default search action
Biwei Huang
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j3]Yujia Zheng, Biwei Huang, Wei Chen, Joseph D. Ramsey, Mingming Gong, Ruichu Cai, Shohei Shimizu, Peter Spirtes, Kun Zhang:
Causal-learn: Causal Discovery in Python. J. Mach. Learn. Res. 25: 60:1-60:8 (2024) - [j2]Feng Xie, Biwei Huang, Zhengming Chen, Ruichu Cai, Clark Glymour, Zhi Geng, Kun Zhang:
Generalized Independent Noise Condition for Estimating Causal Structure with Latent Variables. J. Mach. Learn. Res. 25: 191:1-191:61 (2024) - [c32]Yuewen Sun, Erli Wang, Biwei Huang, Chaochao Lu, Lu Feng, Changyin Sun, Kun Zhang:
ACAMDA: Improving Data Efficiency in Reinforcement Learning through Guided Counterfactual Data Augmentation. AAAI 2024: 15193-15201 - [c31]Ignavier Ng, Biwei Huang, Kun Zhang:
Structure Learning with Continuous Optimization: A Sober Look and Beyond. CLeaR 2024: 71-105 - [c30]Wenqin Liu, Biwei Huang, Erdun Gao, Qiuhong Ke, Howard D. Bondell, Mingming Gong:
Causal Discovery with Mixed Linear and Nonlinear Additive Noise Models: A Scalable Approach. CLeaR 2024: 1237-1263 - [c29]Xinshuai Dong, Biwei Huang, Ignavier Ng, Xiangchen Song, Yujia Zheng, Songyao Jin, Roberto Legaspi, Peter Spirtes, Kun Zhang:
A Versatile Causal Discovery Framework to Allow Causally-Related Hidden Variables. ICLR 2024 - [c28]Songyao Jin, Feng Xie, Guangyi Chen, Biwei Huang, Zhengming Chen, Xinshuai Dong, Kun Zhang:
Structural Estimation of Partially Observed Linear Non-Gaussian Acyclic Model: A Practical Approach with Identifiability. ICLR 2024 - [c27]Longkang Li, Ignavier Ng, Gongxu Luo, Biwei Huang, Guangyi Chen, Tongliang Liu, Bin Gu, Kun Zhang:
Federated Causal Discovery from Heterogeneous Data. ICLR 2024 - [c26]Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang, Javen Qinfeng Shi:
Identifiable Latent Polynomial Causal Models through the Lens of Change. ICLR 2024 - [c25]Qiang Huang, Chuizheng Meng, Defu Cao, Biwei Huang, Yi Chang, Yan Liu:
An Empirical Examination of Balancing Strategy for Counterfactual Estimation on Time Series. ICML 2024 - [c24]Ignavier Ng, Xinshuai Dong, Haoyue Dai, Biwei Huang, Peter Spirtes, Kun Zhang:
Score-Based Causal Discovery of Latent Variable Causal Models. ICML 2024 - [c23]Wenjie Wang, Biwei Huang, Feng Liu, Xinge You, Tongliang Liu, Kun Zhang, Mingming Gong:
Optimal Kernel Choice for Score Function-based Causal Discovery. ICML 2024 - [c22]Yupei Yang, Biwei Huang, Shikui Tu, Lei Xu:
Boosting Efficiency in Task-Agnostic Exploration through Causal Knowledge. IJCAI 2024: 5344-5352 - [i43]Guanglin Zhou, Zhongyi Han, Shiming Chen, Biwei Huang, Liming Zhu, Tongliang Liu, Lina Yao, Kun Zhang:
HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain Generalization. CoRR abs/2401.09716 (2024) - [i42]Guang-Yuan Hao, Jiji Zhang, Biwei Huang, Hao Wang, Kun Zhang:
Natural Counterfactuals With Necessary Backtracking. CoRR abs/2402.01607 (2024) - [i41]Yuhang Liu, Zhen Zhang, Dong Gong, Biwei Huang, Mingming Gong, Anton van den Hengel, Kun Zhang, Javen Qinfeng Shi:
Revealing Multimodal Contrastive Representation Learning through Latent Partial Causal Models. CoRR abs/2402.06223 (2024) - [i40]Loka Li, Ignavier Ng, Gongxu Luo, Biwei Huang, Guangyi Chen, Tongliang Liu, Bin Gu, Kun Zhang:
Federated Causal Discovery from Heterogeneous Data. CoRR abs/2402.13241 (2024) - [i39]Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang, Javen Qinfeng Shi:
Identifiable Latent Neural Causal Models. CoRR abs/2403.15711 (2024) - [i38]Guanglin Zhou, Zhongyi Han, Shiming Chen, Biwei Huang, Liming Zhu, Salman Khan, Xinbo Gao, Lina Yao:
Adapting Large Multimodal Models to Distribution Shifts: The Role of In-Context Learning. CoRR abs/2405.12217 (2024) - [i37]Lingjing Kong, Guangyi Chen, Biwei Huang, Eric P. Xing, Yuejie Chi, Kun Zhang:
Learning Discrete Concepts in Latent Hierarchical Models. CoRR abs/2406.00519 (2024) - [i36]Wenjie Wang, Biwei Huang, Feng Liu, Xinge You, Tongliang Liu, Kun Zhang, Mingming Gong:
Optimal Kernel Choice for Score Function-based Causal Discovery. CoRR abs/2407.10132 (2024) - [i35]Xinshuai Dong, Ignavier Ng, Biwei Huang, Yuewen Sun, Songyao Jin, Roberto Legaspi, Peter Spirtes, Kun Zhang:
On the Parameter Identifiability of Partially Observed Linear Causal Models. CoRR abs/2407.16975 (2024) - [i34]Yupei Yang, Biwei Huang, Shikui Tu, Lei Xu:
Boosting Efficiency in Task-Agnostic Exploration through Causal Knowledge. CoRR abs/2407.20506 (2024) - [i33]Qiang Huang, Chuizheng Meng, Defu Cao, Biwei Huang, Yi Chang, Yan Liu:
An Empirical Examination of Balancing Strategy for Counterfactual Estimation on Time Series. CoRR abs/2408.08815 (2024) - [i32]Haiyao Cao, Zhen Zhang, Panpan Cai, Yuhang Liu, Jinan Zou, Ehsan Abbasnejad, Biwei Huang, Mingming Gong, Anton van den Hengel, Javen Qinfeng Shi:
Rethinking State Disentanglement in Causal Reinforcement Learning. CoRR abs/2408.13498 (2024) - [i31]Yingyu Lin, Yuxing Huang, Wenqin Liu, Haoran Deng, Ignavier Ng, Kun Zhang, Mingming Gong, Yi-An Ma, Biwei Huang:
A Skewness-Based Criterion for Addressing Heteroscedastic Noise in Causal Discovery. CoRR abs/2410.06407 (2024) - [i30]Kaifeng Jin, Ignavier Ng, Kun Zhang, Biwei Huang:
Revisiting Differentiable Structure Learning: Inconsistency of ℓ1 Penalty and Beyond. CoRR abs/2410.18396 (2024) - [i29]Yuanyuan Wang, Biwei Huang, Wei Huang, Xi Geng, Mingming Gong:
Identifiability Analysis of Linear ODE Systems with Hidden Confounders. CoRR abs/2410.21917 (2024) - [i28]Xichen Guo, Zheng Li, Biwei Huang, Yan Zeng, Zhi Geng, Feng Xie:
Testability of Instrumental Variables in Additive Nonlinear, Non-Constant Effects Models. CoRR abs/2411.12184 (2024) - [i27]Parjanya Prashant, Ignavier Ng, Kun Zhang, Biwei Huang:
Differentiable Causal Discovery For Latent Hierarchical Causal Models. CoRR abs/2411.19556 (2024) - 2023
- [c21]Yudi Zhang, Yali Du, Biwei Huang, Ziyan Wang, Jun Wang, Meng Fang, Mykola Pechenizkiy:
Interpretable Reward Redistribution in Reinforcement Learning: A Causal Approach. NeurIPS 2023 - [c20]Lingjing Kong, Biwei Huang, Feng Xie, Eric P. Xing, Yuejie Chi, Kun Zhang:
Identification of Nonlinear Latent Hierarchical Models. NeurIPS 2023 - [c19]Yuren Liu, Biwei Huang, Zhengmao Zhu, Hong-Long Tian, Mingming Gong, Yang Yu, Kun Zhang:
Learning World Models with Identifiable Factorization. NeurIPS 2023 - [c18]Yuanyuan Wang, Xi Geng, Wei Huang, Biwei Huang, Mingming Gong:
Generator Identification for Linear SDEs with Additive and Multiplicative Noise. NeurIPS 2023 - [i26]Ignavier Ng, Biwei Huang, Kun Zhang:
Structure Learning with Continuous Optimization: A Sober Look and Beyond. CoRR abs/2304.02146 (2023) - [i25]Yudi Zhang, Yali Du, Biwei Huang, Ziyan Wang, Jun Wang, Meng Fang, Mykola Pechenizkiy:
GRD: A Generative Approach for Interpretable Reward Redistribution in Reinforcement Learning. CoRR abs/2305.18427 (2023) - [i24]Shaoan Xie, Biwei Huang, Bin Gu, Tongliang Liu, Kun Zhang:
Advancing Counterfactual Inference through Quantile Regression. CoRR abs/2306.05751 (2023) - [i23]Yu-Ren Liu, Biwei Huang, Zheng-Mao Zhu, Hong-Long Tian, Mingming Gong, Yang Yu, Kun Zhang:
Learning World Models with Identifiable Factorization. CoRR abs/2306.06561 (2023) - [i22]Lingjing Kong, Biwei Huang, Feng Xie, Eric P. Xing, Yuejie Chi, Kun Zhang:
Identification of Nonlinear Latent Hierarchical Models. CoRR abs/2306.07916 (2023) - [i21]Yujia Zheng, Biwei Huang, Wei Chen, Joseph D. Ramsey, Mingming Gong, Ruichu Cai, Shohei Shimizu, Peter Spirtes, Kun Zhang:
Causal-learn: Causal Discovery in Python. CoRR abs/2307.16405 (2023) - [i20]Feng Xie, Biwei Huang, Zhengming Chen, Ruichu Cai, Clark Glymour, Zhi Geng, Kun Zhang:
Generalized Independent Noise Condition for Estimating Causal Structure with Latent Variables. CoRR abs/2308.06718 (2023) - [i19]Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang, Javen Qinfeng Shi:
Identifiable Latent Polynomial Causal Models Through the Lens of Change. CoRR abs/2310.15580 (2023) - [i18]Yuanyuan Wang, Xi Geng, Wei Huang, Biwei Huang, Mingming Gong:
Generator Identification for Linear SDEs with Additive and Multiplicative Noise. CoRR abs/2310.19491 (2023) - [i17]Ziyan Wang, Yali Du, Yudi Zhang, Meng Fang, Biwei Huang:
MACCA: Offline Multi-agent Reinforcement Learning with Causal Credit Assignment. CoRR abs/2312.03644 (2023) - [i16]Xinshuai Dong, Biwei Huang, Ignavier Ng, Xiangchen Song, Yujia Zheng, Songyao Jin, Roberto Legaspi, Peter Spirtes, Kun Zhang:
A Versatile Causal Discovery Framework to Allow Causally-Related Hidden Variables. CoRR abs/2312.11001 (2023) - 2022
- [c17]Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, Kun Zhang:
AdaRL: What, Where, and How to Adapt in Transfer Reinforcement Learning. ICLR 2022 - [c16]Biwei Huang, Chaochao Lu, Liu Leqi, José Miguel Hernández-Lobato, Clark Glymour, Bernhard Schölkopf, Kun Zhang:
Action-Sufficient State Representation Learning for Control with Structural Constraints. ICML 2022: 9260-9279 - [c15]Feng Xie, Biwei Huang, Zhengming Chen, Yangbo He, Zhi Geng, Kun Zhang:
Identification of Linear Non-Gaussian Latent Hierarchical Structure. ICML 2022: 24370-24387 - [c14]Fan Feng, Biwei Huang, Kun Zhang, Sara Magliacane:
Factored Adaptation for Non-Stationary Reinforcement Learning. NeurIPS 2022 - [c13]Biwei Huang, Charles Jia Han Low, Feng Xie, Clark Glymour, Kun Zhang:
Latent Hierarchical Causal Structure Discovery with Rank Constraints. NeurIPS 2022 - [i15]Fan Feng, Biwei Huang, Kun Zhang, Sara Magliacane:
Factored Adaptation for Non-Stationary Reinforcement Learning. CoRR abs/2203.16582 (2022) - [i14]Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang, Javen Qinfeng Shi:
Weight-variant Latent Causal Models. CoRR abs/2208.14153 (2022) - [i13]Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Kun Zhang, Javen Qinfeng Shi:
Identifying Latent Causal Content for Multi-Source Domain Adaptation. CoRR abs/2208.14161 (2022) - [i12]Biwei Huang, Charles Jia Han Low, Feng Xie, Clark Glymour, Kun Zhang:
Latent Hierarchical Causal Structure Discovery with Rank Constraints. CoRR abs/2210.01798 (2022) - 2021
- [c12]Zhicheng Wang, Biwei Huang, Shikui Tu, Kun Zhang, Lei Xu:
DeepTrader: A Deep Reinforcement Learning Approach for Risk-Return Balanced Portfolio Management with Market Conditions Embedding. AAAI 2021: 643-650 - [i11]Wei Chen, Kun Zhang, Ruichu Cai, Biwei Huang, Joseph D. Ramsey, Zhifeng Hao, Clark Glymour:
FRITL: A Hybrid Method for Causal Discovery in the Presence of Latent Confounders. CoRR abs/2103.14238 (2021) - [i10]Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, Kun Zhang:
AdaRL: What, Where, and How to Adapt in Transfer Reinforcement Learning. CoRR abs/2107.02729 (2021) - [i9]Biwei Huang, Chaochao Lu, Liu Leqi, José Miguel Hernández-Lobato, Clark Glymour, Bernhard Schölkopf, Kun Zhang:
Action-Sufficient State Representation Learning for Control with Structural Constraints. CoRR abs/2110.05721 (2021) - 2020
- [j1]Biwei Huang, Kun Zhang, Jiji Zhang, Joseph D. Ramsey, Ruben Sanchez-Romero, Clark Glymour, Bernhard Schölkopf:
Causal Discovery from Heterogeneous/Nonstationary Data. J. Mach. Learn. Res. 21: 89:1-89:53 (2020) - [c11]Biwei Huang, Kun Zhang, Mingming Gong, Clark Glymour:
Causal Discovery from Multiple Data Sets with Non-Identical Variable Sets. AAAI 2020: 10153-10161 - [c10]Kun Zhang, Mingming Gong, Petar Stojanov, Biwei Huang, Qingsong Liu, Clark Glymour:
Domain Adaptation as a Problem of Inference on Graphical Models. NeurIPS 2020 - [c9]Feng Xie, Ruichu Cai, Biwei Huang, Clark Glymour, Zhifeng Hao, Kun Zhang:
Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs. NeurIPS 2020 - [i8]Kun Zhang, Mingming Gong, Petar Stojanov, Biwei Huang, Clark Glymour:
Domain Adaptation As a Problem of Inference on Graphical Models. CoRR abs/2002.03278 (2020) - [i7]Feng Xie, Ruichu Cai, Biwei Huang, Clark Glymour, Zhifeng Hao, Kun Zhang:
Generalized Independent Noise Condition for Estimating Linear Non-Gaussian Latent Variable Graphs. CoRR abs/2010.04917 (2020) - [i6]Chaochao Lu, Biwei Huang, Ke Wang, José Miguel Hernández-Lobato, Kun Zhang, Bernhard Schölkopf:
Sample-Efficient Reinforcement Learning via Counterfactual-Based Data Augmentation. CoRR abs/2012.09092 (2020)
2010 – 2019
- 2019
- [c8]Biwei Huang, Kun Zhang, Mingming Gong, Clark Glymour:
Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models. ICML 2019: 2901-2910 - [c7]Biwei Huang, Kun Zhang, Pengtao Xie, Mingming Gong, Eric P. Xing, Clark Glymour:
Specific and Shared Causal Relation Modeling and Mechanism-Based Clustering. NeurIPS 2019: 13510-13521 - [i5]Biwei Huang, Kun Zhang, Ruben Sanchez-Romero, Joseph D. Ramsey, Madelyn Glymour, Clark Glymour:
Diagnosis of Autism Spectrum Disorder by Causal Influence Strength Learned from Resting-State fMRI Data. CoRR abs/1902.10073 (2019) - [i4]Biwei Huang, Kun Zhang, Jiji Zhang, Joseph D. Ramsey, Ruben Sanchez-Romero, Clark Glymour, Bernhard Schölkopf:
Causal Discovery from Heterogeneous/Nonstationary Data. CoRR abs/1903.01672 (2019) - [i3]Biwei Huang, Kun Zhang, Mingming Gong, Clark Glymour:
Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models. CoRR abs/1905.10857 (2019) - 2018
- [c6]Biwei Huang, Kun Zhang, Yizhu Lin, Bernhard Schölkopf, Clark Glymour:
Generalized Score Functions for Causal Discovery. KDD 2018: 1551-1560 - [c5]AmirEmad Ghassami, Negar Kiyavash, Biwei Huang, Kun Zhang:
Multi-domain Causal Structure Learning in Linear Systems. NeurIPS 2018: 6269-6279 - [i2]Mingming Gong, Kun Zhang, Biwei Huang, Clark Glymour, Dacheng Tao, Kayhan Batmanghelich:
Causal Generative Domain Adaptation Networks. CoRR abs/1804.04333 (2018) - 2017
- [c4]Biwei Huang, Kun Zhang, Jiji Zhang, Ruben Sanchez-Romero, Clark Glymour, Bernhard Schölkopf:
Behind Distribution Shift: Mining Driving Forces of Changes and Causal Arrows. ICDM 2017: 913-918 - [c3]Kun Zhang, Biwei Huang, Jiji Zhang, Clark Glymour, Bernhard Schölkopf:
Causal Discovery from Nonstationary/Heterogeneous Data: Skeleton Estimation and Orientation Determination. IJCAI 2017: 1347-1353 - 2016
- [c2]Kun Zhang, Jiji Zhang, Biwei Huang, Bernhard Schölkopf, Clark Glymour:
On the Identifiability and Estimation of Functional Causal Models in the Presence of Outcome-Dependent Selection. UAI 2016 - 2015
- [c1]Biwei Huang, Kun Zhang, Bernhard Schölkopf:
Identification of Time-Dependent Causal Model: A Gaussian Process Treatment. IJCAI 2015: 3561-3568 - [i1]Kun Zhang, Biwei Huang, Bernhard Schölkopf, Michel Besserve, Masataka Watanabe, Dajiang Zhu:
Towards Robust and Specific Causal Discovery from fMRI. CoRR abs/1509.08056 (2015)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 13:24 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint