default search action
Kazuhiko Aikawa
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c34]Kazuhiko Aikawa, Takuya Oda, Shota Kajikawa, Kohei Ozaki, Mayu Iizuka, Katsuhiro Takenaga, Akito Nishimura, Kentaro Ichii:
Development of Four-Core MCFs with Standard Cladding Diameter from High-Core-Count MCFs. OFC 2024: 1-3 - 2022
- [c33]Masaki Ohzeki, Yusuke Sasaki, Katsuhiro Takenaga, Kentaro Ichii, Kazuhiko Aikawa:
Side-view Rotational Alignment Method for Trench-assisted 4-core Fibers. OFC 2022: 1-3 - [c32]Georg Rademacher, Ruben S. Luis, Benjamin J. Puttnam, Juan Carlos Alvarado-Zacarias, Rodrigo Amezcua Correa, Kazuhiko Aikawa, Yoshinari Awaji, Hideaki Furukawa:
Investigation of Wideband Distributed Raman Amplification in a Few-Mode Fiber Link. OFC 2022: 1-3 - [c31]Georg Rademacher, Benjamin J. Puttnam, Ruben S. Luís, Kazuhiko Aikawa, Yoshinari Awaji, Hideaki Furukawa:
Experimental Investigation of Nonlinear Signal Distortions in Multi-Span FMF Transmission. OECC/PSC 2022: 1-3 - 2021
- [c30]Yusuke Sasaki, Ryohei Fukumoto, Katsuhiro Takenaga, Shogo Shimizu, Kazuhiko Aikawa:
Variations in the Optical Characteristics of 200 μm and 250 μm Coated Multicore Fibres Owing to Cabling. ECOC 2021: 1-4 - [c29]Yusuke Sasaki, Ryohei Fukumoto, Katsuhiro Takenaga, Shogo Shimizu, Kazuhiko Aikawa:
Optical Fiber Cable Employing 200 µm-Coated Multicore Fibers for High Density Wiring in Datacom. OFC 2021: 1-3 - 2020
- [c28]Ruben S. Luis, Benjamin J. Puttnam, Georg Rademacher, Tobias A. Eriksson, Yusuke Hirota, Satoshi Shinada, Andrew Ross-Adams, Simon Gross, Michael J. Withford, Ryo Maruyama, Kazuhiko Aikawa, Yoshinari Awaji, Hideaki Furukawa, Naoya Wada:
Petabit Class Transmission and Switching. ECOC 2020: 1-4 - [c27]Francesco Da Ros, Pawel M. Kaminski, Georg Rademacher, Benjamin J. Puttnam, Ruben S. Luis, Werner Klaus, Hideaki Furukawa, Ryu Maruyama, Kazuhiko Aikawa, Toshio Morioka, Leif K. Oxenløwe, Naoya Wada, Michael Galili:
Characterization and Optical Compensation of LP01 and LP11 Intra-Modal Nonlinearity in Few-Mode Fibers. OFC 2020: 1-3 - [c26]Yusuke Sasaki, M. Ozeki, Katsuhiro Takenaga, Kazuhiko Aikawa:
Asymmetrically Arranged 8-Core Fibers with Center Core Suitable for Side-View Alignment in Datacenter Networks. OFC 2020: 1-3
2010 – 2019
- 2019
- [c25]Ryohei Fukumoto, Katsuhiro Takenaga, Kazuhiko Aikawa:
Multi-core Fiber Fabrication in Over-Cladding Bundled Rods Method Applying Polygonal Rods. OECC/PSC 2019: 1-3 - [c24]Kenta Nishimura, Takanori Sato, Takeshi Fujisawa, Yoshimichi Amma, Katsuhiro Takenaga, Kazuhiko Aikawa, Kunimasa Saitoh:
Cladding Diameter Dependence of Inter-Core Crosstalk in Heterogeneous Multicore Fibers. OECC/PSC 2019: 1-3 - [c23]Yusuke Sasaki, Katsuhiro Takenaga, Kazuhiko Aikawa:
Multicore Fiber Connectors with Small Mode Field Diameter. OECC/PSC 2019: 1-3 - 2018
- [j2]Md. Nooruzzaman, Kunimasa Saitoh, Yusuke Sasaki, Katsuhiro Takenaga, Kazuhiko Aikawa, Toshio Morioka:
Non-circular multi-core fibers for super-dense SDM. IEICE Electron. Express 15(19): 20180776 (2018) - [c22]Deming Kong, Edson Porto da Silva, Yusuke Sasaki, Kazuhiko Aikawa, Francesco Da Ros, Michael Galili, Toshio Morioka, Leif K. Oxenløwe, Hao Hu:
Kramers-Kronig Detection with Adaptive Rates for 909.5 Tbit/s Dense SDM and WDM Data Channels. ECOC 2018: 1-3 - [c21]Ruben S. Luis, Georg Rademacher, Benjamin J. Puttnam, Tobias A. Eriksson, Hideaki Furukawa, Andrew Ross-Adams, Simon Gross, Michael J. Withford, Nicolas Riesen, Yusuke Sasaki, Kunimasa Saitoh, Kazuhiko Aikawa, Yoshinari Awaji, Naoya Wada:
1.2 Pb/s Transmission Over a 160 µm Cladding, 4-Core, 3-Mode Fiber, Using 368 C+L band PDM-256-QAM Channels. ECOC 2018: 1-3 - [c20]Ruben S. Luis, Georg Rademacher, Benjamin J. Puttnam, Satoshi Shinada, Hideaki Furukawa, Ryo Maruyama, Kazuhiko Aikawa, Naoya Wada:
A Coherent Kramers-Kronig Receiver for 3-Mode Few-Mode Fiber Transmission. ECOC 2018: 1-3 - [c19]Georg Rademacher, Ruben S. Luis, Benjamin J. Puttnam, Hideaki Furukawa, Ryo Maruyama, Kazuhiko Aikawa, Yoshinari Awaji, Naoya Wada:
Experimental Investigation of Intermodal Nonlinear Signal Degradation in a Few-Mode Fiber Transmission System. ECOC 2018: 1-3 - [c18]Taiji Sakamoto, Kunimasa Saitoh, Shota Saitoh, Yoshiteru Abe, Katsuhiro Takenaga, Azusa Urushibara, Masaki Wada, Takashi Matsui, Kazuhiko Aikawa, Kazuhide Nakajima:
120 Spatial Channel Few-Mode Multi-Core Fibre with Relative Core Multiplicity Factor Exceeding 100. ECOC 2018: 1-3 - [c17]Yusuke Sasaki, Katsuhiro Takenaga, Kazuhiko Aikawa:
High Density Uncoupled Multicore Fibres Employing Thermal Expanded Core Techniques for Low Connection Loss. ECOC 2018: 1-3 - [c16]Georg Rademacher, Ruben S. Luis, Benjamin J. Puttnam, Tobias A. Eriksson, Erik Agrell, Ryo Maruyama, Kazuhiko Aikawa, Hideaki Furukawa, Yoshinari Awaji, Naoya Wada:
159 Tbit/s C+L Band Transmission over 1045 km 3-Mode Graded-Index Few-Mode Fiber. OFC 2018: 1-3 - [c15]Georg Rademacher, Ruben S. Luis, Benjamin J. Puttnam, Roland Ryf, Hideaki Furukawa, Ryo Maruyama, Kazuhiko Aikawa, Akihiro Maruta, Yoshinari Awaji, Naoya Wada:
93.34 Tbit/s/mode (280 Tbit/s) Transmission in a 3-Mode Graded-Index Few-Mode Fiber. OFC 2018: 1-3 - [c14]S. Saitoh, Katsuhiro Takenaga, Kazuhiko Aikawa:
Demonstration of a Rectangularly-Arranged Strongly-Coupled Multi-Core Fiber. OFC 2018: 1-3 - [c13]Georg Rademacher, Ruben S. Luís, Benjamin J. Puttnam, Tobias A. Eriksson, Hideaki Furukawa, Yoshinari Awaji, Ryo Maruyama, Kazuhiko Aikawa, Naoya Wada:
Record Spectral Efficient Transmission of 11.24 Bit/s/Hz/mode over 30 km Few-Mode Fiber. PSC 2018: 1-3 - 2017
- [c12]Saki Nozoe, Taiji Sakamoto, Takashi Matsui, Yoshimichi Amma, Katsuhiro Takenaga, Yoshiteru Abe, Kyozo Tsujikawa, Shinichi Aozasa, Kazuhiko Aikawa, Kazuhide Nakajima:
125 μm-cladding 2LP-mode and 4-core Multi-core Fibre with Air-hole Structure for Low Crosstalk in C+L Band. ECOC 2017: 1-3 - [c11]Klaus Pulverer, Takafumi Tanaka, Ulrich Häbel, Carlos Castro, Marc Bohn, Takayuki Mizuno, Akira Isoda, Kohki Shibahara, Tetsuro Inui, Yutaka Miyamoto, Yusuke Sasaki, Yoshimichi Amma, Kazuhiko Aikawa, Saurabh Jain, Yongmin Jung, Shaif-Ul Alam, David J. Richardson, Md. Nooruzzaman, Toshio Morioka:
First Demonstration of Single-Mode MCF Transport Network with Crosstalk-Aware In-Service Optical Channel Control. ECOC 2017: 1-3 - [c10]Taiji Sakamoto, Kunimasa Saitoh, Shota Saitoh, Kohki Shibahara, Masaki Wada, Yoshiteru Abe, Azusa Urushibara, Katsuhiro Takenaga, Takayuki Mizuno, Takashi Matsui, Kazuhiko Aikawa, Yutaka Miyamoto, Kazuhide Nakajima:
High Spatial Density Six-mode Seven-core Fibre for Repeated Dense SDM Transmission. ECOC 2017: 1-3 - [c9]Yusuke Sasaki, Keisuke Hirakawa, Itaru Ishida, Shoichiro Matsuo, Kazuhiko Aikawa:
Evaluation of Inter-Core Skew in an Uncoupled Multicore Fibre. ECOC 2017: 1-3 - [c8]Yongmin Jung, John R. Hayes, Yusuke Sasaki, Kazuhiko Aikawa, Shaif-Ul Alam, David J. Richardson:
All-fiber optical interconnection for dissimilar multicore fibers with low insertion loss. OFC 2017: 1-3 - [c7]Takayuki Kobayashi, Masanori Nakamura, Fukutaro Hamaoka, Kohki Shibahara, Takayuki Mizuno, Akihide Sano, H. Kawakami, Akira Isoda, Munehiko Nagatani, Hiroshi Yamazaki, Yutaka Miyamoto, Yoshimichi Amma, Yusuke Sasaki, Katsuhiro Takenaga, Kazuhiko Aikawa, Kunimasa Saitoh, Yongmin Jung, David J. Richardson, Klaus Pulverer, Marc Bohn, Md. Nooruzzaman, Toshio Morioka:
1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band dense SDM transmission over 205.6-km of single-mode heterogeneous multi-core fiber using 96-Gbaud PDM-16QAM channels. OFC 2017: 1-3 - [c6]Takayuki Mizuno, Akira Isoda, Kohki Shibahara, Yutaka Miyamoto, Saurabh Jain, Shaif-Ul Alam, David J. Richardson, Carlos Castro, Klaus Pulverer, Yusuke Sasaki, Yoshimichi Amma, Katsuhiro Takenaga, Kazuhiko Aikawa, Toshio Morioka:
In-service crosstalk monitoring for dense space division multiplexed multi-core fiber transmission systems. OFC 2017: 1-3 - [c5]Saki Nozoe, Ryohei Fukumoto, Taiji Sakamoto, Takashi Matsui, Yoshimichi Amma, Katsuhiro Takenaga, Kyozo Tsujikawa, Shinichi Aozasa, Kazuhiko Aikawa, Kazuhide Nakajima:
Low crosstalk 125 μm-cladding multi-core fiber with limited air-holes fabricated with over-cladding bundled rods technique. OFC 2017: 1-3 - [c4]Takuya Oda, Keisuke Hirakawa, Kentaro Ichii, Satoshi Yamamoto, Kazuhiko Aikawa:
Thermally expanded core fiber with a 4-μm mode field diameter suitable for low-loss coupling with silicon photonic devices. OFC 2017: 1-3 - [c3]Yusuke Sasaki, Katsuhiro Takenaga, Kazuhiko Aikawa, Yutaka Miyamoto, Toshio Morioka:
Single-mode 37-core fiber with a cladding diameter of 248 μm. OFC 2017: 1-3 - 2016
- [c2]Takayuki Mizuno, Kohki Shibahara, Hirotaka Ono, Y. Abe, Yutaka Miyamoto, Feihong Ye, Toshio Morioka, Yusuke Sasaki, Yoshimichi Amma, Katsuhiro Takenaga, S. Matsuo, Kazuhiko Aikawa, Kunimasa Saitoh, Yongmin Jung, David J. Richardson, Klaus Pulverer, Marc Bohn, Makoto Yamada:
32-core Dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line. OFC 2016: 1-3 - [c1]Taiji Sakamoto, Takashi Matsui, Kunimasa Saitoh, S. Saitoh, Katsuhiro Takenaga, Takayuki Mizuno, Yoshiteru Abe, Kohki Shibahara, Yuki Tobita, Shinji Matsuo, Kazuhiko Aikawa, Shinichi Aozasa, Kazuhide Nakajima, Yutaka Miyamoto:
Low-loss and Low-DMD few-mode multi-core fiber with highest core multiplicity factor. OFC 2016: 1-3
2000 – 2009
- 2006
- [j1]Ning Guan, Katsuaki Izoe, Katsuhiro Takenaga, Ryuji Suzuki, Kazuhiko Aikawa, Kuniharu Himeno:
Holey Fibers for Low Bending Loss. IEICE Trans. Electron. 89-C(2): 191-196 (2006)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-28 01:30 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint