default search action
29th ESANN 2021: Online event (Bruges, Belgium)
- 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2021, Online event (Bruges, Belgium), October 6-8, 2021. 2021
Federated Learning - Methods, Applications and Beyond
- Moritz Heusinger, Christoph Raab, Fabrice Rossi, Frank-Michael Schleif:
Federated Learning - Methods, Applications and beyond. - Mirko Polato, Alberto Gallinaro, Fabio Aiolli:
Privacy-Preserving Kernel Computation For Vertically Partitioned Data. - Miguel Fernandes, Catarina Silva, Joel Arrais, Alberto Cardoso, Bernardete Ribeiro:
Decay Momentum for Improving Federated Learning. - Lorenzo Pellegrini, Vincenzo Lomonaco, Gabriele Graffieti, Davide Maltoni:
Continual Learning at the Edge: Real-Time Training on Smartphone Devices. - Johannes Brinkrolf, Barbara Hammer:
Federated Learning Vector Quantization.
Evaluation metrics, and concept drift
- Adrien Pavao, Isabelle Guyon, Michael Vaccaro:
Judging competitions and benchmarks: a candidate election approach. - Fabian Hinder, Barbara Hammer:
Concept Drift Segmentation via Kolmogorov-Trees. - Valerie Vaquet, Patrick Menz, Udo Seiffert, Barbara Hammer:
Investigating Intensity and Transversal Drift in Hyperspectral Imaging Data. - Abdel-Rahmen Korichi, Hamamache Kheddouci, Daniel West:
Predicting employee attrition with a more effective use of historical events. - Aashi Jindal, Prashant Gupta, Debarka Sengupta, Jayadeva:
Enhash: A Fast Streaming Algorithm For Concept Drift Detection. - Vadym Gryshchuk, Cornelius Weber, Chu Kiong Loo, Stefan Wermter:
Lifelong Learning from Event-based Data. - Sebastian Hoch, Sascha Lange, Janis Keuper:
Sample efficient localization and stage prediction with autoencoders. - Valentin Hamaide, François Glineur:
Transfer learning in Bayesian optimization for the calibration of a beam line in proton therapy. - Christoph Raab, Sascha Saralajew, Frank-Michael Schleif:
Domain Adversarial Tangent Learning Towards Interpretable Domain Adaptation.
Deep learning for graphs
- Davide Bacciu, Filippo Maria Bianchi, Benjamin Paassen, Cesare Alippi:
Deep learning for graphs. - Domenico Tortorella, Alessio Micheli:
Dynamic Graph Echo State Networks. - Erik Jhones F. do Nascimento, Amauri H. Souza, Diego Mesquita:
Improving Graph Variational Autoencoders with Multi-Hop Simple Convolutions. - Luca Hermes, Barbara Hammer, Malte Schilling:
Application of Graph Convolutions in a Lightweight Model for Skeletal Human Motion Forecasting. - Luca Pasa, Nicolò Navarin, Alessandro Sperduti:
Tangent Graph Convolutional Network. - Tim Cofala, Oliver Kramer:
Transformers for Molecular Graph Generation. - Marco Trincavelli, Haris Dukic, Georgios Deligiorgis, Pierpaolo Sepe, Davide Bacciu:
Inductive learning for product assortment graph completion.
Deep learning and image processing
- Patrick Burke, Jonas Prellberg, Oliver Kramer:
Evolutionary Deep Multi-Task Learning. - Hafez Farazi, Jan Nogga, Sven Behnke:
Semantic Prediction: Which One Should Come First, Recognition or Prediction? - Tomasz Stanczyk, Siamak Mehrkanoon:
Deep Graph Convolutional Networks for Wind Speed Prediction. - Stéphane Chrétien, Emmanuel Caron:
Benign overfitting of fully connected Deep Nets: A Sobolev space viewpoint. - Slawomir Golak:
Correlated Weights Neural Layer with external control. - Daniel Iglesias Morís, Joaquim de Moura, Jorge Novo, Marcos Ortega:
Comprehensive Analysis of the Screening of COVID-19 Approaches in Chest X-ray Images from Portable Devices. - Shruti Kunde, Amey Pandit, Kushagra Mahajan, Monika Sharma, Rekha Singhal, Lovekesh Vig:
Data-Efficient Training of High-Resolution Images in Medical Domain. - Rawaa Hamdi, Asma Kerkeni, Mohamed Hédi Bedoui, Asma Ben Abdallah:
CAS-Net: A Novel Coronary Artery Segmentation Neural Network. - Ismail Alaoui Abdellaoui, Jesús García Fernández, Caner Sahinli, Siamak Mehrkanoon:
Enhancing brain decoding using attention augmented deep neural networks. - Jérôme Treboux, Rolf Ingold, Dominique Genoud:
Improved and Generalized Vine Line Detection on Aerial Images Using Asymmetrical Neural Networks and ML Subclassifiers. - Haodi Zhang, Alexandrina Rogozan, Abdelaziz Bensrhair:
Cross-modal verification for 3D object detection. - Malte Mosbach, Sven Behnke:
Fourier-based Video Prediction through Relational Object Motion. - Maxence Chaverot, Maxime Carré, Michel Jourlin, Abdelaziz Bensrhair, Richard Grisel:
Object Detection on Thermal Images: Performance of YOLOv4 Trained on Small Datasets. - Chanho Kim, Won-Sook Lee:
Temperature as a Regularizer for Semantic Segmentation.
Machine Learning for Measuring and Analyzing Online Social Communications
- Chris Bronk, Amaury Lendasse, Peggy Lindner, Dan S. Wallach, Barbara Hammer:
Machine Learning for Measuring and Analyzing Online Social Communications. - Max Lübbering, Maren Pielka, Kajaree Das, Michael Gebauer, Rajkumar Ramamurthy, Christian Bauckhage, Rafet Sifa:
Toxicity Detection in Online Comments with Limited Data: A Comparative Analysis. - Megumi Kawase:
Emotional Intensity Level Analysis of Speech Emotional Intensity Estimation.
Natural language processing
- Antonio Sorgente, Massimo De Gregorio, Giuseppe Vettigli:
Weightless Neural Networks for text classification using tf-idf. - Iván Vallés-Pérez, Juan Gómez-Sanchís, Marcelino Martínez-Sober, Joan Vila-Francés, Antonio José Serrano-López, Emilio Soria-Olivas:
End-to-end Keyword Spotting using Xception-1d. - Thomas Luka, Laure Soulier, David Picard:
Unsupervised Word Representations Learning with Bilinear Convolutional Network on Characters. - Arushi Jain, Shubham Paliwal, Monika Sharma, Lovekesh Vig:
TSR-DSAW: Table Structure Recognition via Deep Spatial Association of Words. - Florian Barbaro, Fabrice Rossi:
Sparse mixture of von Mises-Fisher distribution. - Gil Rocha, Henrique Lopes Cardoso:
Towards Robust Auxiliary Tasks for Language Adaptation.
Recurrent learning, and reinforcement learning
- Andrea Cossu, Davide Bacciu, Antonio Carta, Claudio Gallicchio, Vincenzo Lomonaco:
Continual Learning with Echo State Networks. - Jensun Ravichandran, Thomas Villmann, Marika Kaden:
RecLVQ: Recurrent Learning Vector Quantization. - Beatriz P. Santos, Maryam Abbasi, Tiago Pereira, Bernardete Ribeiro, Joel Arrais:
Improvement on Generative Adversarial Network for Targeted Drug Design. - Claudio Gallicchio:
Reservoir Computing by Discretizing ODEs. - Jochen J. Steil, Yannic Lieder:
Constraint optimization for Echo State Networks applied to satellite image forecasting. - Luca Pedrelli, Marco Tramontano, Giuseppe Vannozzi, Andrea Mannini:
Deep Echo State Networks for Functional Ambulation Categories Estimation. - Martin Böhm, Thomas Schmid:
An Algorithmic Approach to Establish a Lower Bound for the Size of Semiring Neural Networks. - Ismael Matino, Stefano Dettori, Valentina Colla, Katharina Rechberger, Nina Kieberger:
Echo-state neural networks forecasting steelworks off-gases for their dispatching in CH4 and CH3OH syntheses reactors. - Raphaël Langhendries, Jérôme Lacaille:
Deep Learning Model for Context-Dependent Survival Analysis. - Phillip Swazinna, Steffen Udluft, Daniel Hein, Thomas A. Runkler:
Behavior Constraining in Weight Space for Offline Reinforcement Learning. - Maryam Abbasi, Tiago Pereira, Beatriz P. Santos, Bernardete Ribeiro, Joel Arrais:
Multiobjective Reinforcement Learning in Optimized Drug Design. - Antonin Calba, Alain Dutech, Jérémy Fix:
Density Independent Self-organized Support for Q-Value Function Interpolation in Reinforcement Learning.
Complex Data: Learning Trustworthily, Automatically, and with Guarantees
- Luca Oneto, Nicolò Navarin, Battista Biggio, Federico Errica, Alessio Micheli, Franco Scarselli, Monica Bianchini, Alessandro Sperduti:
Complex Data: Learning Trustworthily, Automatically, and with Guarantees. - Luca Oneto, Sandro Ridella, Davide Anguita:
The Benefits of Adversarial Defence in Generalisation. - Maura Pintor, Luca Demetrio, Giovanni Manca, Battista Biggio, Fabio Roli:
Slope: A First-order Approach for Measuring Gradient Obfuscation. - Federico Errica, Giacomo Iadarola, Fabio Martinelli, Francesco Mercaldo, Alessio Micheli:
Robust Malware Classification via Deep Graph Networks on Call Graph Topologies. - Géraldin Nanfack, Valentin Delchevalerie, Benoît Frénay:
Boundary-Based Fairness Constraints in Decision Trees and Random Forests.
Model selection
- Amaury Lendasse, Kallin Khan, Edward R. Ratner:
NNBMSS: a Novel and Fast Method for Model Structure Selection. - Vincent Rolfs, Matthias Kerzel, Stefan Wermter:
Pruning Neural Networks with Supermasks. - René Traoré, Andrés Camero, Xiaoxiang Zhu:
Compact Neural Architecture Search for Local Climate Zones Classification.
Unsupervised learning
- Corentin Larroche, Johan Mazel, Stéphan Clémençon:
Anomalous Cluster Detection in Large Networks with Diffusion-Percolation Testing. - Andrea Valenti, Stefano Berti, Davide Bacciu:
Calliope - A Polyphonic Music Transformer. - Louise Bonfils, Allou Samé, Latifa Oukhellou:
Dynamic clustering and modeling of temporal data subject to common regressive effects. - Pierre Lambert, Cyril de Bodt, Michel Verleysen, John A. Lee:
Stochastic quartet approach for fast multidimensional scaling. - Elena Hernández-Pereira, Oscar Fontenla-Romero, Bertha Guijarro-Berdiñas, Beatriz Pérez-Sánchez:
Federated Learning approach for SpectralClustering. - Attila Mester, Zalán Bodó:
Validating static call graph-based malware signatures using community detection methods. - Pierre Lambert, John A. Lee, Michel Verleysen, Cyril de Bodt:
Impact of data subsamplings in Fast Multi-Scale Neighbor Embedding. - Naresh Balaji Ravichandran, Anders Lansner, Pawel Andrzej Herman:
Semi-supervised learning with Bayesian Confidence Propagation Neural Network. - Valentina Poggioni, Alina Elena Baia, Alfredo Milani:
Combining Attack Success Rate and DetectionRate for effective Universal Adversarial Attacks.
Machine learning and data mining for urban mobility intelligence
- Etienne Côme, Latifa Oukhellou, Allou Samé, Lijun Sun:
Machine learning and data mining for urban mobility intelligence. - Étienne Goffinet, Mustapha Lebbah, Hanane Azzag, Loïc Giraldi, Anthony Coutant:
Multivariate Time Series Multi-Coclustering. Application to Advanced Driving Assistance System Validation. - Evelyne Akopyan, Angelo Furno, Nour-Eddin El Faouzi, Eric Gaume:
Unsupervised Real-time Anomaly Detection for Multivariate Mobile Phone Traffic Series. - Gianluca Boleto, Luca Oneto, Matteo Cardellini, Marco Maratea, Mauro Vallati, Renzo Canepa, Davide Anguita:
In-Station Train Movements Prediction: from Shallow to Deep Multi Scale Models. - Milad Leyli-Abadi, Abderrahmane Boubezoul:
Deep Neural Networks for Classification of Riding Patterns: with a focus on explainability. - Benoit Matet, Etienne Côme, Angelo Furno, Loïc Bonnetain, Latifa Oukhellou, Nour-Eddin El Faouzi:
A Lightweight Approach for Origin-Destination Matrix Anonymization.
Supervised learning
- Laurine Duchesne, Quentin Louveaux, Louis Wehenkel:
Supervised learning of convex piecewise linear approximations of optimization problems. - Lode Vuegen, Peter Karsmakers:
Real-time On-edge Classification: an Application to Domestic Acoustic Event Recognition. - Rafael Fontella Katopodis, Priscila Lima, Felipe M. G. França:
Functional Gradient Descent for n-Tuple Regression. - John A. Lee, Alyssa Vanginderdeuren, Margerie Huet-Dastarac, Ana Maria Barragán-Montero:
Estimating uncertainty in radiation oncology dose prediction with dropout and bootstrap in U-Net models. - Matthias Brucklacher, Hanspeter A. Mallot, Tristan Baumann:
Hierarchical Planning in Multilayered State-Action Networks. - Tobias Leemann, Moritz Sackmann, Jörn Thielecke, Ulrich Hofmann:
Distribution Preserving Multiple Hypotheses Prediction for Uncertainty Modeling. - Antti Pihlajamäki, Joakim Linja, Joonas Hämäläinen, Paavo Nieminen, Sami Malola, Tommi Kärkkäinen, Hannu Häkkinen:
Orientation Adaptive Minimal Learning Machine for Directions of Atomic Forces. - Fech Scen Khoo, Dawei Zhu, Michael A. Hedderich, Dietrich Klakow:
Estimating Formulas for Model Performance Under Noisy Labels Using Symbolic Regression. - Baichuan Chi, Amaury Lendasse, Edward R. Ratner, Renjie Hu:
A Multi-ELM Model for Incomplete Data.
Interpretable Models in Machine Learning and Explainable Artificial Intelligence
- Paulo Lisboa, Sascha Saralajew, Alfredo Vellido, Thomas Villmann:
The Coming of Age of Interpretable and Explainable Machine Learning Models. - Torben Gräber, Sebastian Vetter, Sascha Sarajalew, Michael Unterreiner, Dieter Schramm:
AGLVQ - Making Generalized Vector Quantization Algorithms Aware of Context. - Joshua Taylor, Erzsébet Merényi:
A Parameterless t-SNE for Faithful Cluster Embeddings from Prototype-based Learning and CONN Similarity. - Marie Chavent, Jérôme Lacaille, Alex Mourer, Madalina Olteanu:
Handling Correlations in Random Forests: which Impacts on Variable Importance and Model Interpretability? - Bradley Walters, Sandra Ortega-Martorell, Iván Olier, Paulo Lisboa:
The partial response SVM. - Marika Kaden, Ronny Schubert, Mehrdad Mohannazadeh Bakhtiari, Lucas Schwarz, Thomas Villmann:
The LVQ-based Counter Propagation Network - an Interpretable Information Bottleneck Approach. - Madina Babazhanova, Maxat Tezekbayev, Zhenisbek Assylbekov:
Geometric Probing of Word Vectors. - Manik Madhikermi, Avleen Malhi, Kary Främling:
Context-specific sampling method for contextual explanations. - Arne P. Raulf, Sina Däubener, Ben Hack, Axel Mosig, Asja Fischer:
SmoothLRP: Smoothing LRP by Averaging over Stochastic Input Variations. - Cosimo Izzo, Aldo Lipani, Ramin Okhrati, Francesca Medda:
A Baseline for Shapley Values in MLPs: from Missingness to Neutrality.
Time series and signal processing
- Karan Bhanot, Saloni Dash, Joseph Pedersen, Isabelle Guyon, Kristin P. Bennett:
Quantifying Resemblance of Synthetic Medical Time-Series. - Hiba Arnout, Johanna Bronner, Thomas A. Runkler:
Differentially Private Time Series Generation. - Rémi Souriau, Julie Fontecave Jallon, Bertrand Rivet:
Fusion of estimations from two modalities using the Viterbi's algorithm: application to fetal heart rate monitoring. - Delphine Bay, Clémence Bisot:
Convolutional Neural Network Architecture for Classification of Aircraft Engines Flight Time Series. - Maximilian Münch, Simon Heilig, Frank-Michael Schleif:
Multi-perspective embedding for non-metric time series classification. - Sarthak Chatterjee, Subhro Das, Sérgio Pequito:
IF: Iterative Fractional Optimization.
Classification
- Arturs Polis, Alexander Ilin:
A Relational Model for One-Shot Classification. - Joonas Hämäläinen, Paavo Nieminen, Tommi Kärkkäinen:
Instance-Based Multi-Label Classification via Multi-Target Distance Regression. - Raul Barbosa, Diego Carvalho, Priscila Lima, Felipe M. G. França:
A bag of nodes primer on weightless graph classification. - Bálint Daróczy, Dániel Rácz:
Gradient representations in ReLU networks as similarity functions.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.