default search action
Pedro Larrañaga
Person information
- affiliation: Universidad Politécnica de Madrid, Spain
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j160]Vicente P. Soloviev, Pedro Larrañaga, Concha Bielza:
EDAspy: An extensible python package for estimation of distribution algorithms. Neurocomputing 598: 128043 (2024) - [j159]Vicente P. Soloviev, Concha Bielza, Pedro Larrañaga:
Semiparametric Estimation of Distribution Algorithms for Continuous Optimization. IEEE Trans. Evol. Comput. 28(4): 1069-1083 (2024) - [j158]Pedro Larrañaga, Concha Bielza:
Estimation of Distribution Algorithms in Machine Learning: A Survey. IEEE Trans. Evol. Comput. 28(5): 1301-1321 (2024) - [j157]Carlos Puerto-Santana, Pedro Larrañaga, Concha Bielza:
Feature Saliencies in Asymmetric Hidden Markov Models. IEEE Trans. Neural Networks Learn. Syst. 35(3): 3586-3600 (2024) - 2023
- [j156]Carlos Villa-Blanco, Concha Bielza, Pedro Larrañaga:
Feature subset selection for data and feature streams: a review. Artif. Intell. Rev. 56(S1): 1011-1062 (2023) - [j155]Gabriel Valverde, David Quesada, Pedro Larrañaga, Concha Bielza:
Causal reinforcement learning based on Bayesian networks applied to industrial settings. Eng. Appl. Artif. Intell. 125: 106657 (2023) - [j154]Carlos Villa-Blanco, Alessandro Bregoli, Concha Bielza, Pedro Larrañaga, Fabio Stella:
Constraint-based and hybrid structure learning of multidimensional continuous-time Bayesian network classifiers. Int. J. Approx. Reason. 159: 108945 (2023) - [j153]Enrique Valero-Leal, Concha Bielza, Pedro Larrañaga, Silja Renooij:
Efficient search for relevance explanations using MAP-independence in Bayesian networks. Int. J. Approx. Reason. 160: 108965 (2023) - [j152]Carlos Puerto-Santana, Pedro Larrañaga, Concha Bielza:
Feature subset selection in data-stream environments using asymmetric hidden Markov models and novelty detection. Neurocomputing 554: 126641 (2023) - [j151]Nikolas Bernaola, Mario Michiels, Pedro Larrañaga, Concha Bielza:
Learning massive interpretable gene regulatory networks of the human brain by merging Bayesian networks. PLoS Comput. Biol. 19(12) (2023) - [j150]Vicente P. Soloviev, Concha Bielza, Pedro Larrañaga:
Quantum approximate optimization algorithm for Bayesian network structure learning. Quantum Inf. Process. 22(1): 19 (2023) - [c86]Vicente P. Soloviev, Pedro Larrañaga, Concha Bielza:
Variational Quantum Algorithm Parameter Tuning with Estimation of Distribution Algorithms. CEC 2023: 1-9 - [c85]Dafne Lozano, Luis Bote, Concha Bielza, Pedro Larrañaga, María Sabater-Molina, Juan Ramón Gimeno, Sergio Muñoz, Francisco Javier Gimeno-Blanes, José Luis Rojo-Álvarez:
High-Dimensional Feature Characterization of Single Nucleotide Variants in Hypertrophic Cardiomyopathy. CinC 2023: 1-4 - [c84]Jorge Casajús-Setién, Concha Bielza, Pedro Larrañaga:
Anomaly-Based Intrusion Detection in IIoT Networks Using Transformer Models. CSR 2023: 72-77 - [i11]Carlos Puerto-Santana, Concha Bielza, Pedro Larrañaga, Gustav Eje Henter:
Context-specific kernel-based hidden Markov model for time series analysis. CoRR abs/2301.09870 (2023) - [i10]David Quesada, Pedro Larrañaga, Concha Bielza:
Classifying the evolution of COVID-19 severity on patients with combined dynamic Bayesian networks and neural networks. CoRR abs/2303.05972 (2023) - 2022
- [j149]Fernando Rodriguez-Sanchez, Concha Bielza, Pedro Larrañaga:
Multipartition clustering of mixed data with Bayesian networks. Int. J. Intell. Syst. 37(3): 2188-2218 (2022) - [j148]David Quesada, Concha Bielza, Pedro Fontán, Pedro Larrañaga:
Piecewise forecasting of nonlinear time series with model tree dynamic Bayesian networks. Int. J. Intell. Syst. 37(11): 9108-9137 (2022) - [j147]David Atienza, Concha Bielza, Pedro Larrañaga:
PyBNesian: An extensible python package for Bayesian networks. Neurocomputing 504: 204-209 (2022) - [j146]Carlos Puerto-Santana, Concha Bielza, Javier Diaz-Rozo, Guillem Ramirez-Gargallo, Filippo Mantovani, Gaizka Virumbrales, Jesús Labarta, Pedro Larrañaga:
Asymmetric HMMs for Online Ball-Bearing Health Assessments. IEEE Internet Things J. 9(20): 20160-20177 (2022) - [j145]David Atienza, Concha Bielza, Pedro Larrañaga:
Semiparametric Bayesian networks. Inf. Sci. 584: 564-582 (2022) - [j144]Vicente P. Soloviev, Pedro Larrañaga, Concha Bielza:
Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables. J. Comb. Optim. 44(2): 1077-1098 (2022) - [j143]Carlos Puerto-Santana, Pedro Larrañaga, Concha Bielza:
Autoregressive Asymmetric Linear Gaussian Hidden Markov Models. IEEE Trans. Pattern Anal. Mach. Intell. 44(9): 4642-4658 (2022) - [c83]Vicente P. Soloviev, Pedro Larrañaga, Concha Bielza:
Quantum parametric circuit optimization with estimation of distribution algorithms. GECCO Companion 2022: 2247-2250 - [c82]Carlos Villa-Blanco, Alessandro Bregoli, Concha Bielza, Pedro Larrañaga, Fabio Stella:
Structure learning algorithms for multidimensional continuous-time Bayesian network classifiers. PGM 2022: 313-324 - [c81]Enrique Valero-Leal, Pedro Larrañaga, Concha Bielza:
Interpreting Time-Varying Dynamic Bayesian Networks for Earth Climate Modelling. PGM 2022: 373-384 - [c80]Jorge Casajús-Setién, Concha Bielza, Pedro Larrañaga:
Evolutive Adversarially-Trained Bayesian Network Autoencoder for Interpretable Anomaly Detection. PGM 2022: 397-408 - [d1]David Atienza, Concha Bielza, Javier Diaz-Rozo, Pedro Larrañaga:
Anomaly Detection with Laser Heat Treatment Thermal Videos. IEEE DataPort, 2022 - [i9]Vicente P. Soloviev, Concha Bielza, Pedro Larrañaga:
Quantum Approximate Optimization Algorithm for Bayesian network structure learning. CoRR abs/2203.02400 (2022) - 2021
- [j142]Santiago Gil-Begue, Concha Bielza, Pedro Larrañaga:
Multi-dimensional Bayesian network classifiers: A survey. Artif. Intell. Rev. 54(1): 519-559 (2021) - [j141]David Quesada, Gabriel Valverde, Pedro Larrañaga, Concha Bielza:
Long-term forecasting of multivariate time series in industrial furnaces with dynamic Gaussian Bayesian networks. Eng. Appl. Artif. Intell. 103: 104301 (2021) - [j140]Bojan Mihaljevic, Pedro Larrañaga, Concha Bielza:
Comparing the Electrophysiology and Morphology of Human and Mouse Layer 2/3 Pyramidal Neurons With Bayesian Networks. Frontiers Neuroinformatics 15: 580873 (2021) - [j139]Carlos Villa-Blanco, Pedro Larrañaga, Concha Bielza:
Multidimensional continuous time Bayesian network classifiers. Int. J. Intell. Syst. 36(12): 7839-7866 (2021) - [j138]Mario Michiels, Pedro Larrañaga, Concha Bielza:
BayeSuites: An open web framework for massive Bayesian networks focused on neuroscience. Neurocomputing 428: 166-181 (2021) - [j137]Bojan Mihaljevic, Concha Bielza, Pedro Larrañaga:
Bayesian networks for interpretable machine learning and optimization. Neurocomputing 456: 648-665 (2021) - [c79]Vicente P. Soloviev, Concha Bielza, Pedro Larrañaga:
Quantum-Inspired Estimation Of Distribution Algorithm To Solve The Travelling Salesman Problem. CEC 2021: 416-425 - [c78]David Quesada, Concha Bielza, Pedro Larrañaga:
Structure Learning of High-Order Dynamic Bayesian Networks via Particle Swarm Optimization with Order Invariant Encoding. HAIS 2021: 158-171 - [c77]Carlos Puerto-Santana, Pedro Larrañaga, Javier Diaz-Rozo, Concha Bielza:
An Online Feature Selection Methodology for Ball-Bearing Harmonic Frequencies Based on HMMs. SOCO 2021: 546-555 - [i8]David Atienza, Concha Bielza, Pedro Larrañaga:
Semiparametric Bayesian Networks. CoRR abs/2109.03008 (2021) - 2020
- [j136]Irene Córdoba, Concha Bielza, Pedro Larrañaga, Gherardo Varando:
Sparse Cholesky Covariance Parametrization for Recovering Latent Structure in Ordered Data. IEEE Access 8: 154614-154624 (2020) - [j135]Fernando Rodriguez-Sanchez, Pedro Larrañaga, Concha Bielza:
Incremental Learning of Latent Forests. IEEE Access 8: 224420-224432 (2020) - [j134]Javier Diaz-Rozo, Concha Bielza, Pedro Larrañaga:
Machine-tool condition monitoring with Gaussian mixture models-based dynamic probabilistic clustering. Eng. Appl. Artif. Intell. 89: 103434 (2020) - [j133]Irene Córdoba, Gherardo Varando, Concha Bielza, Pedro Larrañaga:
On generating random Gaussian graphical models. Int. J. Approx. Reason. 125: 240-250 (2020) - [c76]Nikolas Bernaola, Mario Michiels, Concha Bielza, Pedro Larrañaga:
BayesSuites: An Open Web Framework for Visualization of Massive Bayesian Networks. PGM 2020: 593-596 - [i7]Irene Córdoba, Concha Bielza, Pedro Larrañaga, Gherardo Varando:
Sparse Cholesky covariance parametrization for recovering latent structure in ordered data. CoRR abs/2006.01448 (2020) - [i6]Carlos Puerto-Santana, Pedro Larrañaga, Concha Bielza:
Autoregressive Asymmetric Linear Gaussian Hidden Markov Models. CoRR abs/2010.15604 (2020)
2010 – 2019
- 2019
- [j132]Pablo Fernandez-Gonzalez, Concepcion Bielza, Pedro Larrañaga:
Random Forests for Regression as a Weighted Sum of ${k}$ -Potential Nearest Neighbors. IEEE Access 7: 25660-25672 (2019) - [j131]Sergio Luengo-Sanchez, Pedro Larrañaga, Concha Bielza:
A Directional-Linear Bayesian Network and Its Application for Clustering and Simulation of Neural Somas. IEEE Access 7: 69907-69921 (2019) - [j130]Marco Benjumeda, Concha Bielza, Pedro Larrañaga:
Learning tractable Bayesian networks in the space of elimination orders. Artif. Intell. 274: 66-90 (2019) - [j129]Ignacio Leguey, Concha Bielza, Pedro Larrañaga:
Circular Bayesian classifiers using wrapped Cauchy distributions. Data Knowl. Eng. 122: 101-115 (2019) - [j128]Ignacio Leguey, Pedro Larrañaga, Concha Bielza, Shogo Kato:
A circular-linear dependence measure under Johnson-Wehrly distributions and its application in Bayesian networks. Inf. Sci. 486: 240-253 (2019) - [j127]Marco Benjumeda, Sergio Luengo-Sanchez, Pedro Larrañaga, Concha Bielza:
Tractable learning of Bayesian networks from partially observed data. Pattern Recognit. 91: 190-199 (2019) - 2018
- [j126]Bojan Mihaljevic, Pedro Larrañaga, Ruth Benavides-Piccione, Sean L. Hill, Javier DeFelipe, Concha Bielza:
Towards a supervised classification of neocortical interneuron morphologies. BMC Bioinform. 19(1): 511:1-511:22 (2018) - [j125]Marco Benjumeda, Concha Bielza, Pedro Larrañaga:
Tractability of most probable explanations in multidimensional Bayesian network classifiers. Int. J. Approx. Reason. 93: 74-87 (2018) - [j124]Javier Diaz-Rozo, Concha Bielza, Pedro Larrañaga:
Clustering of Data Streams With Dynamic Gaussian Mixture Models: An IoT Application in Industrial Processes. IEEE Internet Things J. 5(5): 3533-3547 (2018) - [j123]Sergio Luengo-Sanchez, Isabel Fernaud, Concha Bielza, Ruth Benavides-Piccione, Pedro Larrañaga, Javier DeFelipe:
3D morphology-based clustering and simulation of human pyramidal cell dendritic spines. PLoS Comput. Biol. 14(6) (2018) - [j122]Laura Anton-Sanchez, Felix Effenberger, Concha Bielza, Pedro Larrañaga, Hermann Cuntz:
A regularity index for dendrites - local statistics of a neuron's input space. PLoS Comput. Biol. 14(11) (2018) - [j121]Bojan Mihaljevic, Concha Bielza, Pedro Larrañaga:
bnclassify: Learning Bayesian Network Classifiers. R J. 10(2): 455 (2018) - [c75]Irene Córdoba, Eduardo C. Garrido-Merchán, Daniel Hernández-Lobato, Concha Bielza, Pedro Larrañaga:
Bayesian Optimization of the PC Algorithm for Learning Gaussian Bayesian Networks. CAEPIA 2018: 44-54 - [c74]Carlos Puerto-Santana, Concha Bielza, Pedro Larrañaga:
Asymmetric Hidden Markov Models with Continuous Variables. CAEPIA 2018: 98-107 - [c73]Irene Córdoba, Gherardo Varando, Concha Bielza, Pedro Larrañaga:
A Fast Metropolis-Hastings Method for Generating Random Correlation Matrices. IDEAL (1) 2018: 117-124 - [c72]Santiago Gil-Begue, Pedro Larrañaga, Concha Bielza:
Multi-dimensional Bayesian Network Classifier Trees. IDEAL (1) 2018: 354-363 - [c71]Irene Córdoba, Gherardo Varando, Concha Bielza, Pedro Larrañaga:
A partial orthogonalization method for simulating covariance and concentration graph matrices. PGM 2018: 61-72 - [c70]Bojan Mihaljevic, Concha Bielza, Pedro Larrañaga:
Learning Bayesian network classifiers with completed partially directed acyclic graphs. PGM 2018: 272-283 - [c69]Fernando Rodriguez-Sanchez, Pedro Larrañaga, Concha Bielza:
Discrete model-based clustering with overlapping subsets of attributes. PGM 2018: 392-403 - [i5]Irene Córdoba-Sánchez, Eduardo C. Garrido-Merchán, Daniel Hernández-Lobato, Concha Bielza, Pedro Larrañaga:
Bayesian optimization of the PC algorithm for learning Gaussian Bayesian networks. CoRR abs/1806.11015 (2018) - [i4]Gherardo Varando, Concha Bielza, Pedro Larrañaga, Eva Riccomagno:
Markov Property in Generative Classifiers. CoRR abs/1811.04759 (2018) - [i3]Irene Córdoba, Concha Bielza, Pedro Larrañaga:
Towards Gaussian Bayesian Network Fusion. CoRR abs/1812.00262 (2018) - 2017
- [j120]Laura Anton-Sanchez, Concha Bielza, Pedro Larrañaga:
Network design through forests with degree- and role-constrained minimum spanning trees. J. Heuristics 23(1): 31-51 (2017) - [j119]Luis Rodriguez-Lujan, Pedro Larrañaga, Concha Bielza:
Frobenius Norm Regularization for the Multivariate Von Mises Distribution. Int. J. Intell. Syst. 32(2): 153-176 (2017) - [j118]Pablo Fernandez-Gonzalez, Concha Bielza, Pedro Larrañaga:
Univariate and bivariate truncated von Mises distributions. Prog. Artif. Intell. 6(2): 171-180 (2017) - [c68]Javier Mesonero, Concha Bielza, Pedro Larrañaga:
Architecture for anomaly detection in a laser heating surface process. ETFA 2017: 1-4 - 2016
- [j117]Hanen Borchani, Pedro Larrañaga, João Gama, Concha Bielza:
Mining multi-dimensional concept-drifting data streams using Bayesian network classifiers. Intell. Data Anal. 20(2): 257-280 (2016) - [j116]Gherardo Varando, Concha Bielza, Pedro Larrañaga:
Decision functions for chain classifiers based on Bayesian networks for multi-label classification. Int. J. Approx. Reason. 68: 164-178 (2016) - [j115]Alfonso Ibáñez, Rubén Armañanzas, Concha Bielza, Pedro Larrañaga:
Genetic algorithms and Gaussian Bayesian networks to uncover the predictive core set of bibliometric indices. J. Assoc. Inf. Sci. Technol. 67(7): 1703-1721 (2016) - [j114]Laura Anton-Sanchez, Concha Bielza, Ruth Benavides-Piccione, Javier DeFelipe, Pedro Larrañaga:
Dendritic and Axonal Wiring Optimization of Cortical GABAergic Interneurons. Neuroinformatics 14(4): 453-464 (2016) - [j113]Marco Benjumeda, Pedro Larrañaga, Concha Bielza:
Learning Bayesian networks with low inference complexity. Prog. Artif. Intell. 5(1): 15-26 (2016) - [c67]Ignacio Leguey, Concha Bielza, Pedro Larrañaga:
Tree-Structured Bayesian Networks for Wrapped Cauchy Directional Distributions. CAEPIA 2016: 207-216 - [c66]Sergio Luengo-Sanchez, Concha Bielza, Pedro Larrañaga:
Hybrid Gaussian and von Mises Model-Based Clustering. ECAI 2016: 855-862 - [c65]Alberto Ogbechie, Javier Diaz-Rozo, Pedro Larrañaga, Concha Bielza:
Dynamic Bayesian Network-Based Anomaly Detection for In-Process Visual Inspection of Laser Surface Heat Treatment. ML4CPS 2016: 17-24 - [c64]Marco Benjumeda, Concha Bielza, Pedro Larrañaga:
Learning Tractable Multidimensional Bayesian Network Classifiers. Probabilistic Graphical Models 2016: 13-24 - [c63]David Atienza, Concha Bielza, Javier Díaz, Pedro Larrañaga:
Anomaly Detection with a Spatio-Temporal Tracking of the Laser Spot. STAIRS 2016: 137-142 - [i2]Irene Córdoba-Sánchez, Concha Bielza, Pedro Larrañaga:
A review of undirected and acyclic directed Gaussian Markov model selection and estimation. CoRR abs/1606.07282 (2016) - 2015
- [j112]Bojan Mihaljevic, Ruth Benavides-Piccione, Luis Guerra, Javier DeFelipe, Pedro Larrañaga, Concha Bielza:
Classifying GABAergic interneurons with semi-supervised projected model-based clustering. Artif. Intell. Medicine 65(1): 49-59 (2015) - [j111]Hossein Karshenas, Concha Bielza, Pedro Larrañaga:
Interval-based ranking in noisy evolutionary multi-objective optimization. Comput. Optim. Appl. 61(2): 517-555 (2015) - [j110]Gherardo Varando, Pedro L. López-Cruz, Thomas D. Nielsen, Pedro Larrañaga, Concha Bielza:
Conditional Density Approximations with Mixtures of Polynomials. Int. J. Intell. Syst. 30(3): 236-264 (2015) - [j109]Gherardo Varando, Concha Bielza, Pedro Larrañaga:
Decision boundary for discrete Bayesian network classifiers. J. Mach. Learn. Res. 16: 2725-2749 (2015) - [j108]Bojan Mihaljevic, Ruth Benavides-Piccione, Concha Bielza, Javier DeFelipe, Pedro Larrañaga:
Bayesian Network Classifiers for Categorizing Cortical GABAergic Interneurons. Neuroinformatics 13(2): 193-208 (2015) - [j107]Pedro L. López-Cruz, Concha Bielza, Pedro Larrañaga:
Directional naive Bayes classifiers. Pattern Anal. Appl. 18(2): 225-246 (2015) - [j106]Hanen Borchani, Gherardo Varando, Concha Bielza, Pedro Larrañaga:
A survey on multi-output regression. WIREs Data Mining Knowl. Discov. 5(5): 216-233 (2015) - [c62]Luis Rodriguez-Lujan, Concha Bielza, Pedro Larrañaga:
Regularized Multivariate von Mises Distribution. CAEPIA 2015: 25-35 - [c61]Irene Córdoba-Sánchez, Concha Bielza, Pedro Larrañaga:
Towards Gaussian Bayesian Network Fusion. ECSQARU 2015: 519-528 - [c60]Javier Díaz, Concha Bielza, Jose L. Ocaña, Pedro Larrañaga:
Development of a Cyber-Physical System based on selective Gaussian naïve Bayes model for a self-predict laser surface heat treatment process control. ML4CPS 2015: 1-8 - 2014
- [j105]Concha Bielza, Pedro Larrañaga:
Discrete Bayesian Network Classifiers: A Survey. ACM Comput. Surv. 47(1): 5:1-5:43 (2014) - [j104]Luis Guerra, Concha Bielza, Víctor Robles, Pedro Larrañaga:
Semi-supervised projected model-based clustering. Data Min. Knowl. Discov. 28(4): 882-917 (2014) - [j103]Concha Bielza, Pedro Larrañaga:
Bayesian networks in neuroscience: a survey. Frontiers Comput. Neurosci. 8: 131 (2014) - [j102]Bojan Mihaljevic, Concha Bielza, Ruth Benavides-Piccione, Javier DeFelipe, Pedro Larrañaga:
Multi-dimensional classification of GABAergic interneurons with Bayesian network-modeled label uncertainty. Frontiers Comput. Neurosci. 8: 150 (2014) - [j101]Pedro L. López-Cruz, Pedro Larrañaga, Javier DeFelipe, Concha Bielza:
Bayesian network modeling of the consensus between experts: An application to neuron classification. Int. J. Approx. Reason. 55(1): 3-22 (2014) - [j100]Pedro L. López-Cruz, Concha Bielza, Pedro Larrañaga:
Learning mixtures of polynomials of multidimensional probability densities from data using B-spline interpolation. Int. J. Approx. Reason. 55(4): 989-1010 (2014) - [j99]Alfonso Ibáñez, Concha Bielza, Pedro Larrañaga:
Cost-sensitive selective naive Bayes classifiers for predicting the increase of the h-index for scientific journals. Neurocomputing 135: 42-52 (2014) - [j98]Luis Enrique Sucar, Concha Bielza, Eduardo F. Morales, Pablo Hernandez-Leal, Julio H. Zaragoza, Pedro Larrañaga:
Multi-label classification with Bayesian network-based chain classifiers. Pattern Recognit. Lett. 41: 14-22 (2014) - [j97]Hossein Karshenas, Roberto Santana, Concha Bielza, Pedro Larrañaga:
Multiobjective Estimation of Distribution Algorithm Based on Joint Modeling of Objectives and Variables. IEEE Trans. Evol. Comput. 18(4): 519-542 (2014) - [j96]Jesse Read, Concha Bielza, Pedro Larrañaga:
Multi-Dimensional Classification with Super-Classes. IEEE Trans. Knowl. Data Eng. 26(7): 1720-1733 (2014) - [c59]Gherardo Varando, Concha Bielza, Pedro Larrañaga:
Expressive Power of Binary Relevance and Chain Classifiers Based on Bayesian Networks for Multi-label Classification. Probabilistic Graphical Models 2014: 519-534 - 2013
- [j95]Hanen Borchani, Concha Bielza, Carlos Toro, Pedro Larrañaga:
Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers. Artif. Intell. Medicine 57(3): 219-229 (2013) - [j94]Rubén Armañanzas, Concha Bielza, Kallol Ray Chaudhuri, Pablo Martínez-Martín, Pedro Larrañaga:
Unveiling relevant non-motor Parkinson's disease severity symptoms using a machine learning approach. Artif. Intell. Medicine 58(3): 195-202 (2013) - [j93]Hossein Karshenas, Roberto Santana, Concha Bielza, Pedro Larrañaga:
Regularized continuous estimation of distribution algorithms. Appl. Soft Comput. 13(5): 2412-2432 (2013) - [j92]Jose Luis Flores, Iñaki Inza, Pedro Larrañaga, Borja Calvo:
A new measure for gene expression biclustering based on non-parametric correlation. Comput. Methods Programs Biomed. 112(3): 367-397 (2013) - [j91]Diego Vidaurre, Concha Bielza, Pedro Larrañaga:
Sparse regularized local regression. Comput. Stat. Data Anal. 62: 122-135 (2013) - [j90]Diego Vidaurre, Concha Bielza, Pedro Larrañaga:
An L1-Regularized naïVE Bayes-Inspired Classifier for Discarding Redundant and Irrelevant Predictors. Int. J. Artif. Intell. Tools 22(4) (2013) - [j89]Roberto Santana, Rubén Armañanzas, Concha Bielza, Pedro Larrañaga:
Network measures for information extraction in evolutionary algorithms. Int. J. Comput. Intell. Syst. 6(6): 1163-1188 (2013) - [j88]Diego Vidaurre, Concha Bielza, Pedro Larrañaga:
Classification of neural signals from sparse autoregressive features. Neurocomputing 111: 21-26 (2013) - [j87]Miguel García-Torres, Rubén Armañanzas, Concha Bielza, Pedro Larrañaga:
Comparison of metaheuristic strategies for peakbin selection in proteomic mass spectrometry data. Inf. Sci. 222: 229-246 (2013) - [j86]Pedro Larrañaga, Hossein Karshenas, Concha Bielza, Roberto Santana:
A review on evolutionary algorithms in Bayesian network learning and inference tasks. Inf. Sci. 233: 109-125 (2013) - [j85]Concha Bielza, Juan A. Fernández del Pozo, Pedro Larrañaga:
Parameter Control of Genetic Algorithms by Learning and Simulation of Bayesian Networks - A Case Study for the Optimal Ordering of Tables. J. Comput. Sci. Technol. 28(4): 720-731 (2013) - [j84]Diego Vidaurre, Marcel A. J. van Gerven, Concha Bielza, Pedro Larrañaga, Tom Heskes:
Bayesian Sparse Partial Least Squares. Neural Comput. 25(12): 3318-3339 (2013) - [j83]Alfonso Ibáñez, Concha Bielza, Pedro Larrañaga:
Relationship among research collaboration, number of documents and number of citations: a case study in Spanish computer science production in 2000-2009. Scientometrics 95(2): 689-716 (2013) - [j82]Alfonso Ibáñez, Pedro Larrañaga, Concha Bielza:
Cluster methods for assessing research performance: exploring Spanish computer science. Scientometrics 97(3): 571-600 (2013) - [c58]Luis Guerra, Ruth Benavides-Piccione, Concha Bielza, Víctor Robles, Javier DeFelipe, Pedro Larrañaga:
Semi-supervised Projected Clustering for Classifying GABAergic Interneurons. AIME 2013: 156-165 - [c57]Pedro L. López-Cruz, Concha Bielza, Pedro Larrañaga:
Learning Conditional Linear Gaussian Classifiers with Probabilistic Class Labels. CAEPIA 2013: 139-148 - [c56]Bojan Mihaljevic, Pedro Larrañaga, Concha Bielza:
Augmented Semi-naive Bayes Classifier. CAEPIA 2013: 159-167 - [c55]Pedro L. López-Cruz, Thomas D. Nielsen, Concha Bielza, Pedro Larrañaga:
Learning Mixtures of Polynomials of Conditional Densities from Data. CAEPIA 2013: 363-372 - [c54]Pedro Larrañaga, Concha Bielza:
Bayesian networks to answer challenging neuroscience questions. CBMS 2013: 2 - [c53]Laura Anton-Sanchez, Concha Bielza, Pedro Larrañaga:
Towards optimal neuronal wiring through estimation of distribution algorithms. GECCO (Companion) 2013: 1647-1650 - [i1]Pedro Larrañaga, Ramon Etxeberria, José Antonio Lozano, José M. Peña:
Combinatorial Optimization by Learning and Simulation of Bayesian Networks. CoRR abs/1301.3871 (2013) - 2012
- [j81]Roberto Santana, Concha Bielza, Pedro Larrañaga:
Regularized logistic regression and multiobjective variable selection for classifying MEG data. Biol. Cybern. 106(6-7): 389-405 (2012) - [j80]Rubén Armañanzas, Pedro Larrañaga, Concha Bielza:
Ensemble transcript interaction networks: A case study on Alzheimer's disease. Comput. Methods Programs Biomed. 108(1): 442-450 (2012) - [j79]Diego Vidaurre, Concha Bielza, Pedro Larrañaga:
Lazy lasso for local regression. Comput. Stat. 27(3): 531-550 (2012) - [j78]Pedro Larrañaga, Hossein Karshenas, Concha Bielza, Roberto Santana:
A review on probabilistic graphical models in evolutionary computation. J. Heuristics 18(5): 795-819 (2012) - [j77]Luis Guerra, Víctor Robles, Concha Bielza, Pedro Larrañaga:
A comparison of clustering quality indices using outliers and noise. Intell. Data Anal. 16(4): 703-715 (2012) - [j76]Hanen Borchani, Concha Bielza, Pablo Martínez-Martín, Pedro Larrañaga:
Markov blanket-based approach for learning multi-dimensional Bayesian network classifiers: An application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39). J. Biomed. Informatics 45(6): 1175-1184 (2012) - [j75]Borja Calvo, Iñaki Inza, Pedro Larrañaga, José Antonio Lozano:
Wrapper positive Bayesian network classifiers. Knowl. Inf. Syst. 33(3): 631-654 (2012) - [j74]Diego Vidaurre, Concha Bielza, Pedro Larrañaga:
Forward stagewise naïve Bayes. Prog. Artif. Intell. 1(1): 57-69 (2012) - [c52]Roberto Santana, Concha Bielza, Pedro Larrañaga:
Maximizing the number of polychronous groups in spiking networks. GECCO (Companion) 2012: 1499-1500 - 2011
- [j73]Pedro Larrañaga, Serafín Moral:
Probabilistic graphical models in artificial intelligence. Appl. Soft Comput. 11(2): 1511-1528 (2011) - [j72]Concha Bielza, Víctor Robles, Pedro Larrañaga:
Regularized logistic regression without a penalty term: An application to cancer classification with microarray data. Expert Syst. Appl. 38(5): 5110-5118 (2011) - [j71]Endika Bengoetxea, Pedro Larrañaga, Concha Bielza, Juan A. Fernández del Pozo:
Optimal row and column ordering to improve table interpretation using estimation of distribution algorithms. J. Heuristics 17(5): 567-588 (2011) - [j70]Hanen Borchani, Pedro Larrañaga, Concha Bielza:
Classifying evolving data streams with partially labeled data. Intell. Data Anal. 15(5): 655-670 (2011) - [j69]Concha Bielza, Guangdi Li, Pedro Larrañaga:
Multi-dimensional classification with Bayesian networks. Int. J. Approx. Reason. 52(6): 705-727 (2011) - [j68]Roberto Santana, Concha Bielza, Pedro Larrañaga:
Optimizing Brain Networks Topologies Using Multi-objective Evolutionary Computation. Neuroinformatics 9(1): 3-19 (2011) - [j67]Pedro L. López-Cruz, Concha Bielza, Pedro Larrañaga, Ruth Benavides-Piccione, Javier DeFelipe:
Models and Simulation of 3D Neuronal Dendritic Trees Using Bayesian Networks. Neuroinformatics 9(4): 347-369 (2011) - [j66]Alfonso Ibáñez, Pedro Larrañaga, Concha Bielza:
Using Bayesian networks to discover relationships between bibliometric indices. A case study of computer science and artificial intelligence journals. Scientometrics 89(2): 523-551 (2011) - [j65]Rubén Armañanzas, Yvan Saeys, Iñaki Inza, Miguel García-Torres, Concha Bielza, Yves Van de Peer, Pedro Larrañaga:
Peakbin Selection in Mass Spectrometry Data Using a Consensus Approach with Estimation of Distribution Algorithms. IEEE ACM Trans. Comput. Biol. Bioinform. 8(3): 760-774 (2011) - [c51]Pedro L. López-Cruz, Concha Bielza, Pedro Larrañaga:
The von Mises Naive Bayes Classifier for Angular Data. CAEPIA 2011: 145-154 - [c50]Hossein Karshenas, Roberto Santana, Concha Bielza, Pedro Larrañaga:
Multi-objective Optimization with Joint Probabilistic Modeling of Objectives and Variables. EMO 2011: 298-312 - [c49]Roberto Santana, Hossein Karshenas, Concha Bielza, Pedro Larrañaga:
Quantitative genetics in multi-objective optimization algorithms: from useful insights to effective methods. GECCO (Companion) 2011: 91-92 - [c48]Roberto Santana, Concha Bielza, Pedro Larrañaga:
Affinity propagation enhanced by estimation of distribution algorithms. GECCO 2011: 331-338 - [c47]Roberto Santana, Hossein Karshenas, Concha Bielza, Pedro Larrañaga:
Regularized k-order markov models in EDAs. GECCO 2011: 593-600 - [c46]Julio H. Zaragoza, Luis Enrique Sucar, Eduardo F. Morales, Concha Bielza, Pedro Larrañaga:
Bayesian Chain Classifiers for Multidimensional Classification. IJCAI 2011: 2192-2197 - [c45]Alfonso Ibáñez, Pedro Larrañaga, Concha Bielza:
Predicting the h-index with cost-sensitive naive Bayes. ISDA 2011: 599-604 - 2010
- [j64]Roberto Santana, Pedro Larrañaga, José Antonio Lozano:
Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation. Evol. Comput. 18(4): 515-546 (2010) - [j63]Concha Bielza, Juan A. Fernández del Pozo, Pedro Larrañaga, Endika Bengoetxea:
Multidimensional statistical analysis of the parameterization of a genetic algorithm for the optimal ordering of tables. Expert Syst. Appl. 37(1): 804-815 (2010) - [j62]Diego Vidaurre, Concha Bielza, Pedro Larrañaga:
Learning an L1-Regularized Gaussian Bayesian Network in the Equivalence Class Space. IEEE Trans. Syst. Man Cybern. Part B 40(5): 1231-1242 (2010) - [c44]Endika Bengoetxea, Pedro Larrañaga:
EDA-PSO: A Hybrid Paradigm Combining Estimation of Distribution Algorithms and Particle Swarm Optimization. ANTS Conference 2010: 416-423 - [c43]Alfredo Cuesta-Infante, Roberto Santana, José Ignacio Hidalgo, Concha Bielza, Pedro Larrañaga:
Bivariate empirical and n-variate Archimedean copulas in estimation of distribution algorithms. IEEE Congress on Evolutionary Computation 2010: 1-8 - [c42]Roberto Santana, Concha Bielza, Pedro Larrañaga:
Using Probabilistic Dependencies Improves the Search of Conductance-Based Compartmental Neuron Models. EvoBIO 2010: 170-181 - [c41]Roberto Santana, Concha Bielza, Pedro Larrañaga:
Synergies between Network-Based Representation and Probabilistic Graphical Models for Classification, Inference and Optimization Problems in Neuroscience. IEA/AIE (3) 2010: 149-158 - [c40]Hanen Borchani, Pedro Larrañaga, Concha Bielza:
Mining Concept-Drifting Data Streams Containing Labeled and Unlabeled Instances. IEA/AIE (1) 2010: 531-540
2000 – 2009
- 2009
- [j61]Alfonso Ibáñez, Pedro Larrañaga, Concha Bielza:
Predicting citation count of Bioinformatics papers within four years of publication. Bioinform. 25(24): 3303-3309 (2009) - [j60]Aritz Pérez Martínez, Pedro Larrañaga, Iñaki Inza:
Bayesian classifiers based on kernel density estimation: Flexible classifiers. Int. J. Approx. Reason. 50(2): 341-362 (2009) - [j59]Txomin Romero, Pedro Larrañaga:
Triangulation of Bayesian networks with recursive estimation of distribution algorithms. Int. J. Approx. Reason. 50(3): 472-484 (2009) - [j58]Roberto Santana, Pedro Larrañaga, José Antonio Lozano:
Research topics in discrete estimation of distribution algorithms based on factorizations. Memetic Comput. 1(1): 35-54 (2009) - [j57]Borja Calvo, Pedro Larrañaga, José Antonio Lozano:
Feature subset selection from positive and unlabelled examples. Pattern Recognit. Lett. 30(11): 1027-1036 (2009) - [j56]José Antonio Lozano, Qingfu Zhang, Pedro Larrañaga:
Guest Editorial: Special Issue on Evolutionary Algorithms Based on Probabilistic Models. IEEE Trans. Evol. Comput. 13(6): 1197-1198 (2009) - [j55]Rubén Armañanzas, Borja Calvo, Iñaki Inza, Marcos López-Hoyos, Víctor Martínez-Taboada, Eduardo Ucar, Irantzu Bernales, Asier Fullaondo, Pedro Larrañaga, Ana M. Zubiaga:
Microarray Analysis of Autoimmune Diseases by Machine Learning Procedures. IEEE Trans. Inf. Technol. Biomed. 13(3): 341-350 (2009) - [c39]Roberto Santana, Concha Bielza, José Antonio Lozano, Pedro Larrañaga:
Mining probabilistic models learned by EDAs in the optimization of multi-objective problems. GECCO 2009: 445-452 - [c38]Elva Díaz, Eunice Ponce de León, Pedro Larrañaga, Concha Bielza:
Probabilistic Graphical Markov Model Learning: An Adaptive Strategy. MICAI 2009: 225-236 - 2008
- [j54]Rubén Armañanzas, Iñaki Inza, Roberto Santana, Yvan Saeys, Jose Luis Flores, José Antonio Lozano, Yves Van de Peer, Rosa Blanco, Víctor Robles, Concha Bielza, Pedro Larrañaga:
A review of estimation of distribution algorithms in bioinformatics. BioData Min. 1 (2008) - [j53]Dinora Araceli Morales, Endika Bengoetxea, Pedro Larrañaga:
Selection of human embryos for transfer by Bayesian classifiers. Comput. Biol. Medicine 38(11-12): 1177-1186 (2008) - [j52]Dinora Araceli Morales, Endika Bengoetxea, Pedro Larrañaga, Miguel García, Yosu Franco, Mónica Fresnada, Marisa Merino:
Bayesian classification for the selection of in vitro human embryos using morphological and clinical data. Comput. Methods Programs Biomed. 90(2): 104-116 (2008) - [j51]Rubén Armañanzas, Iñaki Inza, Pedro Larrañaga:
Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers. Comput. Methods Programs Biomed. 91(2): 110-121 (2008) - [j50]Roberto Santana, Pedro Larrañaga, José Antonio Lozano:
Combining variable neighborhood search and estimation of distribution algorithms in the protein side chain placement problem. J. Heuristics 14(5): 519-547 (2008) - [j49]Guzmán Santafé, José Antonio Lozano, Pedro Larrañaga:
Inference of Population Structure Using Genetic Markers and a Bayesian Model Averaging Approach for Clustering. J. Comput. Biol. 15(2): 207-220 (2008) - [j48]Roberto Santana, Pedro Larrañaga, José Antonio Lozano:
Protein Folding in Simplified Models With Estimation of Distribution Algorithms. IEEE Trans. Evol. Comput. 12(4): 418-438 (2008) - [c37]Roberto Santana, Pedro Larrañaga, José Antonio Lozano:
Component weighting functions for adaptive search with EDAs. IEEE Congress on Evolutionary Computation 2008: 4066-4073 - [c36]Roberto Santana, Pedro Larrañaga, José Antonio Lozano:
Adding Probabilistic Dependencies to the Search of Protein Side Chain Configurations Using EDAs. PPSN 2008: 1120-1129 - [p20]Carlos Echegoyen, Roberto Santana, José Antonio Lozano, Pedro Larrañaga:
The Impact of Exact Probabilistic Learning Algorithms in EDAs Based on Bayesian Networks. Linkage in Evolutionary Computation 2008: 109-139 - [p19]Roberto Santana, Pedro Larrañaga, José Antonio Lozano:
Adaptive Estimation of Distribution Algorithms. Adaptive and Multilevel Metaheuristics 2008: 177-197 - 2007
- [j47]Roberto Santana, Pedro Larrañaga, José Antonio Lozano:
Side chain placement using estimation of distribution algorithms. Artif. Intell. Medicine 39(1): 49-63 (2007) - [j46]Yvan Saeys, Iñaki Inza, Pedro Larrañaga:
A review of feature selection techniques in bioinformatics. Bioinform. 23(19): 2507-2517 (2007) - [j45]Borja Calvo, Núria López-Bigas, Simon J. Furney, Pedro Larrañaga, José Antonio Lozano:
A partially supervised classification approach to dominant and recessive human disease gene prediction. Comput. Methods Programs Biomed. 85(3): 229-237 (2007) - [j44]Teresa Miquélez, Endika Bengoetxea, Alexander Mendiburu, Pedro Larrañaga:
Combining Bayesian classifiers and estimation of distribution algorithms for optimization in continuous domains. Connect. Sci. 19(4): 297-319 (2007) - [j43]Jose Luis Flores, Iñaki Inza, Pedro Larrañaga:
Wrapper discretization by means of estimation of distribution algorithms. Intell. Data Anal. 11(5): 525-545 (2007) - [j42]Borja Calvo, Pedro Larrañaga, José Antonio Lozano:
Learning Bayesian classifiers from positive and unlabeled examples. Pattern Recognit. Lett. 28(16): 2375-2384 (2007) - [c35]Carlos Echegoyen, José Antonio Lozano, Roberto Santana, Pedro Larrañaga:
Exact Bayesian network learning in estimation of distribution algorithms. IEEE Congress on Evolutionary Computation 2007: 1051-1058 - [c34]Guzmán Santafé, José Antonio Lozano, Pedro Larrañaga:
Discriminative vs. Generative Learning of Bayesian Network Classifiers. ECSQARU 2007: 453-464 - [c33]Roberto Santana, Pedro Larrañaga, José Antonio Lozano:
The Role of a Priori Information in the Minimization of Contact Potentials by Means of Estimation of Distribution Algorithms. EvoBIO 2007: 247-257 - 2006
- [j41]Guzmán Santafé, José Antonio Lozano, Pedro Larrañaga:
Discriminative Learning of Bayesian Network Classifiers. Inteligencia Artif. 10(29): 39-47 (2006) - [j40]Pedro Larrañaga, Borja Calvo, Roberto Santana, Concha Bielza, Josu Galdiano, Iñaki Inza, José Antonio Lozano, Rubén Armañanzas, Guzmán Santafé, Aritz Pérez Martínez, Victor Robles:
Machine learning in bioinformatics. Briefings Bioinform. 7(1): 86-112 (2006) - [j39]Aritz Pérez Martínez, Pedro Larrañaga, Iñaki Inza:
Supervised classification with conditional Gaussian networks: Increasing the structure complexity from naive Bayes. Int. J. Approx. Reason. 43(1): 1-25 (2006) - [j38]Guzmán Santafé, José Antonio Lozano, Pedro Larrañaga:
Bayesian Model Averaging of Naive Bayes for Clustering. IEEE Trans. Syst. Man Cybern. Part B 36(5): 1149-1161 (2006) - [c32]Aritz Pérez Martínez, Pedro Larrañaga, Iñaki Inza:
Information Theory and Classification Error in Probabilistic Classifiers. Discovery Science 2006: 347-351 - [c31]Roberto Santana, Pedro Larrañaga, José Antonio Lozano:
Mixtures of Kikuchi Approximations. ECML 2006: 365-376 - [c30]Guzmán Santafé, José Antonio Lozano, Pedro Larrañaga:
Bayesian Model Averaging of TAN Models for Clustering. Probabilistic Graphical Models 2006: 271-278 - [c29]Teresa Miquélez, Endika Bengoetxea, Pedro Larrañaga:
Evolutionary Bayesian Classifier-Based Optimization in Continuous Domains. SEAL 2006: 529-536 - [p18]Victor Robles, José M. Peña, Pedro Larrañaga, María S. Pérez, Vanessa Herves:
GA-EDA: A New Hybrid Cooperative Search Evolutionary Algorithm. Towards a New Evolutionary Computation 2006: 187-219 - [p17]Teresa Miquélez, Endika Bengoetxea, Pedro Larrañaga:
Bayesian Classifiers in Optimization: An EDA-like Approach. Towards a New Evolutionary Computation 2006: 221-242 - [e2]José Antonio Lozano, Pedro Larrañaga, Iñaki Inza, Endika Bengoetxea:
Towards a New Evolutionary Computation - Advances in the Estimation of Distribution Algorithms. Studies in Fuzziness and Soft Computing 192, Springer 2006, ISBN 978-3-540-29006-3 [contents] - 2005
- [j37]Pedro Larrañaga, José Antonio Lozano:
Editorial Introduction Special Issue on Estimation of Distribution Algorithms. Evol. Comput. 13(1) (2005) - [j36]José M. Peña, José Antonio Lozano, Pedro Larrañaga:
Globally Multimodal Problem Optimization Via an Estimation of Distribution Algorithm Based on Unsupervised Learning of Bayesian Networks. Evol. Comput. 13(1): 43-66 (2005) - [j35]Rosa Blanco, Iñaki Inza, Marisa Merino, Jorge Quiroga, Pedro Larrañaga:
Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS. J. Biomed. Informatics 38(5): 376-388 (2005) - [j34]Pedro Larrañaga, José Antonio Lozano, José M. Peña, Iñaki Inza:
Editorial. Mach. Learn. 59(3): 211-212 (2005) - [j33]Roberto Marcondes Cesar Junior, Endika Bengoetxea, Isabelle Bloch, Pedro Larrañaga:
Inexact graph matching for model-based recognition: Evaluation and comparison of optimization algorithms. Pattern Recognit. 38(11): 2099-2113 (2005) - [c28]Roberto Santana, Pedro Larrañaga, José Antonio Lozano:
Interactions and dependencies in estimation of distribution algorithms. Congress on Evolutionary Computation 2005: 1418-1425 - [c27]Guzmán Santafé, José Antonio Lozano, Pedro Larrañaga:
Discriminative Learning of Bayesian Network Classifiers via the TM Algorithm. ECSQARU 2005: 148-160 - [c26]Cristina González, A. Ramírez, José Antonio Lozano, Pedro Larrañaga:
Average Time Complexity of Estimation of Distribution Algorithms. IWANN 2005: 42-49 - [p16]Pedro Larrañaga, Iñaki Inza, Jose Luis Flores:
A Guide to the Literature on Inferring Genetic Networks by Probabilistic Graphical Models. Data Analysis and Visualization in Genomics and Proteomics 2005: 215-238 - 2004
- [j32]Iñaki Inza, Pedro Larrañaga, Rosa Blanco, Antonio J. Cerrolaza:
Filter versus wrapper gene selection approaches in DNA microarray domains. Artif. Intell. Medicine 31(2): 91-103 (2004) - [j31]Víctor Robles, Pedro Larrañaga, José M. Peña, Ernestina Menasalvas Ruiz, María S. Pérez, Vanessa Herves, Anita Wasilewska:
Bayesian network multi-classifiers for protein secondary structure prediction. Artif. Intell. Medicine 31(2): 117-136 (2004) - [j30]Txomin Romero, Pedro Larrañaga, Basilio Sierra:
Learning Bayesian Networks In The Space Of Orderings With Estimation Of Distribution Algorithms. Int. J. Pattern Recognit. Artif. Intell. 18(4): 607-625 (2004) - [j29]Rosa Blanco, Pedro Larrañaga, Iñaki Inza, Basilio Sierra:
Gene Selection For Cancer Classification Using Wrapper Approaches. Int. J. Pattern Recognit. Artif. Intell. 18(8): 1373-1390 (2004) - [j28]José M. Peña, José Antonio Lozano, Pedro Larrañaga:
Unsupervised Learning Of Bayesian Networks Via Estimation Of Distribution Algorithms: An Application To Gene Expression Data Clustering. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 12(Supplement-1): 63-82 (2004) - [c25]José M. Peña, Víctor Robles, Pedro Larrañaga, Vanessa Herves, Francisco Rosales, María S. Pérez:
GA-EDA: Hybrid Evolutionary Algorithm Using Genetic and Estimation of Distribution Algorithms. IEA/AIE 2004: 361-371 - [c24]Rosa Blanco, Linda C. van der Gaag, Iñaki Inza, Pedro Larrañaga:
Selective Classifiers Can Be Too Restrictive: A Case-Study in Oesophageal Cancer. ISBMDA 2004: 212-223 - [c23]Roberto Santana, Pedro Larrañaga, José Antonio Lozano:
Protein Folding in 2-Dimensional Lattices with Estimation of Distribution Algorithms. ISBMDA 2004: 388-398 - 2003
- [j27]Pedro Larrañaga, José Antonio Lozano, Heinz Mühlenbein:
Algoritmos de Estimación de Distribuciones en Problemas de Optimización Combinatoria. Inteligencia Artif. 7(19): 149-168 (2003) - [j26]Rosa Blanco, Iñaki Inza, Pedro Larrañaga:
Learning Bayesian networks in the space of structures by estimation of distribution algorithms. Int. J. Intell. Syst. 18(2): 205-220 (2003) - [c22]Víctor Robles, Pedro Larrañaga, José M. Peña, Oscar Marbán, F. Javier Crespo, María S. Pérez:
Collaborative Filtering Using Interval Estimation Naïve Bayes. AWIC 2003: 46-53 - [c21]Víctor Robles, Pedro Larrañaga, José M. Peña, María S. Pérez, Ernestina Menasalvas Ruiz, Vanessa Herves:
Learning Semi Naïve Bayes Structures by Estimation of Distribution Algorithms. EPIA 2003: 244-258 - [c20]Víctor Robles, Pedro Larrañaga, José M. Peña, Ernestina Menasalvas Ruiz, María S. Pérez:
Interval Estimation Naïve Bayes. IDA 2003: 143-154 - [c19]Cristina González, Juan Diego Rodríguez, José Antonio Lozano, Pedro Larrañaga:
Analysis of the Univariate Marginal Distribution Algorithm Modeled by Markov Chains. IWANN (1) 2003: 510-517 - [c18]Víctor Robles, María S. Pérez, Vanessa Herves, José M. Peña, Pedro Larrañaga:
Parallel Stochastic Search for Protein Secondary Structure Prediction. PPAM 2003: 1162-1169 - [c17]Víctor Robles, Pedro Larrañaga, Ernestina Menasalvas Ruiz, María S. Pérez, Vanessa Herves:
Improvement of Naïve Bayes Collaborative Filtering Using Interval Estimation. Web Intelligence 2003: 168-174 - 2002
- [j25]Pedro Larrañaga, José Antonio Lozano:
Synergies between evolutionary computation and probabilistic graphical models. Int. J. Approx. Reason. 31(3): 155-156 (2002) - [j24]Cristina González, José Antonio Lozano, Pedro Larrañaga:
Mathematical modelling of UMDAc algorithm with tournament selection. Behaviour on linear and quadratic functions. Int. J. Approx. Reason. 31(3): 313-340 (2002) - [j23]José M. Peña, José Antonio Lozano, Pedro Larrañaga:
Learning Recursive Bayesian Multinets for Data Clustering by Means of Constructive Induction. Mach. Learn. 47(1): 63-89 (2002) - [j22]Endika Bengoetxea, Pedro Larrañaga, Isabelle Bloch, Aymeric Perchant, Claudia Boeres:
Inexact graph matching by means of estimation of distribution algorithms. Pattern Recognit. 35(12): 2867-2880 (2002) - [c16]Rosa Blanco, Iñaki Inza, Pedro Larrañaga:
Floating Search Methods in Learning Bayesian Networks. Probabilistic Graphical Models 2002 - [c15]José M. Peña, José Antonio Lozano, Pedro Larrañaga:
Unsupervised Learning of Bayesian Networks Via Estimation of Distribution Algorithms. Probabilistic Graphical Models 2002 - [p15]Pedro Larrañaga:
An Introduction to Probabilistic Graphical Models. Estimation of Distribution Algorithms 2002: 27-56 - [p14]Pedro Larrañaga:
A Review on Estimation of Distribution Algorithms. Estimation of Distribution Algorithms 2002: 57-100 - [p13]José M. Peña, José Antonio Lozano, Pedro Larrañaga:
Benefits of Data Clustering in Multimodal Function Optimization via EDAs. Estimation of Distribution Algorithms 2002: 101-127 - [p12]José Antonio Lozano, Ramón Sagarna, Pedro Larrañaga:
Parallel Estimation of Distribution Algorithms. Estimation of Distribution Algorithms 2002: 129-145 - [p11]Cristina González, José Antonio Lozano, Pedro Larrañaga:
Mathematical Modeling of Discrete Estimation of Distribution Algorithms. Estimation of Distribution Algorithms 2002: 147-163 - [p10]Endika Bengoetxea, Teresa Miquélez, Pedro Larrañaga, José Antonio Lozano:
Experimental Results in Function Optimization with EDAs in Continuous Domain. Estimation of Distribution Algorithms 2002: 181-194 - [p9]Ramón Sagarna, Pedro Larrañaga:
Solving the 0-1 Knapsack Problem with EDAs. Estimation of Distribution Algorithms 2002: 195-209 - [p8]Víctor Robles, P. de Miguel, Pedro Larrañaga:
Solving the Traveling Salesman Problem with EDAs. Estimation of Distribution Algorithms 2002: 211-229 - [p7]Endika Bengoetxea, Pedro Larrañaga, Aymeric Perchant, Isabelle Bloch:
Solving Graph Matching with EDAs Using a Permutation-Based Representation. Estimation of Distribution Algorithms 2002: 243-265 - [p6]Iñaki Inza, Pedro Larrañaga, Basilio Sierra:
Feature Subset Selection by Estimation of Distribution Algorithms. Estimation of Distribution Algorithms 2002: 269-293 - [p5]Iñaki Inza, Pedro Larrañaga, Basilio Sierra:
Feature Weighting for Nearest Neighbor by Estimation of Distribution Algorithms. Estimation of Distribution Algorithms 2002: 295-311 - [p4]Basilio Sierra, E. A. Jiménez, Iñaki Inza, Pedro Larrañaga, J. Muruzábal:
Rule Induction by Estimation of Distribution Algorithms. Estimation of Distribution Algorithms 2002: 313-322 - [p3]L. M. Campos, José A. Gámez, Pedro Larrañaga, Serafín Moral, Txomin Romero:
Partial Abductive Inference in Bayesian Networks: An Empirical Comparison Between GAs and EDAs. Estimation of Distribution Algorithms 2002: 323-341 - [p2]Josep Roure, Pedro Larrañaga, Ramon Sangüesa:
An Empirical Comparison Between K-Means, GAs and EDAs in Partitional Clustering. Estimation of Distribution Algorithms 2002: 343-360 - [p1]Carlos Cotta, Enrique Alba, Ramón Sagarna, Pedro Larrañaga:
Adjusting Weights in Artificial Neural Networks using Evolutionary Algorithms. Estimation of Distribution Algorithms 2002: 361-377 - [e1]Pedro Larrañaga, José Antonio Lozano:
Estimation of Distribution Algorithms. Genetic Algorithms and Evolutionary Computation, Springer 2002, ISBN 978-1-4613-5604-2 [contents] - 2001
- [j21]Basilio Sierra, Nicolás Serrano, Pedro Larrañaga, Eliseo J. Plasencia, Iñaki Inza, Juan José Jiménez, Pedro Revuelta, María Luisa Mora:
Using Bayesian networks in the construction of a bi-level multi-classifier. A case study using intensive care unit patients data. Artif. Intell. Medicine 22(3): 233-248 (2001) - [j20]Iñaki Inza, Marisa Merino, Pedro Larrañaga, Jorge Quiroga, Basilio Sierra, Marcos Girala:
Feature subset selection by genetic algorithms and estimation of distribution algorithms - A case study in the survival of cirrhotic patients treated with TIPS. Artif. Intell. Medicine 23(2): 187-205 (2001) - [j19]Iñaki Inza, Pedro Larrañaga, Basilio Sierra:
Feature subset selection by Bayesian networks: a comparison with genetic and sequential algorithms. Int. J. Approx. Reason. 27(2): 143-164 (2001) - [j18]José M. Peña, José Antonio Lozano, Pedro Larrañaga:
Performance evaluation of compromise conditional Gaussian networks for data clustering. Int. J. Approx. Reason. 28(1): 23-50 (2001) - [j17]José M. Peña, José Antonio Lozano, Pedro Larrañaga, Iñaki Inza:
Dimensionality Reduction in Unsupervised Learning of Conditional Gaussian Networks. IEEE Trans. Pattern Anal. Mach. Intell. 23(6): 590-603 (2001) - [c14]Basilio Sierra, Elena Lazkano, Iñaki Inza, Marisa Merino, Pedro Larrañaga, Jorge Quiroga:
Prototype Selection and Feature Subset Selection by Estimation of Distribution Algorithms. A Case Study in the Survival of Cirrhotic Patients Treated with TIPS. AIME 2001: 20-29 - [c13]José M. Peña, I. Izarzugaza, José Antonio Lozano, E. Aldasoro, Pedro Larrañaga:
Geographical clustering of cancer incidence by means of Bayesian networks and conditional Gaussian networks. AISTATS 2001: 237-242 - [c12]Endika Bengoetxea, Pedro Larrañaga, Isabelle Bloch, Aymeric Perchant:
Estimation of Distribution Algorithms: A New Evolutionary Computation Approach for Graph Matching Problems. EMMCVPR 2001: 454-468 - [c11]Basilio Sierra, Iñaki Inza, Pedro Larrañaga:
On Applying Supervised Classification Techniques in Medicine. ISMDA 2001: 14-19 - 2000
- [j16]Iñaki Inza, Pedro Larrañaga, Ramon Etxeberria, Basilio Sierra:
Feature Subset Selection by Bayesian network-based optimization. Artif. Intell. 123(1-2): 157-184 (2000) - [j15]Cristina González, José Antonio Lozano, Pedro Larrañaga:
Analyzing the Population Based Incremental Learning Algorithm by Means of Discrete Dynamical Systems. Complex Syst. 12(4) (2000) - [j14]José M. Peña, José Antonio Lozano, Pedro Larrañaga:
An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering. Pattern Recognit. Lett. 21(8): 779-786 (2000) - [c10]Basilio Sierra, Iñaki Inza, Pedro Larrañaga:
Medical Bayes Networks. ISMDA 2000: 4-14 - [c9]Iñaki Inza, Marisa Merino, Pedro Larrañaga, Jorge Quiroga, Basilio Sierra, Marcos Girala:
Feature Subset Selection Using Probabilistic Tree Structures. A Case Study in the Survival of Cirrhotic Patients Treated with TIPS. ISMDA 2000: 97-110 - [c8]Pedro Larrañaga, Ramon Etxeberria, José Antonio Lozano, José M. Peña:
Combinatonal Optimization by Learning and Simulation of Bayesian Networks. UAI 2000: 343-352
1990 – 1999
- 1999
- [j13]Pedro Larrañaga, Cindy M. H. Kuijpers, Roberto H. Murga, Iñaki Inza, S. Dizdarevic:
Genetic Algorithms for the Travelling Salesman Problem: A Review of Representations and Operators. Artif. Intell. Rev. 13(2): 129-170 (1999) - [j12]José Antonio Lozano, Pedro Larrañaga:
Applying genetic algorithms to search for the best hierarchical clustering of a dataset. Pattern Recognit. Lett. 20(9): 911-918 (1999) - [j11]José M. Peña, José Antonio Lozano, Pedro Larrañaga:
An empirical comparison of four initialization methods for the K-Means algorithm. Pattern Recognit. Lett. 20(10): 1027-1040 (1999) - [j10]Iñaki Inza, Pedro Larrañaga, Basilio Sierra, Ramon Etxeberria, José Antonio Lozano, José M. Peña:
Representing the behaviour of supervised classification learning algorithms by Bayesian networks. Pattern Recognit. Lett. 20(11-13): 1201-1209 (1999) - [j9]José M. Peña, José Antonio Lozano, Pedro Larrañaga:
Learning Bayesian networks for clustering by means of constructive induction. Pattern Recognit. Lett. 20(11-13): 1219-1230 (1999) - [j8]José Antonio Lozano, Pedro Larrañaga, Manuel Graña, F. Xabier Albizuri:
Genetic Algorithms: Bridging the Convergence Gap. Theor. Comput. Sci. 229(1): 11-22 (1999) - [c7]Basilio Sierra, Nicolás Serrano, Pedro Larrañaga, Eliseo J. Plasencia, Iñaki Inza, Juan José Jiménez, Jose María De la Rosa, María Luisa Mora:
Machine Learning Inspired Approaches to Combine Standard Medical Measures at an Intensive Care Unit. AIMDM 1999: 366-371 - 1998
- [j7]José Antonio Lozano, Pedro Larrañaga:
Aplicación de los algoritmos genéticos al problema del clustering jerárquico. Inteligencia Artif. 2(5): 62-67 (1998) - [j6]Basilio Sierra, Pedro Larrañaga:
Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches. Artif. Intell. Medicine 14(1-2): 215-230 (1998) - 1997
- [j5]Ramon Etxeberria, Pedro Larrañaga, Juan M. Picaza:
Analysis of the behaviour of genetic algorithms when learning Bayesian network structure from data. Pattern Recognit. Lett. 18(11-13): 1269-1273 (1997) - [j4]Pedro Larrañaga, Cindy M. H. Kuijpers, Mikel Poza, Roberto H. Murga:
Decomposing Bayesian networks: triangulation of the moral graph with genetic algorithms. Stat. Comput. 7(1): 19-34 (1997) - [j3]F. Xabier Albizuri, Alicia D'Anjou, Manuel Graña, Pedro Larrañaga:
Structure of the high-order Boltzmann machine from independence maps. IEEE Trans. Neural Networks 8(6): 1351-1358 (1997) - [c6]Pedro Larrañaga, Basilio Sierra, Miren J. Gallego, Maria J. Michelena, Juan M. Picaza:
Learning Bayesisan Networks by Genetic Algorithms: A Case Study in the Prediction of Survival in Malignant Skin Melanoma. AIME 1997: 261-272 - [c5]Pedro Larrañaga, Miren J. Gallego, Basilio Sierra, L. Urkola, Maria J. Michelena:
Bayesian Networks, Rule Induction and Logistic Regression in the Prediction of the Survival of Women Suffering from Breast Cancer. EPIA 1997: 303-308 - [c4]Ana Isabel González, Manuel Graña, José Antonio Lozano, Pedro Larrañaga:
Experimental Results of a Michigan-like Evolution Strategy for Non-stationary Clustering. ICANNGA 1997: 555-559 - 1996
- [j2]Pedro Larrañaga, Mikel Poza, Yosu Yurramendi, Roberto H. Murga, Cindy M. H. Kuijpers:
Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters. IEEE Trans. Pattern Anal. Mach. Intell. 18(9): 912-926 (1996) - [j1]Pedro Larrañaga, Cindy M. H. Kuijpers, Roberto H. Murga, Yosu Yurramendi:
Learning Bayesian network structures by searching for the best ordering with genetic algorithms. IEEE Trans. Syst. Man Cybern. Part A 26(4): 487-493 (1996) - 1995
- [c3]Pedro Larrañaga, Roberto H. Murga, Mikel Poza, Cindy M. H. Kuijpers:
Structure Learning of Bayesian Networks by Hybrid Genetic Algorithms. AISTATS 1995: 165-174 - 1993
- [c2]Pedro Larrañaga, Manuel Graña, Alicia D'Anjou, Francisco Javier Torrealdea:
Genetic Algorithms Elitist Probabilistic of Degree 1, a generalization of Simulated Annealing. AI*IA 1993: 208-217 - [c1]Pedro Larrañaga, Yosu Yurramendi:
Structure learning approaches in Causal Probalistics Networks. ECSQARU 1993: 227-232
Coauthor Index
aka: Concepcion Bielza
aka: Victor Robles
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-16 20:30 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint