default search action
Sehwan Lee
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c22]Jeongyoon Wie, Sangwoo Jung, Taeryoung Seol, Geunha Kim, Sehwan Lee, Homin Jang, Samhwan Kim, Yeonjae Shin, Jae Eun Jang, Jaeha Kung, Arup K. George, Junghyup Lee:
A 3.3-to-11V-Supply-Range 10μW/Ch Arbitrary-Waveform-Capable Neural Stimulator with Output-Adaptive-Self-Bias and Supply-Tracking Schemes in 0.18μm Standard CMOS. CICC 2024: 1-2 - [c21]Taeryoung Seol, Geunha Kim, Sehwan Lee, Samhwan Kim, Dongwook Kim, Jeongyoon Wie, Yeonjae Shin, Hongki Kang, Jae Eun Jang, Arup K. George, Junghyup Lee:
33.11 A Hybrid Recording System with 10kHz-BW 630mVPP 84.6dB-SNDR 173.3dB-FOMSNDR and 5kHz-BW 114dB-DR for Simultaneous ExG and Biocurrent Acquisition. ISSCC 2024: 562-564 - [c20]Sehwan Lee, Taeryoung Seol, Geunha Kim, Minyoung Song, Gain Kim, Jong-Hyeok Yoon, Arup K. George, Junghyup Lee:
A 97dB-PSRR 178.4dB-FOMDR Calibration-Free VCO-ΔΣ ADC Using a PVT-Insensitive Frequency-Locked Differential Regulation Scheme for Multi-Channel ExG Acquisition. VLSI Technology and Circuits 2024: 1-2 - 2023
- [c19]Taeryoung Seol, Sehwan Lee, Geunha Kim, Samhwan Kim, Euiseong Kim, Seungyeob Baik, Jaeha Kung, Ji-Woong Choi, Arup K. George, Junghyup Lee:
A 1V 136.6dB-DR 4kHz-BW $\Delta\Sigma$ Current-to-Digital Converter with a Truncation-Noise-Shaped Baseline-Servo-Loop in 0.18\mu\mathrm{m}$ CMOS. ISSCC 2023: 482-483 - [c18]Geunha Kim, Sehwan Lee, Taeryoung Seol, Seungyeob Baik, Yeonjae Shin, Gain Kim, Jong-Hyeok Yoon, Arup K. George, Junghyup Lee:
A 1V-Supply $1.85\mathrm{V}_{\text{PP}}$ -Input-Range 1kHz-BW 181.9dB-FOMDR179.4dB-FOMSNDR 2nd-Order Noise-Shaping SAR-ADC with Enhanced Input Impedance in 0.18μm CMOS. ISSCC 2023: 484-485 - 2022
- [c17]Sehwan Lee, Yoonsung Choi, Geunha Kim, Seungyeob Baik, Taeryoung Seol, Homin Jang, Doyoung Lee, Minkyu Je, Ji-Woong Choi, Arup K. George, Junghyup Lee:
A 0.7V 17fJ/Step-FOMW 178.1dB-FOMSNDR 10kHz-BW 560mVPP True-ExG Biopotential Acquisition System with Parasitic-Insensitive 421MΩ Input Impedance in 0.18μm CMOS. ISSCC 2022: 336-338 - [c16]Seungyeob Baik, Taeryoung Seol, Sehwan Lee, Geunha Kim, SeongHwan Cho, Arup K. George, Junghyup Lee:
A 2.54μJ∙ppm2-FOMS Supply- and Temperature-Independent Time-Locked ΔΣ Capacitance-to-Digital Converter in 0.18-μm CMOS. VLSI Technology and Circuits 2022: 114-115 - 2021
- [c15]Jun-Woo Jang, Sehwan Lee, Dongyoung Kim, Hyunsun Park, Ali Shafiee Ardestani, Yeongjae Choi, Channoh Kim, Yoojin Kim, Hyeongseok Yu, Hamzah Abdel-Aziz, Jun-Seok Park, Heonsoo Lee, Dongwoo Lee, Myeong Woo Kim, Hanwoong Jung, Heewoo Nam, Dongguen Lim, Seungwon Lee, Joon-Ho Song, Suknam Kwon, Joseph Hassoun, Sukhwan Lim, Changkyu Choi:
Sparsity-Aware and Re-configurable NPU Architecture for Samsung Flagship Mobile SoC. ISCA 2021: 15-28 - [c14]Jun-Seok Park, Jun-Woo Jang, Heonsoo Lee, Dongwoo Lee, Sehwan Lee, Hanwoong Jung, Seungwon Lee, Suknam Kwon, Kyung-Ah Jeong, Joon-Ho Song, Sukhwan Lim, Inyup Kang:
9.5 A 6K-MAC Feature-Map-Sparsity-Aware Neural Processing Unit in 5nm Flagship Mobile SoC. ISSCC 2021: 152-154 - 2020
- [j3]Soonyoung Hong, Sehwan Lee, Junghyup Lee, Minkyu Je:
A Multi-Mode ULP Receiver Based on an Injection-Locked Oscillator for IoT Applications. IEEE Access 8: 76966-76979 (2020) - [j2]Pramod P. Udupa, Gopinath Mahale, Kiran Kolar Chandrasekharan, Sehwan Lee:
IKW: Inter-Kernel Weights for Power Efficient Edge Computing. IEEE Access 8: 90450-90464 (2020) - [j1]Gopinath Mahale, Pramod P. Udupa, Kiran Kolar Chandrasekharan, Sehwan Lee:
WinDConv: A Fused Datapath CNN Accelerator for Power-Efficient Edge Devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(11): 4278-4289 (2020) - [c13]Saptarsi Das, Arnab Roy, Kiran Kolar Chandrasekharan, Ankur Deshwal, Sehwan Lee:
A Systolic Dataflow Based Accelerator for CNNs. ISCAS 2020: 1-5 - [c12]Pramod P. Udupa, Gopinath Mahale, Kiran Kolar Chandrasekharan, Sehwan Lee:
Accelerating Depthwise Convolution and Pooling Operations on z-First Storage CNN Architectures. ISCAS 2020: 1-5
2010 – 2019
- 2019
- [c11]Jinook Song, Yunkyo Cho, Jun-Seok Park, Jun-Woo Jang, Sehwan Lee, Joon-Ho Song, Jae-Gon Lee, Inyup Kang:
An 11.5TOPS/W 1024-MAC Butterfly Structure Dual-Core Sparsity-Aware Neural Processing Unit in 8nm Flagship Mobile SoC. ISSCC 2019: 130-132 - 2018
- [c10]Taeryoung Seol, Sehwan Lee, Junghyup Lee:
A Wearable Electrocardiogram Monitoring System Robust to Motion Artifacts. ISOCC 2018: 241-242 - [c9]Sehwan Lee, Arup K. George, Taeju Lee, Jun-Uk Chu, Sungmin Han, Ji-Hoon Kim, Minkyu Je, Junghyup Lee:
A 110dB-CMRR 100dB-PSRR multi-channel neural-recording amplifier system using differentially regulated rejection ratio enhancement in 0.18μm CMOS. ISSCC 2018: 472-474 - 2017
- [c8]Sehwan Lee, Ju-Hwan Lee:
Does Spatial Attribute between 2D and 3D Virtual Spaces make Different User Immersion of Audio-Visual Events? ICCAE 2017: 56-59 - 2011
- [c7]Sehwan Lee, Bitna Lee, Kern Koh, Hyokyung Bahn:
A Demand-Based FTL Scheme Using Dualistic Approach on Data Blocks and Translation Blocks. RTCSA (1) 2011: 167-176 - [c6]Sehwan Lee, Bitna Lee, Kern Koh, Hyokyung Bahn:
A lifespan-aware reliability scheme for RAID-based flash storage. SAC 2011: 374-379 - 2010
- [c5]Sehwan Lee, Kern Koh, Hyokyung Bahn:
Unifying Buffer Replacement and Prefetching with Data Migration for Heterogeneous Storage Devices. ICPADS 2010: 330-337
2000 – 2009
- 2009
- [c4]Sehwan Lee, Seunghwan Hyun, Kern Koh:
Selective Context Switching on Flash Memory. ICCSA Workshops 2009: 89-94 - 2008
- [c3]Seunghwan Hyun, Sehwan Lee, Sungyong Ahn, Kern Koh:
Improving the Demand Paging Performance with NAND-type Flash Memory. ICCSA Workshops 2008: 157-163 - [c2]Seunghwan Hyun, Sehwan Lee, Sungyong Ahn, Hyokyung Bahn, Kern Koh:
Vector Read: Exploiting the Read Performance of Hybrid NAND Flash. RTCSA 2008: 177-184 - 2007
- [c1]Seunghwan Hyun, Sungyong Ahn, Sehwan Lee, Hyokyung Bahn, Kern Koh:
Memory-Efficient Compressed Filesystem Architecture for NAND Flash-Based Embedded Systems. ICCSA (1) 2007: 252-264
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-18 20:32 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint