


default search action
Sudip Kumar Naskar
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [i16]Rudrajit Dawn, Madhusudan Ghosh, Partha Basuchowdhuri, Sudip Kumar Naskar:
Unified Graph Networks (UGN): A Deep Neural Framework for Solving Graph Problems. CoRR abs/2502.07500 (2025) - 2024
- [c104]Sohom Ghosh, Arnab Maji, Aswartha Narayana, Sudip Kumar Naskar:
IndicFinNLP: Financial Natural Language Processing for Indian Languages. LREC/COLING 2024: 9010-9018 - [c103]Payel Santra
, Madhusudan Ghosh
, Debasis Ganguly
, Partha Basuchowdhuri
, Sudip Kumar Naskar
:
"The Absence of Evidence is Not the Evidence of Absence": Fact Verification via Information Retrieval-Based In-Context Learning. DaWaK 2024: 381-387 - [c102]Sohom Ghosh
, Chung-Chi Chen
, Sudip Kumar Naskar
:
Generator-Guided Crowd Reaction Assessment. WWW (Companion Volume) 2024: 597-600 - [i15]Atanu Mandal, Gargi Roy, Amit Barman, Indranil Dutta, Sudip Kumar Naskar:
Attentive Fusion: A Transformer-based Approach to Multimodal Hate Speech Detection. CoRR abs/2401.10653 (2024) - [i14]Amit Barman, Devangan Roy, Debapriya Paul, Indranil Dutta, Shouvik Kumar Guha, Samir Karmakar, Sudip Kumar Naskar:
Convolutional Neural Networks can achieve binary bail judgement classification. CoRR abs/2401.14135 (2024) - [i13]Sohom Ghosh, Chung-Chi Chen, Sudip Kumar Naskar:
Generator-Guided Crowd Reaction Assessment. CoRR abs/2403.09702 (2024) - [i12]Arijit Das, Tanmoy Nandi, Prasanta Saha, Suman Das, Saronyo Mukherjee, Sudip Kumar Naskar, Diganta Saha:
Effect of Leaders Voice on Financial Market: An Empirical Deep Learning Expedition on NASDAQ, NSE, and Beyond. CoRR abs/2403.12161 (2024) - [i11]Madhusudan Ghosh, Shrimon Mukherjee, Asmit Ganguly, Partha Basuchowdhuri, Sudip Kumar Naskar, Debasis Ganguly:
AlpaPICO: Extraction of PICO Frames from Clinical Trial Documents Using LLMs. CoRR abs/2409.09704 (2024) - [i10]Sohom Ghosh, Arnab Maji, N. Harsha Vardhan, Sudip Kumar Naskar:
Experimenting with Multi-modal Information to Predict Success of Indian IPOs. CoRR abs/2412.16174 (2024) - 2023
- [j19]Sohom Ghosh
, Ankush Chopra
, Sudip Kumar Naskar
:
Learning to Rank Hypernyms of Financial Terms Using Semantic Textual Similarity. SN Comput. Sci. 4(5): 610 (2023) - [c101]Madhusudan Ghosh
, Debasis Ganguly
, Partha Basuchowdhuri
, Sudip Kumar Naskar
:
Extracting Methodology Components from AI Research Papers: A Data-driven Factored Sequence Labeling Approach. CIKM 2023: 3897-3901 - [c100]Sohom Ghosh
, Sudip Kumar Naskar
:
FLUEnT: Financial Language Understandability Enhancement Toolkit. COMAD/CODS 2023: 258-262 - [c99]Sohom Ghosh
, Sudip Kumar Naskar
:
Using Natural Language Processing to Enhance Understandability of Financial Texts. COMAD/CODS 2023: 301-302 - [c98]Sohom Ghosh
, Sachin Umrao
, Chung-Chi Chen
, Sudip Kumar Naskar
:
The Mask One At a Time Framework for Detecting the Relationship between Financial Entities. FIRE 2023: 40-43 - [c97]Rima Roy
, Sohom Ghosh
, Sudip Kumar Naskar
:
Financial Argument Analysis in Bengali. FIRE 2023: 88-92 - [c96]Payel Santra
, Madhusudan Ghosh
, Shrimon Mukherjee
, Debasis Ganguly
, Partha Basuchowdhuri
, Sudip Kumar Naskar
:
Unleashing the Power of Large Language Models: A Hands-On Tutorial. FIRE 2023: 149-152 - [c95]Dhairya Suman, Atanu Mandal, Santanu Pal, Sudip Kumar Naskar:
IACS-LRILT: Machine Translation for Low-Resource Indic Languages. WMT 2023: 972-977 - [i9]Sohom Ghosh, Ankush Chopra, Sudip Kumar Naskar:
Learning Semantic Text Similarity to rank Hypernyms of Financial Terms. CoRR abs/2303.13475 (2023) - [i8]Madhusudan Ghosh, Debasis Ganguly, Partha Basuchowdhuri, Sudip Kumar Naskar:
Enhancing AI Research Paper Analysis: Methodology Component Extraction using Factored Transformer-based Sequence Modeling Approach. CoRR abs/2311.03401 (2023) - 2022
- [j18]Sohom Ghosh
, Sudip Kumar Naskar
:
FiNCAT-2: An enhanced Financial Numeral Claim Analysis Tool. Softw. Impacts 12: 100288 (2022) - [c94]Anubhav Sarkar
, Swagata Chakraborty
, Sohom Ghosh
, Sudip Kumar Naskar
:
Evaluating Impact of Social Media Posts by Executives on Stock Prices. FIRE 2022: 74-82 - [c93]Suparnakanti Das, Trishita Dhara, Sirshapan Mitra, Sudip Kumar Naskar:
Understanding the Robustness in Phoneme Production Mechanism in English and Bengali. ICDCN 2022: 273-277 - [c92]Rajarshi Roychoudhury, Subhrajit Dey, Md. Shad Akhtar, Amitava Das, Sudip Kumar Naskar:
A Novel Approach towards Cross Lingual Sentiment Analysis using Transliteration and Character Embedding. ICON 2022: 260-268 - [c91]Sohom Ghosh, Sudip Kumar Naskar:
FiNCAT: Financial Numeral Claim Analysis Tool. WWW (Companion Volume) 2022: 583-585 - [i7]Afia Fairoose Abedin, Amirul Islam Al Mamun, Rownak Jahan Nowrin, Amitabha Chakrabarty, Moin Mostakim, Sudip Kumar Naskar:
A Deep Learning Approach to Integrate Human-Level Understanding in a Chatbot. CoRR abs/2201.02735 (2022) - [i6]Sohom Ghosh, Sudip Kumar Naskar:
FiNCAT: Financial Numeral Claim Analysis Tool. CoRR abs/2202.00631 (2022) - [i5]Anubhav Sarkar, Swagata Chakraborty, Sohom Ghosh, Sudip Kumar Naskar:
Evaluating Impact of Social Media Posts by Executives on Stock Prices. CoRR abs/2211.01287 (2022) - 2021
- [j17]Alok Ranjan Pal, Diganta Saha, Sudip Kumar Naskar, Niladri Sekhar Dash:
In search of a suitable method for disambiguation of word senses in Bengali. Int. J. Speech Technol. 24(2): 439-454 (2021) - [j16]Sourav Mandal
, Sudip Kumar Naskar
:
Classifying and Solving Arithmetic Math Word Problems - An Intelligent Math Solver. IEEE Trans. Learn. Technol. 14(1): 28-41 (2021) - [c90]Kumar Gourav Das, Braja Gopal Patra, Sudip Kumar Naskar:
Profiling Celebrity Profession from Twitter Data. IALP 2021: 207-212 - [c89]Atanu Mandal
, Amir Sinaeepourfard, Sudip Kumar Naskar:
VDA: Deep Learning based Visual Data Analysis in Integrated Edge to Cloud Computing Environment. ICDCN (Adjunct Volume) 2021: 7-12 - [c88]Sourav Mandal
, Arif Ahmed Sekh
, Sudip Kumar Naskar
:
Identification of Relevant Quantities in Arithmetic Word Problems Using Siamese Neural Network. ICMC 2021: 415-426 - [c87]Sandip Dutta, Utso Majumder, Sudip Kumar Naskar:
An Efficient BERT Based Approach to Detect Aggression and Misogyny. ICON 2021: 493-498 - [c86]Sohom Ghosh, Shovon Sengupta, Sudip Kumar Naskar, Sunny Kumar Singh:
FinRead: A Transfer Learning Based Tool to Assess Readability of Definitions of Financial Terms. ICON 2021: 658-659 - [c85]Rajarshi Roychoudhury, Sudip Kumar Naskar:
Fine-tuning BERT to classify COVID19 tweets containing symptoms. SMM4H@NAACL-HLT 2021: 138-140 - [i4]Atanu Mandal, Santanu Pal, Indranil Dutta, Mahidas Bhattacharya, Sudip Kumar Naskar:
Is Attention always needed? A Case Study on Language Identification from Speech. CoRR abs/2110.03427 (2021) - 2020
- [j15]Sourav Mandal
, Arif Ahmed Sekh
, Sudip Kumar Naskar:
Solving arithmetic word problems: A deep learning based approach. J. Intell. Fuzzy Syst. 39(2): 2521-2531 (2020) - [j14]Shibaprasad Sen
, Ankan Bhattacharyya
, Mridul Mitra, Kaushik Roy, Sudip Kumar Naskar, Ram Sarkar
:
Online Bangla handwritten word recognition using HMM and language model. Neural Comput. Appl. 32(14): 9939-9951 (2020) - [j13]Somnath Banerjee
, Monojit Choudhury, Kunal Chakma
, Sudip Kumar Naskar, Amitava Das, Sivaji Bandyopadhyay, Paolo Rosso:
MSIR@FIRE: A Comprehensive Report from 2013 to 2016. SN Comput. Sci. 1(1): 55 (2020) - [c84]Anisha Datta, Shukrity Si, Urbi Chakraborty, Sudip Kumar Naskar:
Spyder: Aggression Detection on Multilingual Tweets. TRAC@LREC 2020: 87-92 - [c83]Santanu Pal, Hongfei Xu
, Nico Herbig, Sudip Kumar Naskar, Antonio Krüger
, Josef van Genabith:
The Transference Architecture for Automatic Post-Editing. COLING 2020: 5963-5974 - [c82]Shukrity Si, Anisha Datta, Sudip Kumar Naskar:
A New Approach to Claim Check-Worthiness Prediction and Claim Verification. ICON 2020: 155-160 - [c81]Souvick Das
, Rajat Pandit, Sudip Kumar Naskar:
A Rule Based Lightweight Bengali Stemmer. ICON 2020: 400-408 - [c80]Jimmy Laishram, Kishorjit Nongmeikapam, Sudip Kumar Naskar:
Deep Neural Model for Manipuri Multiword Named Entity Recognition with Unsupervised Cluster Feature. ICON 2020: 420-429 - [d1]Avishek Garain
, Arpan Basu, Sudip Kumar Naskar:
Dataset for Word Difficulty Prediction. IEEE DataPort, 2020 - [i3]Somnath Banerjee, Sudip Kumar Naskar, Paolo Rosso, Sivaji Bandyopadhyay:
Classifier Combination Approach for Question Classification for Bengali Question Answering System. CoRR abs/2008.13597 (2020)
2010 – 2019
- 2019
- [j12]Sourav Mandal
, Sudip Kumar Naskar:
Solving Arithmetic Word Problems by Object Oriented Modeling and Query-Based Information Processing. Int. J. Artif. Intell. Tools 28(4): 1940002:1-1940002:23 (2019) - [j11]Rajat Pandit
, Saptarshi Sengupta, Sudip Kumar Naskar, Niladri Sekhar Dash, Mohini Mohan Sardar:
Improving Semantic Similarity with Cross-Lingual Resources: A Study in Bangla - A Low Resourced Language. Informatics 6(2): 19 (2019) - [j10]Saptarshi Sengupta, Rajat Pandit, Parag Mitra, Sudip Kumar Naskar, Mohini Mohan Sardar:
Word sense induction in bengali using parallel corpora and distributional semantics. J. Intell. Fuzzy Syst. 36(5): 4821-4832 (2019) - [j9]Rohini Basak, Sudip Kumar Naskar, Alexander F. Gelbukh:
Short-answer grading using textual entailment. J. Intell. Fuzzy Syst. 36(5): 4909-4919 (2019) - [c79]Shukrity Si, Anisha Datta, Somnath Banerjee, Sudip Kumar Naskar:
Aggression Detection on Multilingual Social Media Text. ICCCNT 2019: 1-5 - [c78]Debargha Bhattacharjee, Hariom, Sourav Mandal
, Sudip Kumar Naskar:
A Simple Arithmetic Calculator to Solve Single Sentence Mathematical Word Problems. ICITAM 2019: 511-524 - [c77]Mihaela Vela, Santanu Pal, Marcos Zampieri, Sudip Kumar Naskar, Josef van Genabith:
Improving CAT Tools in the Translation Workflow: New Approaches and Evaluation. MTSummit (2) 2019: 8-15 - [c76]Preeti Mukherjee, Mainak Pal
, Somnath Banerjee, Sudip Kumar Naskar:
JU_ETCE_17_21 at SemEval-2019 Task 6: Efficient Machine Learning and Neural Network Approaches for Identifying and Categorizing Offensive Language in Tweets. SemEval@NAACL-HLT 2019: 662-667 - [c75]Arpan Basu, Avishek Garain
, Sudip Kumar Naskar:
Word Difficulty Prediction Using Convolutional Neural Networks. TENCON 2019: 1109-1112 - [c74]Riktim Mondal, Shankha Raj Nayek, Aditya Chowdhury, Santanu Pal, Sudip Kumar Naskar, Josef van Genabith:
JU-Saarland Submission to the WMT2019 English-Gujarati Translation Shared Task. WMT (2) 2019: 308-313 - [i2]Mihaela Vela, Santanu Pal, Marcos Zampieri, Sudip Kumar Naskar, Josef van Genabith:
Improving CAT Tools in the Translation Workflow: New Approaches and Evaluation. CoRR abs/1908.06140 (2019) - [i1]Santanu Pal, Hongfei Xu, Nico Herbig, Sudip Kumar Naskar, Antonio Krüger, Josef van Genabith:
The Transference Architecture for Automatic Post-Editing. CoRR abs/1908.06151 (2019) - 2018
- [j8]Poulami Das
, Sudip Kumar Naskar, Sankar Narayan Patra:
Hardware efficient FIR filter design using Global Best Steered Quantum Inspired Cuckoo Search Algorithm. Appl. Soft Comput. 71: 1-19 (2018) - [j7]Rohini Basak, Sudip Kumar Naskar, Alexander F. Gelbukh
:
A simple hybrid approach to recognizing textual entailment. J. Intell. Fuzzy Syst. 34(5): 2873-2885 (2018) - [j6]Somnath Banerjee
, Sudip Kumar Naskar, Paolo Rosso, Sivaji Bandyopadhyay:
Code mixed cross script factoid question classification - A deep learning approach. J. Intell. Fuzzy Syst. 34(5): 2959-2969 (2018) - [c73]Tanik Saikh, Sudip Kumar Naskar, Asif Ekbal:
Recognizing Textual Entailment Using Weighted Dependency Relations. CICLing (2) 2018: 221-233 - [c72]Amitrajit Sarkar, Surajit Dasgupta
, Sudip Kumar Naskar, Sivaji Bandyopadhyay:
Says Who? Deep Learning Models for Joint Speech Recognition, Segmentation and Diarization. ICASSP 2018: 5229-5233 - [c71]Joybrata Panja, Sudip Kumar Naskar:
ITER: Improving Translation Edit Rate through Optimizable Edit Costs. WMT (shared task) 2018: 746-750 - [c70]Prasenjit Basu, Santanu Pal, Sudip Kumar Naskar:
Keep It or Not: Word Level Quality Estimation for Post-Editing. WMT (shared task) 2018: 759-764 - 2017
- [j5]Somnath Banerjee
, Sudip Kumar Naskar, Paolo Rosso, Sivaji Bandyopadhyay:
Named Entity Recognition on Code-Mixed Cross-Script Social Media Content. Computación y Sistemas 21(4) (2017) - [c69]Tanik Saikh, Sudip Kumar Naskar, Asif Ekbal, Sivaji Bandyopadhyay:
Textual Entailment Using Machine Translation Evaluation Metrics. CICLing (1) 2017: 317-328 - [c68]Santanu Pal, Sudip Kumar Naskar, Mihaela Vela, Qun Liu, Josef van Genabith:
Neural Automatic Post-Editing Using Prior Alignment and Reranking. EACL (2) 2017: 349-355 - [c67]Sourav Mandal
, Sudip Kumar Naskar:
Solving Arithmetic Mathematical Word Problems: A Review and Recent Advancements. ICITAM 2017: 95-114 - [c66]Sourav Mandal, Sudip Kumar Naskar:
Natural Language Programing with Automatic Code Generation towards Solving Addition-Subtraction Word Problems. ICON 2017: 146-154 - [c65]Joy Mahapatra, Sudip Kumar Naskar:
Unsupervised Morpheme Segmentation Through Numerical Weighting and Thresholding. ICON 2017: 298-304 - [c64]Ajay Shankar Tiwari, Sudip Kumar Naskar:
Normalization of Social Media Text using Deep Neural Networks. ICON 2017: 312-321 - [c63]Amit Majumder
, Asif Ekbal, Sudip Kumar Naskar:
Feature Selection and Class-Weight Tuning Using Genetic Algorithm for Bio-molecular Event Extraction. NLDB 2017: 28-33 - [c62]Sourav Mandal
, Sudip Kumar Naskar:
Towards Generating Object-Oriented Programs Automatically from Natural Language Texts for Solving Mathematical Word Problems. NLDB 2017: 222-226 - 2016
- [c61]Santanu Pal, Sudip Kumar Naskar, Mihaela Vela, Josef van Genabith:
A Neural Network based Approach to Automatic Post-Editing. ACL (2) 2016 - [c60]Santanu Pal, Sudip Kumar Naskar, Josef van Genabith:
Forest to String Based Statistical Machine Translation with Hybrid Word Alignments. CICLing (2) 2016: 38-50 - [c59]Santanu Pal, Sudip Kumar Naskar, Marcos Zampieri, Tapas Nayak, Josef van Genabith:
CATaLog Online: A Web-based CAT Tool for Distributed Translation with Data Capture for APE and Translation Process Research. COLING (Demos) 2016: 98-102 - [c58]Santanu Pal, Sudip Kumar Naskar, Josef van Genabith:
Multi-Engine and Multi-Alignment Based Automatic Post-Editing and its Impact on Translation Productivity. COLING 2016: 2559-2570 - [c57]Somnath Banerjee, Sudip Kumar Naskar, Paolo Rosso, Sivaji Bandyopadhyay:
The First Cross-Script Code-Mixed Question Answering Corpus. MultiLingMine@ECIR 2016: 56-65 - [c56]Somnath Banerjee
, Kunal Chakma
, Sudip Kumar Naskar, Amitava Das, Paolo Rosso, Sivaji Bandyopadhyay, Monojit Choudhury:
Overview of the Mixed Script Information Retrieval (MSIR) at FIRE-2016. FIRE Workshop 2016: 39-49 - [c55]Surajit Dasgupta, Abhash Kumar, Dipankar Das, Sudip Kumar Naskar, Sivaji Bandyopadhyay:
Word Embeddings for Information Extraction from Tweets. FIRE (Working Notes) 2016: 71-73 - [c54]Somnath Banerjee, Kunal Chakma, Sudip Kumar Naskar, Amitava Das, Paolo Rosso, Sivaji Bandyopadhyay, Monojit Choudhury:
Overview of the Mixed Script Information Retrieval (MSIR) at FIRE-2016. FIRE (Working Notes) 2016: 94-99 - [c53]Tanik Saikh, Sudip Kumar Naskar, Sivaji Bandyopadhyay:
JU_NLP@DPIL-FIRE2016: Paraphrase Detection in Indian Languages - A Machine Learning Approach. FIRE (Working Notes) 2016: 275-278 - [c52]Amit Majumder, Asif Ekbal, Sudip Kumar Naskar:
Biomolecular Event Extraction using a Stacked Generalization based Classifier. ICON 2016: 55-64 - [c51]Joy Mahapatra, Sudip Kumar Naskar, Sivaji Bandyopadhyay:
Statistical Natural Language Generation from Tabular Non-textual Data. INLG 2016: 143-152 - [c50]Santanu Pal, Marcos Zampieri, Sudip Kumar Naskar, Tapas Nayak, Mihaela Vela, Josef van Genabith:
CATaLog Online: Porting a Post-editing Tool to the Web. LREC 2016 - [c49]Koushik Pahari, Alapan Kuila, Santanu Pal, Sudip Kumar Naskar, Sivaji Bandyopadhyay, Josef van Genabith:
JU-USAAR: A Domain Adaptive MT System. WMT 2016: 442-448 - 2015
- [j4]Rohini Basak, Sudip Kumar Naskar, Partha Pakray, Alexander F. Gelbukh
:
Recognizing Textual Entailment by Soft Dependency Tree Matching. Computación y Sistemas 19(4) (2015) - [c48]Tanik Saikh, Sudip Kumar Naskar, Chandan Giri
, Sivaji Bandyopadhyay:
Textual Entailment Using Different Similarity Metrics. CICLing (1) 2015: 491-501 - [c47]Royal Sequiera, Monojit Choudhury, Parth Gupta, Paolo Rosso, Shubham Kumar, Somnath Banerjee, Sudip Kumar Naskar, Sivaji Bandyopadhyay, Gokul Chittaranjan, Amitava Das, Kunal Chakma:
Overview of FIRE-2015 Shared Task on Mixed Script Information Retrieval. FIRE Workshops 2015: 19-25 - [c46]Soumik Mandal, Somnath Banerjee, Sudip Kumar Naskar, Paolo Rosso, Sivaji Bandyopadhyay:
Adaptive Voting in Multiple Classifier Systems for Word Level Language Identification. FIRE Workshops 2015: 47-50 - [c45]Sombuddha Choudhury, Somnath Banerjee, Sudip Kumar Naskar, Paolo Rosso, Sivaji Bandyopadhyay:
Entity Extraction from Social Media using Machine Learning Approaches. FIRE Workshops 2015: 103-106 - [c44]Alok Ranjan Pal, Diganta Saha
, Sudip Kumar Naskar, Niladri Sekhar Dash:
Word sense disambiguation in Bengali: A lemmatized system increases the accuracy of the result. ReTIS 2015: 342-346 - [c43]Sukanya Dutta, Tista Saha, Somnath Banerjee
, Sudip Kumar Naskar:
Text normalization in code-mixed social media text. ReTIS 2015: 378-382 - [c42]Rajat Pandit, Sudip Kumar Naskar:
A memory based approach to word sense disambiguation in Bengali using k-NN method. ReTIS 2015: 383-386 - [c41]Santanu Pal, Sudip Kumar Naskar, Josef van Genabith:
UdS-Sant: English-German Hybrid Machine Translation System. WMT@EMNLP 2015: 152-157 - [c40]Santanu Pal, Mihaela Vela, Sudip Kumar Naskar, Josef van Genabith:
USAAR-SAPE: An English-Spanish Statistical Automatic Post-Editing System. WMT@EMNLP 2015: 216-221 - 2014
- [c39]Federico Gaspari, Antonio Toral, Sudip Kumar Naskar, Declan Groves, Andy Way:
Perception vs. reality: measuring machine translation post-editing productivity. WPTP@ATMA 2014: 60-72 - [c38]Santanu Pal, Pintu Lohar, Sudip Kumar Naskar:
Role of Paraphrases in PB-SMT. CICLing (2) 2014: 242-253 - [c37]Somnath Banerjee
, Alapan Kuila, Aniruddha Roy, Sudip Kumar Naskar, Paolo Rosso, Sivaji Bandyopadhyay:
A Hybrid Approach for Transliterated Word-Level Language Identification: CRF with Post-Processing Heuristics. FIRE 2014: 54-59 - [c36]Santanu Pal, Partha Pakray, Sudip Kumar Naskar:
Automatic Building and Using Parallel Resources for SMT from Comparable Corpora. HyTra@EACL 2014: 48-57 - [c35]Santanu Pal, Braja Gopal Patra, Dipankar Das, Sudip Kumar Naskar, Sivaji Bandyopadhyay, Josef van Genabith:
How Sentiment Analysis Can Help Machine Translation. ICON 2014: 89-94 - [c34]Santanu Pal, Sudip Kumar Naskar, Sivaji Bandyopadhyay:
Word Alignment-Based Reordering of Source Chunks in PB-SMT. LREC 2014: 3565-3571 - [c33]Somnath Banerjee, Pintu Lohar, Sudip Kumar Naskar, Sivaji Bandyopadhyay:
The First Resource for Bengali Question Answering Research. PolTAL 2014: 290-297 - [c32]Somnath Banerjee
, Sudip Kumar Naskar, Sivaji Bandyopadhyay:
Bengali Named Entity Recognition Using Margin Infused Relaxed Algorithm. TSD 2014: 125-132 - [c31]Somnath Banerjee
, Sudip Kumar Naskar, Sivaji Bandyopadhyay:
BFQA: A Bengali Factoid Question Answering System. TSD 2014: 217-224 - 2013
- [c30]Renu Balyan, Sudip Kumar Naskar, Antonio Toral, Niladri Chatterjee:
A Diagnostic Evaluation Approach for English to Hindi MT Using Linguistic Checkpoints and Error Rates. CICLing (2) 2013: 285-296 - [c29]Santanu Pal, Sudip Kumar Naskar, Sivaji Bandyopadhyay:
A Hybrid Word Alignment Model for Phrase-Based Statistical Machine Translation. HyTra@ACL 2013: 94-101 - [c28]Sudip Kumar Naskar, Antonio Toral, Federico Gaspari, Declan Groves:
Meta-Evaluation of a Diagnostic Quality Metric for Machine Translation. MTSummit 2013 - [c27]Santanu Pal, Sudip Kumar Naskar, Sivaji Bandyopadhyay:
MWE Alignment in Phrase Based Statistical Machine Translation. MTSummit 2013 - [c26]Antonio Toral, Sudip Kumar Naskar, Joris Vreeke, Federico Gaspari, Declan Groves:
A Web Application for the Diagnostic Evaluation of Machine Translation over Specific Linguistic Phenomena. HLT-NAACL 2013: 20-23 - 2012
- [j3]Antonio Toral, Sudip Kumar Naskar, Federico Gaspari, Declan Groves:
DELiC4MT: A Tool for Diagnostic MT Evaluation over User-defined Linguistic Phenomena. Prague Bull. Math. Linguistics 98: 121-132 (2012) - [c25]Pratyush Banerjee, Sudip Kumar Naskar, Johann Roturier, Andy Way, Josef van Genabith:
Translation Quality-Based Supplementary Data Selection by Incremental Update of Translation Models. COLING 2012: 149-166 - [c24]Pratyush Banerjee, Sudip Kumar Naskar, Johann Roturier, Andy Way, Josef van Genabith:
Domain Adaptation in SMT of User-Generated Forum Content Guided by OOV Word Reduction: Normalization and/or Supplementary Data. EAMT 2012: 169-176 - 2011
- [j2]Rejwanul Haque
, Sudip Kumar Naskar, Antal van den Bosch
, Andy Way
:
Integrating source-language context into phrase-based statistical machine translation. Mach. Transl. 25(3): 239-285 (2011) - [c23]Sarah Ebling, Andy Way, Martin Volk, Sudip Kumar Naskar:
Combining Semantic and Syntactic Generalization in Example-Based Machine Translation. EAMT 2011 - [c22]Antonio Toral, Federico Gaspari, Sudip Kumar Naskar, Andy Way:
A Comparative Evaluation of Research vs. Online MT Systems. EAMT 2011 - [c21]Pratyush Banerjee, Hala Almaghout, Sudip Kumar Naskar, Johann Roturier, Jie Jiang, Andy Way, Josef van Genabith:
The DCU machine translation systems for IWSLT 2011. IWSLT 2011: 41-48 - [c20]Pratyush Banerjee, Sudip Kumar Naskar, Johann Roturier, Andy Way, Josef van Genabith:
Domain Adaptation in Statistical Machine Translation of User-Forum Data using Component Level Mixture Modelling. MTSummit 2011 - [c19]Sudip Kumar Naskar, Antonio Toral, Federico Gaspari, Andy Way:
A Framework for Diagnostic Evaluation of MT Based on Linguistic Checkpoints. MTSummit 2011 - 2010
- [c18]Pratyush Banerjee, Jinhua Du, Baoli Li, Sudip Kumar Naskar, Andy Way, Josef van Genabith:
Combining Multi-Domain Statistical Machine Translation Models using Automatic Classifiers. AMTA 2010 - [c17]Rejwanul Haque, Sudip Kumar Naskar, Antal van den Bosch, Andy Way:
Supertags as Source Language Context in Hierarchical Phrase-Based SMT. AMTA 2010 - [c16]Rejwanul Haque
, Sudip Kumar Naskar, Andy Way
, Marta R. Costa-jussà
, Rafael E. Banchs:
Sentence Similarity-Based Source Context Modelling in PBSMT. IALP 2010: 257-260 - [c15]Santanu Pal, Sudip Kumar Naskar, Pavel Pecina, Sivaji Bandyopadhyay, Andy Way:
Handling Named Entities and Compound Verbs in Phrase-Based Statistical Machine Translation. MWE@COLING 2010: 46-54 - [c14]Tsuyoshi Okita, Jie Jiang, Rejwanul Haque, Hala Almaghout, Jinhua Du, Sudip Kumar Naskar, Andy Way:
MaTrEx: the DCU MT System for NTCIR-8. NTCIR 2010: 377-383 - [c13]Sandipan Dandapat, Sara Morrissey, Sudip Kumar Naskar, Harold L. Somers:
Mitigating Problems in Analogy-based EBMT with SMT and vice versa: A Case Study with Named Entity Transliteration. PACLIC 2010: 365-372 - [c12]Sergio Penkale, Rejwanul Haque, Sandipan Dandapat, Pratyush Banerjee, Ankit K. Srivastava, Jinhua Du, Pavel Pecina, Sudip Kumar Naskar, Mikel L. Forcada, Andy Way:
MATREX: The DCU MT System for WMT 2010. WMT@ACL 2010: 143-148
2000 – 2009
- 2009
- [c11]Rejwanul Haque, Sandipan Dandapat, Ankit K. Srivastava, Sudip Kumar Naskar, Andy Way:
English-Hindi Transliteration Using Context-Informed PB-SMT: the DCU System for NEWS 2009. NEWS@IJCNLP 2009: 104-107 - [c10]Rejwanul Haque, Sudip Kumar Naskar, Yanjun Ma, Andy Way:
Using Supertags as Source Language Context in SMT. EAMT 2009 - [c9]Rejwanul Haque, Sudip Kumar Naskar, Antal van den Bosch, Andy Way:
Dependency Relations as Source Context in Phrase-Based SMT. PACLIC 2009: 170-179 - [c8]Rejwanul Haque, Sudip Kumar Naskar, Josef van Genabith, Andy Way:
Experiments on Domain Adaptation for English--Hindi SMT. PACLIC 2009: 670-677 - 2008
- [c7]Sivaji Bandyopadhyay, Tapabrata Mondal, Sudip Kumar Naskar, Asif Ekbal, Rejwanul Haque, Srinivasa Rao Godhavarthy:
Bengali, Hindi and Telugu to English Ad-hoc Bilingual Task. IJCNLP 2008: 66 - 2007
- [j1]Asif Ekbal, Sudip Kumar Naskar, Sivaji Bandyopadhyay:
Named Entity Transliteration. Int. J. Comput. Process. Orient. Lang. 20(4): 289-310 (2007) - [c6]Sivaji Bandyopadhyay, Tapabrata Mondal, Sudip Kumar Naskar, Asif Ekbal, Rejwanul Haque
, Srinivasa Rao Godhavarthy:
Bengali, Hindi and Telugu to English Ad-Hoc Bilingual Task at CLEF 2007. CLEF 2007: 88-94 - [c5]Sivaji Bandyopadhyay, Tapabrata Mondal, Sudip Kumar Naskar, Asif Ekbal, Rejwanul Haque, Srinivasa Rao Godhavarthy:
Bengali, Hindi and Telugu to English Ad-hoc Bilingual Task at CLEF 2007. CLEF (Working Notes) 2007 - [c4]Sudip Kumar Naskar, Sivaji Bandyopadhyay:
Word Sense Disambiguation Using Extended WordNet. ICCTA 2007: 446-450 - [c3]Asif Ekbal, Sudip Kumar Naskar, Sivaji Bandyopadhyay:
Language Independent Named Entity Transliteration. IICAI 2007: 1936-1950 - [c2]Sudip Kumar Naskar, Sivaji Bandyopadhyay:
JU-SKNSB: Extended WordNet Based WSD on the English All-Words Task at SemEval-1. SemEval@ACL 2007: 203-206 - 2006
- [c1]Asif Ekbal, Sudip Kumar Naskar, Sivaji Bandyopadhyay:
A Modified Joint Source-Channel Model for Transliteration. ACL 2006
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-03-28 23:47 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint