IP, which
causes significant CPU load—fully occupying one core—and
requires complex tuning as well as the use of multiple data
streams each using a dedicated core to come close to the
throughput of RDMA [24]. For the 32-server cluster used
in the evaluation of this paper with 8 cores per CPU and a
fast 4×FDR interconnect, using all the available bandwidth
with TCP/IP would likely occupy most of the cores of one
of the two CPUs—compared to virtually no CPU cost for
RDMA. Flow-Join’s implementation thus uses RDMA instead
of standard TCP/IP for network communication.

InfiniBand’s ibverbs interface is inherently asynchronous
and thus requires a distinctly different application design. An
application has to post work requests to the work queues of the
InfiniBand card, which operates completely asynchronously.
The card inserts a notification to a completion queue once it
has finished a transfer. As its name suggests, RDMA reads
and writes memory without involving the operating system
or application during transfers. The performance-critical data
transfer path thus involves no CPU cost at all. The application
has to manage network buffers explicitly to enable these zero-
copy network transfers. Registering the network buffers with
the network card before communication is necessary as the
kernel has to pin them to main memory to avoid swapping to

0 1 2 3 4 5 6 7

TCP (GbE)
TCP (InfiniBand)

RDMA (InfiniBand)

6.8 GB/s
(theoretical maximum)0.12

1.23

6.29

throughput in GB/s

Figure 8. Only remote direct memory access (RDMA) can fully leverage
InfiniBand (512KiB messages, duplex communication, one stream, 4×FDR)

disk. Network buffers should be reused as much as possible as
registration is a costly operation [9]. We use a message pool to
reuse buffers and avoid the cost of repeated memory allocation
and registration with the InfiniBand card.

RDMA further offers two different application semantics:
Memory semantics allow the sender to read and write the
receiver’s memory without its involvement, requiring that both
exchange information beforehand to identify the target memory
region. With channel semantics both sender and receiver post
work requests that specify the memory regions. This renders
the preceding information exchange unnecessary. Channel se-
mantics offer the additional benefit that not only the sender
but also the receiver is notified when the data transfer has
finished. For these reasons, the implementation of Flow-Join’s
communication multiplexer uses channel semantics.

B. Local and Distributed Parallelism

The exchange operator [12] is a landmark idea as it allows
systems to encapsulate parallelism inside an operator. All other
relational operators are kept oblivious to parallel execution,
making it straightforward to parallelize existing non-parallel
systems. The exchange operator is commonly used to introduce
parallelism both inside a single machine and between servers
(e.g., Vectorwise Vortex [5] and Teradata [34]). However,
the classic exchange operator has several disadvantages as it
introduces unnecessary materialization cost during local pro-
cessing, is inflexible in dealing with load imbalances and thus
especially vulnerable to attribute value skew, and further faces
scalability problems due to the large number of connections
required for large clusters of many-core servers [24].

Flow-Join instead implements local and distributed paral-
lelism differently. On the local level, instead of using tradi-
tional exchange operators, we parallelize Flow-Join similar to
the morsel-driven approach by Leis et al. [17]. Workers process
small NUMA-local chunks of tuples to avoid expensive remote
memory accesses across CPU sockets. Work stealing allows
faster workers to steal work units from workers that lag behind.
This effectively resolves local load imbalances. The impact of
work stealing grows with the number of cores. Threads are
pinned to cores to avoid expensive thread migrations. On the
global level, exchange operators are connected via RDMA-
based communication multiplexers instead of directly to each
other. The multiplexer ensures that there is always at least
one packet in flight for every target server to use all the
available bandwidth of the InfiniBand network. Both levels
of parallelism are seamlessly integrated into a new approach
that avoids unnecessary materialization, is flexible in dealing
with load imbalances, and offers near-linear scalability in both
the number of cores and servers in the cluster.

IV. GENERALIZED FLOW-JOIN

This section generalizes Flow-Join beyond key/foreign-key
equi joins. The high-level idea is shown in Figure 9: Tuples
with a join value that is neither skewed in R nor in S are
partitioned, R tuples that join with heavy hitters in S are
broadcast and S tuples that join with heavy hitters in R
are handled similarly. Tuples with a join value that is both
a heavy hitter in R and in S are redistributed according to
the Symmetric Fragment Replicate (SFR) [28] data shuffling
scheme as described in Section IV-B.

A. Algorithm

In the following we will describe the generalized Flow-
Join in more detail. We denote the build input as R and
the probe input as S. Typically, the smaller input is used as
build side to keep the hash table for the local join small, we
therefore follow this convention. However, Flow-Join’s skew
detection and handling does not require this. The build input
R is distributed before the probe input S to enable pipelined
probing. Flow-Join avoids materialization as much as possible
to minimize memory consumption. In detail, the generalized
Flow-Join proceeds as follows:

1) Exchange R: For each tuple in R:
• Update approximate histogram
• Compare heavy hitter count to threshold:

a) skewed: insert tuple into local hash table
b) otherwise: send tuple to target server

• Create global list of heavy hitters in R
2) Exchange S: For each tuple in S:

• Update approximate histogram
• Compare heavy hitter count to threshold:

a) skewed in S: materialize S tuple as the
corresponding R tuple is not broadcast
at this point in time

b) skewed in R (but not S): broadcast S
tuple to all servers

c) otherwise: send S tuple to target server
• Create global list of heavy hitters in S

3) Handle skew: (necessary if skew is detected in S)
a) Broadcast R tuples that join with heavy hit-

ters in S that are not also heavy hitters in R,
join the corresponding materialized S tuples

b) Redistribute tuples whose join key is a heavy
hitter in both R and S via the Symmetric
Fragment Replicate redistribution scheme

The generalized Flow-Join computes the correct join result
as explained in the following paragraphs:

• The algorithm partitions tuples with join key values
that are not skewed in R nor in S in step 1(b) and
2(c). These tuples are joined correctly at their target
server.

• R tuples for heavy hitters skewed only in R are
kept local after the skew threshold is met in step 1(a)
while before that they were sent to the target server in
step 1(b). In both cases the tuples are joined correctly
as the corresponding S tuple for the heavy hitter is
broadcast in step 2(b).

server 0

server 1

server 2

server 3

server 0 server 2

server 1 server 3

heavy hitters
server 1 server 2 server 3server 0

partitioned S

pa
rti

tio
ne

d
R

he
av

y
hi

tte
rs

server 2

server 1

server 3

server 0

br
oa

dc
as

t
S

broadcast R

Figure 9. The generalized Flow-Join detects and handles skew in both inputs,
using Symmetric Fragment Replicate (SFR) to deal with correlated skew

• S tuples for heavy hitters skewed only in S are ma-
terialized after the skew threshold is met in step 2(a)
while before that they were sent to the target server
in step 2(c). The S tuples sent to the target server
are joined correctly as the corresponding R tuple was
previously sent there in step 1(b). The materialized S
tuples are probed locally after the corresponding R
partition has been broadcast in step 3(a).

• R tuples for heavy hitters skewed in both R and
S are kept local after the skew threshold is met in
step 1(a) while before that they were sent to the
target server in step 1(b). In both cases the tuples are
redistributed using SFR in step 3(b). Note that these
tuples were not replicated in step 3(a) and exist only
on a single server, avoiding spurious results.

• S tuples for heavy hitters skewed in both R and
S are materialized after the skew threshold is met in
step 2(a). Note that S tuples broadcast in step 2(b) be-
fore the skew threshold was met were probed correctly
and are not considered in this step. The materialized
S tuples and corresponding R tuples are redistributed
and joined via SFR in step 3(b).

The following section describes step 3(b) and the handling
of correlated skew with SFR in detail.

B. Correlated Skew

A join key value that is a heavy hitter for both inputs is
even more problematic than tuples skewed for only one input.
The join for such a heavy hitter is basically a cross product
and thus causes not only a severe load imbalance during data
redistribution but also generates a quadratic number of result
tuples on a single server. While broadcasting the tuples from
one of the two inputs—as proposed by previous approaches
[6], [34]—balances data redistribution and result generation
across servers, it still incurs a significant cost for broadcasting
a large number of heavy hitters.

The Symmetric Fragment Replicate (SFR) [28] data shuf-
fling scheme can be used to handle correlated skew at least as
good as a broadcast. In many cases SFR is able to reduce
query execution time significantly. Instead of assigning all
heavy hitter tuples to a single server or broadcasting them,
the servers are logically arranged in a grid. Servers replicate
heavy hitters for one input across rows, while those of the other

server 0 server 3 server 6

server 1 server 4 server 7

server 2 server 5 server 8

S4
R4

S1 S7

R5

R3

R7

R8

R6

R1

R2

R0

S5S2 S8

S3S0 S6

Figure 10. The Symmetric Fragment Replicate redistribution scheme logically
organizes the servers of the cluster in a rectangle; heavy hitter tuples are
replicated across rows for one input and across columns for the other input

input are replicated across columns. An example with n = 9
servers is shown in Figure 10. This scheme ensures that every
heavy hitter tuple from one input is joined exactly once with
every heavy hitter tuple of the other input. The join site for
two heavy hitter tuples from relation R and S, respectively,
is the server at the intersection of the corresponding row and
column. SFR reduces query execution time and network traffic
by up to a factor of (

√
n+ 1)/2 compared to broadcasting.

Assuming a cluster of n servers and a heavy hitter that
occurs x times in R and y times in S per server: Assigning the
heavy hitter to a server costs (n−1)(x+y) time units as every
server has to send the x + y heavy hitter tuples to the target
server (except the target server itself), causing a congestion
on the receive link of the target server. Broadcasting R costs
(n−1)x time units as every server sends its x heavy hitters of
the smaller side R to every other server using all network links
in parallel. SFR reduces this to (n1 − 1)x + (n2 − 1)y time
units, where n1 and n2 are the number of rows and columns of
the SFR rectangle (with n1×n2 = n): The heavy hitter tuples
of R are replicated across n1 rows and those of S across n2
columns. Again, all links of the network are used in parallel.

The optimal grid shape depends only on the relative
frequency of the heavy hitter in both inputs, e.g., a quadratic
shape is best when the heavy hitter occurs in both inputs with
roughly the same frequency. The other extreme is a rectangle
with only one row (or column) for a heavy hitter that occurs
mostly in one of the two inputs. In this case SFR degenerates
to a broadcast. Figure 11 shows the optimal rectangles for
n = 36 servers for different heavy hitter frequency ratios
and the corresponding speedup of SFR over a broadcast. For
example, when frequencies differ only by up to a factor of
1.5, the quadratic 6× 6 shape is the best choice and improves
performance by up to 3.5× (general case:

√
n−1
2 ×) compared

to broadcasting. On the other hand, when the frequency for
one input is more than 18× (general case: n

2×) larger than for
the other, SFR degenerates to a broadcast with a 1× 36 shape
(general case: 1 × n). The potential rectangles are limited to
the integer divisors of the number of servers n. For example,
a quadratic shape is only possible when the number of servers
is a square number.

SFR reduces the load imbalance, i.e., query execution time,
but not necessarily the amount of network traffic. While SFR
never sends more tuples than broadcasting, the assignment of

1:1 1:1.5 1:3 1:6 1:18

1×

2×

3×

1×36
2×18

3×12

4×9

6×6

relative heavy hitter frequency (log scale)

sp
ee

du
p

ov
er

br
oa

dc
as

t

Figure 11. The optimal SFR rectangle depends on the relative frequency of
the heavy hitter in the two inputs (36-servers)

the heavy hitter to a single server can reduce the network traffic
at the cost of a significantly increased execution time. The
assignment of the heavy hitter to a single server transfers (n−
1)(x+y) tuples as every server sends their heavy hitter tuples
to the target server (except the target server itself). A broadcast
transfers n(n−1)x tuples as every server sends the heavy hitter
tuples for the smaller input to every other server. SFR reduces
network traffic to n((n1 − 1)x + (n2 − 1)y) tuples as every
server sends its heavy hitter tuples for one input across the n1
rows and for the other input across n2 columns.

C. Non-Equi Joins

Similar to a broadcast join [8], which replicates the smaller
input across all servers while it keeps the larger one frag-
mented, Flow-Join has to be adapted to compute the correct
result for semi, anti, and outer joins. This is owed to the
Selective Broadcast and Symmetric Fragment Replicate [28]
redistribution schemes, which replicate tuples and can thus
create spurious and duplicate results.

The semi join may produce duplicate result tuples at
different join sites. The result therefore has to be redistributed
to eliminate these duplicates. The anti join will produce valid
results m times, once for each of the m join sites the tuple was
replicated to. A tuple may find a join partner at only a subset
of its join sites and thus cause spurious results at the remaining
sites, where it does not find a join partner. The result needs to
be redistributed and a tuple is to be included in the result only
if it occurs exactly m times, i.e., if it found no join partner at
any of its join sites. The outer join may produce duplicates and
false results similar to the anti join. Dangling tuples have to
be redistributed and counted. Only dangling tuples that found
no partner across all of their join sites have to be kept in the
final result. The following table lists the required changes for
Flow-Join to support non-equi joins:

RNS RQS RTS RWS RES RHS

hash join X X X X X X
Flow-Join X1 X1 X1 X1 X2 X2

1Requires redistribution of the result.
2Requires redistribution of dangling tuples.

0 0.5 1 1.5 2
0 %

20 %

40 %

60 %

80 %

100 %
z = 1.25

Zipf factor z

sh
ar

e
of

al
l

va
lu

es rank 5
rank 4
rank 3
rank 2
rank 1

(a) Ratio of the five most frequent elements for an
increasing Zipf factor z (64bit integer keys)

no skew z = 1.25
0 B
2 B
4 B
6 B
8 B

10 B
12 B

skew level

tu
pl

es
/s

hash join Skew-List
Flow-Join

(b) Flow-Join incurs minimal overhead for non-
skewed inputs, is 6.8× faster for skew (32 servers)

4 8 12 16 20 24 28 32
0 B
2 B
4 B
6 B
8 B
10 B
12 B

number of servers

tu
pl

es
/s

hash join
Skew-List
Flow-Join

(c) Flow-Join scales near-linearly before the switch
becomes a bottleneck (Zipf factor z = 1.25)

Figure 12. Flow-Join detects heavy hitter values at runtime and still performs as well as the Skew-List algorithm, which takes a list of heavy hitters as input

V. EVALUATION

This section evaluates our approach with two scenarios: In
the first scenario, we generate skewed data that follows a Zipf
distribution. This allows us to scale the input size easily with
the number of servers for a scalability experiment. The second
scenario uses a real workload from a large commercial vendor,
demonstrating that Flow-Join can improve query processing
performance in practice. At last, we will evaluate several
parameters, including the build input size, the Zipf factor z,
the skew threshold, and the number of reported heavy hitters.

A. Experimental Setup

The experimental setup is illustrated in Figure 13 where
the line width of each connection corresponds to its available
bandwidth. We conducted most experiments in this paper on
a cluster of 32 servers connected via Connect-IB InfiniBand
cards at a 4× fast data rate (FDR) resulting in a theoretical
network bandwidth of 6.8 GB/s per incoming and outgoing
link. The aggregate bandwidth of the cluster for all-to-all data
shuffles is thus 218 GB/s. Each Linux server is equipped with
two Intel Xeon E5-2660 CPUs clocked at 2.2GHz with 8
physical cores each (16 hardware contexts per CPU due to
hyper-threading) and 64GiB of main memory per CPU—
resulting in a total of 512 cores (1024 hardware contexts) and
4TiB of main memory in the cluster.

B. Scalability

The first scenario depicted in Figure 12 compares Flow-
Join to a standard hash join and Skew-List. Skew-List is an
omniscient variant of Flow-Join that knows all heavy hitter
values beforehand. It takes a predefined list of heavy hitter
values as part of its input instead of performing skew detection
at runtime. Tuples consist of 64 bit key and 64 bit payload. The
keys of the probe tuples follow a Zipf distribution with Zipf
factor z = 1.25. The Zipf distribution is known to model real
world data accurately, including the size of cities and word
frequencies [13]. Given n elements ranked by their frequency,
a Zipf distribution with skew factor z denotes that the most
frequent item with rank 1 accounts for x = 1/H(n,z) of all
values, where H(n,z) =

∑i=0
n 1/iz is the nth generalized

harmonic number. The element with rank r occurs x/rz times.
Figure 12(a) illustrates the impact of the Zipf factor z on the

PCIe 3.0

QPI
CPU 0 CPU 1

core 0 core 1

core 2 core 3
core 4 core 5
core 6 core 7

L3: 20 MB

Hyper-Thread 0

Hyper-Thread 1
L1: 32 KB L2: 256 KB

CPU 0 CPU 164
 G

B 64 GB

51.2
GB/s

51.2
GB/s

16 GB/s

HCA

16 GB/s

15.75 GB/s

QPI

Infiniband 4⨉FDR6.8
GB/s

host 0 host 1 host 2 host 3 host 4 host 5 host 6 host 7

...

host 24 host 25 host 26 host 27 host 28 host 29 host 30 host 31

Figure 13. Experimental setup: Fully-connected InfiniBand 4×FDR cluster
with 32 servers, resulting in a total of 512 cores and 4TiB of main memory

share of the five most frequent elements for 64 bit integers. For
z = 1, these five values occur in 5% of all tuples, increasing to
43% for z = 1.25, 67% for z = 1.5 and 89% for the extreme
case of z = 2. Our experiments use Zipf factor z = 1.25.
The input consists of 5040 build and 105 M probe tuples per
server. A build input that fits into cache represents the worst
case for Flow-Join: It ensures fastest processing, exposing any
overhead incurred by skew detection and handling.

Figure 12(b) compares the three distributed join algorithms
using all 32 servers of the cluster. The experiment reveals
two important findings: First, Flow-Join imposes only an
insignificant overhead of 1.5% for non-skewed workloads,
joining 8.6 billion tuples/s (408ms) compared to 8.8 billion tu-
ples/s (402ms) for the hash join and the Skew-List algorithm.
Second, Flow-Join performs 6.8× better than the standard hash
join for a skewed input with Zipf factor z = 1.25, joining
11.5 billion tuples/s (305ms) compared to the 1.7 billion tu-
ples/s of the standard hash join (2.1 s). There is no measurable
performance overhead compared to the omniscient Skew-List
algorithm, which knows the heavy hitter values beforehand.
Flow-Join’s performance will improve with the degree of skew
as an increasing number of heavy hitters can be kept local and
thus are neither materialized nor sent over the network.

min max

0.000 001%

0.0001%

0.01%

1%

distinct values
(a) Data distribution of the case study: the most
common join key occurs in 3.8% of the tuples

1 8 16 24 32
0 M

100 M

200 M

300 M

hash partitions

#
of

tu
pl

es

(b) The largest probe partition has 2.6× more tuples
than the expected 116 million (32 servers)

8 12 16 20 24 28 32
0 B

2 B

4 B

6 B

8 B

10 B

number of servers

tu
pl

es
/s

hash join
Flow-Join

(c) Flow-Join scales near-linearly up to 24
servers (outlier due to hash function)

Figure 14. Flow-Join outperforms the standard hash join by up to 2.3× for a real workload from a large commercial vendor

join

table scan

table scan

table scan

join

exchange exchange

JOIN

broadcast

broadcast

table scan

table scan

exchange exchange

join

group by

sort

Figure 15. The query plan for the case study; the highlighted join is subject
to skew in its probe input (the subtree on the right); skew is in this case hard
to infer from statistics as the probe input is an intermediate result

Figure 12(c) evaluates the scalability of the three join
algorithms for the skewed workload by increasing the number
of servers in the cluster. The standard hash join does not
scale as it assigns all tuples of a heavy hitter join key to a
single server and thus causes a severe load imbalance during
data redistribution. Adding more servers improves performance
only minimally. In contrast, Flow-Join scales near-linearly up
to 28 servers. At this point, the switch becomes the bottleneck
and throughput drops. Uncoordinated all-to-all communication
reduces the aggregate bandwidth due to negative effects such
as credit starvation for InfiniBand. Network scheduling [24] is
required to scale beyond 32 servers.

C. Real Workload

The second scenario evaluates Flow-Join for a real work-
load from a large commercial vendor. The query plan of the
use case is shown in Figure 15. The query plan follows the
convention that the left input is used as build input for the local
hash join while the right input is used to probe the hash table.
The highlighted join operator is subject to skew on the probe
side. It is difficult to anticipate the skew from table statistics
alone in this and similar cases as the probe input is not a base

relation but another join. The input consists of 53 000 build
and 3.7 billion probe tuples, with a combined size of 55GiB.

Figure 14(a) depicts the join key distribution for the probe
input. The five most frequent join values occur in 9.4% of
all tuples. This moderately skewed input already leads to a
huge imbalance during hash repartitioning as illustrated in
Figure 14(b) for 32 servers: The largest partition has 2.6×
more tuples than the expected 1/32 of the input. This limits
the scalability of a standard hash join as this one large partition
has to be assigned to a single server, which consequently
slows down the entire join. Flow-Join instead scales much
better due to its low-overhead skew handling scheme as
shown in Figure 14(c). It processes the 55GiB input in only
350ms using 32 servers. However, in this experiment network
congestion already kicks in at 28 servers due to the lower
degree of skew, which causes a larger amount of data to be
shuffled across the network. Again, network scheduling would
be necessary to keep up near-linear scalability. The outlier for
the hash join at 28 servers is due to the hash function, which
in this case assigns heavy hitters more evenly across partitions.

D. Impact of Workload Characteristics and Parameters

The experiments in this paper use a build input that fits into
cache as this represents the worst case for Flow-Join, revealing
any overheads caused by skew detection and handling. We
also conducted experiments that vary the size of the build and
probe input. Our experiments revealed that the join duration
increases proportionally with the size of the probe input as
expected, when the size of the build input is fixed. Using
a larger build input that exceeds the L3 cache increases the
cost for probing the hash table, resulting in a 2.5× longer
runtime—independent of whether skew detection is performed
or not. However, as a consequence the relative overhead for
skew detection and handling in fact decreases: The actual join
processing becomes slower, but the cost for Flow-Join’s heavy
hitter detection stays the same. When the build input exceeds
the cache, a partitioning join such as [18], [29] could be used.
Flow-Join’s techniques to detect and handle skew still apply.

The skewness of the data is another important workload
characteristic. We varied the Zip factor z between 0 and 2.
The runtime of the standard hash join increases proportionally
with the size of the largest probe partition as expected. The

size of the largest probe partition is directly determined by
the most frequent heavy hitter. The effect is even higher when
several heavy hitters are assigned to a single partition.

Flow-Join has two important tuning parameters: The max-
imum number of heavy hitters h reported per node during
global consensus (by default h is unlimited) and the skew
threshold (defaults to 0.01%). Together they determine how
many heavy hitters are reported during skew detection. A node
reports up to h heavy hitters that exceed the skew threshold.
Lowering the skew threshold respectively increasing h will
report more heavy hitters and thus broadcast more build tuples
across the cluster. We conducted an experiment with 8 servers,
Zipf factor 1.25, and unlimited h that varies the skew threshold
from 0.01% to 100% in steps of 10×. For 0.01% 121 heavy
hitters are reported and the join executes in 252ms. Using
a threshold of 0.1% detects 49 heavy hitters, increasing the
runtime by 1.2% to 255ms. A threshold of 1% reveals 12
heavy hitters, resulting in a 12% higher execution time of
282ms. A threshold of 10% discovers only one heavy hitter,
increasing the runtime by 38% to 349ms. A threshold of
100% does not detect any heavy hitters, giving a 134% longer
runtime of 592ms. We observed similar results when the skew
threshold is fixed to 0.01% and we instead vary the maximum
number of heavy hitters reported per node: Choosing h = 128
results in a runtime of 252ms, h = 64 increases this by 2%
to 257ms, h = 16 leads to a 15% higher execution time of
289ms, h = 1 gives a 40% longer runtime of 353ms, and
h = 0 results in a 135% increased runtime of 593ms.

VI. RELATED WORK

Making distributed joins resilient to attribute value skew is
a popular topic in the database literature [15], [14], [6], [33],
[27], [34], [25], [23]. Yet, most approaches add significant
overheads for non-skewed workloads—especially for high-
speed interconnects, which do not allow to hide the extra
computation. Often the inputs are materialized and scanned
completely [15], [14], [33], [25]. Other approaches require
detailed statistics [6], [34], which might be overly inaccurate or
unavailable for intermediate results. Flow-Join instead detects
heavy hitters during partitioning and does not rely on statistics.

DeWitt et al. [6] first introduced the idea to replicate
tuples that join with heavy hitters for range partitioning and
called it Subset-Replicate. Xu et al. [34] applied the idea to
hash partitioning, calling it Partial Redistribution & Partial
Duplication (PRPD). PRPD requires a list of skewed values
based on collected statistics in contrast to Flow-Join, which
detects heavy hitters at runtime. PRPD uses every hardware
context as a separate parallel unit, i.e., there is no work stealing
inside a single server. Skew effects are thus much higher as
heavy hitter values are sent to a single parallel unit.

Eddy [31] and Flux [27] are dedicated operators for adap-
tive stream processing. The distributed Eddy routes tuples
between operators—which are considered to reside on a server
of their own—to address imbalances between operators. Flux
is a modified exchange operator that creates many more
partitions than servers to shift partitions from overloaded to
underutilized servers. However, it cannot split a large partition
that essentially consists of a single heavy hitter value and thus
does not solve the scalability problem caused by skew.

The comparatively low bandwidth of standard network
interconnects such as Gigabit Ethernet creates a bottleneck
for distributed query processing. Consequently, recent research
focused on the network cost: Neo-Join [25] computes an
optimal assignment of partitions to servers that minimizes the
network duration. It handles skew using Selective Broadcast on
a partition level. However, it materializes and scans both inputs
to generate histograms and has to solve a compute-intensive
linear program. Track-Join [22] redistributes join keys in a
dedicated track phase to decide on the join location for each
join key value separately and by this achieves minimal network
traffic—excluding the track phase. However, the track phase
itself is a separate distributed join that is sensitive to skew and
materializes both inputs.

Modern interconnects close the gap between network band-
width and compute speed. This enables a cluster to outperform
a single server and scale the query performance when servers
are added to the cluster [2], [24]. Frey et al. [10] designed
the Cyclo Join using RDMA over 10 Gigabit Ethernet for
join processing within a ring topology. Goncalves and Ker-
sten [11] extended MonetDB with a novel distributed query
processing scheme based on continuously rotating data over
a modern high-speed network with a ring topology. However,
ring topologies, by design, use only a fraction of the available
network bandwidth in a fully-connected network. Mühleisen
et al. [20] use RDMA to utilize remote memory for temporary
database files in MonetDB. Costea and Ionescu [5] extended
Vectorwise, which originated from the MonetDB/X100 project
[35], to a distributed system using MPI over InfiniBand.
Barthels et al. [1] implemented a distributed radix join using
RDMA over InfiniBand, providing a detailed analysis that
includes experiments with skewed workloads. They measured
a 3.3× slow down for Zipf factor 1.2 on an 8-server cluster,
which is in line with our results and further highlights the need
for low-overhead skew handling.

Flow-Join detects heavy hitters using the SpaceSaving
algorithm [19], which solves the approximate frequent items
problem and was shown to outperform alternatives [4]. Roy
et al. [26] designed a pre-filtering stage that speeds up Space-
Saving by a factor of 10 for skewed inputs. Teubner et al.
[30] employed FPGAs to solve the frequent items problem in
hardware, processing 110 million items per second. Both pre-
filter and hardware acceleration can be applied to Flow-Join
to reduce the overhead of skew detection even further.

Elseidy et al. [7] propose a mechanism to dynamically
change the grid of the Symmetric Fragment Replicate redistri-
bution scheme [28] according to running cardinality estimates.
However, an additional random redistribution of the input
tuples doubles the network traffic. They use a symmetric join
algorithm [32] that materializes both inputs in memory and
processes every tuple twice (once for build and once for probe).

VII. CONCLUDING REMARKS

The scalability of distributed joins is threatened by un-
expected data characteristics: Skew can cause a severe load
imbalance such that one server in the cluster has to process a
much larger part of the input than its fair share—slowing down
the entire query. Previous approaches often require expensive
analysis phases, which slow down join processing for non-

skewed workloads. This is especially the case when high-
speed interconnects such as InfiniBand are used, which are too
fast to hide the extra computation. Other approaches depend
on detailed statistics, which are often not available or overly
inaccurate for intermediate results.

Flow-Join is a novel join algorithm that detects and adapts
to heavy hitter skew alongside partitioning with minimal
overhead and without relying on existing statistics. It uses
approximate histograms to detect skew and adapts the redis-
tribution scheme at runtime for the subset of the keys that
were identified as heavy hitters. The combination of decoupled
exchange operators connected via an RDMA-based commu-
nication multiplexer for distributed processing and a work-
stealing-based approach for local processing enables Flow-Join
to scale near-linearly with the number of servers in the cluster.

Our evaluation with Zipf-generated data sets as well as
a real workload from a large commercial vendor has shown
that Flow-Join performs as good as an optimal omniscient
approach for skewed workloads and at the same time does not
compromise join performance when skew is absent from the
workload. The overhead of Flow-Join’s adaptive skew handling
mechanism is indeed small enough to process skewed and non-
skewed inputs at the full network speed of InfiniBand 4×FDR
at more than 6 GB/s per link, joining a skewed workload
at 11.5 billion tuples/s with 32 servers—6.8× faster than
a standard hash join. Flow-Join overlaps computation with
the network communication so that the join finishes shortly
after the last network transfer. Detecting and handling skew
at runtime enables the pipelined execution of joins and thus
avoids the materialization of the probe side, reducing main-
memory consumption significantly.

Finally, we generalized Flow-Join beyond the common
case of key/foreign-key equi joins. The generalized Flow-
Join applies the Symmetric Fragment Replicate redistribution
scheme for heavy hitters that occur in both inputs, reducing
the query execution time by up to a factor of (

√
n+ 1)/2 for

correlated skew in a cluster with n servers.

VIII. ACKNOWLEDGMENTS

Wolf Rödiger is a recipient of the Oracle External Research
Fellowship. This work has further been partially sponsored
by the German Federal Ministry of Education and Research
(BMBF) grant RTBI 01IS12057.

REFERENCES

[1] C. Barthels, S. Loesing, D. Kossmann, and G. Alonso. Rack-scale in-
memory join processing using RDMA. In SIGMOD, pages 1463–1475,
2015.

[2] C. Binnig, U. Çetintemel, A. Crotty, A. Galakatos, T. Kraska, E. Za-
manian, and S. B. Zdonik. The end of slow networks: It’s time for a
redesign. CoRR, abs/1504.01048, 2015.

[3] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos. Robust
and skew-resistant parallel joins in shared-nothing systems. In CIKM,
pages 1399–1408, 2014.

[4] G. Cormode and M. Hadjieleftheriou. Methods for finding frequent
items in data streams. VLDB J., 19(1):3–20, 2010.

[5] A. Costea and A. Ionescu. Query optimization and execution in
Vectorwise MPP. Master’s thesis, Vrije Universiteit, Amsterdam,
Netherlands, 2012.

[6] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri. Practical
skew handling in parallel joins. In VLDB, pages 27–40, 1992.

[7] M. Elseidy, A. Elguindy, A. Vitorovic, and C. Koch. Scalable and
adaptive online joins. PVLDB, 7(6):441–452, 2014.

[8] R. Epstein, M. Stonebraker, and E. Wong. Distributed query processing
in a relational data base system. In SIGMOD, pages 169–180, 1978.

[9] P. W. Frey. Zero-copy network communication. PhD thesis, ETH Zürich,
Zurich, Switzerland, 2010.

[10] P. W. Frey, R. Goncalves, M. Kersten, and J. Teubner. Spinning
relations: high-speed networks for distributed join processing. In
DaMoN, pages 27–33, 2009.

[11] R. Goncalves and M. Kersten. The Data Cyclotron query processing
scheme. TODS, 36(4), 2011.

[12] G. Graefe. Encapsulation of parallelism in the Volcano query processing
system. In SIGMOD, pages 102–111, 1990.

[13] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Wein-
berger. Quickly generating billion-record synthetic databases. SIGMOD
Record, 23(2):243–252, 1994.

[14] K. A. Hua and C. Lee. Handling data skew in multiprocessor database
computers using partition tuning. In VLDB, pages 525–535, 1991.

[15] M. Kitsuregawa and Y. Ogawa. Bucket spreading parallel hash: A new,
robust, parallel hash join method for data skew in the Super Database
Computer (SDC). In VLDB, pages 210–221, 1990.

[16] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Application of hash to
data base machine and its architecture. NGC, 1(1):63–74, 1983.

[17] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven
parallelism: A NUMA-aware query evaluation framework for the many-
core age. In SIGMOD, pages 743–754, 2014.

[18] S. Manegold, P. Boncz, and M. Kersten. Optimizing main-memory join
on modern hardware. TKDE, 14(4):709–730, 2002.

[19] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient computation of
frequent and top-k elements in data streams. In ICDT, pages 398–412,
2005.

[20] H. Mühleisen, R. Gonçalves, and M. Kersten. Peak performance:
Remote memory revisited. In DaMoN, 2013.

[21] H. Plattner. The impact of in-memory databases on applications. Talk,
July 7, 2014.

[22] O. Polychroniou, R. Sen, and K. A. Ross. Track join: Distributed joins
with minimal network traffic. In SIGMOD, pages 1483–1494, 2014.

[23] S. Ray, B. Simion, A. D. Brown, and R. Johnson. Skew-resistant parallel
in-memory spatial join. In SSDBM, 2014.

[24] W. Rödiger, T. Mühlbauer, A. Kemper, and T. Neumann. High-speed
query processing over high-speed networks. PVLDB, 9(4):228–239,
2015.

[25] W. Rödiger, T. Mühlbauer, P. Unterbrunner, A. Reiser, A. Kemper, and
T. Neumann. Locality-sensitive operators for parallel main-memory
database clusters. In ICDE, pages 592–603, 2014.

[26] P. Roy, J. Teubner, and G. Alonso. Efficient frequent item counting in
multi-core hardware. In KDD, pages 1451–1459, 2012.

[27] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin.
Flux: An adaptive partitioning operator for continuous query systems.
In ICDE, pages 25–36, 2003.

[28] J. W. Stamos and H. C. Young. A symmetric fragment and replicate
algorithm for distributed joins. TPDS, 4(12):1345–1354, 1993.

[29] J. Teubner, G. Alonso, C. Balkesen, and M. T. Ozsu. Main-memory
hash joins on multi-core CPUs: Tuning to the underlying hardware. In
ICDE, pages 362–373, 2013.

[30] J. Teubner, R. Müller, and G. Alonso. Frequent item computation on a
chip. TKDE, 23(8):1169–1181, 2011.

[31] F. Tian and D. J. DeWitt. Tuple routing strategies for distributed eddies.
In VLDB, pages 333–344, 2003.

[32] A. N. Wilschut and P. M. G. Apers. Dataflow query execution in a
parallel main-memory environment. In PDIS, pages 68–77, 1991.

[33] J. L. Wolf, P. S. Yu, J. Turek, and D. M. Dias. A parallel hash join
algorithm for managing data skew. TPDS, 4(12):1355–1371, 1993.

[34] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen. Handling data skew in
parallel joins in shared-nothing systems. In SIGMOD, pages 1043–
1052, 2008.

[35] M. Zukowski, M. van de Wiel, and P. Boncz. Vectorwise: A vectorized
analytical DBMS. In ICDE, pages 1349–1350, 2012.

	Introduction
	Flow-Join
	Selective Broadcast
	Heavy Hitter Detection
	Frequent Items Problem
	Data Structures

	Early and Iterative Detection
	Fetch on Demand
	Hash Join Algorithm

	Implementation Details
	High-Speed Networks
	Local and Distributed Parallelism

	Generalized Flow-Join
	Algorithm
	Correlated Skew
	Non-Equi Joins

	Evaluation
	Experimental Setup
	Scalability
	Real Workload
	Impact of Workload Characteristics and Parameters

	Related Work
	Concluding Remarks
	Acknowledgments
	References

