default search action
Elmar Rueckert
Person information
- affiliation: University of Lübeck, Institute for Robotics and Cognitive Systems, Germany
- affiliation: TU Darmstadt, Intelligent Autonomous Systems Lab, Germany
- affiliation: Graz University of Technology, Institute for Theoretical Computer Science, Austria
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j12]Tjasa Kunavar, Marko Jamsek, Edwin Johnatan Avila Mireles, Elmar Rueckert, Luka Peternel, Jan Babic:
The Effects of Different Motor Teaching Strategies on Learning a Complex Motor Task. Sensors 24(4): 1231 (2024) - [c29]Linus Nwankwo, Elmar Rueckert:
The Conversation is the Command: Interacting with Real-World Autonomous Robots Through Natural Language. HRI (Companion) 2024: 808-812 - [c28]Vedant Dave, Fotios Lygerakis, Elmar Rueckert:
Multimodal Visual-Tactile Representation Learning through Self-Supervised Contrastive Pre-Training. ICRA 2024: 8013-8020 - [c27]Nikolaus Feith, Elmar Rueckert:
Advancing Interactive Robot Learning: A User Interface Leveraging Mixed Reality and Dual Quaternions. UR 2024: 21-26 - [c26]Melanie Neubauer, Elmar A. Rückert:
Semi-Autonomous Fast Object Segmentation and Tracking Tool for Industrial Applications. UR 2024: 77-83 - [c25]Nikolaus Feith, Elmar Rueckert:
Integrating Human Expertise in Continuous Spaces: A Novel Interactive Bayesian Optimization Framework with Preference Expected Improvement. UR 2024: 220-226 - [c24]Fotios Lygerakis, Vedant Dave, Elmar Rueckert:
M2CURL: Sample-Efficient Multimodal Reinforcement Learning via Self-Supervised Representation Learning for Robotic Manipulation. UR 2024: 490-497 - [i24]Linus Nwankwo, Elmar Rueckert:
The Conversation is the Command: Interacting with Real-World Autonomous Robot Through Natural Language. CoRR abs/2401.11838 (2024) - [i23]Vedant Dave, Fotios Lygerakis, Elmar Rueckert:
Multimodal Visual-Tactile Representation Learning through Self-Supervised Contrastive Pre-Training. CoRR abs/2401.12024 (2024) - [i22]Nikolaus Feith, Elmar Rueckert:
Integrating Human Expertise in Continuous Spaces: A Novel Interactive Bayesian Optimization Framework with Preference Expected Improvement. CoRR abs/2401.12662 (2024) - [i21]Fotios Lygerakis, Vedant Dave, Elmar Rueckert:
M2CURL: Sample-Efficient Multimodal Reinforcement Learning via Self-Supervised Representation Learning for Robotic Manipulation. CoRR abs/2401.17032 (2024) - [i20]Linus Nwankwo, Elmar Rueckert:
Multimodal Human-Autonomous Agents Interaction Using Pre-Trained Language and Visual Foundation Models. CoRR abs/2403.12273 (2024) - [i19]Fotios Lygerakis, Elmar Rueckert:
ED-VAE: Entropy Decomposition of ELBO in Variational Autoencoders. CoRR abs/2407.06797 (2024) - [i18]Linus Nwankwo, Bjoern Ellensohn, Vedant Dave, Peter Hofer, Jan Forstner, Marlene Villneuve, Robert Galler, Elmar Rueckert:
EnvoDat: A Large-Scale Multisensory Dataset for Robotic Spatial Awareness and Semantic Reasoning in Heterogeneous Environments. CoRR abs/2410.22200 (2024) - 2023
- [c23]Harsh Yadav, Honghu Xue, Yan Rudall, Mohamed Bakr, Benedikt Hein, Elmar Rueckert, Ngoc Thinh Nguyen:
Deep Reinforcement Learning for Mapless Navigation of Autonomous Mobile Robot. ICSTCC 2023: 283-288 - [i17]Nwankwo Linus, Elmar Rueckert:
Understanding why SLAM algorithms fail in modern indoor environments. CoRR abs/2305.05313 (2023) - [i16]Fotios Lygerakis, Elmar Rueckert:
CR-VAE: Contrastive Regularization on Variational Autoencoders for Preventing Posterior Collapse. CoRR abs/2309.02968 (2023) - 2022
- [c22]Honghu Xue, Rui Song, Julian Petzold, Benedikt Hein, Heiko Hamann, Elmar Rueckert:
End-To-End Deep Reinforcement Learning for First-Person Pedestrian Visual Navigation in Urban Environments. Humanoids 2022: 350-357 - [c21]Vedant Dave, Elmar Rueckert:
Predicting full-arm grasping motions from anticipated tactile responses. Humanoids 2022: 464-471 - [i15]Honghu Xue, Benedikt Hein, Mohamed Bakr, Georg Schildbach, Bengt Abel, Elmar Rueckert:
Using Deep Reinforcement Learning with Automatic Curriculum earning for Mapless Navigation in Intralogistics. CoRR abs/2202.11512 (2022) - [i14]Nwankwo Linus, Fritze Clemens, Konrad Bartsch, Elmar Rueckert:
O2S: Open-source open shuttle. CoRR abs/2210.01627 (2022) - 2021
- [j11]Mehmet Ege Cansev, Honghu Xue, Nils Rottmann, Adna Bliek, Luke E. Miller, Elmar Rueckert, Philipp Beckerle:
Interactive Human-Robot Skill Transfer: A Review of Learning Methods and User Experience. Adv. Intell. Syst. 3(7): 2000247 (2021) - [j10]Honghu Xue, Rebecca Herzog, Till M. Berger, Tobias Bäumer, Anne Weissbach, Elmar Rueckert:
Using Probabilistic Movement Primitives in Analyzing Human Motion Differences Under Transcranial Current Stimulation. Frontiers Robotics AI 8: 721890 (2021) - [j9]Marko Jamsek, Tjasa Kunavar, Urban Bobek, Elmar Rueckert, Jan Babic:
Predictive Exoskeleton Control for Arm-Motion Augmentation Based on Probabilistic Movement Primitives Combined With a Flow Controller. IEEE Robotics Autom. Lett. 6(3): 4417-4424 (2021) - [j8]Daniel Tanneberg, Kai Ploeger, Elmar Rueckert, Jan Peters:
SKID RAW: Skill Discovery From Raw Trajectories. IEEE Robotics Autom. Lett. 6(3): 4696-4703 (2021) - [c20]Nils Rottmann, Robin Denz, Ralf Bruder, Elmar Rueckert:
A Probabilistic Approach for Complete Coverage Path Planning with low-cost Systems. ECMR 2021: 1-8 - [c19]Robin Denz, Rabia Demirci, Mehmet Ege Cansev, Adna Bliek, Philipp Beckerle, Elmar Rueckert, Nils Rottmann:
A high-accuracy, low-budget Sensor Glove for Trajectory Model Learning. ICAR 2021: 1109-1115 - [e1]Stefan Edelkamp, Ralf Möller, Elmar Rueckert:
KI 2021: Advances in Artificial Intelligence - 44th German Conference on AI, Virtual Event, September 27 - October 1, 2021, Proceedings. Lecture Notes in Computer Science 12873, Springer 2021, ISBN 978-3-030-87625-8 [contents] - [i13]Daniel Tanneberg, Kai Ploeger, Elmar Rueckert, Jan Peters:
SKID RAW: Skill Discovery from Raw Trajectories. CoRR abs/2103.14610 (2021) - [i12]Daniel Tanneberg, Elmar Rueckert, Jan Peters:
Evolutionary Training and Abstraction Yields Algorithmic Generalization of Neural Computers. CoRR abs/2105.07957 (2021) - [i11]Honghu Xue, Rebecca Herzog, Till M. Berger, Tobias Bäumer, Anne Weissbach, Elmar Rueckert:
Using Probabilistic Movement Primitives in Analyzing Human Motion Difference under Transcranial Current Stimulation. CoRR abs/2107.02063 (2021) - 2020
- [j7]Daniel Tanneberg, Elmar Rueckert, Jan Peters:
Evolutionary training and abstraction yields algorithmic generalization of neural computers. Nat. Mach. Intell. 2(12): 753-763 (2020) - [c18]Nils Rottmann, Ralf Bruder, Achim Schweikard, Elmar Rueckert:
Exploiting Chlorophyll Fluorescense for building robust low-cost Mowing Area Detectors. IEEE SENSORS 2020: 1-4 - [c17]Nils Rottmann, Tjasa Kunavar, Jan Babic, Jan Peters, Elmar Rueckert:
Learning Hierarchical Acquisition Functions for Bayesian Optimization. IROS 2020: 5490-5496 - [i10]Nils Rottmann, Nico Studt, Floris Ernst, Elmar Rueckert:
ROS-Mobile: An Android application for the Robot Operating System. CoRR abs/2011.02781 (2020) - [i9]Nils Rottmann, Ralf Bruder, Honghu Xue, Achim Schweikard, Elmar Rueckert:
Parameter Optimization for Loop Closure Detection in Closed Environments. CoRR abs/2011.06286 (2020)
2010 – 2019
- 2019
- [j6]Daniel Tanneberg, Jan Peters, Elmar Rueckert:
Intrinsic motivation and mental replay enable efficient online adaptation in stochastic recurrent networks. Neural Networks 109: 67-80 (2019) - [c16]Nils Rottmann, Ralf Bruder, Achim Schweikard, Elmar Rueckert:
Cataglyphis Ant Navigation Strategies Solve the Global Localization Problem in Robots with Binary Sensors. BIOSIGNALS 2019: 214-223 - [c15]Nils Rottmann, Ralf Bruder, Achim Schweikard, Elmar Rueckert:
Loop Closure Detection in Closed Environments. ECMR 2019: 1-8 - [c14]Svenja Stark, Jan Peters, Elmar Rueckert:
Experience Reuse with Probabilistic Movement Primitives. IROS 2019: 1210-1217 - [c13]Emilio Cartoni, Francesco Mannella, Vieri Giuliano Santucci, Jochen Triesch, Elmar Rueckert, Gianluca Baldassarre:
REAL-2019: Robot open-Ended Autonomous Learning competition. NeurIPS (Competition and Demos) 2019: 142-152 - [i8]Zinan Liu, Kai Ploeger, Svenja Stark, Elmar Rueckert, Jan Peters:
Learning walk and trot from the same objective using different types of exploration. CoRR abs/1904.12336 (2019) - [i7]Svenja Stark, Jan Peters, Elmar Rueckert:
Experience Reuse with Probabilistic Movement Primitives. CoRR abs/1908.03936 (2019) - [i6]Nils Rottmann, Ralf Bruder, Achim Schweikard, Elmar Rueckert:
Loop Closure Detection in Closed Environments. CoRR abs/1908.04558 (2019) - [i5]Nils Rottmann, Ralf Bruder, Achim Schweikard, Elmar Rueckert:
Cataglyphis ant navigation strategies solve the global localization problem in robots with binary sensors. CoRR abs/1908.04564 (2019) - [i4]Daniel Tanneberg, Elmar Rueckert, Jan Peters:
Learning Algorithmic Solutions to Symbolic Planning Tasks with a Neural Computer. CoRR abs/1911.00926 (2019) - 2018
- [j5]Alexandros Paraschos, Elmar Rueckert, Jan Peters, Gerhard Neumann:
Probabilistic movement primitives under unknown system dynamics. Adv. Robotics 32(6): 297-310 (2018) - [j4]Adrian Sosic, Elmar Rueckert, Jan Peters, Abdelhak M. Zoubir, Heinz Koeppl:
Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling. J. Mach. Learn. Res. 19: 69:1-69:45 (2018) - [i3]Daniel Tanneberg, Jan Peters, Elmar Rueckert:
Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks. CoRR abs/1802.08013 (2018) - [i2]Adrian Sosic, Elmar Rueckert, Jan Peters, Abdelhak M. Zoubir, Heinz Koeppl:
Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling. CoRR abs/1803.00444 (2018) - 2017
- [c12]Daniel Tanneberg, Jan Peters, Elmar Rueckert:
Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals. CoRL 2017: 167-174 - [c11]Daniel Tanneberg, Jan Peters, Elmar Rueckert:
Efficient online adaptation with stochastic recurrent neural networks. Humanoids 2017: 198-204 - [c10]Svenja Stark, Jan Peters, Elmar Rueckert:
A comparison of distance measures for learning nonparametric motor skill libraries. Humanoids 2017: 624-630 - [c9]Elmar Rueckert, Moritz Nakatenus, Samuele Tosatto, Jan Peters:
Learning inverse dynamics models in O(n) time with LSTM networks. Humanoids 2017: 811-816 - 2016
- [c8]Morteza Azad, Valerio Ortenzi, Hsiu-Chin Lin, Elmar Rueckert, Michael N. Mistry:
Model estimation and control of compliant contact normal force. Humanoids 2016: 442-447 - [c7]Daniel Tanneberg, Alexandros Paraschos, Jan Peters, Elmar Rueckert:
Deep spiking networks for model-based planning in humanoids. Humanoids 2016: 656-661 - [c6]Valerio Modugno, Gerhard Neumann, Elmar Rueckert, Giuseppe Oriolo, Jan Peters, Serena Ivaldi:
Learning soft task priorities for control of redundant robots. ICRA 2016: 221-226 - [c5]Paul Weber, Elmar Rueckert, Roberto Calandra, Jan Peters, Philipp Beckerle:
A low-cost sensor glove with vibrotactile feedback and multiple finger joint and hand motion sensing for human-robot interaction. RO-MAN 2016: 99-104 - 2015
- [c4]Elmar Rueckert, Jan Mundo, Alexandros Paraschos, Jan Peters, Gerhard Neumann:
Extracting low-dimensional control variables for movement primitives. ICRA 2015: 1511-1518 - [c3]Roberto Calandra, Serena Ivaldi, Marc Peter Deisenroth, Elmar Rueckert, Jan Peters:
Learning inverse dynamics models with contacts. ICRA 2015: 3186-3191 - [c2]Alexandros Paraschos, Elmar Rueckert, Jan Peters, Gerhard Neumann:
Model-free Probabilistic Movement Primitives for physical interaction. IROS 2015: 2860-2866 - [i1]Elmar Rueckert, Rudolf Lioutikov, Roberto Calandra, Marius Schmidt, Philipp Beckerle, Jan Peters:
Low-cost Sensor Glove with Force Feedback for Learning from Demonstrations using Probabilistic Trajectory Representations. CoRR abs/1510.03253 (2015) - 2014
- [c1]Elmar Rueckert, Max Mindt, Jan Peters, Gerhard Neumann:
Robust policy updates for stochastic optimal control. Humanoids 2014: 388-393 - 2013
- [j3]Elmar A. Rückert, Gerhard Neumann:
Stochastic Optimal Control Methods for Investigating the Power of Morphological Computation. Artif. Life 19(1): 115-131 (2013) - [j2]Elmar Rueckert, Andrea d'Avella:
Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems. Frontiers Comput. Neurosci. 7: 138 (2013) - 2012
- [j1]Elmar A. Rückert, Gerhard Neumann, Marc Toussaint, Wolfgang Maass:
Learned graphical models for probabilistic planning provide a new class of movement primitives. Frontiers Comput. Neurosci. 6: 97 (2012)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-04 03:41 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint