default search action
Nicolas Le Roux
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c41]Haotian Fu, Pratyusha Sharma, Elias Stengel-Eskin, George Konidaris, Nicolas Le Roux, Marc-Alexandre Côté, Xingdi Yuan:
Language-guided Skill Learning with Temporal Variational Inference. ICML 2024 - [c40]Oleksiy Ostapenko, Zhan Su, Edoardo M. Ponti, Laurent Charlin, Nicolas Le Roux, Lucas Caccia, Alessandro Sordoni:
Towards Modular LLMs by Building and Reusing a Library of LoRAs. ICML 2024 - [i36]Haotian Fu, Pratyusha Sharma, Elias Stengel-Eskin, George Konidaris, Nicolas Le Roux, Marc-Alexandre Côté, Xingdi Yuan:
Language-guided Skill Learning with Temporal Variational Inference. CoRR abs/2402.16354 (2024) - [i35]Oleksiy Ostapenko, Zhan Su, Edoardo Maria Ponti, Laurent Charlin, Nicolas Le Roux, Matheus Pereira, Lucas Caccia, Alessandro Sordoni:
Towards Modular LLMs by Building and Reusing a Library of LoRAs. CoRR abs/2405.11157 (2024) - [i34]Silviu Pitis, Ziang Xiao, Nicolas Le Roux, Alessandro Sordoni:
Improving Context-Aware Preference Modeling for Language Models. CoRR abs/2407.14916 (2024) - [i33]Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy, Aaron C. Courville, Nicolas Le Roux:
VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment. CoRR abs/2410.01679 (2024) - 2023
- [c39]Maryam Molamohammadi, Afaf Taïk, Nicolas Le Roux, Golnoosh Farnadi:
Unraveling the Interconnected Axes of Heterogeneity in Machine Learning for Democratic and Inclusive Advancements. EAAMO 2023: 33:1-33:12 - [c38]Jonathan Wilder Lavington, Sharan Vaswani, Reza Babanezhad Harikandeh, Mark Schmidt, Nicolas Le Roux:
Target-based Surrogates for Stochastic Optimization. ICML 2023: 18614-18651 - [c37]Lucas Page-Caccia, Edoardo Maria Ponti, Zhan Su, Matheus Pereira, Nicolas Le Roux, Alessandro Sordoni:
Multi-Head Adapter Routing for Cross-Task Generalization. NeurIPS 2023 - [c36]Alessandro Sordoni, Eric Yuan, Marc-Alexandre Côté, Matheus Pereira, Adam Trischler, Ziang Xiao, Arian Hosseini, Friederike Niedtner, Nicolas Le Roux:
Joint Prompt Optimization of Stacked LLMs using Variational Inference. NeurIPS 2023 - [c35]Sharan Vaswani, Amirreza Kazemi, Reza Babanezhad Harikandeh, Nicolas Le Roux:
Decision-Aware Actor-Critic with Function Approximation and Theoretical Guarantees. NeurIPS 2023 - [i32]Jonathan Wilder Lavington, Sharan Vaswani, Reza Babanezhad, Mark Schmidt, Nicolas Le Roux:
Target-based Surrogates for Stochastic Optimization. CoRR abs/2302.02607 (2023) - [i31]Sharan Vaswani, Amirreza Kazemi, Reza Babanezhad, Nicolas Le Roux:
Decision-Aware Actor-Critic with Function Approximation and Theoretical Guarantees. CoRR abs/2305.15249 (2023) - [i30]Maryam Molamohammadi, Afaf Taïk, Nicolas Le Roux, Golnoosh Farnadi:
Unraveling the Interconnected Axes of Heterogeneity in Machine Learning for Democratic and Inclusive Advancements. CoRR abs/2306.10043 (2023) - [i29]Alessandro Sordoni, Xingdi Yuan, Marc-Alexandre Côté, Matheus Pereira, Adam Trischler, Ziang Xiao, Arian Hosseini, Friederike Niedtner, Nicolas Le Roux:
Deep Language Networks: Joint Prompt Training of Stacked LLMs using Variational Inference. CoRR abs/2306.12509 (2023) - 2022
- [c34]Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Müller, Shivam Garg, Matthieu Geist, Marlos C. Machado, Pablo Samuel Castro, Nicolas Le Roux:
A general class of surrogate functions for stable and efficient reinforcement learning. AISTATS 2022: 8619-8649 - [c33]Chris Junchi Li, Yaodong Yu, Nicolas Loizou, Gauthier Gidel, Yi Ma, Nicolas Le Roux, Michael I. Jordan:
On the Convergence of Stochastic Extragradient for Bilinear Games using Restarted Iteration Averaging. AISTATS 2022: 9793-9826 - [i28]Lucas Caccia, Edoardo Maria Ponti, Lucas Liu, Matheus Pereira, Nicolas Le Roux, Alessandro Sordoni:
Multi-Head Adapter Routing for Data-Efficient Fine-Tuning. CoRR abs/2211.03831 (2022) - 2021
- [c32]Cristina Nader Vasconcelos, Hugo Larochelle, Vincent Dumoulin, Rob Romijnders, Nicolas Le Roux, Ross Goroshin:
Impact of Aliasing on Generalization in Deep Convolutional Networks. ICCV 2021: 10509-10518 - [c31]Yijie Guo, Shengyu Feng, Nicolas Le Roux, Ed H. Chi, Honglak Lee, Minmin Chen:
Batch Reinforcement Learning Through Continuation Method. ICLR 2021 - [c30]Wesley Chung, Valentin Thomas, Marlos C. Machado, Nicolas Le Roux:
Beyond Variance Reduction: Understanding the True Impact of Baselines on Policy Optimization. ICML 2021: 1999-2009 - [i27]Fartash Faghri, Cristina Nader Vasconcelos, David J. Fleet, Fabian Pedregosa, Nicolas Le Roux:
Bridging the Gap Between Adversarial Robustness and Optimization Bias. CoRR abs/2102.08868 (2021) - [i26]Chris Junchi Li, Yaodong Yu, Nicolas Loizou, Gauthier Gidel, Yi Ma, Nicolas Le Roux, Michael I. Jordan:
On the Convergence of Stochastic Extragradient for Bilinear Games with Restarted Iteration Averaging. CoRR abs/2107.00464 (2021) - [i25]Cristina Nader Vasconcelos, Hugo Larochelle, Vincent Dumoulin, Rob Romijnders, Nicolas Le Roux, Ross Goroshin:
Impact of Aliasing on Generalization in Deep Convolutional Networks. CoRR abs/2108.03489 (2021) - [i24]Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Mueller, Matthieu Geist, Marlos C. Machado, Pablo Samuel Castro, Nicolas Le Roux:
A functional mirror ascent view of policy gradient methods with function approximation. CoRR abs/2108.05828 (2021) - 2020
- [c29]Valentin Thomas, Fabian Pedregosa, Bart van Merriënboer, Pierre-Antoine Manzagol, Yoshua Bengio, Nicolas Le Roux:
On the interplay between noise and curvature and its effect on optimization and generalization. AISTATS 2020: 3503-3513 - [c28]Dibya Ghosh, Marlos C. Machado, Nicolas Le Roux:
An operator view of policy gradient methods. NeurIPS 2020 - [i23]Lukas Balles, Fabian Pedregosa, Nicolas Le Roux:
The Geometry of Sign Gradient Descent. CoRR abs/2002.08056 (2020) - [i22]Sharan Vaswani, Reza Babanezhad, Jose Gallego, Aaron Mishkin, Simon Lacoste-Julien, Nicolas Le Roux:
To Each Optimizer a Norm, To Each Norm its Generalization. CoRR abs/2006.06821 (2020) - [i21]Dibya Ghosh, Marlos C. Machado, Nicolas Le Roux:
An operator view of policy gradient methods. CoRR abs/2006.11266 (2020) - [i20]Wesley Chung, Valentin Thomas, Marlos C. Machado, Nicolas Le Roux:
Beyond variance reduction: Understanding the true impact of baselines on policy optimization. CoRR abs/2008.13773 (2020) - [i19]Cristina Nader Vasconcelos, Hugo Larochelle, Vincent Dumoulin, Nicolas Le Roux, Ross Goroshin:
An Effective Anti-Aliasing Approach for Residual Networks. CoRR abs/2011.10675 (2020)
2010 – 2019
- 2019
- [c27]Marc G. Bellemare, Nicolas Le Roux, Pablo Samuel Castro, Subhodeep Moitra:
Distributional reinforcement learning with linear function approximation. AISTATS 2019: 2203-2211 - [c26]Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, Dale Schuurmans:
Understanding the Impact of Entropy on Policy Optimization. ICML 2019: 151-160 - [c25]Robert Dadashi, Marc G. Bellemare, Adrien Ali Taïga, Nicolas Le Roux, Dale Schuurmans:
The Value Function Polytope in Reinforcement Learning. ICML 2019: 1486-1495 - [c24]Marc G. Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taïga, Pablo Samuel Castro, Nicolas Le Roux, Dale Schuurmans, Tor Lattimore, Clare Lyle:
A Geometric Perspective on Optimal Representations for Reinforcement Learning. NeurIPS 2019: 4360-4371 - [c23]Sébastien M. R. Arnold, Pierre-Antoine Manzagol, Reza Babanezhad, Ioannis Mitliagkas, Nicolas Le Roux:
Reducing the variance in online optimization by transporting past gradients. NeurIPS 2019: 5392-5403 - [i18]Robert Dadashi, Adrien Ali Taïga, Nicolas Le Roux, Dale Schuurmans, Marc G. Bellemare:
The Value Function Polytope in Reinforcement Learning. CoRR abs/1901.11524 (2019) - [i17]Marc G. Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taïga, Pablo Samuel Castro, Nicolas Le Roux, Dale Schuurmans, Tor Lattimore, Clare Lyle:
A Geometric Perspective on Optimal Representations for Reinforcement Learning. CoRR abs/1901.11530 (2019) - [i16]Guillaume Alain, Nicolas Le Roux, Pierre-Antoine Manzagol:
Negative eigenvalues of the Hessian in deep neural networks. CoRR abs/1902.02366 (2019) - [i15]Marc G. Bellemare, Nicolas Le Roux, Pablo Samuel Castro, Subhodeep Moitra:
Distributional reinforcement learning with linear function approximation. CoRR abs/1902.03149 (2019) - [i14]Nicolas Le Roux:
Anytime Tail Averaging. CoRR abs/1902.05083 (2019) - [i13]Sébastien M. R. Arnold, Pierre-Antoine Manzagol, Reza Babanezhad, Ioannis Mitliagkas, Nicolas Le Roux:
Reducing the variance in online optimization by transporting past gradients. CoRR abs/1906.03532 (2019) - [i12]Valentin Thomas, Fabian Pedregosa, Bart van Merriënboer, Pierre-Antoine Manzagol, Yoshua Bengio, Nicolas Le Roux:
Information matrices and generalization. CoRR abs/1906.07774 (2019) - 2018
- [c22]Robert M. Gower, Nicolas Le Roux, Francis R. Bach:
Tracking the gradients using the Hessian: A new look at variance reducing stochastic methods. AISTATS 2018: 707-715 - [c21]Guillaume Alain, Nicolas Le Roux, Pierre-Antoine Manzagol:
Negative eigenvalues of the Hessian in deep neural networks. ICLR (Workshop) 2018 - [c20]Nicolas Le Roux, Reza Babanezhad, Pierre-Antoine Manzagol:
Online variance-reducing optimization. ICLR (Workshop) 2018 - [i11]Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, Dale Schuurmans:
Understanding the impact of entropy on policy optimization. CoRR abs/1811.11214 (2018) - 2017
- [j6]Mark Schmidt, Nicolas Le Roux, Francis R. Bach:
Minimizing finite sums with the stochastic average gradient. Math. Program. 162(1-2): 83-112 (2017) - [j5]Mark Schmidt, Nicolas Le Roux, Francis R. Bach:
Erratum to: Minimizing finite sums with the stochastic average gradient. Math. Program. 162(1-2): 113 (2017) - [c19]Nicolas Le Roux:
Tighter bounds lead to improved classifiers. ICLR (Poster) 2017 - [i10]Thomas Nedelec, Nicolas Le Roux, Vianney Perchet:
A comparative study of counterfactual estimators. CoRR abs/1704.00773 (2017) - [i9]Clément Calauzènes, Nicolas Le Roux:
Distributed SAGA: Maintaining linear convergence rate with limited communication. CoRR abs/1705.10405 (2017) - [i8]Robert M. Gower, Nicolas Le Roux, Francis R. Bach:
Tracking the gradients using the Hessian: A new look at variance reducing stochastic methods. CoRR abs/1710.07462 (2017) - 2016
- [i7]Nicolas Le Roux:
Tighter bounds lead to improved classifiers. CoRR abs/1606.09202 (2016) - [i6]Nicolas Le Roux:
Efficient iterative policy optimization. CoRR abs/1612.08967 (2016) - 2015
- [c18]Romain Lerallut, Diane Gasselin, Nicolas Le Roux:
Large-Scale Real-Time Product Recommendation at Criteo. RecSys 2015: 232 - 2013
- [c17]Nicolas Le Roux, Francis R. Bach:
Local Component Analysis. ICLR (Poster) 2013 - [i5]Mark Schmidt, Nicolas Le Roux, Francis R. Bach:
Minimizing Finite Sums with the Stochastic Average Gradient. CoRR abs/1309.2388 (2013) - 2012
- [c16]Nicolas Le Roux, Mark Schmidt, Francis R. Bach:
A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets. NIPS 2012: 2672-2680 - [c15]Rodolphe Jenatton, Nicolas Le Roux, Antoine Bordes, Guillaume Obozinski:
A latent factor model for highly multi-relational data. NIPS 2012: 3176-3184 - [i4]Nicolas Le Roux, Mark Schmidt, Francis R. Bach:
A Stochastic Gradient Method with an Exponential Convergence Rate for Strongly-Convex Optimization with Finite Training Sets. CoRR abs/1202.6258 (2012) - 2011
- [j4]Nicolas Le Roux, Nicolas Heess, Jamie Shotton, John M. Winn:
Learning a Generative Model of Images by Factoring Appearance and Shape. Neural Comput. 23(3): 593-650 (2011) - [c14]Nicolas Heess, Nicolas Le Roux, John M. Winn:
Weakly Supervised Learning of Foreground-Background Segmentation Using Masked RBMs. ICANN (2) 2011: 9-16 - [c13]Y-Lan Boureau, Nicolas Le Roux, Francis R. Bach, Jean Ponce, Yann LeCun:
Ask the locals: Multi-way local pooling for image recognition. ICCV 2011: 2651-2658 - [c12]Mark Schmidt, Nicolas Le Roux, Francis R. Bach:
Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization. NIPS 2011: 1458-1466 - [i3]Nicolas Heess, Nicolas Le Roux, John M. Winn:
Weakly Supervised Learning of Foreground-Background Segmentation using Masked RBMs. CoRR abs/1107.3823 (2011) - [i2]Mark Schmidt, Nicolas Le Roux, Francis R. Bach:
Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization. CoRR abs/1109.2415 (2011) - 2010
- [j3]Nicolas Le Roux, Yoshua Bengio:
Deep Belief Networks Are Compact Universal Approximators. Neural Comput. 22(8): 2192-2207 (2010) - [c11]Nicolas Le Roux, Andrew W. Fitzgibbon:
A fast natural Newton method. ICML 2010: 623-630
2000 – 2009
- 2008
- [j2]Nicolas Le Roux, Yoshua Bengio:
Representational Power of Restricted Boltzmann Machines and Deep Belief Networks. Neural Comput. 20(6): 1631-1649 (2008) - [c10]Alin Bostan, Frédéric Chyzak, Nicolas Le Roux:
Products of ordinary differential operators by evaluation and interpolation. ISSAC 2008: 23-30 - [i1]Alin Bostan, Frédéric Chyzak, Nicolas Le Roux:
Products of Ordinary Differential Operators by Evaluation and Interpolation. CoRR abs/0804.2181 (2008) - 2007
- [c9]Nicolas Le Roux, Yoshua Bengio, Pascal Lamblin, Marc Joliveau, Balázs Kégl:
Learning the 2-D Topology of Images. NIPS 2007: 841-848 - [c8]Nicolas Le Roux, Pierre-Antoine Manzagol, Yoshua Bengio:
Topmoumoute Online Natural Gradient Algorithm. NIPS 2007: 849-856 - [c7]Nicolas Le Roux, Yoshua Bengio:
Continuous Neural Networks. AISTATS 2007: 404-411 - 2006
- [c6]Nicolas Le Roux, Moulay A. Barkatou:
Rank reduction of a class of pfaffian systems in two variables. ISSAC 2006: 204-211 - [p3]Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux:
Label Propagation and Quadratic Criterion. Semi-Supervised Learning 2006: 192-216 - [p2]Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux:
Large-Scale Algorithms. Semi-Supervised Learning 2006: 332-341 - [p1]Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux, Jean-François Paiement, Pascal Vincent, Marie Ouimet:
Spectral Dimensionality Reduction. Feature Extraction 2006: 519-550 - 2005
- [c5]Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux:
Efficient Non-Parametric Function Induction in Semi-Supervised Learning. AISTATS 2005: 96-103 - [c4]Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux:
The Curse of Highly Variable Functions for Local Kernel Machines. NIPS 2005: 107-114 - [c3]Yoshua Bengio, Nicolas Le Roux, Pascal Vincent, Olivier Delalleau, Patrice Marcotte:
Convex Neural Networks. NIPS 2005: 123-130 - 2004
- [j1]Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux, Jean-François Paiement, Pascal Vincent, Marie Ouimet:
Learning Eigenfunctions Links Spectral Embedding and Kernel PCA. Neural Comput. 16(10): 2197-2219 (2004) - 2003
- [c2]Evelyne Hubert, Nicolas Le Roux:
Computing power series solutions of a nonlinear PDE system. ISSAC 2003: 148-155 - [c1]Yoshua Bengio, Jean-François Paiement, Pascal Vincent, Olivier Delalleau, Nicolas Le Roux, Marie Ouimet:
Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering. NIPS 2003: 177-184
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-11 21:30 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint