default search action
Brandon Amos
Person information
- affiliation: Facebook AI, New Yourk City, Ny, USA
- affiliation (PhD 2019): Carnegie Mellon University, Pittsburgh, PA, USA
- affiliation: Virginia Tech, Blacksburg, VA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j8]Rajiv Sambharya, Georgina Hall, Brandon Amos, Bartolomeo Stellato:
Learning to Warm-Start Fixed-Point Optimization Algorithms. J. Mach. Learn. Res. 25: 166:1-166:46 (2024) - [i44]Anselm Paulus, Arman Zharmagambetov, Chuan Guo, Brandon Amos, Yuandong Tian:
AdvPrompter: Fast Adaptive Adversarial Prompting for LLMs. CoRR abs/2404.16873 (2024) - [i43]Aram-Alexandre Pooladian, Carles Domingo-Enrich, Ricky T. Q. Chen, Brandon Amos:
Neural Optimal Transport with Lagrangian Costs. CoRR abs/2406.00288 (2024) - [i42]Sanae Lotfi, Yilun Kuang, Brandon Amos, Micah Goldblum, Marc Finzi, Andrew Gordon Wilson:
Unlocking Tokens as Data Points for Generalization Bounds on Larger Language Models. CoRR abs/2407.18158 (2024) - [i41]Lazar Atanackovic, Xi Zhang, Brandon Amos, Mathieu Blanchette, Leo J. Lee, Yoshua Bengio, Alexander Tong, Kirill Neklyudov:
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold. CoRR abs/2408.14608 (2024) - [i40]Buu Phan, Brandon Amos, Itai Gat, Marton Havasi, Matthew J. Muckley, Karen Ullrich:
Exact Byte-Level Probabilities from Tokenized Language Models for FIM-Tasks and Model Ensembles. CoRR abs/2410.09303 (2024) - [i39]Da JU, Song Jiang, Andrew Cohen, Aaron Foss, Sasha Mitts, Arman Zharmagambetov, Brandon Amos, Xian Li, Justine T. Kao, Maryam Fazel-Zarandi, Yuandong Tian:
To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning. CoRR abs/2410.16456 (2024) - [i38]Qinqing Zheng, Mikael Henaff, Amy Zhang, Aditya Grover, Brandon Amos:
Online Intrinsic Rewards for Decision Making Agents from Large Language Model Feedback. CoRR abs/2410.23022 (2024) - [i37]Doron Haviv, Aram-Alexandre Pooladian, Dana Pe'er, Brandon Amos:
Wasserstein Flow Matching: Generative modeling over families of distributions. CoRR abs/2411.00698 (2024) - 2023
- [j7]Brandon Amos:
Tutorial on Amortized Optimization. Found. Trends Mach. Learn. 16(5): 592-732 (2023) - [c41]Brandon Amos:
On amortizing convex conjugates for optimal transport. ICLR 2023 - [c40]Brandon Amos, Giulia Luise, Samuel Cohen, Ievgen Redko:
Meta Optimal Transport. ICML 2023: 791-813 - [c39]Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman, Ricky T. Q. Chen:
Multisample Flow Matching: Straightening Flows with Minibatch Couplings. ICML 2023: 28100-28127 - [c38]Qinqing Zheng, Mikael Henaff, Brandon Amos, Aditya Grover:
Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories. ICML 2023: 42339-42362 - [c37]Rajiv Sambharya, Georgina Hall, Brandon Amos, Bartolomeo Stellato:
End-to-End Learning to Warm-Start for Real-Time Quadratic Optimization. L4DC 2023: 220-234 - [c36]Dishank Bansal, Ricky T. Q. Chen, Mustafa Mukadam, Brandon Amos:
TaskMet: Task-driven Metric Learning for Model Learning. NeurIPS 2023 - [c35]Arman Zharmagambetov, Brandon Amos, Aaron M. Ferber, Taoan Huang, Bistra Dilkina, Yuandong Tian:
Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information. NeurIPS 2023 - [i36]Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman, Ricky T. Q. Chen:
Multisample Flow Matching: Straightening Flows with Minibatch Couplings. CoRR abs/2304.14772 (2023) - [i35]Arman Zharmagambetov, Brandon Amos, Aaron M. Ferber, Taoan Huang, Bistra Dilkina, Yuandong Tian:
Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information. CoRR abs/2307.08964 (2023) - [i34]Rajiv Sambharya, Georgina Hall, Brandon Amos, Bartolomeo Stellato:
Learning to Warm-Start Fixed-Point Optimization Algorithms. CoRR abs/2309.07835 (2023) - [i33]Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, Ricky T. Q. Chen:
Stochastic Optimal Control Matching. CoRR abs/2312.02027 (2023) - [i32]Dishank Bansal, Ricky T. Q. Chen, Mustafa Mukadam, Brandon Amos:
TaskMet: Task-Driven Metric Learning for Model Learning. CoRR abs/2312.05250 (2023) - 2022
- [c34]Arnaud Fickinger, Samuel Cohen, Stuart Russell, Brandon Amos:
Cross-Domain Imitation Learning via Optimal Transport. ICLR 2022 - [c33]Heli Ben-Hamu, Samuel Cohen, Joey Bose, Brandon Amos, Maximilian Nickel, Aditya Grover, Ricky T. Q. Chen, Yaron Lipman:
Matching Normalizing Flows and Probability Paths on Manifolds. ICML 2022: 1749-1763 - [c32]Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel:
Semi-Discrete Normalizing Flows through Differentiable Tessellation. NeurIPS 2022 - [c31]Luis Pineda, Taosha Fan, Maurizio Monge, Shobha Venkataraman, Paloma Sodhi, Ricky T. Q. Chen, Joseph Ortiz, Daniel DeTone, Austin S. Wang, Stuart Anderson, Jing Dong, Brandon Amos, Mustafa Mukadam:
Theseus: A Library for Differentiable Nonlinear Optimization. NeurIPS 2022 - [c30]Eugene Vinitsky, Nathan Lichtlé, Xiaomeng Yang, Brandon Amos, Jakob Foerster:
Nocturne: a scalable driving benchmark for bringing multi-agent learning one step closer to the real world. NeurIPS 2022 - [i31]Brandon Amos:
Tutorial on amortized optimization for learning to optimize over continuous domains. CoRR abs/2202.00665 (2022) - [i30]Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel:
Semi-Discrete Normalizing Flows through Differentiable Tessellation. CoRR abs/2203.06832 (2022) - [i29]Brandon Amos, Samuel Cohen, Giulia Luise, Ievgen Redko:
Meta Optimal Transport. CoRR abs/2206.05262 (2022) - [i28]Eugene Vinitsky, Nathan Lichtlé, Xiaomeng Yang, Brandon Amos, Jakob Foerster:
Nocturne: a scalable driving benchmark for bringing multi-agent learning one step closer to the real world. CoRR abs/2206.09889 (2022) - [i27]Heli Ben-Hamu, Samuel Cohen, Joey Bose, Brandon Amos, Aditya Grover, Maximilian Nickel, Ricky T. Q. Chen, Yaron Lipman:
Matching Normalizing Flows and Probability Paths on Manifolds. CoRR abs/2207.04711 (2022) - [i26]Luis Pineda, Taosha Fan, Maurizio Monge, Shobha Venkataraman, Paloma Sodhi, Ricky T. Q. Chen, Joseph Ortiz, Daniel DeTone, Austin S. Wang, Stuart Anderson, Jing Dong, Brandon Amos, Mustafa Mukadam:
Theseus: A Library for Differentiable Nonlinear Optimization. CoRR abs/2207.09442 (2022) - [i25]Qinqing Zheng, Mikael Henaff, Brandon Amos, Aditya Grover:
Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories. CoRR abs/2210.06518 (2022) - [i24]Brandon Amos:
On amortizing convex conjugates for optimal transport. CoRR abs/2210.12153 (2022) - 2021
- [c29]Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, Rob Fergus:
Improving Sample Efficiency in Model-Free Reinforcement Learning from Images. AAAI 2021: 10674-10681 - [c28]Samuel Cohen, Giulia Luise, Alexander Terenin, Brandon Amos, Marc Peter Deisenroth:
Aligning Time Series on Incomparable Spaces. AISTATS 2021: 1036-1044 - [c27]Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel:
Learning Neural Event Functions for Ordinary Differential Equations. ICLR 2021 - [c26]Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel:
Neural Spatio-Temporal Point Processes. ICLR 2021 - [c25]Samuel Cohen, Brandon Amos, Yaron Lipman:
Riemannian Convex Potential Maps. ICML 2021: 2028-2038 - [c24]Anselm Paulus, Michal Rolínek, Vít Musil, Brandon Amos, Georg Martius:
CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints. ICML 2021: 8443-8453 - [c23]Brandon Amos, Samuel Stanton, Denis Yarats, Andrew Gordon Wilson:
On the model-based stochastic value gradient for continuous reinforcement learning. L4DC 2021: 6-20 - [c22]Arnaud Fickinger, Hengyuan Hu, Brandon Amos, Stuart J. Russell, Noam Brown:
Scalable Online Planning via Reinforcement Learning Fine-Tuning. NeurIPS 2021: 16951-16963 - [i23]Luis Pineda, Brandon Amos, Amy Zhang, Nathan O. Lambert, Roberto Calandra:
MBRL-Lib: A Modular Library for Model-based Reinforcement Learning. CoRR abs/2104.10159 (2021) - [i22]Anselm Paulus, Michal Rolínek, Vít Musil, Brandon Amos, Georg Martius:
CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints. CoRR abs/2105.02343 (2021) - [i21]Samuel Cohen, Brandon Amos, Yaron Lipman:
Riemannian Convex Potential Maps. CoRR abs/2106.10272 (2021) - [i20]Shobha Venkataraman, Brandon Amos:
Neural Fixed-Point Acceleration for Convex Optimization. CoRR abs/2107.10254 (2021) - [i19]Arnaud Fickinger, Hengyuan Hu, Brandon Amos, Stuart Russell, Noam Brown:
Scalable Online Planning via Reinforcement Learning Fine-Tuning. CoRR abs/2109.15316 (2021) - [i18]Arnaud Fickinger, Samuel Cohen, Stuart Russell, Brandon Amos:
Cross-Domain Imitation Learning via Optimal Transport. CoRR abs/2110.03684 (2021) - [i17]Jack Richter-Powell, Jonathan Lorraine, Brandon Amos:
Input Convex Gradient Networks. CoRR abs/2111.12187 (2021) - 2020
- [j6]Brandon D. Amos, David R. Easterling, Layne T. Watson, William I. Thacker, Brent S. Castle, Michael W. Trosset:
Algorithm 1007: QNSTOP - Quasi-Newton Algorithm for Stochastic Optimization. ACM Trans. Math. Softw. 46(2): 17:1-17:20 (2020) - [c21]Brandon Amos, Denis Yarats:
The Differentiable Cross-Entropy Method. ICML 2020: 291-302 - [c20]Nathan O. Lambert, Brandon Amos, Omry Yadan, Roberto Calandra:
Objective Mismatch in Model-based Reinforcement Learning. L4DC 2020: 761-770 - [i16]Nathan O. Lambert, Brandon Amos, Omry Yadan, Roberto Calandra:
Objective Mismatch in Model-based Reinforcement Learning. CoRR abs/2002.04523 (2020) - [i15]Samuel Cohen, Giulia Luise, Alexander Terenin, Brandon Amos, Marc Peter Deisenroth:
Aligning Time Series on Incomparable Spaces. CoRR abs/2006.12648 (2020) - [i14]Brandon Amos, Samuel Stanton, Denis Yarats, Andrew Gordon Wilson:
On the model-based stochastic value gradient for continuous reinforcement learning. CoRR abs/2008.12775 (2020) - [i13]Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel:
Learning Neural Event Functions for Ordinary Differential Equations. CoRR abs/2011.03902 (2020) - [i12]Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel:
Neural Spatio-Temporal Point Processes. CoRR abs/2011.04583 (2020)
2010 – 2019
- 2019
- [j5]Minghan Chen, Brandon D. Amos, Layne T. Watson, John J. Tyson, Young Cao, Clifford A. Shaffer, Michael W. Trosset, Cihan Oguz, Gisella Kakoti:
Quasi-Newton Stochastic Optimization Algorithm for Parameter Estimation of a Stochastic Model of the Budding Yeast Cell Cycle. IEEE ACM Trans. Comput. Biol. Bioinform. 16(1): 301-311 (2019) - [c19]Akshay Agrawal, Brandon Amos, Shane T. Barratt, Stephen P. Boyd, Steven Diamond, J. Zico Kolter:
Differentiable Convex Optimization Layers. NeurIPS 2019: 9558-9570 - [i11]Brandon Amos, Vladlen Koltun, J. Zico Kolter:
The Limited Multi-Label Projection Layer. CoRR abs/1906.08707 (2019) - [i10]Brandon Amos, Denis Yarats:
The Differentiable Cross-Entropy Method. CoRR abs/1909.12830 (2019) - [i9]Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska Meier, Douwe Kiela, Kyunghyun Cho, Soumith Chintala:
Generalized Inner Loop Meta-Learning. CoRR abs/1910.01727 (2019) - [i8]Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, Rob Fergus:
Improving Sample Efficiency in Model-Free Reinforcement Learning from Images. CoRR abs/1910.01741 (2019) - [i7]Akshay Agrawal, Brandon Amos, Shane T. Barratt, Stephen P. Boyd, Steven Diamond, J. Zico Kolter:
Differentiable Convex Optimization Layers. CoRR abs/1910.12430 (2019) - 2018
- [j4]Junjue Wang, Brandon Amos, Anupam Das, Padmanabhan Pillai, Norman M. Sadeh, Mahadev Satyanarayanan:
Enabling Live Video Analytics with a Scalable and Privacy-Aware Framework. ACM Trans. Multim. Comput. Commun. Appl. 14(3s): 64:1-64:24 (2018) - [c18]Brandon Amos, Laurent Dinh, Serkan Cabi, Thomas Rothörl, Sergio Gomez Colmenarejo, Alistair Muldal, Tom Erez, Yuval Tassa, Nando de Freitas, Misha Denil:
Learning Awareness Models. ICLR (Poster) 2018 - [c17]Noam Brown, Tuomas Sandholm, Brandon Amos:
Depth-Limited Solving for Imperfect-Information Games. NeurIPS 2018: 7674-7685 - [c16]Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob Sacks, Byron Boots, J. Zico Kolter:
Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018: 8299-8310 - [i6]Brandon Amos, Laurent Dinh, Serkan Cabi, Thomas Rothörl, Sergio Gomez Colmenarejo, Alistair Muldal, Tom Erez, Yuval Tassa, Nando de Freitas, Misha Denil:
Learning Awareness Models. CoRR abs/1804.06318 (2018) - [i5]Noam Brown, Tuomas Sandholm, Brandon Amos:
Depth-Limited Solving for Imperfect-Information Games. CoRR abs/1805.08195 (2018) - [i4]Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob Sacks, Byron Boots, J. Zico Kolter:
Differentiable MPC for End-to-end Planning and Control. CoRR abs/1810.13400 (2018) - 2017
- [c15]Kiryong Ha, Yoshihisa Abe, Thomas Eiszler, Zhuo Chen, Wenlu Hu, Brandon Amos, Rohit Upadhyaya, Padmanabhan Pillai, Mahadev Satyanarayanan:
You can teach elephants to dance: agile VM handoff for edge computing. SEC 2017: 12:1-12:14 - [c14]Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos, Guanhang Wu, Kiryong Ha, Khalid Elgazzar, Padmanabhan Pillai, Roberta L. Klatzky, Daniel P. Siewiorek, Mahadev Satyanarayanan:
An empirical study of latency in an emerging class of edge computing applications for wearable cognitive assistance. SEC 2017: 14:1-14:14 - [c13]Brandon Amos, J. Zico Kolter:
OptNet: Differentiable Optimization as a Layer in Neural Networks. ICML 2017: 136-145 - [c12]Brandon Amos, Lei Xu, J. Zico Kolter:
Input Convex Neural Networks. ICML 2017: 146-155 - [c11]Junjue Wang, Brandon Amos, Anupam Das, Padmanabhan Pillai, Norman M. Sadeh, Mahadev Satyanarayanan:
A Scalable and Privacy-Aware IoT Service for Live Video Analytics. MMSys 2017: 38-49 - [c10]Priya L. Donti, J. Zico Kolter, Brandon Amos:
Task-based End-to-end Model Learning in Stochastic Optimization. NIPS 2017: 5484-5494 - [i3]Brandon Amos, J. Zico Kolter:
OptNet: Differentiable Optimization as a Layer in Neural Networks. CoRR abs/1703.00443 (2017) - [i2]Priya L. Donti, Brandon Amos, J. Zico Kolter:
Task-based End-to-end Model Learning. CoRR abs/1703.04529 (2017) - 2016
- [j3]Brandon Amos, Ketan Bhardwaj, Kiron Lebeck:
HotMobile 2016. IEEE Pervasive Comput. 15(2): 79-81 (2016) - [c9]Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, Brandon Amos, Zhuo Chen, Padmanabhan Pillai, Mahadev Satyanarayanan:
Quantifying the Impact of Edge Computing on Mobile Applications. APSys 2016: 5:1-5:8 - [c8]Han Zhao, Tameem Adel, Geoffrey J. Gordon, Brandon Amos:
Collapsed Variational Inference for Sum-Product Networks. ICML 2016: 1310-1318 - [c7]Nigel Davies, Nina Taft, Mahadev Satyanarayanan, Sarah Clinch, Brandon Amos:
Privacy Mediators: Helping IoT Cross the Chasm. HotMobile 2016: 39-44 - [i1]Brandon Amos, Lei Xu, J. Zico Kolter:
Input Convex Neural Networks. CoRR abs/1609.07152 (2016) - 2015
- [j2]Hamilton A. Turner, Jules White, Jaime A. Camelio, Christopher Williams, Brandon Amos, Robert Parker:
Bad Parts: Are Our Manufacturing Systems at Risk of Silent Cyberattacks? IEEE Secur. Priv. 13(3): 40-47 (2015) - [j1]Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo Chen, Kiryong Ha, Wenlu Hu, Brandon Amos:
Edge Analytics in the Internet of Things. IEEE Pervasive Comput. 14(2): 24-31 (2015) - [c6]Zhuo Chen, Lu Jiang, Wenlu Hu, Kiryong Ha, Brandon Amos, Padmanabhan Pillai, Alexander G. Hauptmann, Mahadev Satyanarayanan:
Early Implementation Experience with Wearable Cognitive Assistance Applications. WearSys@MobiSys 2015: 33-38 - [c5]Wenlu Hu, Brandon Amos, Zhuo Chen, Kiryong Ha, Wolfgang Richter, Padmanabhan Pillai, Benjamin Gilbert, Jan Harkes, Mahadev Satyanarayanan:
The Case for Offload Shaping. HotMobile 2015: 51-56 - 2014
- [c4]Brandon Amos, David Tompkins:
Performance Study of Spindle, A Web Analytics Query Engine Implemented in Spark. CloudCom 2014: 505-510 - [c3]Brandon D. Amos, David R. Easterling, Layne T. Watson, Brent S. Castle, Michael W. Trosset, William I. Thacker:
Fortran 95 implementation of QNSTOP for global and stochastic optimization. SpringSim (HPS) 2014: 15 - [c2]T. M. Andrew, Brandon D. Amos, David R. Easterling, Cihan Oguz, William T. Baumann, John J. Tyson, Layne T. Watson:
Global parameter estimation for a eukaryotic cell cycle model in systems biology. SummerSim 2014: 45 - 2013
- [c1]Brandon Amos, Hamilton A. Turner, Jules White:
Applying machine learning classifiers to dynamic Android malware detection at scale. IWCMC 2013: 1666-1671
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 13:07 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint