


default search action
33rd ISC 2018: Frankfurt, Germany
- Rio Yokota, Michèle Weiland, David E. Keyes, Carsten Trinitis:
High Performance Computing - 33rd International Conference, ISC High Performance 2018, Frankfurt, Germany, June 24-28, 2018, Proceedings. Lecture Notes in Computer Science 10876, Springer 2018, ISBN 978-3-319-92039-9
Resource Management and Energy Efficiency
- Alessio Netti, Cristian Galleguillos
, Zeynep Kiziltan, Alina Sîrbu
, Özalp Babaoglu:
Heterogeneity-Aware Resource Allocation in HPC Systems. 3-21 - Johannes Hofmann, Georg Hager
, Dietmar Fey:
On the Accuracy and Usefulness of Analytic Energy Models for Contemporary Multicore Processors. 22-43 - Takashi Miyazaki, Issei Sato, Nobuyuki Shimizu:
Bayesian Optimization of HPC Systems for Energy Efficiency. 44-62 - Tatiana V. Martsinkevich, Balazs Gerofi, Guo-Yuan Lien, Seiya Nishizawa
, Wei-keng Liao
, Takemasa Miyoshi, Hirofumi Tomita, Yutaka Ishikawa, Alok N. Choudhary:
DTF: An I/O Arbitration Framework for Multi-component Data Processing Workflows. 63-80 - Keiji Yamamoto, Yuichi Tsujita
, Atsuya Uno:
Classifying Jobs and Predicting Applications in HPC Systems. 81-99
Performance Analysis and Tools
- Scott Pakin
, Steven P. Reinhardt:
A Survey of Programming Tools for D-Wave Quantum-Annealing Processors. 103-122 - Jeremiah J. Wilke, Joseph P. Kenny, Samuel Knight, Sébastien Rumley:
Compiler-Assisted Source-to-Source Skeletonization of Application Models for System Simulation. 123-143 - Huanxing Shen, Cong Li
:
Zeno: A Straggler Diagnosis System for Distributed Computing Using Machine Learning. 144-162 - Johannes Seiferth, Christie L. Alappat
, Matthias Korch, Thomas Rauber:
Applicability of the ECM Performance Model to Explicit ODE Methods on Current Multi-core Processors. 163-183 - Sandeep Madireddy
, Prasanna Balaprakash, Philip H. Carns, Robert Latham, Robert B. Ross
, Shane Snyder, Stefan M. Wild
:
Machine Learning Based Parallel I/O Predictive Modeling: A Case Study on Lustre File Systems. 184-204 - Yuta Hirokawa, Taisuke Boku, Mitsuharu Uemoto, Shunsuke A. Sato
, Kazuhiro Yabana:
Performance Optimization and Evaluation of Scalable Optoelectronics Application on Large Scale KNL Cluster. 205-225 - Tuomas Koskela
, Zakhar Matveev, Charlene Yang, Adetokunbo Adedoyin, Roman Belenov, Philippe Thierry, Zhengji Zhao, Rahulkumar Gayatri, Hongzhang Shan, Leonid Oliker, Jack Deslippe, Ron Green, Samuel Williams
:
A Novel Multi-level Integrated Roofline Model Approach for Performance Characterization. 226-245 - Hannes Weisbach, Balazs Gerofi, Brian Kocoloski, Hermann Härtig, Yutaka Ishikawa:
Hardware Performance Variation: A Comparative Study Using Lightweight Kernels. 246-265
Exascale Networks
- Joseph P. Kenny, Khachik Sargsyan, Samuel Knight, George Michelogiannakis
, Jeremiah J. Wilke:
The Pitfalls of Provisioning Exascale Networks: A Trace Replay Analysis for Understanding Communication Performance. 269-288 - Mario Flajslik, Eric Borch, Mike A. Parker:
Megafly: A Topology for Exascale Systems. 289-310 - Vincenzo Catania, Salvatore Monteleone
, Maurizio Palesi, Davide Patti:
Packetization of Shared-Memory Traces for Message Passing Oriented NoC Simulation. 311-325
Parallel Algorithms
- Moritz Kreutzer, Dominik Ernst, Alan R. Bishop, Holger Fehske, Georg Hager
, Kengo Nakajima, Gerhard Wellein
:
Chebyshev Filter Diagonalization on Modern Manycore Processors and GPGPUs. 329-349 - Christina Giannoula, Georgios I. Goumas, Nectarios Koziris:
Combining HTM with RCU to Speed Up Graph Coloring on Multicore Platforms. 350-369 - Igor Adamski, Robert Adamski, Tomasz Grel, Adam Jedrych, Kamil Kaczmarek, Henryk Michalewski:
Distributed Deep Reinforcement Learning: Learn How to Play Atari Games in 21 minutes. 370-388 - Kallia Chronaki, Marc Casas
, Miquel Moretó
, Jaume Bosch, Rosa M. Badia:
TaskGenX: A Hardware-Software Proposal for Accelerating Task Parallelism. 389-409

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.