default search action
Jiantao Jiao
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j19]Banghua Zhu, Ziao Wang, Nadim Ghaddar, Jiantao Jiao, Lele Wang:
Noisy Computing of the OR and MAX Functions. IEEE J. Sel. Areas Inf. Theory 5: 302-313 (2024) - [c46]Banghua Zhu, Michael I. Jordan, Jiantao Jiao:
Iterative Data Smoothing: Mitigating Reward Overfitting and Overoptimization in RLHF. ICML 2024 - [c45]Jinning Li, Xinyi Liu, Banghua Zhu, Jiantao Jiao, Masayoshi Tomizuka, Chen Tang, Wei Zhan:
Guided Online Distillation: Promoting Safe Reinforcement Learning by Offline Demonstration. ICRA 2024: 7447-7454 - [i78]Banghua Zhu, Michael I. Jordan, Jiantao Jiao:
Iterative Data Smoothing: Mitigating Reward Overfitting and Overoptimization in RLHF. CoRR abs/2401.16335 (2024) - [i77]Hanlin Zhu, Banghua Zhu, Jiantao Jiao:
Efficient Prompt Caching via Embedding Similarity. CoRR abs/2402.01173 (2024) - [i76]Banghua Zhu, Norman Mu, Jiantao Jiao, David A. Wagner:
Generative AI Security: Challenges and Countermeasures. CoRR abs/2402.12617 (2024) - [i75]Nived Rajaraman, Jiantao Jiao, Kannan Ramchandran:
Toward a Theory of Tokenization in LLMs. CoRR abs/2404.08335 (2024) - [i74]Hanlin Zhu, Baihe Huang, Shaolun Zhang, Michael I. Jordan, Jiantao Jiao, Yuandong Tian, Stuart Russell:
Towards a Theoretical Understanding of the 'Reversal Curse' via Training Dynamics. CoRR abs/2405.04669 (2024) - [i73]Zhanhao Hu, Julien Piet, Geng Zhao, Jiantao Jiao, David A. Wagner:
Toxicity Detection for Free. CoRR abs/2405.18822 (2024) - [i72]Henry Pinkard, Leyla A. Kabuli, Eric Markley, Tiffany Chien, Jiantao Jiao, Laura Waller:
Universal evaluation and design of imaging systems using information estimation. CoRR abs/2405.20559 (2024) - [i71]Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, Yuandong Tian, Jiantao Jiao, Jason Weston, Sainbayar Sukhbaatar:
Meta-Rewarding Language Models: Self-Improving Alignment with LLM-as-a-Meta-Judge. CoRR abs/2407.19594 (2024) - [i70]Richard Zhuang, Tianhao Wu, Zhaojin Wen, Andrew Li, Jiantao Jiao, Kannan Ramchandran:
EmbedLLM: Learning Compact Representations of Large Language Models. CoRR abs/2410.02223 (2024) - [i69]Tianhao Wu, Janice Lan, Weizhe Yuan, Jiantao Jiao, Jason Weston, Sainbayar Sukhbaatar:
Thinking LLMs: General Instruction Following with Thought Generation. CoRR abs/2410.10630 (2024) - [i68]Tianyu Guo, Druv Pai, Yu Bai, Jiantao Jiao, Michael I. Jordan, Song Mei:
Active-Dormant Attention Heads: Mechanistically Demystifying Extreme-Token Phenomena in LLMs. CoRR abs/2410.13835 (2024) - [i67]Evan Frick, Tianle Li, Connor Chen, Wei-Lin Chiang, Anastasios N. Angelopoulos, Jiantao Jiao, Banghua Zhu, Joseph E. Gonzalez, Ion Stoica:
How to Evaluate Reward Models for RLHF. CoRR abs/2410.14872 (2024) - 2023
- [c44]Jinhyun So, Ramy E. Ali, Basak Güler, Jiantao Jiao, Amir Salman Avestimehr:
Securing Secure Aggregation: Mitigating Multi-Round Privacy Leakage in Federated Learning. AAAI 2023: 9864-9873 - [c43]Banghua Zhu, Lun Wang, Qi Pang, Shuai Wang, Jiantao Jiao, Dawn Song, Michael I. Jordan:
Byzantine-Robust Federated Learning with Optimal Statistical Rates. AISTATS 2023: 3151-3178 - [c42]Paria Rashidinejad, Hanlin Zhu, Kunhe Yang, Stuart Russell, Jiantao Jiao:
Optimal Conservative Offline RL with General Function Approximation via Augmented Lagrangian. ICLR 2023 - [c41]Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, Sergey Levine, Karol Hausman:
Jump-Start Reinforcement Learning. ICML 2023: 34556-34583 - [c40]Geng Zhao, Banghua Zhu, Jiantao Jiao, Michael I. Jordan:
Online Learning in Stackelberg Games with an Omniscient Follower. ICML 2023: 42304-42316 - [c39]Banghua Zhu, Michael I. Jordan, Jiantao Jiao:
Principled Reinforcement Learning with Human Feedback from Pairwise or K-wise Comparisons. ICML 2023: 43037-43067 - [c38]Banghua Zhu, Ziao Wang, Nadim Ghaddar, Jiantao Jiao, Lele Wang:
On the Optimal Bounds for Noisy Computing. ISIT 2023: 1788-1793 - [c37]Banghua Zhu, Ying Sheng, Lianmin Zheng, Clark W. Barrett, Michael I. Jordan, Jiantao Jiao:
Towards Optimal Caching and Model Selection for Large Model Inference. NeurIPS 2023 - [c36]Banghua Zhu, Mingyu Ding, Philip L. Jacobson, Ming Wu, Wei Zhan, Michael I. Jordan, Jiantao Jiao:
Doubly-Robust Self-Training. NeurIPS 2023 - [c35]Hanlin Zhu, Paria Rashidinejad, Jiantao Jiao:
Importance Weighted Actor-Critic for Optimal Conservative Offline Reinforcement Learning. NeurIPS 2023 - [c34]Banghua Zhu, Stephen Bates, Zhuoran Yang, Yixin Wang, Jiantao Jiao, Michael I. Jordan:
The Sample Complexity of Online Contract Design. EC 2023: 1188 - [i66]Banghua Zhu, Jiantao Jiao, Michael I. Jordan:
Principled Reinforcement Learning with Human Feedback from Pairwise or K-wise Comparisons. CoRR abs/2301.11270 (2023) - [i65]Geng Zhao, Banghua Zhu, Jiantao Jiao, Michael I. Jordan:
Online Learning in Stackelberg Games with an Omniscient Follower. CoRR abs/2301.11518 (2023) - [i64]Hanlin Zhu, Paria Rashidinejad, Jiantao Jiao:
Importance Weighted Actor-Critic for Optimal Conservative Offline Reinforcement Learning. CoRR abs/2301.12714 (2023) - [i63]Nived Rajaraman, Yanjun Han, Jiantao Jiao, Kannan Ramchandran:
Beyond UCB: Statistical Complexity and Optimal Algorithms for Non-linear Ridge Bandits. CoRR abs/2302.06025 (2023) - [i62]Banghua Zhu, Sai Praneeth Karimireddy, Jiantao Jiao, Michael I. Jordan:
Online Learning in a Creator Economy. CoRR abs/2305.11381 (2023) - [i61]Banghua Zhu, Mingyu Ding, Philip L. Jacobson, Ming Wu, Wei Zhan, Michael I. Jordan, Jiantao Jiao:
Doubly Robust Self-Training. CoRR abs/2306.00265 (2023) - [i60]Banghua Zhu, Ying Sheng, Lianmin Zheng, Clark W. Barrett, Michael I. Jordan, Jiantao Jiao:
On Optimal Caching and Model Multiplexing for Large Model Inference. CoRR abs/2306.02003 (2023) - [i59]Banghua Zhu, Hiteshi Sharma, Felipe Vieira Frujeri, Shi Dong, Chenguang Zhu, Michael I. Jordan, Jiantao Jiao:
Fine-Tuning Language Models with Advantage-Induced Policy Alignment. CoRR abs/2306.02231 (2023) - [i58]Banghua Zhu, Ziao Wang, Nadim Ghaddar, Jiantao Jiao, Lele Wang:
On the Optimal Bounds for Noisy Computing. CoRR abs/2306.11951 (2023) - [i57]Banghua Zhu, Ziao Wang, Nadim Ghaddar, Jiantao Jiao, Lele Wang:
Noisy Computing of the OR and MAX Functions. CoRR abs/2309.03986 (2023) - [i56]Jinning Li, Xinyi Liu, Banghua Zhu, Jiantao Jiao, Masayoshi Tomizuka, Chen Tang, Wei Zhan:
Guided Online Distillation: Promoting Safe Reinforcement Learning by Offline Demonstration. CoRR abs/2309.09408 (2023) - [i55]Tianhao Wu, Banghua Zhu, Ruoyu Zhang, Zhaojin Wen, Kannan Ramchandran, Jiantao Jiao:
Pairwise Proximal Policy Optimization: Harnessing Relative Feedback for LLM Alignment. CoRR abs/2310.00212 (2023) - [i54]Hanlin Zhu, Andrew Cohen, Danqing Wang, Kevin Yang, Xiaomeng Yang, Jiantao Jiao, Yuandong Tian:
End-to-end Story Plot Generator. CoRR abs/2310.08796 (2023) - [i53]Baihe Huang, Banghua Zhu, Hanlin Zhu, Jason D. Lee, Jiantao Jiao, Michael I. Jordan:
Towards Optimal Statistical Watermarking. CoRR abs/2312.07930 (2023) - 2022
- [j18]Yuexiang Zhai, Christina Baek, Zhengyuan Zhou, Jiantao Jiao, Yi Ma:
Computational Benefits of Intermediate Rewards for Goal-Reaching Policy Learning. J. Artif. Intell. Res. 73: 847-896 (2022) - [j17]Cong Ma, Banghua Zhu, Jiantao Jiao, Martin J. Wainwright:
Minimax Off-Policy Evaluation for Multi-Armed Bandits. IEEE Trans. Inf. Theory 68(8): 5314-5339 (2022) - [j16]Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, Stuart Russell:
Bridging Offline Reinforcement Learning and Imitation Learning: A Tale of Pessimism. IEEE Trans. Inf. Theory 68(12): 8156-8196 (2022) - [c33]Tianhao Wu, Yunchang Yang, Han Zhong, Liwei Wang, Simon S. Du, Jiantao Jiao:
Nearly Optimal Policy Optimization with Stable at Any Time Guarantee. ICML 2022: 24243-24265 - [c32]Banghua Zhu, Jiantao Jiao, Michael I. Jordan:
Robust Estimation for Non-parametric Families via Generative Adversarial Networks. ISIT 2022: 1100-1105 - [c31]Gokul Swamy, Nived Rajaraman, Matthew Peng, Sanjiban Choudhury, J. Andrew Bagnell, Steven Wu, Jiantao Jiao, Kannan Ramchandran:
Minimax Optimal Online Imitation Learning via Replay Estimation. NeurIPS 2022 - [c30]Yifei Wang, Tavor Z. Baharav, Yanjun Han, Jiantao Jiao, David Tse:
Beyond the Best: Distribution Functional Estimation in Infinite-Armed Bandits. NeurIPS 2022 - [i52]Banghua Zhu, Jiantao Jiao, Michael I. Jordan:
Robust Estimation for Nonparametric Families via Generative Adversarial Networks. CoRR abs/2202.01269 (2022) - [i51]Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, Sergey Levine, Karol Hausman:
Jump-Start Reinforcement Learning. CoRR abs/2204.02372 (2022) - [i50]Banghua Zhu, Lun Wang, Qi Pang, Shuai Wang, Jiantao Jiao, Dawn Song, Michael I. Jordan:
Byzantine-Robust Federated Learning with Optimal Statistical Rates and Privacy Guarantees. CoRR abs/2205.11765 (2022) - [i49]Gokul Swamy, Nived Rajaraman, Matthew Peng, Sanjiban Choudhury, J. Andrew Bagnell, Zhiwei Steven Wu, Jiantao Jiao, Kannan Ramchandran:
Minimax Optimal Online Imitation Learning via Replay Estimation. CoRR abs/2205.15397 (2022) - [i48]Paria Rashidinejad, Hanlin Zhu, Kunhe Yang, Stuart Russell, Jiantao Jiao:
Optimal Conservative Offline RL with General Function Approximation via Augmented Lagrangian. CoRR abs/2211.00716 (2022) - [i47]Yifei Wang, Tavor Z. Baharav, Yanjun Han, Jiantao Jiao, David Tse:
Beyond the Best: Estimating Distribution Functionals in Infinite-Armed Bandits. CoRR abs/2211.01743 (2022) - [i46]Banghua Zhu, Stephen Bates, Zhuoran Yang, Yixin Wang, Jiantao Jiao, Michael I. Jordan:
The Sample Complexity of Online Contract Design. CoRR abs/2211.05732 (2022) - 2021
- [c29]Nived Rajaraman, Yanjun Han, Lin Yang, Jingbo Liu, Jiantao Jiao, Kannan Ramchandran:
On the Value of Interaction and Function Approximation in Imitation Learning. NeurIPS 2021: 1325-1336 - [c28]Tianjun Zhang, Paria Rashidinejad, Jiantao Jiao, Yuandong Tian, Joseph E. Gonzalez, Stuart Russell:
MADE: Exploration via Maximizing Deviation from Explored Regions. NeurIPS 2021: 9663-9680 - [c27]Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, Stuart Russell:
Bridging Offline Reinforcement Learning and Imitation Learning: A Tale of Pessimism. NeurIPS 2021: 11702-11716 - [i45]Matt Peng, Banghua Zhu, Jiantao Jiao:
Linear Representation Meta-Reinforcement Learning for Instant Adaptation. CoRR abs/2101.04750 (2021) - [i44]Cong Ma, Banghua Zhu, Jiantao Jiao, Martin J. Wainwright:
Minimax Off-Policy Evaluation for Multi-Armed Bandits. CoRR abs/2101.07781 (2021) - [i43]Nived Rajaraman, Yanjun Han, Lin F. Yang, Kannan Ramchandran, Jiantao Jiao:
Provably Breaking the Quadratic Error Compounding Barrier in Imitation Learning, Optimally. CoRR abs/2102.12948 (2021) - [i42]Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, Stuart Russell:
Bridging Offline Reinforcement Learning and Imitation Learning: A Tale of Pessimism. CoRR abs/2103.12021 (2021) - [i41]Jinhyun So, Ramy E. Ali, Basak Guler, Jiantao Jiao, Salman Avestimehr:
Securing Secure Aggregation: Mitigating Multi-Round Privacy Leakage in Federated Learning. CoRR abs/2106.03328 (2021) - [i40]Tianjun Zhang, Paria Rashidinejad, Jiantao Jiao, Yuandong Tian, Joseph Gonzalez, Stuart Russell:
MADE: Exploration via Maximizing Deviation from Explored Regions. CoRR abs/2106.10268 (2021) - [i39]Yuexiang Zhai, Christina Baek, Zhengyuan Zhou, Jiantao Jiao, Yi Ma:
Computational Benefits of Intermediate Rewards for Hierarchical Planning. CoRR abs/2107.03961 (2021) - [i38]Tianhao Wu, Yunchang Yang, Han Zhong, Liwei Wang, Simon S. Du, Jiantao Jiao:
Nearly Optimal Policy Optimization with Stable at Any Time Guarantee. CoRR abs/2112.10935 (2021) - [i37]Jinhyun So, Ramy E. Ali, Basak Guler, Jiantao Jiao, Salman Avestimehr:
Securing Secure Aggregation: Mitigating Multi-Round Privacy Leakage in Federated Learning. IACR Cryptol. ePrint Arch. 2021: 771 (2021) - 2020
- [j15]Yanjun Han, Jiantao Jiao, Tsachy Weissman:
Minimax Estimation of Divergences Between Discrete Distributions. IEEE J. Sel. Areas Inf. Theory 1(3): 814-823 (2020) - [j14]Jiantao Jiao, Yanjun Han:
Bias Correction With Jackknife, Bootstrap, and Taylor Series. IEEE Trans. Inf. Theory 66(7): 4392-4418 (2020) - [j13]Banghua Zhu, Jiantao Jiao, David Tse:
Deconstructing Generative Adversarial Networks. IEEE Trans. Inf. Theory 66(11): 7155-7179 (2020) - [c26]Banghua Zhu, Jiantao Jiao, Jacob Steinhardt:
When does the Tukey Median work? ISIT 2020: 1201-1206 - [c25]Nived Rajaraman, Lin F. Yang, Jiantao Jiao, Kannan Ramchandran:
Toward the Fundamental Limits of Imitation Learning. NeurIPS 2020 - [c24]Paria Rashidinejad, Jiantao Jiao, Stuart Russell:
SLIP: Learning to predict in unknown dynamical systems with long-term memory. NeurIPS 2020 - [i36]Banghua Zhu, Jiantao Jiao, Jacob Steinhardt:
When does the Tukey median work? CoRR abs/2001.07805 (2020) - [i35]Banghua Zhu, Jiantao Jiao, Jacob Steinhardt:
Robust estimation via generalized quasi-gradients. CoRR abs/2005.14073 (2020) - [i34]Nived Rajaraman, Lin F. Yang, Jiantao Jiao, Kannan Ramchandran:
Toward the Fundamental Limits of Imitation Learning. CoRR abs/2009.05990 (2020) - [i33]Paria Rashidinejad, Jiantao Jiao, Stuart Russell:
SLIP: Learning to Predict in Unknown Dynamical Systems with Long-Term Memory. CoRR abs/2010.05899 (2020)
2010 – 2019
- 2019
- [j12]Dmitri S. Pavlichin, Jiantao Jiao, Tsachy Weissman:
Approximate Profile Maximum Likelihood. J. Mach. Learn. Res. 20: 122:1-122:55 (2019) - [j11]Jiantao Jiao, Yanjun Han, Irena Fischer-Hwang, Tsachy Weissman:
Estimating the Fundamental Limits is Easier Than Achieving the Fundamental Limits. IEEE Trans. Inf. Theory 65(10): 6704-6715 (2019) - [c23]Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, Michael I. Jordan:
Theoretically Principled Trade-off between Robustness and Accuracy. ICML 2019: 7472-7482 - [c22]Giulia Fanti, Jiantao Jiao, Ashok Vardhan Makkuva, Sewoong Oh, Ranvir Rana, Pramod Viswanath:
Barracuda: The Power of ℓ-polling in Proof-of-Stake Blockchains. MobiHoc 2019: 351-360 - [i32]Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, Michael I. Jordan:
Theoretically Principled Trade-off between Robustness and Accuracy. CoRR abs/1901.08573 (2019) - [i31]Banghua Zhu, Jiantao Jiao, David Tse:
Deconstructing Generative Adversarial Networks. CoRR abs/1901.09465 (2019) - [i30]Giulia Fanti, Jiantao Jiao, Ashok Vardhan Makkuva, Sewoong Oh, Ranvir Rana, Pramod Viswanath:
Barracuda: The Power of 𝓁-polling in Proof-of-Stake Blockchains. CoRR abs/1909.08719 (2019) - [i29]Banghua Zhu, Jiantao Jiao, Jacob Steinhardt:
Generalized Resilience and Robust Statistics. CoRR abs/1909.08755 (2019) - 2018
- [j10]Jiantao Jiao, Kartik Venkat, Tsachy Weissman:
Mutual Information, Relative Entropy and Estimation Error in Semi-Martingale Channels. IEEE Trans. Inf. Theory 64(10): 6662-6671 (2018) - [j9]Jiantao Jiao, Yanjun Han, Tsachy Weissman:
Minimax Estimation of the L1 Distance. IEEE Trans. Inf. Theory 64(10): 6672-6706 (2018) - [c21]Yanjun Han, Jiantao Jiao, Tsachy Weissman:
Local moment matching: A unified methodology for symmetric functional estimation and distribution estimation under Wasserstein distance. COLT 2018: 3189-3221 - [c20]Kedar Tatwawadi, Jiantao Jiao, Tsachy Weissman:
Minimax Redundancy for Markov Chains with Large State Space. ISIT 2018: 216-220 - [c19]Jiantao Jiao, Weihao Gao, Yanjun Han:
The Nearest Neighbor Information Estimator is Adaptively Near Minimax Rate-Optimal. NeurIPS 2018: 3160-3171 - [c18]Yanjun Han, Jiantao Jiao, Chuan-Zheng Lee, Tsachy Weissman, Yihong Wu, Tiancheng Yu:
Entropy Rate Estimation for Markov Chains with Large State Space. NeurIPS 2018: 9803-9814 - [i28]Yanjun Han, Jiantao Jiao, Chuan-Zheng Lee, Tsachy Weissman, Yihong Wu, Tiancheng Yu:
Entropy Rate Estimation for Markov Chains with Large State Space. CoRR abs/1802.07889 (2018) - [i27]Yanjun Han, Jiantao Jiao, Tsachy Weissman:
Local moment matching: A unified methodology for symmetric functional estimation and distribution estimation under Wasserstein distance. CoRR abs/1802.08405 (2018) - [i26]Kedar Shriram Tatwawadi, Jiantao Jiao, Tsachy Weissman:
Minimax redundancy for Markov chains with large state space. CoRR abs/1805.01355 (2018) - [i25]Jay Mardia, Jiantao Jiao, Ervin Tanczos, Robert D. Nowak, Tsachy Weissman:
Concentration Inequalities for the Empirical Distribution. CoRR abs/1809.06522 (2018) - [i24]Hongyang Zhang, Susu Xu, Jiantao Jiao, Pengtao Xie, Ruslan Salakhutdinov, Eric P. Xing:
Stackelberg GAN: Towards Provable Minimax Equilibrium via Multi-Generator Architectures. CoRR abs/1811.08010 (2018) - 2017
- [j8]Jiantao Jiao, Kartik Venkat, Tsachy Weissman:
Relations Between Information and Estimation in Discrete-Time Lévy Channels. IEEE Trans. Inf. Theory 63(6): 3579-3594 (2017) - [j7]Jiantao Jiao, Kartik Venkat, Yanjun Han, Tsachy Weissman:
Maximum Likelihood Estimation of Functionals of Discrete Distributions. IEEE Trans. Inf. Theory 63(10): 6774-6798 (2017) - [c17]Jiantao Jiao, Yanjun Han, Tsachy Weissman:
Dependence measures bounding the exploration bias for general measurements. ISIT 2017: 1475-1479 - [i23]Jiantao Jiao, Kartik Venkat, Tsachy Weissman:
Mutual Information, Relative Entropy and Estimation Error in Semi-martingale Channels. CoRR abs/1704.05199 (2017) - [i22]Jiantao Jiao, Yanjun Han, Tsachy Weissman:
Minimax Estimation of the $L_1$ Distance. CoRR abs/1705.00807 (2017) - [i21]Jiantao Jiao, Yanjun Han, Irena Fischer-Hwang, Tsachy Weissman:
Estimating the Fundamental Limits is Easier than Achieving the Fundamental Limits. CoRR abs/1707.01203 (2017) - [i20]Jiantao Jiao, Yanjun Han, Tsachy Weissman:
Bias Correction with Jackknife, Bootstrap, and Taylor Series. CoRR abs/1709.06183 (2017) - [i19]Yanjun Han, Jiantao Jiao, Rajarshi Mukherjee, Tsachy Weissman:
On Estimation of L{r}-Norms in Gaussian White Noise Models. CoRR abs/1710.03863 (2017) - [i18]Yanjun Han, Jiantao Jiao, Tsachy Weissman, Yihong Wu:
Optimal rates of entropy estimation over Lipschitz balls. CoRR abs/1711.02141 (2017) - [i17]Jiantao Jiao, Weihao Gao, Yanjun Han:
The Nearest Neighbor Information Estimator is Adaptively Near Minimax Rate-Optimal. CoRR abs/1711.08824 (2017) - [i16]Dmitri S. Pavlichin, Jiantao Jiao, Tsachy Weissman:
Approximate Profile Maximum Likelihood. CoRR abs/1712.07177 (2017) - 2016
- [c16]Jiantao Jiao, Yanjun Han, Tsachy Weissman:
Beyond maximum likelihood: Boosting the Chow-Liu algorithm for large alphabets. ACSSC 2016: 321-325 - [c15]Jiantao Jiao, Yanjun Han, Tsachy Weissman:
Minimax estimation of the L1 distance. ISIT 2016: 750-754 - [c14]Jiantao Jiao, Kartik Venkat, Tsachy Weissman:
Mutual information, relative entropy and estimation error in semi-martingale channels. ISIT 2016: 2794-2798 - [c13]Yanjun Han, Jiantao Jiao, Tsachy Weissman:
Minimax rate-optimal estimation of KL divergence between discrete distributions. ISITA 2016: 256-260 - [i15]Yanjun Han, Jiantao Jiao, Tsachy Weissman:
Minimax Estimation of KL Divergence between Discrete Distributions. CoRR abs/1605.09124 (2016) - [i14]Sihan Li, Jiantao Jiao, Yanjun Han, Tsachy Weissman:
Demystifying ResNet. CoRR abs/1611.01186 (2016) - [i13]Jiantao Jiao, Yanjun Han, Tsachy Weissman:
Dependence Measures Bounding the Exploration Bias for General Measurements. CoRR abs/1612.05845 (2016) - 2015
- [j6]Jiantao Jiao, Kartik Venkat, Yanjun Han, Tsachy Weissman:
Minimax Estimation of Functionals of Discrete Distributions. IEEE Trans. Inf. Theory 61(5): 2835-2885 (2015) - [j5]Jiantao Jiao, Thomas A. Courtade, Kartik Venkat, Tsachy Weissman:
Justification of Logarithmic Loss via the Benefit of Side Information. IEEE Trans. Inf. Theory 61(10): 5357-5365 (2015) - [j4]Yanjun Han, Jiantao Jiao, Tsachy Weissman:
Minimax Estimation of Discrete Distributions Under ℓ1 Loss. IEEE Trans. Inf. Theory 61(11): 6343-6354 (2015) - [c12]Jiantao Jiao, Kartik Venkat, Yanjun Han, Tsachy Weissman:
Maximum Likelihood Estimation of information measures. ISIT 2015: 839-843 - [c11]Yanjun Han, Jiantao Jiao, Tsachy Weissman:
Does dirichlet prior smoothing solve the Shannon entropy estimation problem? ISIT 2015: 1367-1371 - [c10]Yanjun Han, Jiantao Jiao, Tsachy Weissman:
Adaptive estimation of Shannon entropy. ISIT 2015: 1372-1376 - [c9]Yanjun Han, Jiantao Jiao, Tsachy Weissman:
Minimax estimation of discrete distributions. ISIT 2015: 2291-2295 - [c8]Jiantao Jiao, Kartik Venkat, Yanjun Han, Tsachy Weissman:
Minimax estimation of information measures. ISIT 2015: 2296-2300 - [i12]Yanjun Han, Jiantao Jiao, Tsachy Weissman:
Adaptive Estimation of Shannon Entropy. CoRR abs/1502.00326 (2015) - [i11]Yanjun Han, Jiantao Jiao, Tsachy Weissman:
Does Dirichlet Prior Smoothing Solve the Shannon Entropy Estimation Problem? CoRR abs/1502.00327 (2015) - 2014
- [j3]Jiantao Jiao, Thomas A. Courtade, Albert No, Kartik Venkat, Tsachy Weissman:
Information Measures: The Curious Case of the Binary Alphabet. IEEE Trans. Inf. Theory 60(12): 7616-7626 (2014) - [c7]Thomas A. Courtade, Jiantao Jiao:
An extremal inequality for long Markov chains. Allerton 2014: 763-770 - [c6]Jiantao Jiao, Thomas A. Courtade, Albert No, Kartik Venkat, Tsachy Weissman:
Information divergences and the curious case of the binary alphabet. ISIT 2014: 351-355 - [c5]Jiantao Jiao, Thomas A. Courtade, Kartik Venkat, Tsachy Weissman:
Justification of logarithmic loss via the benefit of side information. ISIT 2014: 946-950 - [c4]Jiantao Jiao, Kartik Venkat, Tsachy Weissman:
Relations between information and estimation in scalar Lévy channels. ISIT 2014: 2212-2216 - [i10]Jiantao Jiao, Thomas A. Courtade, Kartik Venkat, Tsachy Weissman:
Justification of Logarithmic Loss via the Benefit of Side Information. CoRR abs/1403.4679 (2014) - [i9]Jiantao Jiao, Thomas A. Courtade, Albert No, Kartik Venkat, Tsachy Weissman:
Information Measures: the Curious Case of the Binary Alphabet. CoRR abs/1404.6810 (2014) - [i8]Jiantao Jiao, Kartik Venkat, Tsachy Weissman:
Relations between Information and Estimation in Scalar Lévy Channels. CoRR abs/1404.6812 (2014) - [i7]Thomas A. Courtade, Jiantao Jiao:
An Extremal Inequality for Long Markov Chains. CoRR abs/1404.6984 (2014) - [i6]Jiantao Jiao, Kartik Venkat, Tsachy Weissman:
Order-Optimal Estimation of Functionals of Discrete Distributions. CoRR abs/1406.6956 (2014) - [i5]Jiantao Jiao, Kartik Venkat, Tsachy Weissman:
Maximum Likelihood Estimation of Functionals of Discrete Distributions. CoRR abs/1406.6959 (2014) - [i4]Jiantao Jiao, Kartik Venkat, Yanjun Han, Tsachy Weissman:
Beyond Maximum Likelihood: from Theory to Practice. CoRR abs/1409.7458 (2014) - [i3]Yanjun Han, Jiantao Jiao, Tsachy Weissman:
Minimax Estimation of Discrete Distributions under ℓ1 Loss. CoRR abs/1411.1467 (2014) - 2013
- [j2]Jiantao Jiao, Haim H. Permuter, Lei Zhao, Young-Han Kim, Tsachy Weissman:
Universal Estimation of Directed Information. IEEE Trans. Inf. Theory 59(10): 6220-6242 (2013) - [c3]Jiantao Jiao, Kartik Venkat, Tsachy Weissman:
Pointwise relations between information and estimation in the Poisson channel. ISIT 2013: 449-453 - 2012
- [j1]Jiantao Jiao, Lin Zhang, Robert D. Nowak:
Minimax-Optimal Bounds for Detectors Based on Estimated Prior Probabilities. IEEE Trans. Inf. Theory 58(9): 6101-6109 (2012) - [c2]Jiantao Jiao, Haim H. Permuter, Lei Zhao, Young-Han Kim, Tsachy Weissman:
Universal estimation of directed information via sequential probability assignments. ISIT 2012: 523-527 - [i2]Jiantao Jiao, Haim H. Permuter, Lei Zhao, Young-Han Kim, Tsachy Weissman:
Universal Estimation of Directed Information. CoRR abs/1201.2334 (2012) - 2011
- [i1]Jiantao Jiao, Lin Zhang, Robert D. Nowak:
Minimax-Optimal Bounds for Detectors Based on Estimated Prior Probabilities. CoRR abs/1107.6027 (2011) - 2010
- [c1]Lin Zhang, Wenzhu Zhang, Xinyu Mao, Jiantao Jiao, Shijie Zheng, Linglong Li, Yujie Liu, Teng Wang, Ming Gu:
NOMAD: networked-observation and mobile-agent-based scene abstraction and determination. SenSys 2010: 415-416
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-28 20:34 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint