default search action
Michael Möller 0001
Person information
- affiliation: University of Siegen, Germany
- affiliation: Technical University Munich, Department of Mathematics
- affiliation: University of Münster, Institute for Computational and Applied Mathematics
Other persons with the same name
- Michael Möller 0002 — University of Oldenburg, Department of Computing Science
- Michael Möller 0003 — Adam Ries University of Applied Sciences, Erfurt, Tourism and Regional Marketing
- Michael Möller 0004 — Saarland University, Department of Mechatronics, Saarbrücken, Germany (and 3 more)
- Michael Möller 0005 — Physikalisch-Technische Bundesanstalt, Berlin, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c52]Andreas Görlitz, Michael Möller, Andreas Kolb:
Coherent Enhancement of Depth Images and Normal Maps Using Second-Order Geometric Models on Weighted Finite Graphs. 3DV 2024: 623-630 - [c51]Bhaskar Choubey, Hendrik Sommerhoff, Michael Moeller, Andreas Kolb:
Variable layout CMOS pixels for end-to-end learning in task specific Image Sensors. AICAS 2024: 482-486 - [c50]Hendrik Sommerhoff, Shashank Agnihotri, Mohamed Saleh, Michael Moeller, Margret Keuper, Bhaskar Choubey, Andreas Kolb:
Task Driven Sensor Layouts - Joint Optimization of Pixel Layout and Network Parameters. ICCP 2024: 1-10 - [c49]Jan Philipp Schneider, Mishal Fatima, Jovita Lukasik, Andreas Kolb, Margret Keuper, Michael Moeller:
Implicit Representations for Constrained Image Segmentation. ICML 2024 - [c48]Marius Bock, Kristof Van Laerhoven, Michael Moeller:
Weak-Annotation of HAR Datasets using Vision Foundation Models. ISWC 2024: 55-62 - [i55]Kanchana Vaishnavi Gandikota, Paramanand Chandramouli, Hannah Dröge, Michael Moeller:
Evaluating Adversarial Robustness of Low dose CT Recovery. CoRR abs/2402.11557 (2024) - [i54]Alexander Auras, Kanchana Vaishnavi Gandikota, Hannah Dröge, Michael Moeller:
Robustness and Exploration of Variational and Machine Learning Approaches to Inverse Problems: An Overview. CoRR abs/2402.12072 (2024) - [i53]Marius Bock, Kristof Van Laerhoven, Michael Möller:
Weak-Annotation of HAR Datasets using Vision Foundation Models. CoRR abs/2408.05169 (2024) - 2023
- [j25]Christian Bauckhage, Wolfgang Förstner, Juergen Gall, Michael Möller, Alexander G. Schwing:
Preface to the Special Issue on Pattern Recognition (DAGM GCPR 2021). Int. J. Comput. Vis. 131(5): 1210 (2023) - [c47]Harshil Bhatia, Edith Tretschk, Zorah Lähner, Marcel Seelbach Benkner, Michael Moeller, Christian Theobalt, Vladislav Golyanik:
CCuantuMM: Cycle-Consistent Quantum-Hybrid Matching of Multiple Shapes. CVPR 2023: 1296-1305 - [c46]Jovita Lukasik, Michael Moeller, Margret Keuper:
An Evaluation of Zero-Cost Proxies - From Neural Architecture Performance Prediction to Model Robustness. DAGM 2023: 624-638 - [c45]Maolin Gao, Paul Roetzer, Marvin Eisenberger, Zorah Lähner, Michael Möller, Daniel Cremers, Florian Bernard:
ΣIGMA: Scale-Invariant Global Sparse Shape Matching. ICCV 2023: 645-654 - [c44]Marcel Seelbach Benkner, Maximilian Krahn, Edith Tretschk, Zorah Lähner, Michael Moeller, Vladislav Golyanik:
QuAnt: Quantum Annealing with Learnt Couplings. ICLR 2023 - [c43]Kanchana Vaishnavi Gandikota, Paramanand Chandramouli, Hannah Dröge, Michael Möller:
Evaluating Adversarial Robustness of Low dose CT Recovery. MIDL 2023: 1545-1563 - [c42]Hannah Dröge, Zorah Lähner, Yuval Bahat, Onofre Martorell Nadal, Felix Heide, Michael Moeller:
Kissing to Find a Match: Efficient Low-Rank Permutation Representation. NeurIPS 2023 - [c41]Christina Runkel, Michael Möller, Carola-Bibiane Schönlieb, Christian Etmann:
Learning Posterior Distributions in Underdetermined Inverse Problems. SSVM 2023: 187-209 - [c40]Zorah Lähner, Michael Moeller:
On the Direct Alignment of Latent Spaces. UniReps 2023: 158-169 - [i52]Harshil Bhatia, Edith Tretschk, Zorah Lähner, Marcel Seelbach Benkner, Michael Moeller, Christian Theobalt, Vladislav Golyanik:
CCuantuMM: Cycle-Consistent Quantum-Hybrid Matching of Multiple Shapes. CoRR abs/2303.16202 (2023) - [i51]Marius Bock, Michael Moeller, Kristof Van Laerhoven, Hilde Kuehne:
WEAR: A Multimodal Dataset for Wearable and Egocentric Video Activity Recognition. CoRR abs/2304.05088 (2023) - [i50]Hendrik Sommerhoff, Shashank Agnihotri, Mohamed Saleh, Michael Moeller, Margret Keuper, Andreas Kolb:
Differentiable Sensor Layouts for End-to-End Learning of Task-Specific Camera Parameters. CoRR abs/2304.14736 (2023) - [i49]Jovita Lukasik, Michael Möller, Margret Keuper:
An Evaluation of Zero-Cost Proxies - from Neural Architecture Performance to Model Robustness. CoRR abs/2307.09365 (2023) - [i48]Maolin Gao, Paul Roetzer, Marvin Eisenberger, Zorah Lähner, Michael Möller, Daniel Cremers, Florian Bernard:
SIGMA: Scale-Invariant Global Sparse Shape Matching. CoRR abs/2308.08393 (2023) - [i47]Hannah Dröge, Zorah Lähner, Yuval Bahat, Onofre Martorell, Felix Heide, Michael Möller:
Kissing to Find a Match: Efficient Low-Rank Permutation Representation. CoRR abs/2308.13252 (2023) - [i46]Marius Bock, Michael Möller, Kristof Van Laerhoven:
Temporal Action Localization for Inertial-based Human Activity Recognition. CoRR abs/2311.15831 (2023) - 2022
- [j24]Marius Bock, Alexander Hoelzemann, Michael Möller, Kristof Van Laerhoven:
Investigating (re)current state-of-the-art in human activity recognition datasets. Frontiers Comput. Sci. 4 (2022) - [j23]Rama Krishna Kandukuri, Jan Achterhold, Michael Möller, Joerg Stueckler:
Physical Representation Learning and Parameter Identification from Video Using Differentiable Physics. Int. J. Comput. Vis. 130(1): 3-16 (2022) - [j22]Paramanand Chandramouli, Kanchana Vaishnavi Gandikota, Andreas Görlitz, Andreas Kolb, Michael Möller:
A Generative Model for Generic Light Field Reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 44(4): 1712-1724 (2022) - [j21]Hartmut Bauermeister, Emanuel Laude, Thomas Möllenhoff, Michael Möller, Daniel Cremers:
Lifting the Convex Conjugate in Lagrangian Relaxations: A Tractable Approach for Continuous Markov Random Fields. SIAM J. Imaging Sci. 15(3): 1253-1281 (2022) - [c39]Kanchana Vaishnavi Gandikota, Jonas Geiping, Zorah Lähner, Adam Czaplinski, Michael Möller:
A Simple Strategy to Provable Invariance via Orbit Mapping. ACCV (5) 2022: 387-405 - [c38]Hannah Dröge, Yuval Bahat, Felix Heide, Michael Moeller:
Explorable Data Consistent CT Reconstruction. BMVC 2022: 746 - [c37]Lukas Koestler, Daniel Grittner, Michael Möller, Daniel Cremers, Zorah Lähner:
Intrinsic Neural Fields: Learning Functions on Manifolds. ECCV (2) 2022: 622-639 - [c36]Kanchana Vaishnavi Gandikota, Paramanand Chandramouli, Michael Möller:
On Adversarial Robustness of Deep Image Deblurring. ICIP 2022: 3161-3165 - [c35]Hannah Dröge, Thomas Möllenhoff, Michael Möller:
Non-Smooth Energy Dissipating Networks. ICIP 2022: 3281-3285 - [c34]Andreas Görlitz, Michael Möller, Andreas Kolb:
FL0C: Fast L0 Cut Pursuit for Estimation of Piecewise Constant Functions. ICIP 2022: 3677-3681 - [c33]Jonas Geiping, Micah Goldblum, Phillip Pope, Michael Moeller, Tom Goldstein:
Stochastic Training is Not Necessary for Generalization. ICLR 2022 - [c32]Tak Ming Wong, Hartmut Bauermeister, Matthias Kahl, Peter Haring Bolívar, Michael Möller, Andreas Kolb:
Deep Optimization Prior for THz Model Parameter Estimation. WACV 2022: 4049-4058 - [i45]Lukas Koestler, Daniel Grittner, Michael Möller, Daniel Cremers, Zorah Lähner:
Intrinsic Neural Fields: Learning Functions on Manifolds. CoRR abs/2203.07967 (2022) - [i44]Kanchana Vaishnavi Gandikota, Jonas Geiping, Zorah Lähner, Adam Czaplinski, Michael Möller:
A Simple Strategy to Provable Invariance via Orbit Mapping. CoRR abs/2209.11916 (2022) - [i43]Kanchana Vaishnavi Gandikota, Paramanand Chandramouli, Michael Moeller:
On Adversarial Robustness of Deep Image Deblurring. CoRR abs/2210.02502 (2022) - [i42]Marcel Seelbach Benkner, Maximilian Krahn, Edith Tretschk, Zorah Lähner, Michael Moeller, Vladislav Golyanik:
QuAnt: Quantum Annealing with Learnt Couplings. CoRR abs/2210.08114 (2022) - [i41]Samira Kabri, Alexander Auras, Danilo Riccio, Hartmut Bauermeister, Martin Benning, Michael Moeller, Martin Burger:
Convergent Data-driven Regularizations for CT Reconstruction. CoRR abs/2212.07786 (2022) - 2021
- [j20]Hannah Dröge, Baichuan Yuan, Rafael Llerena, Jesse T. Yen, Michael Möller, Andrea L. Bertozzi:
Mitral Valve Segmentation Using Robust Nonnegative Matrix Factorization. J. Imaging 7(10): 213 (2021) - [c31]Marcel Seelbach Benkner, Zorah Lähner, Vladislav Golyanik, Christof Wunderlich, Christian Theobalt, Michael Moeller:
Q-Match: Iterative Shape Matching via Quantum Annealing. ICCV 2021: 7566-7576 - [c30]Hannah Dröge, Michael Möller:
Learning or Modelling? An Analysis of Single Image Segmentation Based on Scribble Information. ICIP 2021: 2274-2278 - [c29]Jonas Geiping, Liam H. Fowl, W. Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller, Tom Goldstein:
Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching. ICLR 2021 - [c28]Marius Bock, Alexander Hölzemann, Michael Moeller, Kristof Van Laerhoven:
Improving Deep Learning for HAR with Shallow LSTMs. ISWC 2021: 7-12 - [i40]Christina Runkel, Christian Etmann, Michael Möller, Carola-Bibiane Schönlieb:
Depthwise Separable Convolutions Allow for Fast and Memory-Efficient Spectral Normalization. CoRR abs/2102.06496 (2021) - [i39]Jonas Geiping, Liam Fowl, Gowthami Somepalli, Micah Goldblum, Michael Moeller, Tom Goldstein:
What Doesn't Kill You Makes You Robust(er): Adversarial Training against Poisons and Backdoors. CoRR abs/2102.13624 (2021) - [i38]Marcel Seelbach Benkner, Zorah Lähner, Vladislav Golyanik, Christof Wunderlich, Christian Theobalt, Michael Möller:
Q-Match: Iterative Shape Matching via Quantum Annealing. CoRR abs/2105.02878 (2021) - [i37]Kanchana Vaishnavi Gandikota, Jonas Geiping, Zorah Lähner, Adam Czaplinski, Michael Möller:
Training or Architecture? How to Incorporate Invariance in Neural Networks. CoRR abs/2106.10044 (2021) - [i36]Marcel Seelbach Benkner, Vladislav Golyanik, Christian Theobalt, Michael Moeller:
Adiabatic Quantum Graph Matching with Permutation Matrix Constraints. CoRR abs/2107.04032 (2021) - [i35]Hartmut Bauermeister, Emanuel Laude, Thomas Möllenhoff, Michael Möller, Daniel Cremers:
Lifting the Convex Conjugate in Lagrangian Relaxations: A Tractable Approach for Continuous Markov Random Fields. CoRR abs/2107.06028 (2021) - [i34]Marius Bock, Alexander Hoelzemann, Michael Moeller, Kristof Van Laerhoven:
Improving Deep Learning for HAR with shallow LSTMs. CoRR abs/2108.00702 (2021) - [i33]Jonas Geiping, Jovita Lukasik, Margret Keuper, Michael Moeller:
DARTS for Inverse Problems: a Study on Hyperparameter Sensitivity. CoRR abs/2108.05647 (2021) - [i32]Jonas Geiping, Micah Goldblum, Phillip E. Pope, Michael Moeller, Tom Goldstein:
Stochastic Training is Not Necessary for Generalization. CoRR abs/2109.14119 (2021) - [i31]Marius Bock, Alexander Hoelzemann, Michael Möller, Kristof Van Laerhoven:
Tutorial on Deep Learning for Human Activity Recognition. CoRR abs/2110.06663 (2021) - 2020
- [j19]Marco Fumero, Michael Möller, Emanuele Rodolà:
Nonlinear spectral geometry processing via the TV transform. ACM Trans. Graph. 39(6): 199:1-199:16 (2020) - [c27]Marcel Seelbach Benkner, Vladislav Golyanik, Christian Theobalt, Michael Moeller:
Adiabatic Quantum Graph Matching with Permutation Matrix Constraints. 3DV 2020: 583-592 - [c26]Jonas Geiping, Fjedor Gaede, Hartmut Bauermeister, Michael Moeller:
Fast Convex Relaxations using Graph Discretizations. BMVC 2020 - [c25]Rama Krishna Kandukuri, Jan Achterhold, Michael Möller, Joerg Stueckler:
Learning to Identify Physical Parameters from Video Using Differentiable Physics. GCPR 2020: 44-57 - [c24]Micah Goldblum, Jonas Geiping, Avi Schwarzschild, Michael Moeller, Tom Goldstein:
Truth or backpropaganda? An empirical investigation of deep learning theory. ICLR 2020 - [c23]Guruprasad M. Hegde, Avinash Nittur Ramesh, Kanchana Vaishnavi Gandikota, Roman Obermaisser, Michael Moeller:
A Simple Domain Shifting Network for Generating Low Quality Images. ICPR 2020: 3963-3968 - [c22]Christina Runkel, Stefan Dorenkamp, Hartmut Bauermeister, Michael Möller:
Exploiting the Logits: Joint Sign Language Recognition and Spell-Correction. ICPR 2020: 5246-5253 - [c21]Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, Michael Moeller:
Inverting Gradients - How easy is it to break privacy in federated learning? NeurIPS 2020 - [i30]Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, Michael Moeller:
Inverting Gradients - How easy is it to break privacy in federated learning? CoRR abs/2003.14053 (2020) - [i29]Jonas Geiping, Fjedor Gaede, Hartmut Bauermeister, Michael Moeller:
Fast Convex Relaxations using Graph Discretizations. CoRR abs/2004.11075 (2020) - [i28]Paramanand Chandramouli, Kanchana Vaishnavi Gandikota, Andreas Görlitz, Andreas Kolb, Michael Moeller:
Generative Models for Generic Light Field Reconstruction. CoRR abs/2005.06508 (2020) - [i27]Guruprasad M. Hegde, Avinash Nittur Ramesh, Kanchana Vaishnavi Gandikota, Roman Obermaisser, Michael Moeller:
A Simple Domain Shifting Network for Generating Low Quality Images. CoRR abs/2006.16621 (2020) - [i26]Christina Runkel, Stefan Dorenkamp, Hartmut Bauermeister, Michael Moeller:
Exploiting the Logits: Joint Sign Language Recognition and Spell-Correction. CoRR abs/2007.00603 (2020) - [i25]Jonas Geiping, Liam Fowl, W. Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller, Tom Goldstein:
Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching. CoRR abs/2009.02276 (2020) - [i24]Marco Fumero, Michael Möller, Emanuele Rodolà:
Nonlinear Spectral Geometry Processing via the TV Transform. CoRR abs/2009.03044 (2020) - [i23]Rama Krishna Kandukuri, Jan Achterhold, Michael Möller, Jörg Stückler:
Learning to Identify Physical Parameters from Video Using Differentiable Physics. CoRR abs/2009.08292 (2020)
2010 – 2019
- 2019
- [c20]Tak Ming Wong, Matthias Kahl, Peter Haring Bolívar, Andreas Kolb, Michael Möller:
Training Auto-Encoder-Based Optimizers for Terahertz Image Reconstruction. GCPR 2019: 93-106 - [c19]Michael Möller, Thomas Möllenhoff, Daniel Cremers:
Controlling Neural Networks via Energy Dissipation. ICCV 2019: 3255-3264 - [c18]Jonas Geiping, Michael Moeller:
Parametric Majorization for Data-Driven Energy Minimization Methods. ICCV 2019: 10261-10272 - [i22]Michael Möller, Thomas Möllenhoff, Daniel Cremers:
Controlling Neural Networks via Energy Dissipation. CoRR abs/1904.03081 (2019) - [i21]Tak Ming Wong, Matthias Kahl, Peter Haring Bolívar, Andreas Kolb, Michael Möller:
Training Auto-encoder-based Optimizers for Terahertz Image Reconstruction. CoRR abs/1907.01377 (2019) - [i20]Jonas Geiping, Michael Moeller:
Parametric Majorization for Data-Driven Energy Minimization Methods. CoRR abs/1908.06209 (2019) - [i19]Micah Goldblum, Jonas Geiping, Avi Schwarzschild, Michael Moeller, Tom Goldstein:
Truth or Backpropaganda? An Empirical Investigation of Deep Learning Theory. CoRR abs/1910.00359 (2019) - 2018
- [j18]Björn Bringmann, Daniel Cremers, Felix Krahmer, Michael Möller:
The homotopy method revisited: Computing solution paths of ℓ1-regularized problems. Math. Comput. 87(313): 2343-2364 (2018) - [j17]Jonas Geiping, Michael Möller:
Composite Optimization by Nonconvex Majorization-Minimization. SIAM J. Imaging Sci. 11(4): 2494-2528 (2018) - [c17]Rania Briq, Michael Moeller, Jürgen Gall:
Convolutional Simplex Projection Network for Weakly Supervised Semantic Segmentation. BMVC 2018: 263 - [c16]Florian Bernard, Christian Theobalt, Michael Möller:
DS*: Tighter Lifting-Free Convex Relaxations for Quadratic Matching Problems. CVPR 2018: 4310-4319 - [c15]Peter Ochs, Tim Meinhardt, Laura Leal-Taixé, Michael Möller:
Lifting Layers: Analysis and Applications. ECCV (1) 2018: 53-68 - [c14]Thomas Frerix, Thomas Möllenhoff, Michael Möller, Daniel Cremers:
Proximal Backpropagation. ICLR (Poster) 2018 - [c13]Mai Lan Ha, Gianni Franchi, Michael Möller, Andreas Kolb, Volker Blanz:
Segmentation and Shape Extraction from Convolutional Neural Networks. WACV 2018: 1509-1518 - [i18]Jonas Geiping, Michael Möller:
Composite Optimization by Nonconvex Majorization-Minimization. CoRR abs/1802.07072 (2018) - [i17]Peter Ochs, Tim Meinhardt, Laura Leal-Taixé, Michael Möller:
Lifting Layers: Analysis and Applications. CoRR abs/1803.08660 (2018) - [i16]Michael Moeller, Otmar Loffeld, Juergen Gall, Felix Krahmer:
Are good local minima wide in sparse recovery? CoRR abs/1806.08296 (2018) - [i15]Rania Briq, Michael Moeller, Juergen Gall:
Convolutional Simplex Projection Network (CSPN) for Weakly Supervised Semantic Segmentation. CoRR abs/1807.09169 (2018) - 2017
- [j16]Emanuele Rodolà, Michael Möller, Daniel Cremers:
Regularized Pointwise Map Recovery from Functional Correspondence. Comput. Graph. Forum 36(8): 700-711 (2017) - [c12]Jonas Geiping, Hendrik Dirks, Daniel Cremers, Michael Möller:
Multiframe Motion Coupling for Video Super Resolution. EMMCVPR 2017: 123-138 - [c11]Tim Meinhardt, Michael Möller, Caner Hazirbas, Daniel Cremers:
Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems. ICCV 2017: 1799-1808 - [c10]Martin Benning, Michael Möller, Raz Z. Nossek, Martin Burger, Daniel Cremers, Guy Gilboa, Carola-Bibiane Schönlieb:
Nonlinear Spectral Image Fusion. SSVM 2017: 41-53 - [i14]Martin Benning, Michael Möller, Raz Z. Nossek, Martin Burger, Daniel Cremers, Guy Gilboa, Carola-Bibiane Schönlieb:
Nonlinear Spectral Image Fusion. CoRR abs/1703.08001 (2017) - [i13]Tim Meinhardt, Michael Möller, Caner Hazirbas, Daniel Cremers:
Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems. CoRR abs/1704.03488 (2017) - [i12]Thomas Frerix, Thomas Möllenhoff, Michael Möller, Daniel Cremers:
Proximal Backpropagation. CoRR abs/1706.04638 (2017) - [i11]Florian Bernard, Christian Theobalt, Michael Möller:
Tighter Lifting-Free Convex Relaxations for Quadratic Matching Problems. CoRR abs/1711.10733 (2017) - 2016
- [j15]Joan Duran, Michael Möller, Catalina Sbert, Daniel Cremers:
On the Implementation of Collaborative TV Regularization: Application to Cartoon+Texture Decomposition. Image Process. Line 6: 27-74 (2016) - [j14]Guy Gilboa, Michael Möller, Martin Burger:
Nonlinear Spectral Analysis via One-Homogeneous Functionals: Overview and Future Prospects. J. Math. Imaging Vis. 56(2): 300-319 (2016) - [j13]Michael Möller, Xiaoqun Zhang:
Fast sparse reconstruction: Greedy inverse scale space flows. Math. Comput. 85(297): 179-208 (2016) - [j12]Joan Duran, Michael Möller, Catalina Sbert, Daniel Cremers:
Collaborative Total Variation: A General Framework for Vectorial TV Models. SIAM J. Imaging Sci. 9(1): 116-151 (2016) - [j11]Martin Burger, Guy Gilboa, Michael Möller, Lina Eckardt, Daniel Cremers:
Spectral Decompositions Using One-Homogeneous Functionals. SIAM J. Imaging Sci. 9(3): 1374-1408 (2016) - [c9]Thomas Möllenhoff, Emanuel Laude, Michael Möller, Jan Lellmann, Daniel Cremers:
Sublabel-Accurate Relaxation of Nonconvex Energies. CVPR 2016: 3948-3956 - [c8]Emanuel Laude, Thomas Möllenhoff, Michael Möller, Jan Lellmann, Daniel Cremers:
Sublabel-Accurate Convex Relaxation of Vectorial Multilabel Energies. ECCV (1) 2016: 614-627 - [i10]Martin Burger, Guy Gilboa, Michael Möller, Lina Eckardt, Daniel Cremers:
Spectral Decompositions using One-Homogeneous Functionals. CoRR abs/1601.02912 (2016) - [i9]Emanuel Laude, Thomas Möllenhoff, Michael Möller, Jan Lellmann, Daniel Cremers:
Sublabel-Accurate Convex Relaxation of Vectorial Multilabel Energies. CoRR abs/1604.01980 (2016) - [i8]Hendrik Dirks, Jonas Geiping, Daniel Cremers, Michael Möller:
Multiframe Motion Coupling via Infimal Convolution Regularization for Video Super Resolution. CoRR abs/1611.07767 (2016) - 2015
- [j10]Thomas Möllenhoff, Evgeny Strekalovskiy, Michael Möller, Daniel Cremers:
The Primal-Dual Hybrid Gradient Method for Semiconvex Splittings. SIAM J. Imaging Sci. 8(2): 827-857 (2015) - [j9]Michael Möller, Martin Benning, Carola Schönlieb, Daniel Cremers:
Variational Depth From Focus Reconstruction. IEEE Trans. Image Process. 24(12): 5369-5378 (2015) - [c7]Michael Möller, Julia Diebold, Guy Gilboa, Daniel Cremers:
Learning Nonlinear Spectral Filters for Color Image Reconstruction. ICCV 2015: 289-297 - [c6]Martin Burger, Lina Eckardt, Guy Gilboa, Michael Möller:
Spectral Representations of One-Homogeneous Functionals. SSVM 2015: 16-27 - [c5]Julia Diebold, Nikolaus Demmel, Caner Hazirbas, Michael Möller, Daniel Cremers:
Interactive Multi-label Segmentation of RGB-D Images. SSVM 2015: 294-306 - [c4]Emanuele Rodolà, Michael Möller, Daniel Cremers:
Point-wise Map Recovery and Refinement from Functional Correspondence. VMV 2015: 25-32 - [i7]Emanuele Rodolà, Michael Möller, Daniel Cremers:
Point-wise Map Recovery and Refinement from Functional Correspondence. CoRR abs/1506.05603 (2015) - [i6]Joan Duran, Michael Möller, Catalina Sbert, Daniel Cremers:
Collaborative Total Variation: A General Framework for Vectorial TV Models. CoRR abs/1508.01308 (2015) - [i5]Guy Gilboa, Michael Möller, Martin Burger:
Nonlinear Spectral Analysis via One-homogeneous Functionals - Overview and Future Prospects. CoRR abs/1510.01077 (2015) - [i4]Thomas Möllenhoff, Emanuel Laude, Michael Möller, Jan Lellmann, Daniel Cremers:
Sublabel-Accurate Relaxation of Nonconvex Energies. CoRR abs/1512.01383 (2015) - 2014
- [j8]Michael Möller, Martin Burger, Peter Dieterich, Albrecht Schwab:
A framework for automated cell tracking in phase contrast microscopic videos based on normal velocities. J. Vis. Commun. Image Represent. 25(2): 396-409 (2014) - [j7]Michael Möller, Eva-Maria Brinkmann, Martin Burger, Tamara Seybold:
Color Bregman TV. SIAM J. Imaging Sci. 7(4): 2771-2806 (2014) - [c3]Thomas Möllenhoff, Evgeny Strekalovskiy, Michael Möller, Daniel Cremers:
Low Rank Priors for Color Image Regularization. EMMCVPR 2014: 126-140 - [c2]Joan Duran, Michael Möller, Catalina Sbert, Daniel Cremers:
A Novel Framework for Nonlocal Vectorial Total Variation Based on ℓ p, q, r -norms. EMMCVPR 2014: 141-154 - [i3]Thomas Möllenhoff, Evgeny Strekalovskiy, Michael Möller, Daniel Cremers:
The Primal-Dual Hybrid Gradient Method for Semiconvex Splittings. CoRR abs/1407.1723 (2014) - [i2]Michael Möller, Martin Benning, Carola-Bibiane Schönlieb, Daniel Cremers:
Variational Depth from Focus Reconstruction. CoRR abs/1408.0173 (2014) - 2013
- [j6]Martin Burger, Michael Möller, Martin Benning, Stanley J. Osher:
An adaptive inverse scale space method for compressed sensing. Math. Comput. 82(281): 269-299 (2013) - [j5]Yi Yang, Michael Möller, Stanley J. Osher:
A dual split Bregman method for fast ℓ1 minimization. Math. Comput. 82(284): 2061-2085 (2013) - [j4]Michael Möller, Martin Burger:
Multiscale Methods for Polyhedral Regularizations. SIAM J. Optim. 23(3): 1424-1456 (2013) - 2012
- [b1]Michael Möller:
Multiscale methods for (generalized) sparse recovery and applications in high dimensional imaging. University of Münster, 2012, pp. 1-260 - [j3]Michael Möller, Todd Wittman, Andrea L. Bertozzi, Martin Burger:
A Variational Approach for Sharpening High Dimensional Images. SIAM J. Imaging Sci. 5(1): 150-178 (2012) - [j2]Ernie Esser, Michael Möller, Stanley J. Osher, Guillermo Sapiro, Jack Xin:
A Convex Model for Nonnegative Matrix Factorization and Dimensionality Reduction on Physical Space. IEEE Trans. Image Process. 21(7): 3239-3252 (2012) - [c1]Michael Möller:
The adaptive inverse scale space method for hyperspectral unmixing. IGARSS 2012: 7492-7495 - [i1]Michael Möller, Martin Burger, Peter Dieterich, Albrecht Schwab:
A Framework for Automated Cell Tracking in Phase Contrast Microscopic Videos based on Normal Velocities. CoRR abs/1203.5914 (2012) - 2010
- [j1]Sheida Rahmani, Melissa Strait, Daria Merkurjev, Michael Möller, Todd Wittman:
An Adaptive IHS Pan-Sharpening Method. IEEE Geosci. Remote. Sens. Lett. 7(4): 746-750 (2010)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-17 21:28 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint