default search action
Amanda Randles
Person information
- affiliation: Duke University
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j23]Cyrus Tanade, Nusrat Sadia Khan, Emily Rakestraw, William Ladd, Erik W. Draeger, Amanda Randles:
Establishing the longitudinal hemodynamic mapping framework for wearable-driven coronary digital twins. npj Digit. Medicine 7(1) (2024) - [c44]Cyrus Tanade, Amanda Randles:
HarVI: Real-Time Intervention Planning for Coronary Artery Disease Using Machine Learning. ICCS (1) 2024: 48-62 - [c43]Justen R. Geddes, Cyrus Tanade, William Ladd, Nusrat Sadia Khan, Amanda Randles:
Velocity Temporal Shape Affects Simulated Flow in Left Coronary Arteries. ICCS (1) 2024: 121-135 - [c42]Aristotle X. Martin, Geng Liu, Bálint Joó, Runxin Wu, Mohammed Shihab Kabir, Erik W. Draeger, Amanda Randles:
Designing a GPU-Accelerated Communication Layer for Efficient Fluid-Structure Interaction Computations on Heterogeneous Systems. SC 2024: 93 - 2023
- [j22]Marianna Pepona, John Gounley, Amanda Randles:
Effect of constitutive law on the erythrocyte membrane response to large strains. Comput. Math. Appl. 132: 145-160 (2023) - [j21]Cyrus Tanade, Sarah B. Putney, Amanda Randles:
Establishing massively parallel models to examine the influence of cell heterogeneity on tumor growth. J. Comput. Sci. 71: 102059 (2023) - [j20]Sayan Roychowdhury, Erik W. Draeger, Amanda Randles:
Establishing metrics to quantify spatial similarity in spherical and red blood cell distributions. J. Comput. Sci. 71: 102060 (2023) - [c41]William Ladd, Christopher Jensen, Madhurima Vardhan, Jeff Ames, Jeff R. Hammond, Erik W. Draeger, Amanda Randles:
Optimizing Cloud Computing Resource Usage for Hemodynamic Simulation. IPDPS 2023: 568-578 - [c40]Ayman Z. Yousef, Erik W. Draeger, Amanda Randles:
Low-Cost Post Hoc Reconstruction of HPC Simulations at Full Resolution. LDAV 2023: 17-21 - [c39]Sayan Roychowdhury, Samreen T. Mahmud, Aristotle X. Martin, Peter Balogh, Daniel F. Puleri, John Gounley, Erik W. Draeger, Amanda Randles:
Enhancing Adaptive Physics Refinement Simulations Through the Addition of Realistic Red Blood Cell Counts. SC 2023: 41:1-41:13 - [c38]Cyrus Tanade, Emily Rakestraw, William Ladd, Erik W. Draeger, Amanda Randles:
Cloud Computing to Enable Wearable-Driven Longitudinal Hemodynamic Maps. SC 2023: 82:1-82:14 - [c37]Aristotle X. Martin, Geng Liu, William Ladd, Seyong Lee, John Gounley, Jeffrey S. Vetter, Saumil Patel, Silvio Rizzi, Victor A. Mateevitsi, Joseph A. Insley, Amanda Randles:
Performance Evaluation of Heterogeneous GPU Programming Frameworks for Hemodynamic Simulations. SC Workshops 2023: 1126-1137 - [c36]Pedro Valero-Lara, Jeffrey S. Vetter, John Gounley, Amanda Randles:
Moment Representation of Regularized Lattice Boltzmann Methods on NVIDIA and AMD GPUs. SC Workshops 2023: 1697-1704 - 2022
- [j19]Bradley Feiger, Erick Lorenzana-Saldivar, Colin L. V. Cooke, Roarke Horstmeyer, Muath Bishawi, Julie Doberne, G. Chad Hughes, David Ranney, Soraya Voigt, Amanda Randles:
Evaluation of U-Net Based Architectures for Automatic Aortic Dissection Segmentation. ACM Trans. Comput. Heal. 3(1): 11:1-11:16 (2022) - [j18]John Gounley, Madhurima Vardhan, Erik W. Draeger, Pedro Valero-Lara, Shirley V. Moore, Amanda Randles:
Propagation Pattern for Moment Representation of the Lattice Boltzmann Method. IEEE Trans. Parallel Distributed Syst. 33(3): 642-653 (2022) - [c35]Daniel F. Puleri, Sayan Roychowdhury, Peter Balogh, John Gounley, Erik W. Draeger, Jeff Ames, Adebayo Adebiyi, Simbarashe Chidyagwai, Benjamín Hernández, Seyong Lee, Shirley V. Moore, Jeffrey S. Vetter, Amanda Randles:
High Performance Adaptive Physics Refinement to Enable Large-Scale Tracking of Cancer Cell Trajectory. CLUSTER 2022: 230-242 - [c34]Cyrus Tanade, Sarah B. Putney, Amanda Randles:
Developing a Scalable Cellular Automaton Model of 3D Tumor Growth. ICCS (1) 2022: 3-16 - [c33]Sayan Roychowdhury, Erik W. Draeger, Amanda Randles:
Establishing Metrics to Quantify Underlying Structure in Vascular Red Blood Cell Distributions. ICCS (1) 2022: 89-102 - [c32]Muath Bishawi, Michael Kaplan, Simbarashe Chidyagwai, Jhaymie Cappiello, Anne Cherry, David MacLeod, Ken Gall, Nathan Evans, Michael Kim, Rajib Shaha, John Whittle, Melanie Hollidge, George Truskey, Amanda Randles:
Patient- and Ventilator-Specific Modeling to Drive the Use and Development of 3D Printed Devices for Rapid Ventilator Splitting During the COVID-19 Pandemic. ICCS (3) 2022: 137-149 - [c31]Daniel F. Puleri, Aristotle X. Martin, Amanda Randles:
Distributed Acceleration of Adhesive Dynamics Simulations. EuroMPI 2022: 37-45 - [c30]Madhurima Vardhan, Harvey Shi, David Urick, Manesh Patel, Jane A. Leopold, Amanda Randles:
The role of extended reality for planning coronary artery bypass graft surgery. IEEE VIS (Short Papers) 2022: 115-119 - [i1]Haoyang Yang, Pratham Darrpan Mehta, Jonathan Leo, Zhiyan Zhou, Megan Dass, Anish Upadhayay, Timothy C. Slesnick, Fawwaz Shaw, Amanda Randles, Duen Horng Chau:
Evaluating Cardiovascular Surgical Planning in Mobile Augmented Reality. CoRR abs/2208.10639 (2022) - 2021
- [j17]Bradley Feiger, Adebayo Adebiyi, Amanda Randles:
Multiscale modeling of blood flow to assess neurological complications in patients supported by venoarterial extracorporeal membrane oxygenation. Comput. Biol. Medicine 129: 104155 (2021) - [j16]Jaydeep P. Bardhan, Mary Ann E. Leung, Eileen Martin, Amanda Randles:
DOE Computational Science Graduate Fellowship Research Showcase. Comput. Sci. Eng. 23(6): 5-8 (2021) - [j15]Gregory J. Herschlag, Seyong Lee, Jeffrey S. Vetter, Amanda Randles:
Analysis of GPU Data Access Patterns on Complex Geometries for the D3Q19 Lattice Boltzmann Algorithm. IEEE Trans. Parallel Distributed Syst. 32(10): 2400-2414 (2021) - [c29]Bradley Feiger, Erick Lorenzana, David Ranney, Muath Bishawi, Julie Doberne, Andrew Vekstein, Soraya Voigt, G. Chad Hughes, Amanda Randles:
Predicting aneurysmal degeneration of type B aortic dissection with computational fluid dynamics. BCB 2021: 13:1-13:6 - [c28]Cyrus Tanade, Bradley Feiger, Madhurima Vardhan, S. James Chen, Jane A. Leopold, Amanda Randles:
Global Sensitivity Analysis For Clinically Validated 1D Models of Fractional Flow Reserve. EMBC 2021: 4395-4398 - [c27]Xiaoqian Liu, Madhurima Vardhan, Qinrou Wen, Arpita Das, Amanda Randles, Eric C. Chi:
An Interpretable Machine Learning Model to Classify Coronary Bifurcation Lesions. EMBC 2021: 4432-4435 - 2020
- [j14]Michael Kaplan, Charles Kneifel, Victor Orlikowski, James Dorff, Mike Newton, Andy Howard, Don Shinn, Muath Bishawi, Simbarashe Chidyagwai, Peter Balogh, Amanda Randles:
Cloud Computing for COVID-19: Lessons Learned From Massively Parallel Models of Ventilator Splitting. Comput. Sci. Eng. 22(6): 37-47 (2020) - [j13]Harvey Shi, Jeff Ames, Amanda Randles:
Harvis: an interactive virtual reality tool for hemodynamic modification and simulation. J. Comput. Sci. 43: 101091 (2020) - [j12]Jeff Ames, Daniel F. Puleri, Peter Balogh, John Gounley, Erik W. Draeger, Amanda Randles:
Multi-GPU immersed boundary method hemodynamics simulations. J. Comput. Sci. 44: 101153 (2020) - [c26]Daniel F. Puleri, Sayan Roychowdhury, Jeff Ames, Amanda Randles:
Computational Framework to Evaluate the Hydrodynamics of Cell Scaffold Geometries. EMBC 2020: 2299-2302 - [c25]Sayan Roychowdhury, John Gounley, Amanda Randles:
Evaluating the Influence of Hemorheological Parameters on Circulating Tumor Cell Trajectory and Simulation Time. PASC 2020: 4:1-4:10
2010 – 2019
- 2019
- [j11]John Gounley, Madhurima Vardhan, Amanda Randles:
A framework for comparing vascular hemodynamics at different points in time. Comput. Phys. Commun. 235: 1-8 (2019) - [j10]Seyong Lee, John Gounley, Amanda Randles, Jeffrey S. Vetter:
Performance portability study for massively parallel computational fluid dynamics application on scalable heterogeneous architectures. J. Parallel Distributed Comput. 129: 1-13 (2019) - [c24]Gregory Herschlag, John Gounley, Sayan Roychowdhury, Erik W. Draeger, Amanda Randles:
Multi-physics simulations of particle tracking in arterial geometries with a scalable moving window algorithm. CLUSTER 2019: 1-11 - [c23]John Gounley, Erik W. Draeger, Amanda Randles:
Immersed Boundary Method Halo Exchange in a Hemodynamics Application. ICCS (1) 2019: 441-455 - [c22]Jeff Ames, Silvio Rizzi, Joseph A. Insley, Saumil Patel, Benjamín Hernández, Erik W. Draeger, Amanda Randles:
Low-Overhead In Situ Visualization Using Halo Replay. LDAV 2019: 16-26 - [c21]Madhurima Vardhan, Harvey Shi, John Gounley, S. James Chen, Andrew Kahn, Jane A. Leopold, Amanda Randles:
Investigating the Role of VR in a Simulation-Based Medical Planning System for Coronary Interventions. MICCAI (5) 2019: 366-374 - [c20]Madhurima Vardhan, John Gounley, Luiz Hegele, Erik W. Draeger, Amanda Randles:
Moment representation in the lattice Boltzmann method on massively parallel hardware. SC 2019: 34:1-34:21 - 2018
- [c19]Madhurima Vardhan, Arpita Das, Jonn Gouruev, Amanda Randles:
Computational Fluid Modeling to Understand the Role of Anatomy in Bifurcation Lesion Disease. HiPC Workshops 2018: 928-933 - [c18]Gregory Herschlag, Seyong Lee, Jeffrey S. Vetter, Amanda Randles:
GPU Data Access on Complex Geometries for D3Q19 Lattice Boltzmann Method. IPDPS 2018: 825-834 - 2017
- [c17]John Gounley, Erik W. Draeger, Amanda Randles:
Numerical simulation of a compound capsule in a constricted microchannel. ICCS 2017: 175-184 - [c16]John Gounley, Madhurima Vardhan, Amanda Randles:
A Computational Framework to Assess the Influence of Changes in Vascular Geometry on Blood Flow. PASC 2017: 2:1-2:8 - 2016
- [c15]John Gounley, Rafeed Chaudhury, Madhurima Vardhan, Michael Driscoll, Girish Pathangey, Kevin Winarta, Justin Ryan, David H. Frakes, Amanda Randles:
Does the degree of coarctation of the aorta influence wall shear stress focal heterogeneity? EMBC 2016: 3429-3432 - 2015
- [j9]Zhu Ming Bi, Yanfei Liu, Blane Baumgartner, Eric Culver, J. N. Sorokin, Amanda E. Peters, Blaine Cox, Jessica Hunnicutt, John Yurek, Stephen O'Shaughnessey:
Reusing industrial robots to achieve sustainability in small and medium-sized enterprises (SMEs). Ind. Robot 42(3): 264-273 (2015) - [j8]Amanda Randles, Erik W. Draeger, Peter E. Bailey:
Massively parallel simulations of hemodynamics in the primary large arteries of the human vasculature. J. Comput. Sci. 9: 70-75 (2015) - [j7]Yang You, Haohuan Fu, Shuaiwen Leon Song, Amanda Peters Randles, Darren J. Kerbyson, Andres Marquez, Guangwen Yang, Adolfy Hoisie:
Scaling Support Vector Machines on modern HPC platforms. J. Parallel Distributed Comput. 76: 16-31 (2015) - [c14]Amanda Randles, Erik W. Draeger, Tomas Oppelstrup, Liam Krauss, John A. Gunnels:
Massively parallel models of the human circulatory system. SC 2015: 1:1-1:11 - 2014
- [j6]Amanda Peters Randles, Efthimios Kaxiras:
Parallel in time approximation of the lattice Boltzmann method for laminar flows. J. Comput. Phys. 270: 577-586 (2014) - [c13]Amanda Randles, Erik W. Draeger, Franziska Michor:
Analysis of Pressure Gradient Across Aortic Stenosis with Massively Parallel Computational Simulation. CinC 2014: 217-220 - [c12]Amanda Peters Randles, Efthimios Kaxiras:
A Spatio-temporal Coupling Method to Reduce the Time-to-Solution of Cardiovascular Simulations. IPDPS 2014: 593-602 - [c11]Yang You, Shuaiwen Leon Song, Haohuan Fu, Andres Marquez, Maryam Mehri Dehnavi, Kevin J. Barker, Kirk W. Cameron, Amanda Peters Randles, Guangwen Yang:
MIC-SVM: Designing a Highly Efficient Support Vector Machine for Advanced Modern Multi-core and Many-Core Architectures. IPDPS 2014: 809-818 - [c10]Vivek Kale, Amanda Peters Randles, William D. Gropp:
Locality-Optimized Mixed Static/Dynamic Scheduling for Improving Load Balancing on SMPs. EuroMPI/ASIA 2014: 115 - 2013
- [j5]David E. Keyes, Lois C. McInnes, Carol S. Woodward, William Gropp, Eric Myra, Michael Pernice, John B. Bell, Jed Brown, Alain Clo, Jeffrey M. Connors, Emil M. Constantinescu, Donald J. Estep, Kate Evans, Charbel Farhat, Ammar Hakim, Glenn Hammond, Glen Hansen, Judith Hill, Tobin Isaac, Xiangmin Jiao, Kirk E. Jordan, Dinesh K. Kaushik, Efthimios Kaxiras, Alice E. Koniges, Kihwan Lee, Aaron Lott, Qiming Lu, John Magerlein, Reed Maxwell, Michael McCourt, Miriam Mehl, Roger P. Pawlowski, Amanda Peters Randles, Daniel R. Reynolds, Beatrice Riviere, Ulrich Rüde, Timothy D. Scheibe, John N. Shadid, Brendan Sheehan, Mark S. Shephard, Andrew R. Siegel, Barry Smith, Xianzhu Tang, Cian Wilson, Barbara I. Wohlmuth:
Multiphysics simulations: Challenges and opportunities. Int. J. High Perform. Comput. Appl. 27(1): 4-83 (2013) - [c9]Amanda Peters Randles, Vivek Kale, Jeff R. Hammond, William Gropp, Efthimios Kaxiras:
Performance Analysis of the Lattice Boltzmann Model Beyond Navier-Stokes. IPDPS 2013: 1063-1074 - [c8]Amanda Peters Randles, David G. Rand, Christopher Lee, Greg Morrisett, Jayanta Sircar, Martin A. Nowak, Hanspeter Pfister:
Massively Parallel Model of Extended Memory Use in Evolutionary Game Dynamics. IPDPS 2013: 1217-1228 - 2012
- [c7]Amanda Peters Randles, Moritz Bächer, Hanspeter Pfister, Efthimios Kaxiras:
A Lattice Boltzmann Simulation of Hemodynamics in a Patient-Specific Aortic Coarctation Model. STACOM 2012: 17-25 - [c6]Amanda Peters Randles:
Massively Parallel Model of Evolutionary Game Dynamics. SC Companion 2012: 1531 - 2011
- [j4]Barry Robson, Jin Li, Richard Dettinger, Amanda E. Peters, Stephen K. Boyer:
Drug discovery using very large numbers of patents. General strategy with extensive use of match and edit operations. J. Comput. Aided Mol. Des. 25(5): 427-441 (2011) - [j3]Michelle Borkin, Krzysztof Gajos, Amanda Peters Randles, Dimitrios Mitsouras, Simone Melchionna, Frank J. Rybicki, Charles L. Feldman, Hanspeter Pfister:
Evaluation of Artery Visualizations for Heart Disease Diagnosis. IEEE Trans. Vis. Comput. Graph. 17(12): 2479-2488 (2011) - [c5]Amanda E. Peters, Linda Zeger:
Efficient methods for broadcasting multi-slot messages with random access with capture. MILCOM 2011: 1838-1844 - 2010
- [c4]Amanda Peters Randles, Simone Melchionna, Efthimios Kaxiras, Jonas Lätt, Joy K. Sircar, Massimo Bernaschi, Mauro Bisson, Sauro Succi:
Multiscale Simulation of Cardiovascular flows on the IBM Bluegene/P: Full Heart-Circulation System at Red-Blood Cell Resolution. SC 2010: 1-10
2000 – 2009
- 2008
- [j2]Yuan-Ping Pang, Timothy J. Mullins, Brent A. Swartz, Jeff S. McAllister, Brian E. Smith, Charles Archer, Roy G. Musselman, Amanda E. Peters, Brian P. Wallenfelt, Kurt W. Pinnow:
EUDOC on the IBM Blue Gene/L system: Accelerating the transfer of drug discoveries from laboratory to patient. IBM J. Res. Dev. 52(1-2): 69-82 (2008) - [j1]Karl Jiang, Oystein Thorsen, Amanda E. Peters, Brian E. Smith, Carlos P. Sosa:
An Efficient Parallel Implementation of the Hidden Markov Methods for Genomic Sequence-Search on a Massively Parallel System. IEEE Trans. Parallel Distributed Syst. 19(1): 15-23 (2008) - [c3]Amanda E. Peters, Alan King, Tom Budnik, Paul McCarthy, Pat Michaud, Mike Mundy, Jim Sexton, Greg Stewart:
Asynchronous task dispatch for high throughput computing for the eServer IBM Blue Gene® Supercomputer. IPDPS 2008: 1-7 - 2007
- [c2]Oystein Thorsen, Brian E. Smith, Carlos P. Sosa, Karl Jiang, Heshan Lin, Amanda E. Peters, Wu-chun Feng:
Parallel genomic sequence-search on a massively parallel system. Conf. Computing Frontiers 2007: 59-68 - 2006
- [c1]Yuan-Ping Pang, Brent A. Swartz, Brian E. Smith, Timothy J. Mullins, Amanda E. Peters, Roy G. Musselman:
Poster reception - Optimizing EUDOC for the IBM eServer Blue Gene supercomputer. SC 2006: 174
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-22 20:02 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint