default search action
Caglar Gulcehre
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c35]Dominik Stammbach, Philine Widmer, Eunjung Cho, Caglar Gulcehre, Elliott Ash:
Aligning Large Language Models with Diverse Political Viewpoints. EMNLP 2024: 7257-7267 - [c34]Tim R. Davidson, Viacheslav Surkov, Veniamin Veselovsky, Giuseppe Russo Latona, Robert West, Caglar Gulcehre:
Self-Recognition in Language Models. EMNLP (Findings) 2024: 12032-12059 - [c33]Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, Sungjin Ahn:
Simple Hierarchical Planning with Diffusion. ICLR 2024 - [c32]Chang Chen, Junyeob Baek, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, Sungjin Ahn:
PlanDQ: Hierarchical Plan Orchestration via D-Conductor and Q-Performer. ICML 2024 - [c31]Antonio Orvieto, Soham De, Caglar Gulcehre, Razvan Pascanu, Samuel L. Smith:
Universality of Linear Recurrences Followed by Non-linear Projections: Finite-Width Guarantees and Benefits of Complex Eigenvalues. ICML 2024 - [i59]Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, Sungjin Ahn:
Simple Hierarchical Planning with Diffusion. CoRR abs/2401.02644 (2024) - [i58]Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George-Cristian Muraru, Albert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Desjardins, Arnaud Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando de Freitas, Caglar Gulcehre:
Griffin: Mixing Gated Linear Recurrences with Local Attention for Efficient Language Models. CoRR abs/2402.19427 (2024) - [i57]Skander Moalla, Andrea Miele, Razvan Pascanu, Caglar Gulcehre:
No Representation, No Trust: Connecting Representation, Collapse, and Trust Issues in PPO. CoRR abs/2405.00662 (2024) - [i56]Akhil Arora, Lars Henning Klein, Nearchos Potamitis, Roland Aydin, Caglar Gulcehre, Robert West:
Fleet of Agents: Coordinated Problem Solving with Large Language Models using Genetic Particle Filtering. CoRR abs/2405.06691 (2024) - [i55]Chang Chen, Junyeob Baek, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, Sungjin Ahn:
PlanDQ: Hierarchical Plan Orchestration via D-Conductor and Q-Performer. CoRR abs/2406.06793 (2024) - [i54]Justin Deschenaux, Caglar Gulcehre:
Promises, Outlooks and Challenges of Diffusion Language Modeling. CoRR abs/2406.11473 (2024) - [i53]Dominik Stammbach, Philine Widmer, Eunjung Cho, Caglar Gulcehre, Elliott Ash:
Aligning Large Language Models with Diverse Political Viewpoints. CoRR abs/2406.14155 (2024) - [i52]Xiuying Wei, Skander Moalla, Razvan Pascanu, Caglar Gulcehre:
Building on Efficient Foundations: Effectively Training LLMs with Structured Feedforward Layers. CoRR abs/2406.16450 (2024) - [i51]Tim R. Davidson, Viacheslav Surkov, Veniamin Veselovsky, Giuseppe Russo Latona, Robert West, Caglar Gulcehre:
Self-Recognition in Language Models. CoRR abs/2407.06946 (2024) - [i50]Federico Arangath Joseph, Kilian Konstantin Haefeli, Noah Liniger, Caglar Gulcehre:
HiPPO-Prophecy: State-Space Models can Provably Learn Dynamical Systems in Context. CoRR abs/2407.09375 (2024) - [i49]Xiuying Wei, Skander Moalla, Razvan Pascanu, Caglar Gulcehre:
Investigating Low-Rank Training in Transformer Language Models: Efficiency and Scaling Analysis. CoRR abs/2407.09835 (2024) - [i48]Mikhail Terekhov, Caglar Gulcehre:
In Search for Architectures and Loss Functions in Multi-Objective Reinforcement Learning. CoRR abs/2407.16807 (2024) - [i47]Denis Tarasov, Anja Surina, Caglar Gulcehre:
The Role of Deep Learning Regularizations on Actors in Offline RL. CoRR abs/2409.07606 (2024) - [i46]Shivam Adarsh, Kumar Shridhar, Caglar Gulcehre, Nicholas Monath, Mrinmaya Sachan:
SIKeD: Self-guided Iterative Knowledge Distillation for mathematical reasoning. CoRR abs/2410.18574 (2024) - [i45]Justin Deschenaux, Caglar Gulcehre:
Beyond Autoregression: Fast LLMs via Self-Distillation Through Time. CoRR abs/2410.21035 (2024) - [i44]Viacheslav Surkov, Chris Wendler, Mikhail Terekhov, Justin Deschenaux, Robert West, Caglar Gulcehre:
Unpacking SDXL Turbo: Interpreting Text-to-Image Models with Sparse Autoencoders. CoRR abs/2410.22366 (2024) - [i43]Kyoungmin Kim, Kijae Hong, Caglar Gulcehre, Anastasia Ailamaki:
The Effect of Scheduling and Preemption on the Efficiency of LLM Inference Serving. CoRR abs/2411.07447 (2024) - 2023
- [c30]Antonio Orvieto, Samuel L. Smith, Albert Gu, Anushan Fernando, Çaglar Gülçehre, Razvan Pascanu, Soham De:
Resurrecting Recurrent Neural Networks for Long Sequences. ICML 2023: 26670-26698 - [c29]Yeongbin Kim, Gautam Singh, Junyeong Park, Çaglar Gülçehre, Sungjin Ahn:
Imagine the Unseen World: A Benchmark for Systematic Generalization in Visual World Models. NeurIPS 2023 - [i42]Antonio Orvieto, Samuel L. Smith, Albert Gu, Anushan Fernando, Çaglar Gülçehre, Razvan Pascanu, Soham De:
Resurrecting Recurrent Neural Networks for Long Sequences. CoRR abs/2303.06349 (2023) - [i41]Antonio Orvieto, Soham De, Çaglar Gülçehre, Razvan Pascanu, Samuel L. Smith:
On the Universality of Linear Recurrences Followed by Nonlinear Projections. CoRR abs/2307.11888 (2023) - [i40]Michaël Mathieu, Sherjil Ozair, Srivatsan Srinivasan, Çaglar Gülçehre, Shangtong Zhang, Ray Jiang, Tom Le Paine, Richard Powell, Konrad Zolna, Julian Schrittwieser, David H. Choi, Petko Georgiev, Daniel Toyama, Aja Huang, Roman Ring, Igor Babuschkin, Timo Ewalds, Mahyar Bordbar, Sarah Henderson, Sergio Gómez Colmenarejo, Aäron van den Oord, Wojciech Marian Czarnecki, Nando de Freitas, Oriol Vinyals:
AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning. CoRR abs/2308.03526 (2023) - [i39]Çaglar Gülçehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, Wolfgang Macherey, Arnaud Doucet, Orhan Firat, Nando de Freitas:
Reinforced Self-Training (ReST) for Language Modeling. CoRR abs/2308.08998 (2023) - [i38]Yeongbin Kim, Gautam Singh, Junyeong Park, Çaglar Gülçehre, Sungjin Ahn:
Imagine the Unseen World: A Benchmark for Systematic Generalization in Visual World Models. CoRR abs/2311.09064 (2023) - 2022
- [j8]Yutian Chen, Liyuan Xu, Çaglar Gülçehre, Tom Le Paine, Arthur Gretton, Nando de Freitas, Arnaud Doucet:
On Instrumental Variable Regression for Deep Offline Policy Evaluation. J. Mach. Learn. Res. 23: 302:1-302:40 (2022) - [j7]Çaglar Gülçehre, Srivatsan Srinivasan, Jakub Sygnowski, Georg Ostrovski, Mehrdad Farajtabar, Matthew Hoffman, Razvan Pascanu, Arnaud Doucet:
An empirical study of implicit regularization in deep offline RL. Trans. Mach. Learn. Res. 2022 (2022) - [i37]Çaglar Gülçehre, Srivatsan Srinivasan, Jakub Sygnowski, Georg Ostrovski, Mehrdad Farajtabar, Matt Hoffman, Razvan Pascanu, Arnaud Doucet:
An Empirical Study of Implicit Regularization in Deep Offline RL. CoRR abs/2207.02099 (2022) - 2021
- [c28]Ksenia Konyushkova, Yutian Chen, Thomas Paine, Çaglar Gülçehre, Cosmin Paduraru, Daniel J. Mankowitz, Misha Denil, Nando de Freitas:
Active Offline Policy Selection. NeurIPS 2021: 24631-24644 - [i36]Çaglar Gülçehre, Sergio Gómez Colmenarejo, Ziyu Wang, Jakub Sygnowski, Thomas Paine, Konrad Zolna, Yutian Chen, Matthew W. Hoffman, Razvan Pascanu, Nando de Freitas:
Regularized Behavior Value Estimation. CoRR abs/2103.09575 (2021) - [i35]Yutian Chen, Liyuan Xu, Çaglar Gülçehre, Tom Le Paine, Arthur Gretton, Nando de Freitas, Arnaud Doucet:
On Instrumental Variable Regression for Deep Offline Policy Evaluation. CoRR abs/2105.10148 (2021) - [i34]Ksenia Konyushkova, Yutian Chen, Thomas Paine, Çaglar Gülçehre, Cosmin Paduraru, Daniel J. Mankowitz, Misha Denil, Nando de Freitas:
Active Offline Policy Selection. CoRR abs/2106.10251 (2021) - 2020
- [c27]Çaglar Gülçehre, Tom Le Paine, Bobak Shahriari, Misha Denil, Matt Hoffman, Hubert Soyer, Richard Tanburn, Steven Kapturowski, Neil C. Rabinowitz, Duncan Williams, Gabriel Barth-Maron, Ziyu Wang, Nando de Freitas, Worlds Team:
Making Efficient Use of Demonstrations to Solve Hard Exploration Problems. ICLR 2020 - [c26]Albert Gu, Çaglar Gülçehre, Thomas Paine, Matt Hoffman, Razvan Pascanu:
Improving the Gating Mechanism of Recurrent Neural Networks. ICML 2020: 3800-3809 - [c25]Emilio Parisotto, H. Francis Song, Jack W. Rae, Razvan Pascanu, Çaglar Gülçehre, Siddhant M. Jayakumar, Max Jaderberg, Raphaël Lopez Kaufman, Aidan Clark, Seb Noury, Matthew M. Botvinick, Nicolas Heess, Raia Hadsell:
Stabilizing Transformers for Reinforcement Learning. ICML 2020: 7487-7498 - [c24]Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh Merel, Jost Tobias Springenberg, Scott E. Reed, Bobak Shahriari, Noah Y. Siegel, Çaglar Gülçehre, Nicolas Heess, Nando de Freitas:
Critic Regularized Regression. NeurIPS 2020 - [c23]Çaglar Gülçehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez Colmenarejo, Konrad Zolna, Rishabh Agarwal, Josh Merel, Daniel J. Mankowitz, Cosmin Paduraru, Gabriel Dulac-Arnold, Jerry Li, Mohammad Norouzi, Matthew Hoffman, Nicolas Heess, Nando de Freitas:
RL Unplugged: A Collection of Benchmarks for Offline Reinforcement Learning. NeurIPS 2020 - [i33]Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal M. P. Behbahani, Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson, Alexander Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Çaglar Gülçehre, Tom Le Paine, Andrew Cowie, Ziyu Wang, Bilal Piot, Nando de Freitas:
Acme: A Research Framework for Distributed Reinforcement Learning. CoRR abs/2006.00979 (2020) - [i32]Çaglar Gülçehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gómez Colmenarejo, Konrad Zolna, Rishabh Agarwal, Josh Merel, Daniel J. Mankowitz, Cosmin Paduraru, Gabriel Dulac-Arnold, Jerry Li, Mohammad Norouzi, Matt Hoffman, Ofir Nachum, George Tucker, Nicolas Heess, Nando de Freitas:
RL Unplugged: Benchmarks for Offline Reinforcement Learning. CoRR abs/2006.13888 (2020) - [i31]Ziyu Wang, Alexander Novikov, Konrad Zolna, Jost Tobias Springenberg, Scott E. Reed, Bobak Shahriari, Noah Y. Siegel, Josh Merel, Çaglar Gülçehre, Nicolas Heess, Nando de Freitas:
Critic Regularized Regression. CoRR abs/2006.15134 (2020) - [i30]Tom Le Paine, Cosmin Paduraru, Andrea Michi, Çaglar Gülçehre, Konrad Zolna, Alexander Novikov, Ziyu Wang, Nando de Freitas:
Hyperparameter Selection for Offline Reinforcement Learning. CoRR abs/2007.09055 (2020) - [i29]Levent Sagun, Çaglar Gülçehre, Adriana Romero, Negar Rostamzadeh, Stefano Sarao Mannelli:
Post-Workshop Report on Science meets Engineering in Deep Learning, NeurIPS 2019, Vancouver. CoRR abs/2007.13483 (2020) - [i28]Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Çaglar Gülçehre, Ziyu Wang, Yusuf Aytar, Misha Denil, Nando de Freitas, Scott E. Reed:
Offline Learning from Demonstrations and Unlabeled Experience. CoRR abs/2011.13885 (2020)
2010 – 2019
- 2019
- [j6]Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, David Silver:
Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nat. 575(7782): 350-354 (2019) - [j5]Li Jing, Çaglar Gülçehre, John Peurifoy, Yichen Shen, Max Tegmark, Marin Soljacic, Yoshua Bengio:
Gated Orthogonal Recurrent Units: On Learning to Forget. Neural Comput. 31(4) (2019) - [c22]Yutian Chen, Yannis M. Assael, Brendan Shillingford, David Budden, Scott E. Reed, Heiga Zen, Quan Wang, Luis C. Cobo, Andrew Trask, Ben Laurie, Çaglar Gülçehre, Aäron van den Oord, Oriol Vinyals, Nando de Freitas:
Sample Efficient Adaptive Text-to-Speech. ICLR (Poster) 2019 - [c21]Çaglar Gülçehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz Hermann, Peter W. Battaglia, Victor Bapst, David Raposo, Adam Santoro, Nando de Freitas:
Hyperbolic Attention Networks. ICLR (Poster) 2019 - [c20]Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Çaglar Gülçehre, Pedro A. Ortega, DJ Strouse, Joel Z. Leibo, Nando de Freitas:
Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning. ICML 2019: 3040-3049 - [i27]Tom Le Paine, Çaglar Gülçehre, Bobak Shahriari, Misha Denil, Matt Hoffman, Hubert Soyer, Richard Tanburn, Steven Kapturowski, Neil C. Rabinowitz, Duncan Williams, Gabriel Barth-Maron, Ziyu Wang, Nando de Freitas, Worlds Team:
Making Efficient Use of Demonstrations to Solve Hard Exploration Problems. CoRR abs/1909.01387 (2019) - [i26]Emilio Parisotto, H. Francis Song, Jack W. Rae, Razvan Pascanu, Çaglar Gülçehre, Siddhant M. Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, Matthew M. Botvinick, Nicolas Heess, Raia Hadsell:
Stabilizing Transformers for Reinforcement Learning. CoRR abs/1910.06764 (2019) - [i25]Albert Gu, Çaglar Gülçehre, Tom Le Paine, Matthew W. Hoffman, Razvan Pascanu:
Improving the Gating Mechanism of Recurrent Neural Networks. CoRR abs/1910.09890 (2019) - 2018
- [j4]Çaglar Gülçehre, Sarath Chandar, Kyunghyun Cho, Yoshua Bengio:
Dynamic Neural Turing Machine with Continuous and Discrete Addressing Schemes. Neural Comput. 30(4) (2018) - [c19]Li Jing, Çaglar Gülçehre, John Peurifoy, Yichen Shen, Max Tegmark, Marin Soljacic, Yoshua Bengio:
Gated Orthogonal Recurrent Units: On Learning to Forget. AAAI Workshops 2018: 720-726 - [i24]Çaglar Gülçehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz Hermann, Peter W. Battaglia, Victor Bapst, David Raposo, Adam Santoro, Nando de Freitas:
Hyperbolic Attention Networks. CoRR abs/1805.09786 (2018) - [i23]Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinícius Flores Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matthew M. Botvinick, Oriol Vinyals, Yujia Li, Razvan Pascanu:
Relational inductive biases, deep learning, and graph networks. CoRR abs/1806.01261 (2018) - [i22]Yutian Chen, Yannis M. Assael, Brendan Shillingford, David Budden, Scott E. Reed, Heiga Zen, Quan Wang, Luis C. Cobo, Andrew Trask, Ben Laurie, Çaglar Gülçehre, Aäron van den Oord, Oriol Vinyals, Nando de Freitas:
Sample Efficient Adaptive Text-to-Speech. CoRR abs/1809.10460 (2018) - [i21]Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Çaglar Gülçehre, Pedro A. Ortega, DJ Strouse, Joel Z. Leibo, Nando de Freitas:
Intrinsic Social Motivation via Causal Influence in Multi-Agent RL. CoRR abs/1810.08647 (2018) - 2017
- [j3]Çaglar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Yoshua Bengio:
On integrating a language model into neural machine translation. Comput. Speech Lang. 45: 137-148 (2017) - [c18]Tim Cooijmans, Nicolas Ballas, César Laurent, Çaglar Gülçehre, Aaron C. Courville:
Recurrent Batch Normalization. ICLR (Poster) 2017 - [c17]Çaglar Gülçehre, Marcin Moczulski, Francesco Visin, Yoshua Bengio:
Mollifying Networks. ICLR (Poster) 2017 - [c16]Çaglar Gülçehre, Jose Sotelo, Marcin Moczulski, Yoshua Bengio:
A robust adaptive stochastic gradient method for deep learning. IJCNN 2017: 125-132 - [c15]Çaglar Gülçehre, Francis Dutil, Adam Trischler, Yoshua Bengio:
Plan, Attend, Generate: Planning for Sequence-to-Sequence Models. NIPS 2017: 5474-5483 - [c14]Xingdi Yuan, Tong Wang, Çaglar Gülçehre, Alessandro Sordoni, Philip Bachman, Saizheng Zhang, Sandeep Subramanian, Adam Trischler:
Machine Comprehension by Text-to-Text Neural Question Generation. Rep4NLP@ACL 2017: 15-25 - [c13]Çaglar Gülçehre, Francis Dutil, Adam Trischler, Yoshua Bengio:
Plan, Attend, Generate: Character-Level Neural Machine Translation with Planning. Rep4NLP@ACL 2017: 228-234 - [i20]Çaglar Gülçehre, Sarath Chandar, Yoshua Bengio:
Memory Augmented Neural Networks with Wormhole Connections. CoRR abs/1701.08718 (2017) - [i19]Çaglar Gülçehre, Jose Sotelo, Marcin Moczulski, Yoshua Bengio:
A Robust Adaptive Stochastic Gradient Method for Deep Learning. CoRR abs/1703.00788 (2017) - [i18]Xingdi Yuan, Tong Wang, Çaglar Gülçehre, Alessandro Sordoni, Philip Bachman, Sandeep Subramanian, Saizheng Zhang, Adam Trischler:
Machine Comprehension by Text-to-Text Neural Question Generation. CoRR abs/1705.02012 (2017) - [i17]Li Jing, Çaglar Gülçehre, John Peurifoy, Yichen Shen, Max Tegmark, Marin Soljacic, Yoshua Bengio:
Gated Orthogonal Recurrent Units: On Learning to Forget. CoRR abs/1706.02761 (2017) - [i16]Çaglar Gülçehre, Francis Dutil, Adam Trischler, Yoshua Bengio:
Plan, Attend, Generate: Character-level Neural Machine Translation with Planning in the Decoder. CoRR abs/1706.05087 (2017) - [i15]Francis Dutil, Çaglar Gülçehre, Adam Trischler, Yoshua Bengio:
Plan, Attend, Generate: Planning for Sequence-to-Sequence Models. CoRR abs/1711.10462 (2017) - 2016
- [j2]Çaglar Gülçehre, Yoshua Bengio:
Knowledge Matters: Importance of Prior Information for Optimization. J. Mach. Learn. Res. 17: 8:1-8:32 (2016) - [j1]Samira Ebrahimi Kahou, Xavier Bouthillier, Pascal Lamblin, Çaglar Gülçehre, Vincent Michalski, Kishore Konda, Sébastien Jean, Pierre Froumenty, Yann N. Dauphin, Nicolas Boulanger-Lewandowski, Raul Chandias Ferrari, Mehdi Mirza, David Warde-Farley, Aaron C. Courville, Pascal Vincent, Roland Memisevic, Christopher Joseph Pal, Yoshua Bengio:
EmoNets: Multimodal deep learning approaches for emotion recognition in video. J. Multimodal User Interfaces 10(2): 99-111 (2016) - [c12]Çaglar Gülçehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, Yoshua Bengio:
Pointing the Unknown Words. ACL (1) 2016 - [c11]Iulian Vlad Serban, Alberto García-Durán, Çaglar Gülçehre, Sungjin Ahn, Sarath Chandar, Aaron C. Courville, Yoshua Bengio:
Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus. ACL (1) 2016 - [c10]Ramesh Nallapati, Bowen Zhou, Cícero Nogueira dos Santos, Çaglar Gülçehre, Bing Xiang:
Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond. CoNLL 2016: 280-290 - [c9]Çaglar Gülçehre, Marcin Moczulski, Misha Denil, Yoshua Bengio:
Noisy Activation Functions. ICML 2016: 3059-3068 - [c8]Andrei A. Rusu, Sergio Gomez Colmenarejo, Çaglar Gülçehre, Guillaume Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, Raia Hadsell:
Policy Distillation. ICLR (Poster) 2016 - [i14]Çaglar Gülçehre, Marcin Moczulski, Misha Denil, Yoshua Bengio:
Noisy Activation Functions. CoRR abs/1603.00391 (2016) - [i13]Iulian Vlad Serban, Alberto García-Durán, Çaglar Gülçehre, Sungjin Ahn, Sarath Chandar, Aaron C. Courville, Yoshua Bengio:
Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus. CoRR abs/1603.06807 (2016) - [i12]Çaglar Gülçehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, Yoshua Bengio:
Pointing the Unknown Words. CoRR abs/1603.08148 (2016) - [i11]Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermüller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, Yoshua Bengio, Arnaud Bergeron, James Bergstra, Valentin Bisson, Josh Bleecher Snyder, Nicolas Bouchard, Nicolas Boulanger-Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier Breuleux, Pierre Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul F. Christiano, Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté, Aaron C. Courville, Yann N. Dauphin, Olivier Delalleau, Julien Demouth, Guillaume Desjardins, Sander Dieleman, Laurent Dinh, Melanie Ducoffe, Vincent Dumoulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain, Xavier Glorot, Ian J. Goodfellow, Matthew Graham, Çaglar Gülçehre, Philippe Hamel, Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent, Sean Lee, Simon Lefrançois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A. Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier Mastropietro, Robert McGibbon, Roland Memisevic, Bart van Merriënboer, Vincent Michalski, Mehdi Mirza, Alberto Orlandi, Christopher Joseph Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Peter Sadowski, John Salvatier, François Savard, Jan Schlüter, John Schulman, Gabriel Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian, Étienne Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub Sygnowski, Jérémie Tanguay, Gijs van Tulder, Joseph P. Turian, Sebastian Urban, Pascal Vincent, Francesco Visin, Harm de Vries, David Warde-Farley, Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, Ying Zhang:
Theano: A Python framework for fast computation of mathematical expressions. CoRR abs/1605.02688 (2016) - [i10]Çaglar Gülçehre, Sarath Chandar, Kyunghyun Cho, Yoshua Bengio:
Dynamic Neural Turing Machine with Soft and Hard Addressing Schemes. CoRR abs/1607.00036 (2016) - [i9]Çaglar Gülçehre, Marcin Moczulski, Francesco Visin, Yoshua Bengio:
Mollifying Networks. CoRR abs/1608.04980 (2016) - 2015
- [c7]Junyoung Chung, Çaglar Gülçehre, Kyunghyun Cho, Yoshua Bengio:
Gated Feedback Recurrent Neural Networks. ICML 2015: 2067-2075 - [i8]Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, Yoshua Bengio:
Gated Feedback Recurrent Neural Networks. CoRR abs/1502.02367 (2015) - [i7]Samira Ebrahimi Kahou, Xavier Bouthillier, Pascal Lamblin, Çaglar Gülçehre, Vincent Michalski, Kishore Reddy Konda, Sébastien Jean, Pierre Froumenty, Yann N. Dauphin, Nicolas Boulanger-Lewandowski, Raul Chandias Ferrari, Mehdi Mirza, David Warde-Farley, Aaron C. Courville, Pascal Vincent, Roland Memisevic, Christopher J. Pal, Yoshua Bengio:
EmoNets: Multimodal deep learning approaches for emotion recognition in video. CoRR abs/1503.01800 (2015) - [i6]Çaglar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loïc Barrault, Huei-Chi Lin, Fethi Bougares, Holger Schwenk, Yoshua Bengio:
On Using Monolingual Corpora in Neural Machine Translation. CoRR abs/1503.03535 (2015) - 2014
- [c6]Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio:
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. EMNLP 2014: 1724-1734 - [c5]Yann N. Dauphin, Razvan Pascanu, Çaglar Gülçehre, KyungHyun Cho, Surya Ganguli, Yoshua Bengio:
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. NIPS 2014: 2933-2941 - [c4]Çaglar Gülçehre, KyungHyun Cho, Razvan Pascanu, Yoshua Bengio:
Learned-Norm Pooling for Deep Feedforward and Recurrent Neural Networks. ECML/PKDD (1) 2014: 530-546 - [c3]Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, Yoshua Bengio:
How to Construct Deep Recurrent Neural Networks. ICLR (Poster) 2014 - [i5]Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, Yoshua Bengio:
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. CoRR abs/1406.1078 (2014) - [i4]Yann N. Dauphin, Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, Surya Ganguli, Yoshua Bengio:
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. CoRR abs/1406.2572 (2014) - [i3]Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, Yoshua Bengio:
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. CoRR abs/1412.3555 (2014) - [i2]Çaglar Gülçehre, Yoshua Bengio:
ADASECANT: Robust Adaptive Secant Method for Stochastic Gradient. CoRR abs/1412.7419 (2014) - 2013
- [c2]Samira Ebrahimi Kahou, Christopher J. Pal, Xavier Bouthillier, Pierre Froumenty, Çaglar Gülçehre, Roland Memisevic, Pascal Vincent, Aaron C. Courville, Yoshua Bengio, Raul Chandias Ferrari, Mehdi Mirza, Sébastien Jean, Pierre Luc Carrier, Yann N. Dauphin, Nicolas Boulanger-Lewandowski, Abhishek Aggarwal, Jeremie Zumer, Pascal Lamblin, Jean-Philippe Raymond, Guillaume Desjardins, Razvan Pascanu, David Warde-Farley, Atousa Torabi, Arjun Sharma, Emmanuel Bengio, Kishore Reddy Konda, Zhenzhou Wu:
Combining modality specific deep neural networks for emotion recognition in video. ICMI 2013: 543-550 - [c1]Çaglar Gülçehre, Yoshua Bengio:
Knowledge Matters: Importance of Prior Information for Optimization. ICLR 2013 - [i1]Çaglar Gülçehre, Kyunghyun Cho, Razvan Pascanu, Yoshua Bengio:
Learned-norm pooling for deep neural networks. CoRR abs/1311.1780 (2013)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-24 18:08 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint