default search action
Medical Image Analysis, Volume 61
Volume 61, April 2020
- Cesare Corrado, Orod Razeghi, Caroline H. Roney, Sam Coveney, Steven Williams, Iain Sim, Mark D. O'Neill, Richard Wilkinson, Jeremy E. Oakley, Richard H. Clayton, Steven A. Niederer:
Quantifying atrial anatomy uncertainty from clinical data and its impact on electro-physiology simulation predictions. 101626 - Baiying Lei, Yujia Zhao, Zhongwei Huang, Xiaoke Hao, Feng Zhou, Ahmed Elazab, Jing Qin, Haijun Lei:
Adaptive sparse learning using multi-template for neurodegenerative disease diagnosis. 101632 - Hua Ma, Ihor Smal, Joost Daemen, Theo van Walsum:
Dynamic coronary roadmapping via catheter tip tracking in X-ray fluoroscopy with deep learning based Bayesian filtering. 101634 - Jian Li, Soyoung Choi, Anand A. Joshi, Jessica L. Wisnowski, Richard M. Leahy:
Temporal non-local means filtering for studies of intrinsic brain connectivity from individual resting fMRI. 101635 - Fumin Guo, Matthew Ng, Maged Goubran, Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer, Graham A. Wright:
Improving cardiac MRI convolutional neural network segmentation on small training datasets and dataset shift: A continuous kernel cut approach. 101636 - Jie Liu, Giulio Gambarota, Huazhong Shu, Longyu Jiang, Benjamin Leporq, Olivier Beuf, Ahmad Karfoul:
On the identification of the blood vessel confounding effect in intravoxel incoherent motion (IVIM) Diffusion-Weighted (DW)-MRI in liver: An efficient sparsity based algorithm. 101637 - Suyu Dong, Gongning Luo, Clara M. Tam, Wei Wang, Kuanquan Wang, Shaodong Cao, Bo Chen, Henggui Zhang, Shuo Li:
Deep Atlas Network for Efficient 3D Left Ventricle Segmentation on Echocardiography. 101638 - Benjamin Thyreau, Yasuyuki Taki:
Learning a cortical parcellation of the brain robust to the MRI segmentation with convolutional neural networks. 101639 - Chuyang Ye, Yuxing Li, Xiangzhu Zeng:
An improved deep network for tissue microstructure estimation with uncertainty quantification. 101650 - Baiying Lei, Nina Cheng, Alejandro F. Frangi, Ee-Leng Tan, Jiuwen Cao, Peng Yang, Ahmed Elazab, Jie Du, Yanwu Xu, Tianfu Wang:
Self-calibrated brain network estimation and joint non-convex multi-task learning for identification of early Alzheimer's disease. 101652 - Yaxin Shen, Bin Sheng, Ruogu Fang, Huating Li, Ling Dai, Skylar E. Stolte, Jing Qin, Weiping Jia, Dinggang Shen:
Domain-invariant interpretable fundus image quality assessment. 101654 - Tanja Lossau, Hannes Nickisch, Tobias Wissel, Michael M. Morlock, Michael Grass:
Learning metal artifact reduction in cardiac CT images with moving pacemakers. 101655 - Lei Du, Kefei Liu, Xiaohui Yao, Shannon L. Risacher, Junwei Han, Andrew J. Saykin, Lei Guo, Li Shen:
Detecting genetic associations with brain imaging phenotypes in Alzheimer's disease via a novel structured SCCA approach. 101656 - Qinghua Huang, Yonghao Huang, Yaozhong Luo, Feiniu Yuan, Xuelong Li:
Segmentation of breast ultrasound image with semantic classification of superpixels. 101657 - Dongqing Zhang, Jianing Wang, Jack H. Noble, Benoit M. Dawant:
HeadLocNet: Deep convolutional neural networks for accurate classification and multi-landmark localization of head CTs. 101659 - Gwenolé Quellec, Mathieu Lamard, Pierre-Henri Conze, Pascale Massin, Béatrice Cochener:
Automatic detection of rare pathologies in fundus photographs using few-shot learning. 101660 - Shiv Gehlot, Anubha Gupta, Ritu Gupta:
SDCT-AuxNetθ: DCT augmented stain deconvolutional CNN with auxiliary classifier for cancer diagnosis. 101661 - Lituan Wang, Lei Zhang, Minjuan Zhu, Xiaofeng Qi, Zhang Yi:
Automatic diagnosis for thyroid nodules in ultrasound images by deep neural networks. 101665 - Tao He, Junjie Hu, Ying Song, Jixiang Guo, Zhang Yi:
Multi-task learning for the segmentation of organs at risk with label dependence. 101666
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.