default search action
Vikas Singh
This is just a disambiguation page, and is not intended to be the bibliography of an actual person. Any publication listed on this page has not been assigned to an actual author yet. If you know the true author of one of the publications listed below, you are welcome to contact us.
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c135]Sotirios Panagiotis Chytas, Hyunwoo J. Kim, Vikas Singh:
Understanding Multi-compositional Learning in Vision and Language Models via Category Theory. ECCV (48) 2024: 324-341 - [c134]Sotirios Panagiotis Chytas, Vishnu Suresh Lokhande, Vikas Singh:
Pooling Image Datasets with Multiple Covariate Shift and Imbalance. ICLR 2024 - [c133]Harshavardhan Adepu, Zhanpeng Zeng, Li Zhang, Vikas Singh:
FrameQuant: Flexible Low-Bit Quantization for Transformers. ICML 2024 - [c132]Sourav Pal, Harshavardhan Adepu, Clinton J. Wang, Polina Golland, Vikas Singh:
Implicit Representations via Operator Learning. ICML 2024 - [c131]Zhanpeng Zeng, Karthikeyan Sankaralingam, Vikas Singh:
IM-Unpack: Training and Inference with Arbitrarily Low Precision Integers. ICML 2024 - [i52]Vikas Singh:
AT-2FF: Adaptive Type-2 Fuzzy Filter for De-noising Images Corrupted with Salt-and-Pepper. CoRR abs/2401.05392 (2024) - [i51]Harshavardhan Adepu, Zhanpeng Zeng, Li Zhang, Vikas Singh:
FrameQuant: Flexible Low-Bit Quantization for Transformers. CoRR abs/2403.06082 (2024) - [i50]Zhanpeng Zeng, Michael Davies, Pranav Pulijala, Karthikeyan Sankaralingam, Vikas Singh:
LookupFFN: Making Transformers Compute-lite for CPU inference. CoRR abs/2403.07221 (2024) - [i49]Zhanpeng Zeng, Karthikeyan Sankaralingam, Vikas Singh:
IM-Unpack: Training and Inference with Arbitrarily Low Precision Integers. CoRR abs/2403.07339 (2024) - [i48]Jurijs Nazarovs, Zhichun Huang, Xingjian Zhen, Sourav Pal, Rudrasis Chakraborty, Vikas Singh:
Variational Sampling of Temporal Trajectories. CoRR abs/2403.11418 (2024) - [i47]Md. Asifuzzaman Jishan, Vikas Singh, Ayan Kumar Ghosh, M. Shahabub Alam, Khan Raqib Mahmud, Bijan Paul:
Hotel Booking Cancellation Prediction Using Applied Bayesian Models. CoRR abs/2410.16406 (2024) - 2023
- [j36]Vikas Singh, Purushottam Gangsar, Rajkumar Porwal, A. Atulkar:
Artificial intelligence application in fault diagnostics of rotating industrial machines: a state-of-the-art review. J. Intell. Manuf. 34(3): 931-960 (2023) - [j35]Vikas Singh, Pooja Agrawal, Teena Sharma, Nishchal K. Verma:
Improved adaptive type-2 fuzzy filter with exclusively two fuzzy membership function for filtering salt and pepper noise. Multim. Tools Appl. 82(13): 20015-20037 (2023) - [j34]Anna Povzner, Prince Mahajan, Jason Gustafson, Jun Rao, Ismael Juma, Feng Min, Shriram Sridharan, Nikhil Bhatia, Gopi K. Attaluri, Adithya Chandra, Stanislav Kozlovski, Rajini Sivaram, Lucas Bradstreet, Bob Barrett, Dhruvil Shah, David Jacot, David Arthur, Manveer Chawla, Ron Dagostino, Colin Mccabe, Manikumar Reddy Obili, Kowshik Prakasam, Jose Garcia Sancio, Vikas Singh, Alok Nikhil, Kamal Gupta:
Kora: A Cloud-Native Event Streaming Platform for Kafka. Proc. VLDB Endow. 16(12): 3822-3834 (2023) - [c130]Vikas Singh, Neha Singh, Mainak Adhikari:
Disease Prediction using Chest X-ray Images in Serverless Data pipeline Framework. CCGridW 2023: 184-191 - [c129]Ronak Mehta, Sathya N. Ravi, Vikas Singh:
Robustness and Convergence of Mirror Descent for Blind Deconvolution. ICASSP 2023: 1-5 - [c128]Vikas Singh, Vasudev Dehalwar, Jyoti Bharti:
Identification of Distributed Denial of Service Attacks Employing L-BFGS Tuning. ICCCNT 2023: 1-7 - [c127]Ronak Mehta, Jeffery Kline, Vishnu Suresh Lokhande, Glenn Fung, Vikas Singh:
Efficient Discrete Multi Marginal Optimal Transport Regularization. ICLR 2023 - [c126]Sourav Pal, Zhanpeng Zeng, Sathya N. Ravi, Vikas Singh:
Controlled Differential Equations on Long Sequences via Non-standard Wavelets. ICML 2023: 26820-26836 - [c125]Zhanpeng Zeng, Michael Davies, Pranav Pulijala, Karthikeyan Sankaralingam, Vikas Singh:
LookupFFN: Making Transformers Compute-lite for CPU inference. ICML 2023: 40707-40718 - [c124]Zhanpeng Zeng, Cole Hawkins, Mingyi Hong, Aston Zhang, Nikolaos Pappas, Vikas Singh, Shuai Zheng:
VCC: Scaling Transformers to 128K Tokens or More by Prioritizing Important Tokens. NeurIPS 2023 - [i46]Zhanpeng Zeng, Cole Hawkins, Mingyi Hong, Aston Zhang, Nikolaos Pappas, Vikas Singh, Shuai Zheng:
Vcc: Scaling Transformers to 128K Tokens or More by Prioritizing Important Tokens. CoRR abs/2305.04241 (2023) - 2022
- [j33]Tuan Q. Dinh, Yunyang Xiong, Zhichun Huang, Tien Vo, Akshay Mishra, Won Hwa Kim, Sathya N. Ravi, Vikas Singh:
Performing Group Difference Testing on Graph Structured Data From GANs: Analysis and Applications in Neuroimaging. IEEE Trans. Pattern Anal. Mach. Intell. 44(2): 877-889 (2022) - [c123]Vikas Singh, Shachi Sharma:
AHP-PCP: AHP based Probabilistic Consensus Protocol for Probabilistic Knowledge-based Blockchains. ANTS 2022: 191-196 - [c122]Jurijs Nazarovs, Zhichun Huang, Songwong Tasneeyapant, Rudrasis Chakraborty, Vikas Singh:
Understanding Uncertainty Maps in Vision with Statistical Testing. CVPR 2022: 406-416 - [c121]Ronak Mehta, Sourav Pal, Vikas Singh, Sathya N. Ravi:
Deep Unlearning via Randomized Conditionally Independent Hessians. CVPR 2022: 10412-10421 - [c120]Vishnu Suresh Lokhande, Rudrasis Chakraborty, Sathya N. Ravi, Vikas Singh:
Equivariance Allows Handling Multiple Nuisance Variables When Analyzing Pooled Neuroimaging Datasets. CVPR 2022: 10422-10431 - [c119]Xingjian Zhen, Zihang Meng, Rudrasis Chakraborty, Vikas Singh:
On the Versatile Uses of Partial Distance Correlation in Deep Learning. ECCV (26) 2022: 327-346 - [c118]Zhichun Huang, Rudrasis Chakraborty, Vikas Singh:
Forward Operator Estimation in Generative Models with Kernel Transfer Operators. ICML 2022: 9148-9172 - [c117]Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn Moo Fung, Vikas Singh:
Multi Resolution Analysis (MRA) for Approximate Self-Attention. ICML 2022: 25955-25972 - [c116]Anita Sinha, Ronak Mehta, Veena A. Nair, Rasmus M. Birn, Vikas Singh, Vivek Prabhakaran:
Investigating Functional Brain Network Abnormalities via Differential Covariance Trajectory Analysis and Scan Statistics. ISBI 2022: 1-4 - [i45]Jurijs Nazarovs, Rudrasis Chakraborty, Songwong Tasneeyapant, Sathya N. Ravi, Vikas Singh:
Mixed Effects Neural ODE: A Variational Approximation for Analyzing the Dynamics of Panel Data. CoRR abs/2202.09463 (2022) - [i44]Jurijs Nazarovs, Ronak R. Mehta, Vishnu Suresh Lokhande, Vikas Singh:
Graph Reparameterizations for Enabling 1000+ Monte Carlo Iterations in Bayesian Deep Neural Networks. CoRR abs/2202.09478 (2022) - [i43]Vishnu Suresh Lokhande, Rudrasis Chakraborty, Sathya N. Ravi, Vikas Singh:
Equivariance Allows Handling Multiple Nuisance Variables When Analyzing Pooled Neuroimaging Datasets. CoRR abs/2203.15234 (2022) - [i42]Ronak Mehta, Sourav Pal, Vikas Singh, Sathya N. Ravi:
Deep Unlearning via Randomized Conditionally Independent Hessians. CoRR abs/2204.07655 (2022) - [i41]Xingjian Zhen, Zihang Meng, Rudrasis Chakraborty, Vikas Singh:
On the Versatile Uses of Partial Distance Correlation in Deep Learning. CoRR abs/2207.09684 (2022) - [i40]Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn Moo Fung, Vikas Singh:
Multi Resolution Analysis (MRA) for Approximate Self-Attention. CoRR abs/2207.10284 (2022) - 2021
- [j32]Nishchal K. Verma, Teena Sharma, Sonal Dixit, Pooja Agrawal, Sourya Sengupta, Vikas Singh:
BIDEAL: A Toolbox for Bicluster Analysis - Generation, Visualization and Validation. SN Comput. Sci. 2(1): 24 (2021) - [j31]Seetaram Maurya, Vikas Singh, Nishchal K. Verma, Chris K. Mechefske:
Condition-Based Monitoring in Variable Machine Running Conditions Using Low-Level Knowledge Transfer With DNN. IEEE Trans Autom. Sci. Eng. 18(4): 1983-1997 (2021) - [c115]Aditya Kumar Akash, Vishnu Suresh Lokhande, Sathya N. Ravi, Vikas Singh:
Learning Invariant Representations using Inverse Contrastive Loss. AAAI 2021: 6582-6591 - [c114]Zihang Meng, Sathya N. Ravi, Vikas Singh:
Physarum Powered Differentiable Linear Programming Layers and Applications. AAAI 2021: 8939-8949 - [c113]Xingjian Zhen, Rudrasis Chakraborty, Liu Yang, Vikas Singh:
Flow-based Generative Models for Learning Manifold to Manifold Mappings. AAAI 2021: 11042-11052 - [c112]Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh:
Nyströmformer: A Nyström-based Algorithm for Approximating Self-Attention. AAAI 2021: 14138-14148 - [c111]Yunyang Xiong, Hanxiao Liu, Suyog Gupta, Berkin Akin, Gabriel Bender, Yongzhe Wang, Pieter-Jan Kindermans, Mingxing Tan, Vikas Singh, Bo Chen:
MobileDets: Searching for Object Detection Architectures for Mobile Accelerators. CVPR 2021: 3825-3834 - [c110]Xingjian Zhen, Rudrasis Chakraborty, Vikas Singh:
Simpler Certified Radius Maximization by Propagating Covariances. CVPR 2021: 7292-7301 - [c109]Zihang Meng, Licheng Yu, Ning Zhang, Tamara L. Berg, Babak Damavandi, Vikas Singh, Amy Bearman:
Connecting What To Say With Where To Look by Modeling Human Attention Traces. CVPR 2021: 12679-12688 - [c108]Zihang Meng, Vikas Singh, Sathya N. Ravi:
Neural TMDlayer: Modeling Instantaneous flow of features via SDE Generators. ICCV 2021: 11615-11624 - [c107]Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Moo Fung, Vikas Singh:
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling. ICML 2021: 12321-12332 - [c106]Zihang Meng, Rudrasis Chakraborty, Vikas Singh:
An Online Riemannian PCA for Stochastic Canonical Correlation Analysis. NeurIPS 2021: 14056-14068 - [c105]Zihang Meng, Lopamudra Mukherjee, Yichao Wu, Vikas Singh, Sathya N. Ravi:
Differentiable Optimization of Generalized Nondecomposable Functions using Linear Programs. NeurIPS 2021: 29129-29141 - [c104]Jurijs Nazarovs, Rudrasis Chakraborty, Songwong Tasneeyapant, Sathya N. Ravi, Vikas Singh:
A variational approximation for analyzing the dynamics of panel data. UAI 2021: 107-117 - [c103]Jurijs Nazarovs, Ronak R. Mehta, Vishnu Suresh Lokhande, Vikas Singh:
Graph reparameterizations for enabling 1000+ Monte Carlo iterations in Bayesian deep neural networks. UAI 2021: 118-128 - [i39]Teja Kanchinadam, Zihang Meng, Joseph Bockhorst, Vikas Singh, Glenn Fung:
Graph Neural Networks to Predict Customer Satisfaction Following Interactions with a Corporate Call Center. CoRR abs/2102.00420 (2021) - [i38]Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh:
Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention. CoRR abs/2102.03902 (2021) - [i37]Aditya Kumar Akash, Vishnu Suresh Lokhande, Sathya N. Ravi, Vikas Singh:
Learning Invariant Representations using Inverse Contrastive Loss. CoRR abs/2102.08343 (2021) - [i36]Xingjian Zhen, Rudrasis Chakraborty, Vikas Singh:
Simpler Certified Radius Maximization by Propagating Covariances. CoRR abs/2104.05888 (2021) - [i35]Zihang Meng, Licheng Yu, Ning Zhang, Tamara L. Berg, Babak Damavandi, Vikas Singh, Amy Bearman:
Connecting What to Say With Where to Look by Modeling Human Attention Traces. CoRR abs/2105.05964 (2021) - [i34]Zihang Meng, Rudrasis Chakraborty, Vikas Singh:
An Online Riemannian PCA for Stochastic Canonical Correlation Analysis. CoRR abs/2106.07479 (2021) - [i33]Zihang Meng, Vikas Singh, Sathya N. Ravi:
Neural TMDlayer: Modeling Instantaneous flow of features via SDE Generators. CoRR abs/2108.08891 (2021) - [i32]Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh:
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling. CoRR abs/2111.09714 (2021) - [i31]Zhichun Huang, Rudrasis Chakraborty, Vikas Singh:
Forward Operator Estimation in Generative Models with Kernel Transfer Operators. CoRR abs/2112.00305 (2021) - 2020
- [j30]Arthur F. A. Fernandes, Eduardo M. Turra, Érika R. de Alvarenga, Tiago L. Passafaro, Fernando B. Lopes, Gabriel F. O. Alves, Vikas Singh, Guilherme J. M. Rosa:
Deep Learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia. Comput. Electron. Agric. 170: 105274 (2020) - [j29]Arun K. Sharma, Dhan Jeet Singh, Vikas Singh, Nishchal K. Verma:
Aerodynamic Modeling of ATTAS Aircraft Using Mamdani Fuzzy Inference Network. IEEE Trans. Aerosp. Electron. Syst. 56(5): 3566-3576 (2020) - [c102]Sathya N. Ravi, Abhay Venkatesh, Glenn Moo Fung, Vikas Singh:
Optimizing Nondecomposable Data Dependent Regularizers via Lagrangian Reparameterization Offers Significant Performance and Efficiency Gains. AAAI 2020: 5487-5494 - [c101]Vishnu Suresh Lokhande, Songwong Tasneeyapant, Abhay Venkatesh, Sathya N. Ravi, Vikas Singh:
Generating Accurate Pseudo-Labels in Semi-Supervised Learning and Avoiding Overconfident Predictions via Hermite Polynomial Activations. CVPR 2020: 11432-11440 - [c100]Vishnu Suresh Lokhande, Aditya Kumar Akash, Sathya N. Ravi, Vikas Singh:
FairALM: Augmented Lagrangian Method for Training Fair Models with Little Regret. ECCV (12) 2020: 365-381 - [c99]Wei Hao, Nicholas M. Vogt, Zihang Meng, Seong Jae Hwang, Rebecca L. Koscik, Sterling C. Johnson, Barbara B. Bendlin, Vikas Singh:
Learning Amyloid Pathology Progression from Longitudinal PIB-PET Images in Preclinical Alzheimer's Disease. ISBI 2020: 572-576 - [i30]Vishnu Suresh Lokhande, Aditya Kumar Akash, Sathya N. Ravi, Vikas Singh:
FairALM: Augmented Lagrangian Method for Training Fair Models with Little Regret. CoRR abs/2004.01355 (2020) - [i29]Yunyang Xiong, Hanxiao Liu, Suyog Gupta, Berkin Akin, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan, Vikas Singh, Bo Chen:
MobileDets: Searching for Object Detection Architectures for Mobile Accelerators. CoRR abs/2004.14525 (2020) - [i28]Zihang Meng, Sathya N. Ravi, Vikas Singh:
Physarum Powered Differentiable Linear Programming Layers and Applications. CoRR abs/2004.14539 (2020) - [i27]Nishchal K. Verma, Teena Sharma, Sonal Dixit, Pooja Agrawal, Sourya Sengupta, Vikas Singh:
BIDEAL: A Toolbox for Bicluster Analysis - Generation, Visualization and Validation. CoRR abs/2007.13737 (2020) - [i26]Vikas Singh, Pooja Agrawal, Teena Sharma, Nishchal K. Verma:
Improved Adaptive Type-2 Fuzzy Filter with Exclusively Two Fuzzy Membership Function for Filtering Salt and Pepper Noise. CoRR abs/2008.04114 (2020) - [i25]Won Hwa Kim, Mona Jalal, Seong Jae Hwang, Sterling C. Johnson, Vikas Singh:
Online Graph Completion: Multivariate Signal Recovery in Computer Vision. CoRR abs/2008.05060 (2020) - [i24]Vikas Singh, Homanga Bharadhwaj, Nishchal K. Verma:
A Bayesian Approach with Type-2 Student-tMembership Function for T-S Model Identification. CoRR abs/2009.00822 (2020) - [i23]Xingjian Zhen, Rudrasis Chakraborty, Liu Yang, Vikas Singh:
Flow-based Generative Models for Learning Manifold to Manifold Mappings. CoRR abs/2012.10013 (2020)
2010 – 2019
- 2019
- [j28]Seong Jae Hwang, Nagesh Adluru, Won Hwa Kim, Sterling C. Johnson, Barbara B. Bendlin, Vikas Singh:
Associations Between Positron Emission Tomography Amyloid Pathology and Diffusion Tensor Imaging Brain Connectivity in Pre-Clinical Alzheimer's Disease. Brain Connect. 9(2): 162-173 (2019) - [j27]Sathya N. Ravi, Maxwell D. Collins, Vikas Singh:
A Deterministic Nonsmooth Frank Wolfe Algorithm with Coreset Guarantees. INFORMS J. Optim. 1(2): 120-142 (2019) - [j26]Rahul Kumar Sevakula, Vikas Singh, Nishchal K. Verma, Chandan Kumar, Yan Cui:
Transfer Learning for Molecular Cancer Classification Using Deep Neural Networks. IEEE ACM Trans. Comput. Biol. Bioinform. 16(6): 2089-2100 (2019) - [c98]Sathya N. Ravi, Tuan Dinh, Vishnu Suresh Lokhande, Vikas Singh:
Explicitly Imposing Constraints in Deep Networks via Conditional Gradients Gives Improved Generalization and Faster Convergence. AAAI 2019: 4772-4779 - [c97]Yunyang Xiong, Hyunwoo J. Kim, Vikas Singh:
Mixed Effects Neural Networks (MeNets) With Applications to Gaze Estimation. CVPR 2019: 7743-7752 - [c96]Teena Sharma, Vikas Singh, Siddharth Sudhakaran, Nishchal K. Verma:
Fuzzy based Pooling in Convolutional Neural Network for Image Classification. FUZZ-IEEE 2019: 1-6 - [c95]Vikas Singh, Teena Sharma, Nishchal K. Verma, Yan Cui:
Feature Ranking using Robust Fuzzy Score Function for Gene Expression Data. FUZZ-IEEE 2019: 1-6 - [c94]Yunyang Xiong, Ronak Mehta, Vikas Singh:
Resource Constrained Neural Network Architecture Search: Will a Submodularity Assumption Help? ICCV 2019: 1901-1910 - [c93]Yiyou Sun, Sathya N. Ravi, Vikas Singh:
Adaptive Activation Thresholding: Dynamic Routing Type Behavior for Interpretability in Convolutional Neural Networks. ICCV 2019: 4937-4946 - [c92]Ronak Mehta, Rudrasis Chakraborty, Vikas Singh, Yunyang Xiong:
Scaling Recurrent Models via Orthogonal Approximations in Tensor Trains. ICCV 2019: 10570-10578 - [c91]Haoliang Sun, Ronak Mehta, Hao Henry Zhou, Zhichun Huang, Sterling C. Johnson, Vivek Prabhakaran, Vikas Singh:
DUAL-GLOW: Conditional Flow-Based Generative Model for Modality Transfer. ICCV 2019: 10610-10619 - [c90]Rudrasis Chakraborty, Xingjian Zhen, Nicholas Vogt, Barbara B. Bendlin, Vikas Singh:
Dilated Convolutional Neural Networks for Sequential Manifold-Valued Data. ICCV 2019: 10620-10630 - [c89]Seong Jae Hwang, Zirui Tao, Vikas Singh, Won Hwa Kim:
Conditional Recurrent Flow: Conditional Generation of Longitudinal Samples With Applications to Neuroimaging. ICCV 2019: 10691-10700 - [c88]Yunyang Xiong, Hyunwoo J. Kim, Bhargav Tangirala, Ronak Mehta, Sterling C. Johnson, Vikas Singh:
On Training Deep 3D CNN Models with Dependent Samples in Neuroimaging. IPMI 2019: 99-111 - [c87]Seong Jae Hwang, Ronak Mehta, Hyunwoo J. Kim, Sterling C. Johnson, Vikas Singh:
Sampling-free Uncertainty Estimation in Gated Recurrent Units with Applications to Normative Modeling in Neuroimaging. UAI 2019: 809-819 - [i22]Yunyang Xiong, Ronak Mehta, Vikas Singh:
Resource Constrained Neural Network Architecture Search. CoRR abs/1904.03786 (2019) - [i21]Owen Levin, Zihang Meng, Vikas Singh, Xiaojin Zhu:
Fooling Computer Vision into Inferring the Wrong Body Mass Index. CoRR abs/1905.06916 (2019) - [i20]Haoliang Sun, Ronak Mehta, Hao Henry Zhou, Zhichun Huang, Sterling C. Johnson, Vivek Prabhakaran, Vikas Singh:
DUAL-GLOW: Conditional Flow-Based Generative Model for Modality Transfer. CoRR abs/1908.08074 (2019) - [i19]Vishnu Suresh Lokhande, Sathya N. Ravi, Songwong Tasneeyapant, Abhay Venkatesh, Vikas Singh:
Generating Accurate Pseudo-labels via Hermite Polynomials for SSL Confidently. CoRR abs/1909.05479 (2019) - [i18]Sathya N. Ravi, Abhay Venkatesh, Glenn Moo Fung, Vikas Singh:
Optimizing Nondecomposable Data Dependent Regularizers via Lagrangian Reparameterization offers Significant Performance and Efficiency Gains. CoRR abs/1909.12398 (2019) - [i17]Xingjian Zhen, Rudrasis Chakraborty, Nicholas Vogt, Barbara B. Bendlin, Vikas Singh:
Dilated Convolutional Neural Networks for Sequential Manifold-valued Data. CoRR abs/1910.02206 (2019) - [i16]Vikas Singh, Nishchal K. Verma:
An Entropy-based Variable Feature Weighted Fuzzy k-Means Algorithm for High Dimensional Data. CoRR abs/1912.11209 (2019) - [i15]Vikas Singh, Nishchal K. Verma:
mRMR-DNN with Transfer Learning for IntelligentFault Diagnosis of Rotating Machines. CoRR abs/1912.11235 (2019) - 2018
- [j25]Vikas Singh, Raghav Dev, Narendra Kumar Dhar, Pooja Agrawal, Nishchal K. Verma:
Adaptive Type-2 Fuzzy Approach for Filtering Salt and Pepper Noise in Grayscale Images. IEEE Trans. Fuzzy Syst. 26(5): 3170-3176 (2018) - [c86]Seong Jae Hwang, Sathya N. Ravi, Zirui Tao, Hyunwoo J. Kim, Maxwell D. Collins, Vikas Singh:
Tensorize, Factorize and Regularize: Robust Visual Relationship Learning. CVPR 2018: 1014-1023 - [c85]Lopamudra Mukherjee, Sathya N. Ravi, Jiming Peng, Vikas Singh:
A Biresolution Spectral Framework for Product Quantization. CVPR 2018: 3329-3338 - [c84]Zihang Meng, Nagesh Adluru, Hyunwoo J. Kim, Glenn Fung, Vikas Singh:
Efficient Relative Attribute Learning Using Graph Neural Networks. ECCV (14) 2018: 575-590 - [c83]Vikas Singh, Harsh Vardhan, Nishchal K. Verma, Yan Cui:
Optimal Feature Selection using Fuzzy Combination of Feature Subset for Transcriptome Data. FUZZ-IEEE 2018: 1-8 - [c82]Seetaram Maurya, Vikas Singh, Sonal Dixit, Nishchal K. Verma, Al Salour, Jie Liu:
Fusion of Low-level Features with Stacked Autoencoder for Condition based Monitoring of Machines. ICPHM 2018: 1-8 - [c81]Gaurav Saraswat, Vikas Singh, Nishchal K. Verma, Al Salour, Jie Liu:
Prognosis of Diesel Engine (MBT) Using Feature Extraction Techniques: A Comparative Study. ICPHM 2018: 1-6 - [c80]Rogers Jeffrey Leo John, Jignesh M. Patel, Andrew L. Alexander, Vikas Singh, Nagesh Adluru:
A Natural Language Interface for Dissemination of Reproducible Biomedical Data Science. MICCAI (4) 2018: 197-205 - [c79]Rudrasis Chakraborty, Chun-Hao Yang, Xingjian Zhen, Monami Banerjee, Derek B. Archer, David E. Vaillancourt, Vikas Singh, Baba C. Vemuri:
A Statistical Recurrent Model on the Manifold of Symmetric Positive Definite Matrices. NeurIPS 2018: 8897-8908 - [i14]Sathya N. Ravi, Tuan Dinh, Vishnu Sai Rao Lokhande, Vikas Singh:
Constrained Deep Learning using Conditional Gradient and Applications in Computer Vision. CoRR abs/1803.06453 (2018) - [i13]Sathya N. Ravi, Ronak Mehta, Vikas Singh:
Robust Blind Deconvolution via Mirror Descent. CoRR abs/1803.08137 (2018) - [i12]Seong Jae Hwang, Ronak Mehta, Vikas Singh:
Sampling-free Uncertainty Estimation in Gated Recurrent Units with Exponential Families. CoRR abs/1804.07351 (2018) - [i11]Rudrasis Chakraborty, Chun-Hao Yang, Xingjian Zhen, Monami Banerjee, Derek B. Archer, David E. Vaillancourt, Vikas Singh, Baba C. Vemuri:
Statistical Recurrent Models on Manifold valued Data. CoRR abs/1805.11204 (2018) - [i10]Hao Henry Zhou, Yunyang Xiong, Vikas Singh:
Building Bayesian Neural Networks with Blocks: On Structure, Interpretability and Uncertainty. CoRR abs/1806.03563 (2018) - [i9]Seong Jae Hwang, Zirui Tao, Won Hwa Kim, Vikas Singh:
Conditional Recurrent Flow: Conditional Generation of Longitudinal Samples with Applications to Neuroimaging. CoRR abs/1811.09897 (2018) - 2017
- [j24]Eric C. Rouchka, Julia H. Chariker, David Tieri, Juw Won Park, Shreedharkumar D. Rajurkar, Vikas Singh, Nishchal K. Verma, Yan Cui, Mark L. Farman, Bradford Condon, Neil Moore, Jerzy W. Jaromczyk, Jolanta Jaromczyk, Daniel R. Harris, Patrick Calie, Eun Kyong Shin, Robert L. Davis, Arash Shaban-Nejad, Joshua M. Mitchell, Robert M. Flight, Qing Jun Wang, Richard M. Higashi, Teresa W.-M. Fan, Andrew N. Lane, Hunter N. B. Moseley, Liangqun Lu, Bernie J. Daigle, Xi Chen, Andrey Smelter, Li Chen, Bailey K. Phan, Nathaniel J. Serpico, Ethan G. Toney, Caroline E. Melton, Jennifer R. Mandel, Bernie J. Daigle Jr., Hao Chen, Kazi I. Zaman, Ramin Homayouni, Patrick J. Trainor, Samantha M. Carlisle, Andrew P. DeFilippis, Shesh N. Rai:
Proceedings of the 16th Annual UT-KBRIN Bioinformatics Summit 2016: bioinformatics: Burns, TN, USA. April 21-23, 2017. BMC Bioinform. 18(S-9) (2017) - [j23]Felipe Gutierrez-Barragan, Vamsi K. Ithapu, Chris Hinrichs, Camille Maumet, Sterling C. Johnson, Thomas E. Nichols, Vikas Singh:
Accelerating permutation testing in voxel-wise analysis through subspace tracking: A new plugin for SnPM. NeuroImage 159: 79-98 (2017) - [c78]Vamsi K. Ithapu, Risi Kondor, Sterling C. Johnson, Vikas Singh:
The Incremental Multiresolution Matrix Factorization Algorithm. CVPR 2017: 692-701 - [c77]Ligang Zheng, Hyunwoo J. Kim, Nagesh Adluru, Michael A. Newton, Vikas Singh:
Riemannian Variance Filtering: An Independent Filtering Scheme for Statistical Tests on Manifold-Valued Data. CVPR Workshops 2017: 699-708 - [c76]Sathya N. Ravi, Yunyang Xiong, Lopamudra Mukherjee, Vikas Singh:
Filter Flow Made Practical: Massively Parallel and Lock-Free. CVPR 2017: 5009-5018 - [c75]Won Hwa Kim, Mona Jalal, Seong Jae Hwang, Sterling C. Johnson, Vikas Singh:
Online Graph Completion: Multivariate Signal Recovery in Computer Vision. CVPR 2017: 5019-5027 - [c74]Hyunwoo J. Kim, Nagesh Adluru, Heemanshu Suri, Baba C. Vemuri, Sterling C. Johnson, Vikas Singh:
Riemannian Nonlinear Mixed Effects Models: Analyzing Longitudinal Deformations in Neuroimaging. CVPR 2017: 5777-5786 - [c73]Rudrasis Chakraborty, Vikas Singh, Nagesh Adluru, Baba C. Vemuri:
A Geometric Framework for Statistical Analysis of Trajectories with Distinct Temporal Spans. ICCV 2017: 172-181 - [c72]Hao Henry Zhou, Yilin Zhang, Vamsi K. Ithapu, Sterling C. Johnson, Grace Wahba, Vikas Singh:
When can Multi-Site Datasets be Pooled for Regression? Hypothesis Tests, $\ell_2$-consistency and Neuroscience Applications. ICML 2017: 4170-4179 - [c71]Gregory Plumb, Lindsay Clark, Sterling C. Johnson, Vikas Singh:
Modeling Cognitive Trends in Preclinical Alzheimer's Disease (AD) via Distributions over Permutations. MICCAI (3) 2017: 683-691 - [p1]Vamsi K. Ithapu, Vikas Singh, Sterling C. Johnson:
Randomized Deep Learning Methods for Clinical Trial Enrichment and Design in Alzheimer's Disease. Deep Learning for Medical Image Analysis 2017: 341-378 - [i8]Vamsi K. Ithapu, Sathya N. Ravi, Vikas Singh:
On architectural choices in deep learning: From network structure to gradient convergence and parameter estimation. CoRR abs/1702.08670 (2017) - [i7]Felipe Gutierrez-Barragan, Vamsi K. Ithapu, Chris Hinrichs, Camille Maumet, Sterling C. Johnson, Thomas E. Nichols, Vikas Singh:
Accelerating Permutation Testing in Voxel-wise Analysis through Subspace Tracking: A new plugin for SnPM. CoRR abs/1703.01506 (2017) - [i6]Vamsi K. Ithapu, Risi Kondor, Sterling C. Johnson, Vikas Singh:
The Incremental Multiresolution Matrix Factorization Algorithm. CoRR abs/1705.05804 (2017) - [i5]Sathya N. Ravi, Maxwell D. Collins, Vikas Singh:
A Deterministic Nonsmooth Frank Wolfe Algorithm with Coreset Guarantees. CoRR abs/1708.06714 (2017) - [i4]Ronak Mehta, Hyunwoo J. Kim, Shulei Wang, Sterling C. Johnson, Ming Yuan, Vikas Singh:
Finding Differentially Covarying Needles in a Temporally Evolving Haystack: A Scan Statistics Perspective. CoRR abs/1711.07575 (2017) - 2016
- [j22]Margam Madhusudhan, Vikas Singh:
Integrated library management systems: Comparative analysis of Koha, Libsys, NewGenLib, and Virtua. Electron. Libr. 34(2): 223-249 (2016) - [c70]Vamsi K. Ithapu, Sathya N. Ravi, Vikas Singh:
On the interplay of network structure and gradient convergence in deep learning. Allerton 2016: 488-495 - [c69]Vikas Singh, Nikhil Baranwal, Rahul Kumar Sevakula, Nishchal K. Verma, Yan Cui:
Layerwise feature selection in Stacked Sparse Auto-Encoder for tumor type prediction. BIBM 2016: 1542-1548 - [c68]Won Hwa Kim, Hyunwoo J. Kim, Nagesh Adluru, Vikas Singh:
Latent Variable Graphical Model Selection Using Harmonic Analysis: Applications to the Human Connectome Project (HCP). CVPR 2016: 2443-2451 - [c67]Seong Jae Hwang, Nagesh Adluru, Maxwell D. Collins, Sathya N. Ravi, Barbara B. Bendlin, Sterling C. Johnson, Vikas Singh:
Coupled Harmonic Bases for Longitudinal Characterization of Brain Networks. CVPR 2016: 2517-2525 - [c66]Won Hwa Kim, Seong Jae Hwang, Nagesh Adluru, Sterling C. Johnson, Vikas Singh:
Adaptive Signal Recovery on Graphs via Harmonic Analysis for Experimental Design in Neuroimaging. ECCV (6) 2016: 188-205 - [c65]Lopamudra Mukherjee, Jiming Peng, Trevor Sigmund, Vikas Singh:
Network Flow Formulations for Learning Binary Hashing. ECCV (5) 2016: 366-381 - [c64]Hyunwoo J. Kim, Brandon M. Smith, Nagesh Adluru, Charles R. Dyer, Sterling C. Johnson, Vikas Singh:
Abundant Inverse Regression Using Sufficient Reduction and Its Applications. ECCV (3) 2016: 570-584 - [c63]Vikas Singh, Rahul K. Gupta, Rahul Kumar Sevakula, Nishchal K. Verma:
Comparative analysis of Gaussian mixture model, logistic regression and random forest for big data classification using map reduce. ICIIS 2016: 333-338 - [c62]Sathya N. Ravi, Vamsi K. Ithapu, Sterling C. Johnson, Vikas Singh:
Experimental Design on a Budget for Sparse Linear Models and Applications. ICML 2016: 583-592 - [c61]Matt Straayer, Jim Bales, Dwight Birdsall, Denis C. Daly, Phillip Elliott, Bill Foley, Roy Mason, Vikas Singh, Xuejin Wang:
27.5 A 4GS/s time-interleaved RF ADC in 65nm CMOS with 4GHz input bandwidth. ISSCC 2016: 464-465 - [c60]Hao Henry Zhou, Vamsi K. Ithapu, Sathya Narayanan Ravi, Vikas Singh, Grace Wahba, Sterling C. Johnson:
Hypothesis Testing in Unsupervised Domain Adaptation with Applications in Alzheimer's Disease. NIPS 2016: 2496-2504 - [c59]Drew Davidson, Hao Wu, Robert Jellinek, Vikas Singh, Thomas Ristenpart:
Controlling UAVs with Sensor Input Spoofing Attacks. WOOT 2016 - 2015
- [j21]Gregory Plumb, Deepti Pachauri, Risi Kondor, Vikas Singh:
SnFFT: a Julia toolkit for Fourier analysis of functions over permutations. J. Mach. Learn. Res. 16: 3469-3473 (2015) - [j20]Won Hwa Kim, Nagesh Adluru, Moo K. Chung, Ozioma C. Okonkwo, Sterling C. Johnson, Barbara B. Bendlin, Vikas Singh:
Multi-resolution statistical analysis of brain connectivity graphs in preclinical Alzheimer's disease. NeuroImage 118: 103-117 (2015) - [c58]Jia Xu, Lopamudra Mukherjee, Yin Li, Jamieson Warner, James M. Rehg, Vikas Singh:
Gaze-enabled egocentric video summarization via constrained submodular maximization. CVPR 2015: 2235-2244 - [c57]Won Hwa Kim, Barbara B. Bendlin, Moo K. Chung, Sterling C. Johnson, Vikas Singh:
Statistical inference models for image datasets with systematic variations. CVPR 2015: 4795-4803 - [c56]Won Hwa Kim, Sathya N. Ravi, Sterling C. Johnson, Ozioma C. Okonkwo, Vikas Singh:
On Statistical Analysis of Neuroimages with Imperfect Registration. ICCV 2015: 666-674 - [c55]Seong Jae Hwang, Maxwell D. Collins, Sathya N. Ravi, Vamsi K. Ithapu, Nagesh Adluru, Sterling C. Johnson, Vikas Singh:
A Projection Free Method for Generalized Eigenvalue Problem with a Nonsmooth Regularizer. ICCV 2015: 1841-1849 - [c54]Hyunwoo J. Kim, Nagesh Adluru, Monami Banerjee, Baba C. Vemuri, Vikas Singh:
Interpolation on the Manifold of K Component GMMs. ICCV 2015: 2884-2892 - [c53]Lopamudra Mukherjee, Sathya N. Ravi, Vamsi K. Ithapu, Tyler Holmes, Vikas Singh:
An NMF Perspective on Binary Hashing. ICCV 2015: 4184-4192 - [c52]Hyunwoo J. Kim, Jia Xu, Baba C. Vemuri, Vikas Singh:
Manifold-valued Dirichlet Processes. ICML 2015: 1199-1208 - [c51]Won Hwa Kim, Vikas Singh, Moo K. Chung, Nagesh Adluru, Barbara B. Bendlin, Sterling C. Johnson:
Multi-resolution statistical analysis on graph structured data in neuroimaging. ISBI 2015: 1548-1551 - [i3]Chris Hinrichs, Vamsi K. Ithapu, Qinyuan Sun, Sterling C. Johnson, Vikas Singh:
Speeding up Permutation Testing in Neuroimaging. CoRR abs/1502.03536 (2015) - [i2]Vamsi K. Ithapu, Sathya N. Ravi, Vikas Singh:
Convergence of gradient based pre-training in Denoising autoencoders. CoRR abs/1502.03537 (2015) - [i1]Vamsi K. Ithapu, Sathya N. Ravi, Vikas Singh:
On the interplay of network structure and gradient convergence in deep learning. CoRR abs/1511.05297 (2015) - 2014
- [j19]Won Hwa Kim, Vikas Singh, Moo K. Chung, Chris Hinrichs, Deepti Pachauri, Ozioma C. Okonkwo, Sterling C. Johnson:
Multi-resolutional shape features via non-Euclidean wavelets: Applications to statistical analysis of cortical thickness. NeuroImage 93: 107-123 (2014) - [c50]Hyunwoo J. Kim, Barbara B. Bendlin, Nagesh Adluru, Maxwell D. Collins, Moo K. Chung, Sterling C. Johnson, Richard J. Davidson, Vikas Singh:
Multivariate General Linear Models (MGLM) on Riemannian Manifolds with Applications to Statistical Analysis of Diffusion Weighted Images. CVPR 2014: 2705-2712 - [c49]Hyunwoo J. Kim, Nagesh Adluru, Barbara B. Bendlin, Sterling C. Johnson, Baba C. Vemuri, Vikas Singh:
Canonical Correlation Analysis on Riemannian Manifolds and Its Applications. ECCV (2) 2014: 251-267 - [c48]Maxwell D. Collins, Ji Liu, Jia Xu, Lopamudra Mukherjee, Vikas Singh:
Spectral Clustering with a Convex Regularizer on Millions of Images. ECCV (3) 2014: 282-298 - [c47]Vamsi K. Ithapu, Vikas Singh, Ozioma C. Okonkwo, Sterling C. Johnson:
Randomized Denoising Autoencoders for Smaller and Efficient Imaging Based AD Clinical Trials. MICCAI (2) 2014: 470-478 - [c46]Deepti Pachauri, Risi Kondor, Gautam Sargur, Vikas Singh:
Permutation Diffusion Maps (PDM) with Application to the Image Association Problem in Computer Vision. NIPS 2014: 541-549 - 2013
- [j18]Svyatoslav Vergun, Alok Deshpande, Timothy B. Meier, Jie Song, Dana Tudorascu, Veena A. Nair, Vikas Singh, Bharat B. Biswal, Mary Elizabeth Meyerand, Rasmus M. Birn, Vivek Prabhakaran:
Characterizing Functional Connectivity Differences in Aging Adults using Machine Learning on Resting State fMRI Data. Frontiers Comput. Neurosci. 7: 38 (2013) - [c45]Jia Xu, Maxwell D. Collins, Vikas Singh:
Incorporating User Interaction and Topological Constraints within Contour Completion via Discrete Calculus. CVPR 2013: 1886-1893 - [c44]Won Hwa Kim, Moo K. Chung, Vikas Singh:
Multi-resolution Shape Analysis via Non-Euclidean Wavelets: Applications to Mesh Segmentation and Surface Alignment Problems. CVPR 2013: 2139-2146 - [c43]Jia Xu, Vamsi K. Ithapu, Lopamudra Mukherjee, James M. Rehg, Vikas Singh:
GOSUS: Grassmannian Online Subspace Updates with Structured-Sparsity. ICCV 2013: 3376-3383 - [c42]Yogesh Darwhekar, Evgeniy Braginskiy, Koby Levy, Abhishek Agrawal, Vikas Singh, Ronen Issac, Ofer Blonskey, Ofer Adler, Yoav Benkuzari, Matan Ben-Shachar, Srikanth Manian, Apu Sivadas, Subhashish Mukherjee, Gangadhar Burra, Nir Tal, Yariv Shlivinski, Guy Bitton, Sreekiran Samala:
A 45nm CMOS near-field communication radio with 0.15A/m RX sensitivity and 4mA current consumption in card emulation mode. ISSCC 2013: 440-441 - [c41]Won Hwa Kim, Nagesh Adluru, Moo K. Chung, Sylvia Charchut, Johnson J. GadElkarim, Lori L. Altshuler, Teena Moody, Anand R. Kumar, Vikas Singh, Alex D. Leow:
Multi-resolutional Brain Network Filtering and Analysis via Wavelets on Non-Euclidean Space. MICCAI (3) 2013: 643-651 - [c40]Chris Hinrichs, Vamsi K. Ithapu, Qinyuan Sun, Sterling C. Johnson, Vikas Singh:
Speeding up Permutation Testing in Neuroimaging. NIPS 2013: 890-898 - [c39]Deepti Pachauri, Risi Kondor, Vikas Singh:
Solving the multi-way matching problem by permutation synchronization. NIPS 2013: 1860-1868 - 2012
- [j17]Jiming Peng, Lopamudra Mukherjee, Vikas Singh, Dale Schuurmans, Linli Xu:
An efficient algorithm for maximal margin clustering. J. Glob. Optim. 52(1): 123-137 (2012) - [j16]Vikas Singh, Deepak Singh, Ritu Tiwari, Anupam Shukla:
MDABC: Motif Discovery Using Artificial Bee Colony Algorithm. J. Inf. Technol. Res. 5(4): 30-47 (2012) - [j15]Vikas Singh, Nagendra Krishnapura, Shanthi Pavan, Baradwaj Vigraham, Debasish Behera, Nimit Nigania:
A 16 MHz BW 75 dB DR CT ΔΣ ADC Compensated for More Than One Cycle Excess Loop Delay. IEEE J. Solid State Circuits 47(8): 1884-1895 (2012) - [c38]Maxwell D. Collins, Jia Xu, Leo J. Grady, Vikas Singh:
Random walks based multi-image segmentation: Quasiconvexity results and GPU-based solutions. CVPR 2012: 1656-1663 - [c37]Lopamudra Mukherjee, Vikas Singh, Jia Xu, Maxwell D. Collins:
Analyzing the Subspace Structure of Related Images: Concurrent Segmentation of Image Sets. ECCV (4) 2012: 128-142 - [c36]Deepti Pachauri, Maxwell D. Collins, Vikas Singh:
Incorporating Domain Knowledge in Matching Problems via Harmonic Analysis. ICML 2012 - [c35]Nagesh Adluru, Vikas Singh, Andrew L. Alexander:
Adaptive cuts for extracting specific white matter tracts. ISBI 2012: 1393-1396 - [c34]Won Hwa Kim, Deepti Pachauri, Charles R. Hatt, Moo K. Chung, Sterling C. Johnson, Vikas Singh:
Wavelet based multi-scale shape features on arbitrary surfaces for cortical thickness discrimination. NIPS 2012: 1250-1258 - [c33]Chris Hinrichs, Vikas Singh, Jiming Peng, Sterling C. Johnson:
Q-MKL: Matrix-induced Regularization in Multi-Kernel Learning with Applications to Neuroimaging. NIPS 2012: 1430-1438 - [c32]Sanjeev Kumar Sharma, Anupam Shukla, Ritu Tiwari, Vikas Singh:
View variations effect in gait recognition and performance improvement using fusion. RAIT 2012: 892-896 - 2011
- [j14]Vikas Singh, Claudio Carnevale, Giovanna Finzi, Enrico Pisoni, Marialuisa Volta:
A cokriging based approach to reconstruct air pollution maps, processing measurement station concentrations and deterministic model simulations. Environ. Model. Softw. 26(6): 778-786 (2011) - [j13]Chris Hinrichs, Vikas Singh, Guofan Xu, Sterling C. Johnson:
Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population. NeuroImage 55(2): 574-589 (2011) - [j12]Deepti Pachauri, Chris Hinrichs, Moo K. Chung, Sterling C. Johnson, Vikas Singh:
Topology-Based Kernels With Application to Inference Problems in Alzheimer's Disease. IEEE Trans. Medical Imaging 30(10): 1760-1770 (2011) - [c31]Sanjeev Kumar Sharma, Ritu Tiwari, Anupam Shukla, Vikas Singh:
Frontal view gait based recognition using PCA. ACAI 2011: 124-127 - [c30]Vikas Singh, Nagendra Krishnapura, Shanthi Pavan, Baradwaj Vigraham, Nimit Nigania, Debasish Behera:
A 16MHz BW 75dB DR CT ΔΣ ADC compensated for more than one cycle excess loop delay. CICC 2011: 1-4 - [c29]Lopamudra Mukherjee, Vikas Singh, Jiming Peng:
Scale invariant cosegmentation for image groups. CVPR 2011: 1881-1888 - [c28]Sanjeev Kumar Sharma, Ritu Tiwari, Anupam Shukla, Vikas Singh:
Fusion of Gait and Facial Feature Using PCA. FGIT-SIP 2011: 401-409 - [c27]Vikas Singh, Deepak Singh, Ritu Tiwari, Anupam Shukla:
Discrete optimization problem solving with three variants of hybrid binary particle swarm optimization. BADS@ICAC 2011: 43-48 - [c26]Chris Hinrichs, N. Maritza Dowling, Sterling C. Johnson, Vikas Singh:
MKL-Based Sample Enrichment and Customized Outcomes Enable Smaller AD Clinical Trials. MLINI 2011: 124-131 - 2010
- [j11]Jing Liu, Yang Xiao, Hui Chen, Suat Özdemir, Srinivas Dodle, Vikas Singh:
A Survey of Payment Card Industry Data Security Standard. IEEE Commun. Surv. Tutorials 12(3): 287-303 (2010) - [j10]Vikas Singh, Lopamudra Mukherjee, Jiming Peng, Jinhui Xu:
Ensemble clustering using semidefinite programming with applications. Mach. Learn. 79(1-2): 177-200 (2010) - [j9]Vikas Singh, Nagendra Krishnapura, Shanthi Pavan:
Compensating for Quantizer Delay in Excess of One Clock Cycle in Continuous-Time DeltaSigma Modulators. IEEE Trans. Circuits Syst. II Express Briefs 57-II(9): 676-680 (2010) - [c25]Maxwell D. Collins, Vikas Singh, Andrew L. Alexander:
Network Connectivity via Inference over Curvature-Regularizing Line Graphs. ACCV (1) 2010: 65-78 - [c24]Lopamudra Mukherjee, Vikas Singh, Jiming Peng, Chris Hinrichs:
Learning kernels for variants of normalized cuts: Convex relaxations and applications. CVPR 2010: 3145-3152 - [c23]S. Shirgaonkar, T. Rajkumar, Vikas Singh:
Application of improved Apriori in University Library. ICWET 2010: 535-540 - [c22]Kamiya Motwani, Nagesh Adluru, Chris Hinrichs, Andrew L. Alexander, Vikas Singh:
Epitome driven 3-D Diffusion Tensor image segmentation: on extracting specific structures. NIPS 2010: 1696-1704
2000 – 2009
- 2009
- [j8]Sebastian Schafer, Vikas Singh, Peter B. Noël, Alan M. Walczak, Jinhui Xu, Kenneth R. Hoffmann:
Real-time endovascular guidewire position simulation using shortest path algorithms. Int. J. Comput. Assist. Radiol. Surg. 4(6): 597-608 (2009) - [j7]K. Sridhara, Aritra Nayak, Vikas Singh, P. K. Dalela:
Enhanced Spectrum Utilization for Existing Cellular Technologies Based on Genetic Algorithm in Preview of Cognitive Radio. Int. J. Commun. Netw. Syst. Sci. 2(9): 917-926 (2009) - [j6]Lopamudra Mukherjee, Vikas Singh, Jiming Peng, Jinhui Xu, Michael J. Zeitz, Ronald Berezney:
Generalized median graphs and applications. J. Comb. Optim. 17(1): 21-44 (2009) - [j5]Chris Hinrichs, Vikas Singh, Lopamudra Mukherjee, Guofan Xu, Moo K. Chung, Sterling C. Johnson:
Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. NeuroImage 48(1): 138-149 (2009) - [c21]Lopamudra Mukherjee, Vikas Singh, Charles R. Dyer:
Half-integrality based algorithms for cosegmentation of images. CVPR 2009: 2028-2035 - [c20]Dorit S. Hochbaum, Vikas Singh:
An efficient algorithm for Co-segmentation. ICCV 2009: 269-276 - [c19]Dylan Hower, Vikas Singh, Sterling C. Johnson:
Label set perturbation for MRF based neuroimaging segmentation. ICCV 2009: 849-856 - [c18]Moo K. Chung, Vikas Singh, Peter T. Kim, Kim M. Dalton, Richard J. Davidson:
Topological Characterization of Signal in Brain Images Using Min-Max Diagrams. MICCAI (1) 2009: 158-166 - [c17]Chris Hinrichs, Vikas Singh, Guofan Xu, Sterling C. Johnson:
MKL for Robust Multi-modality AD Classification. MICCAI (1) 2009: 786-794 - 2008
- [j4]Vikas Singh, Lopamudra Mukherjee, Petru M. Dinu, Jinhui Xu, Kenneth R. Hoffmann:
Limited view CT reconstruction and segmentation via constrained metric labeling. Comput. Vis. Image Underst. 112(1): 67-80 (2008) - [c16]Vikas Singh, Lopamudra Mukherjee, Moo K. Chung:
Cortical Surface Thickness as a Classifier: Boosting for Autism Classification. MICCAI (1) 2008: 999-1007 - [c15]Vikas Singh, Anvaya Rai, N. Hemanth, D. A. Rohit, Asim Mukherjee:
Algorithms for Real Time Detection and Depth Calculation of Obstacles by Autonomous Robots. RAM 2008: 926-930 - 2007
- [j3]Vikas Singh, Lopamudra Mukherjee, Jinhui Xu, Kenneth R. Hoffmann, Petru M. Dinu, M. Podgorsak:
Brachytherapy Seed Localization Using Geometric and Linear Programming Techniques. IEEE Trans. Medical Imaging 26(9): 1291-1304 (2007) - [c14]Lopamudra Mukherjee, Vikas Singh, Jiming Peng, Jinhui Xu, Michael J. Zeitz, Ronald Berezney:
Generalized Median Graphs: Theory and Applications. ICCV 2007: 1-8 - [c13]Vikas Singh, Petru M. Dinu, Lopamudra Mukherjee, Jinhui Xu, Kenneth R. Hoffmann:
Limited view CT reconstruction via constrained metric labeling. ICCV 2007: 1-8 - [c12]Sebastian Schafer, Vikas Singh, Kenneth R. Hoffmann, Peter B. Noël, Jinhui Xu:
Planning image-guided endovascular interventions: guidewire simulation using shortest path algorithms. Image-Guided Procedures 2007: 65092C - [c11]Vikas Singh, Lopamudra Mukherjee, Jiming Peng, Jinhui Xu:
Ensemble Clustering using Semidefinite Programming. NIPS 2007: 1353-1360 - 2006
- [c10]Lopamudra Mukherjee, Vikas Singh, Jinhui Xu, Kishore S. Malyavantham, Ronald Berezney:
On Mobility Analysis of Functional Sites from Time Lapse Microscopic Image Sequences of Living Cell Nucleus. MICCAI (2) 2006: 577-585 - [c9]Vikas Singh, Jinhui Xu, Kenneth R. Hoffmann, Peter B. Noël, Alan M. Walczak:
A linear programming based algorithm for determining corresponding point tuples in multiple vascular images. Image Processing 2006: 61442D - [c8]Vikas Singh, Lopamudra Mukherjee, Jinhui Xu, Kenneth R. Hoffmann:
Solving the brachytherapy seed localization problem using geometric and linear programming techniques. SAC 2006: 229-234 - 2005
- [j2]Jinhui Xu, Guang Xu, Zhenming Chen, Vikas Singh, Kenneth R. Hoffmann:
Efficient Algorithms for Determining 3-D Bi-Plane Imaging Geometry. J. Comb. Optim. 10(2): 113-132 (2005) - [j1]Zhenming Chen, Vikas Singh, Jinhui Xu:
Efficient Job Scheduling Algorithms with Multi-Type Contentions. J. Comb. Optim. 10(2): 179-197 (2005) - [c7]Vikas Singh, Lopamudra Mukherjee, Jinhui Xu, Kenneth R. Hoffmann, Guang Xu, Zhenming Chen:
Efficient geometric techniques for reconstructing 3D vessel trees from biplane image. SCG 2005: 368-369 - [c6]Vikas Singh, Jinhui Xu, Kenneth R. Hoffmann, Guang Xu, Zhenming Chen, Anant Gopal:
A new algorithm for determining 3D biplane imaging geometry: theory and implementation. Image Processing 2005 - 2004
- [c5]Vikas Singh, Kenneth R. Hoffmann, Jinhui Xu:
Efficient techniques for background estimation and vessel detection in coronary images. CARS 2004: 1368 - [c4]Zhenming Chen, Vikas Singh, Jinhui Xu:
Efficient Job Scheduling Algorithms with Multi-type Contentions. ISAAC 2004: 318-329 - [c3]Vikas Singh, Deborah Silver:
Interactive Volume Manipulation with Selective Rendering for Improved Visualization. VolVis 2004: 95-102 - 2003
- [c2]Min Chen, Deborah Silver, Andrew S. Winter, Vikas Singh, Nicu D. Cornea:
Spatial Transfer Functions-A Unified Approach to Specifying Deformation in Volume Modeling and Animation. VG 2003: 35-44 - [c1]Vikas Singh, Deborah Silver, Nicu D. Cornea:
Real-Time Volume Manipulation. VG 2003: 45-52
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-11 20:43 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint